1

One of the issues arising in IP-based QoS networks is how to manage the
packet flows at a router level. In particular, in case of overloading, when

Improved Online Algorithms for
Buffer Management in QoS Switches

Marek Chrobak* Wojciech Jawor* Ji¥{ Sgalll
Tom4s Tichy |

Abstract

We consider the following buffer management problem arising in
QoS networks: packets with specified weights and deadlines arrive at
a network switch and need to be forwarded so that the total value of
forwarded packets is maximized. If a packet is not forwarded before its
deadline, it is lost and brings no profit. The main result of the paper
is an online % ~ 1.939-competitive algorithm — the first deterministic
algorithm for this problem with competitive ratio below 2. We also
study the s-uniform case, in which all packets have the same span s
(the difference between the deadline and the arrival time), for which we
give an algorithm with ratio 5 — /10 &~ 1.838. Our algorithm achieves
the same ratio in a more general scenario when all packets are similarly
ordered. Our last two results concern the 2-uniform case, for which
we give an algorithm with ratio ~ 1.377 and a matching lower bound.

Introduction

*Department of Computer Science, University of California, Riverside, CA 92521. Sup-

ported by NSF grants CCR-9988360 and CCR-0208856. {marek,wojtek}@cs.ucr.edu

tMathematical Institute, AS CR, Zitna 25, CZ-11567 Praha 1, Czech Republic. Par-
tially supported by Institute for Theoretical Computer Science, Prague (project LNO0OA056

of MSMT CR) and grant A1019401 of GA AV CR. {sgall,tichy}@math.cas.cz

the total incoming traffic exceeds the buffer size, the buffer management
policy needs to determine which packets should be dropped by the router.
Kesselman et al. [6] postulate that the packet drop policies can be modeled
as combinatorial optimization problems. Of the two models proposed in [6],
the one relevant to this work is called buffer management with bounded delay,
and is defined as follows: Packets arrive at a network switch. Each packet
is characterized by a positive weight and a deadline before which it must be
transmitted. Packets can only be transmitted at integer time steps. If the
deadline of a packet is reached while it is still being buffered, the packet is
lost. The goal is to maximize the weighted number of forwarded packets.

It is easy to see that this buffer management problem is equivalent to the
online version of the following unit job scheduling problem. We are given a
set of unit-length jobs, with each job j specified by a triple (7}, d;, w;), where
r; and d; are integral release times and deadlines, and w; is a non-negative
real weight. Omne job can be processed at each integer time. We use the
term weighted throughput or gain for the total weight of the jobs completed
by their deadline. The goal is to compute a schedule that maximizes the
weighted throughput.

In the online version of the problem jobs arrive in time and the algorithm
needs to schedule one of the pending jobs without knowledge of the future.
An online algorithm A is R-competitive if its gain on any instance is at least
1/R times the optimal (offline) gain on this instance. The competitive ratio
of A is the infimum of such values R. It is common in the literature to
view the behavior of an online algorithm A as a game between A and an
adversary, who issues the jobs in I and schedules them in order to maximize
the ratio between his gain and and the gain of A.

Past work. A simple greedy algorithm that always schedules the heaviest
available job is 2-competitive, and this is the best previous bound for deter-
ministic algorithms for this problem. A lower bound of ¢ ~ 1.618 was shown
in [1, 4, 5].

Some restrictions on instances of the problem have been studied in the
literature [6, 1, 4]. Let the span of a job be the difference between its deadline
and the release time. In s-uniform instances the span of each job is equal
exactly s. In s-bounded instances, the span of each job is at most s. The
lower bound of ¢ = 1.618 in [1, 4, 5] applies even to 2-bounded instances.
A matching upper bound for the 2-bounded case was presented in [6]. The

algorithms for the 2-uniform instances were studied by Zhu et al. [1], who
established a lower bound of %(\/g + 1) =~ 1.366 and an upper bound of
V2 ~ 1.414. This bound is tight for memoryless algorithms [2], that is,
algorithms which base their decisions only on the weights of pending jobs
and are invariant under scaling of weights. Finally, the first deterministic
algorithms with competitive ratio lower than 2 for the s-bounded instances
appear in [2]. These ratios, however, depend on s, and approach 2 as s
increases.

A randomized 1.582-competitive algorithm for the general case was given
in [2]. For 2-bounded instances, there is a 1.25-competitive algorithm [2] and
this is optimal [4]. For the 2-uniform case the currently best lower bound for
randomized algorithms is 1.172 [2].

Our results. We present several deterministic online algorithms for the
buffer management problem. Our main result is a deterministic % ~ 1.939-
competitive algorithm for the general case. This is the first deterministic
algorithm for this problem with ratio better than 2.

For the s-uniform case, we give an algorithm with ratio 5 — /10 ~ 1.838,
independent of s. In fact, this ratio holds in a much more general scenario
when all jobs are similarly ordered, that is, when r; < r; implies d; < d;
for all jobs 7, j. Finally, we completely solve the 2-uniform case: we give an
algorithm with competitive ratio ~ 1.377 and a matching lower bound. Note
that this ratio is strictly in between the previous lower and upper bounds
from [1].

2 Terminology and Notation

A schedule S specifies which jobs are executed, and for each executed job j
it specifies an integral time ¢, r; < ¢t < d;, when it is scheduled; only one
job can be scheduled at any t. The throughput or gain of a schedule S is
the total weight of the jobs executed in S. If A is a scheduling algorithm,
by gain4(I) we denote the gain of the schedule computed by A on I. The
optimal gain on [is denoted by opt(I). A job i is pending in schedule S at
time t if r; < t < d; and 7 has not been scheduled before t. Note that all jobs
released at time ¢ are considered pending.

An instance is s-bounded if d;—r; < s for all jobs j. Similarly, an instance
is s-uniform if d; — r; = s for all j. The difference d; — r; is called the span

of a job j. An instance is called similarly ordered when the release times and
deadlines are similarly ordered, that is if 7; < r; implies d; < d; for any two
jobs ¢ and j.

Given two jobs i,j, we say that ¢ dominates j if either (i) d; < d;, or
(11) d; = dj and w; > w;, Or (111) d; = dj, w; = Wj and 7 < j. ((111) only
ensures that ties are broken in some arbitrary but consistent way.) Given a
non-empty set of jobs J, the dominant job in .J is the one that dominates all
other jobs in J; it is always uniquely defined as ‘dominates’ is a linear order.

A schedule S is called canonical earliest-deadline if for any jobs i sched-
uled in S at time ¢ and j scheduled later in S, either j is released strictly
after time ¢, or ¢+ dominates j. IL.e., at any time ¢, the job scheduled by S is
the dominant pending job in S. Any schedule can be easily converted into
a canonical earliest-deadline schedule by rearranging its jobs. Thus we may
assume that offline schedules are canonical earliest-deadline.

3 A %-Competitive Algorithm

We start with some intuitions that should be helpful in understanding the
algorithm and its analysis. The greedy algorithm that always executes the
heaviest job (H-job) is not better than 2-competitive. An alternative idea
is to execute the earliest deadline job at each step. This algorithm is not
competitive at all, as possibly many jobs of very small weight are executed
even if there are heavy jobs pending with only slightly larger deadlines. A
natural refinement of this approach is to focus on sufficiently heavy jobs, of
weight at least a times the maximal weight, and chose the earliest deadline
job among those (an E-job). As it turns out, this algorithm is also not better
than 2-competitive.

The general idea of our new algorithm is to alternate H-jobs and E-
jobs. Although this simple algorithm, as stated, has ratio no better than 2,
with several seemingly minor modifications, we can achieve competitive ratio
smaller than 2.

Algorithm GENFLAG: We use parameters a = % and 8 = 18—1 and a boolean
variable eflag, initially set to false, that stores information about the previous
step.

At a given time step t, update the set of pending jobs (remove jobs with
deadline ¢ and add jobs released at t). If there are no pending jobs, go to the

next time step. Otherwise, let h be the heaviest pending job (breaking ties
in favor of dominant jobs) and e the dominant job among the pending jobs
with weight at least awy. Schedule either e or h according to the following
procedure:

if eflag = false then
schedule e
if e # h then set eflag<— true
else
set eflag<— false
if d, =t+ 1 and w, > fw,, then schedule e
else schedule h

A job e scheduled while eflag= false is called an O-job if ¢ = h, or an
E-j0b otherwise. A job e scheduled while eflag=true is called an U-j0b. A job
h scheduled in the last case is called an H-job. The letters stand for Obvious,
Early, Urgent, and Heaviest.

Variable eflag is true iff the previous job was an E-job. Thus, in terms
of the labels, the algorithm proceeds as follows: If an O-job is available, we
execute it. Otherwise, we execute an E-job, and in the next step either a
U-job (if available) or an H-job. Note that the condition e # h guarantees
that there is a pending job if eflag is true: if d;, = t then e = h by the
definition of dominance; so if an E-job is executed at time ¢, d,, > t and h
will be pending in the next step.

Theorem 3.1 GENFLAG is a %—competitive deterministic algorithm for

unit-job scheduling.

Proof: The proof is by a charging scheme. Fix an arbitrary (offline) schedule
ADV. For each job j executed in ADV, we partition its weight w; into several
charges, and assign each charge to a job executed by GENFLAG. If the total
charged to each job ¢ of GENFLAG were at most Rw;, the R-competitiveness
of GENFLAG would follow by summation over all jobs. Our charging scheme
does not always meet this simple condition. Instead, we divide the jobs of
GENFLAG into disjoint groups, where each group is either a single O-job, or
an EH-pair (an E-job followed by an H-job), or an EU-pair (an E-job followed
by a U-job). This is possible by the discussion of types of jobs before the
theorem. For each group we prove that its charging ratio is at most R, where

5

the charging ratio is defined as the total charge to this group divided by the
total weight of the group. This implies that GENFLAG is R-competitive by
summation over all groups.

Charging scheme. Let j be the job executed at time ¢ in ADV. Denote
by ¢ and h, respectively, the job executed by GENFLAG and the heaviest
pending job at time ¢. (If there are no pending jobs, introduce two “dummy”
jobs of weight 0. This does not change the algorithm.) Then j is charged to
GENFLAG’s jobs, according to the following rules.
(EB) If j is executed by GENFLAG before time ¢, then charge (1 — §)wy,
to ¢ and the remaining w; — (1 — S)wy, to j.

(EF) Else, if j is executed by GENFLAG after time ¢, then charge fw; to
i and (1 — p)w; to j.

(NF) Else, if ¢ is an H-job, w; > fw;, and ADV executes ¢ after time ¢,
then charge fw; to i and (1 —)w; to the job scheduled by GENFLAG
at time ¢ + 1.

(U) Else, charge w; to i. (Note that this case includes the case i = j.)
We label all charges as EB, EF, NF, U, according to which case above applies.
We also distinguish upward, forward, and backward charges, defined in the
obvious way. Thus, for example, in case (EB), the charge of w; — (1 —f)wy, to
j is a backward EB-charge. The letters in the labels refer to whether j was
executed by GENFLAG, and to the charge direction: Executed-Backward,
Executed-Forward, Non-executed-Forward, Upward. We start with several
simple observations that will be used later in the proof, sometimes without
explicit reference.

Observation 1: Consider the execution of GENFLAG. At time ¢, let h be
the heaviest job and e the dominant job of weight at least cwy. Let j be any
pending job. Then

(1.1) w; < wp,.

(1.2) If j dominates e then w; < awy,.
Proof: Inequality (1.1) is trivial, by the definition of h. Inequality (1.2)
follows from the fact that e dominates all pending jobs with weight at least
QW .
Observation 2: Suppose that at time ¢ GENFLAG schedules a job that
receives a forward NF-charge from the job [scheduled at time £ — 1 in ADV.
Then [is pending at time .
Proof: Denote by f the heaviest pending job of GENFLAG at time ¢ — 1. By

the definition of NF-charges, [# f, [is pending at time t — 1, f is executed
as an H-job, dy >t +1, and w; > Bwy. Therefore d; > ¢+ 1, since otherwise
GENFLAG would execute [(or some other job) as a U-job at step t —1. Thus
[is also pending at step ¢, as claimed.

Observation 3: Suppose that at time ¢t GENFLAG schedules a job e of type
O or E, and h is the heaviest pending job at time £. Then

(3.1) The upward charge to e is at most wy,.

(3.2) If ADV executes e after time ¢ then the upward charge is at most

AW, .

(3.3) The forward NF-charge to e is at most (1 — 3)wy,.
Proof: Denote by j the job executed at time ¢ in ADV. If j is scheduled
by GENFLAG before time ¢, then the upward charge is (1 — f)w, < awy
and claims (3.1) and (3.2) hold. Otherwise j is pending at time ¢. Then
the upward charge is at most w; < wy, and (3.1) follows. If ADV executes e
after time ¢, then, since ADV is canonical, job j must dominate e, and (3.2)
follows from (1.2). (3.3) follows by Observation 2 and (1.1).

Observation 4: Suppose that at time ¢t GENFLAG executes an H-job h that
is executed after time ¢ in ADV. Then the upward charge to h is at most
B’U}h.
Proof: Let j be the job executed at time ¢ in ADV. In case (EB), the upward
charge to h is at most (1 — f)w, < Pwy. In all other cases, j is pending at
time ¢, so w; < wy. In cases (EF) and (NF), the charge is fw; < fwy. In
case (U) the charge is w;, but since (NF) did not apply, this case can occur
only if w; < Bwy,.

This completes the proofs of all observations. Now we examine the charges
to all groups in our partition of GENFLAG’s jobs: single O-jobs, EH-pairs,
and EU-pairs.

O-jobs. Let e = h be an O-job executed at time ¢. The forward NF-charge
is at most (1 — f)w,. If e gets a backward EB-charge then e gets no forward
EF-charge and the upward charge is at most aw,; the total charging ratio is
at most 2+ a — 8 < R. If e does not get a backward EB-charge then the
forward EF-charge is at most (1 — f)w, and the upward charge is at most
w,; the charging ratio is at most 3 — 20 < R.

E-jobs. Before considering EH-pairs and EU-pairs, we estimate separately
the charges to E-jobs. Suppose that at time ¢ GENFLAG executes an E-job e,

and the heaviest job is h. We claim that e is charged at most awp,+ (2—) w,.
We have two cases.

Case 1: e gets no backward EB-charge. Then, in the worst case, e gets an
upward charge of wy, a forward NF-charge of (1 — f)wy, and a forward EF-
charge of (1 — f)w,. Using (2— B)w;, = 2aw;, and aw, < w,, the total charge
is at most (2 — B)wp, + (1 — fw. < awp, + (2 — f)w, as claimed.

Case 2: e gets a backward EB-charge. Then there is no forward EF-charge
and the upward charge is at most awy, by (3.2). Let [be the job scheduled
at time ¢t — 1 in ADV. If there is an NF-charge, it is generated by [and then
[is pending for GENFLAG at time ¢ by Observation 2.

If there is a forward NF-charge and d; > d., then [is pending at the time
when ADV schedules e. (Note that in this case job [cannot be executed by
GENFLAG, because charges EB, EF did not apply to [.) Consequently, e
receives at most a backward EB-charge w, — (1 — f)w;, a forward NF-charge
(1 — B)w;, and an upward charge awy,. The total is at most aw, + w, <
awp, + (2 — f)w, as claimed.

Otherwise, there is no forward NF-charge, or there is a forward NF-charge
and d; < d.. In the second case, [is pending at ¢, and [dominates e, so the
forward NF-charge is at most (1 — f)w; < (1 — f)w.. With the backward
EB-charge of w, and upward charge of at most awy,, the total is at most
awp, + (2 — f)w, as claimed.

EH-pairs. Let e be the E-job scheduled at time ¢, h the heaviest pending
job at time ¢, and A’ the H-job at time ¢ + 1. By the algorithm, e # h.
Note that, since GENFLAG did not execute h as a O-job at time £, h is still
pending after the E-step and wy > wy,.

We now estimate the charge to h'. There is no forward NF-charge, as
the previous step is not an H-step. If there is a backward EB-charge, the
additional upward charge is at most Sw and the total is at most (1+) wy,.
If there is no EB-charge, the sum of the upward charge and a forward EF-
charge is at most wy + (1 — flwy < (1 4+ B)wp. With the charge to e
of at most awy, + (2 — f)w,, the total charge of the EH-pair is at most
awp, + (2 — B)we + (1 + f)wyr, and thus the charging ratio is at most

awp, + (26 — 1wy awy, + (28 — 1wy

2—-0+ 2—-08+
B We + Why - b QWp + Wy
a+28—1
< 2- — =R.
- b+ a+1

The first step follows from w, > awy. The next expression is decreasing in
wy as 26 — 1 < 1, so the maximum is at wy = wy,.

EU-pairs. As in the previous case, let e, and h denote the E-job scheduled
at time ¢ and the heaviest pending job at time ¢. By ¢ and h’ we denote the
scheduled U-job and the heaviest pending job at time ¢ + 1. As in the case
of EH-pairs, e # h and wy > wy,.

Job ¢ gets no backward EB-charge, since it expires, and no forward NF-
charge, since the previous step is not an H-step. The upward charge is at
most wy, the forward EF-charge is at most (1 — 3)w,.

With the charge to e of at most awy, + (2 — f)w,, the total charge of the
EU-pair is at most awy, + (2 — f)we + wy + (1 — B)wy, so the charging ratio
is at most

aw, + (1 = Bup at+l-p

QWp, + Wy
<2-f+———F—
20 a+

— D <9-p+

= R.
We + Wy awy, + Pwpy

2—f+

In the first step, we apply bounds w. > awj, and w, > Swy. The next
expression is decreasing in wys, so the maximum is at wy = wy,.

Summarizing, we now have proved that the charging ratio to all job groups
is at most R, and the R-competitiveness of GENFLAG follows. O

4 A (5—+/10)-Competitive Algorithm for Sim-
ilarly Ordered Jobs

We now consider the case when the jobs are similarly ordered, that is r; < r;
implies d; < d; for all jobs ¢, 7. Note that, in particular, this covers the case
when all jobs on input have the same span.

Algorithm SiMFLAG: We use one parameter a = \/E/ 5 ~ 0.633 and a
boolean variable eflag, initially set to false.

At a given time step t, update the set of pending jobs (remove jobs with
deadline ¢ and add jobs released at t). If there are no pending jobs, go to the
next time step. Otherwise, let h be the heaviest pending job (breaking ties
in favor of dominant jobs) and e the dominant job among the pending jobs
with weight at least awy. Schedule either e or h according to the following
procedure:

if eflag = false then

schedule e

ife#h A d.>t+1 then set eflag+ true
else

schedule h; set eflag<— false

A job e scheduled while eflag=false is called an O-job if e =h or d, =t + 1,
and an FE-job otherwise. A job h scheduled while eflag=true is called an
H-job. The intuition behind the algorithm is very similar to GENFLAG, and,
in fact, it is simpler. It schedules O-jobs, if available, and if not, it schedules
an E-job followed by an H-job; note that the condition ¢ # h guarantees that
there will be a pending job if eflag is true.

Theorem 4.1 SIMFLAG is a 5 — V10 =~ 1.838-competitive deterministic
algorithm for unit-job scheduling for similarly ordered instances.

Proof: The proof is by a charging scheme. The steps of the algorithm can
be divided into single O-steps, and EH-pairs. This is because each E-job
must be followed by an H-job, and each H-job must be preceded by an E-job.
Similarly as for GENFLAG, we give a charging scheme and show that the
charging ratio to each group is at most R.

Charging scheme. Let j be the job executed at time ¢ in ADV. Denote by ¢
and h, respectively, the job executed by SIMFLAG and the heaviest pending
job at time ¢. (Without loss of generality, we can assume that such jobs
exist.) Let 3 = 4 — /10 ~ 0.838. Then j is charged to SIMFLAG’s jobs,
according to the following rules.
(EB) If j is executed by SIMFLAG at or before time ¢, then charge w; to
J.
(NF) Else, if d; > t + 1 and ¢ is an H-job, then charge Sfw; to i and
(1 — B)w, to the job scheduled by SIMFLAG at time ¢ + 1.
(U) Else, charge w; to i.
We start with some general observations. If ADV schedules j’ before j then
dy < dj: if j is available at the time of scheduling ;' then this follows from
the definition of canonical schedules, and otherwise from the assumption of
similar ordering.

Observation 1: Consider the execution of SIMFLAG. At time ¢, let h be
the heaviest job and e the dominant job of weight at least awy. Let j be any
pending job. Then

10

(1.2) If j dominates e then w; < awy,.
Observation 2: Suppose that at time ¢ SIMFLAG schedules a job e (of type
O or E), and h is the heaviest pending job at time ¢. Then
(2.1) The upward charge to e is at most wy,.
(2.2) If ADV executes e after time ¢ then the upward charge is at most
AW, .
(2.3) The forward NF-charge to e is at most (1 — B)wy,.
(2.4) If ADV executes e after time ¢t then forward NF-charge is at most
(1 _ 6)“’6-
(2.5) If ADV does not execute e after time ¢ then the charge to e is at most
Rw,.
The proofs of (1.1)-(2.3) are the same as for GENFLAG.

For (2.4), let [be the job executed at time t—1 in ADV; since e is scheduled
later we have d; < d,. By the definition of NF-charges, [is pending at time
t. This, by the choice of e, implies that w; < w, and (2.4) follows.

In (2.5), e does not get a backward EB-charge, the upward charge is at

most wy, and the forward NF-charge is at most (1 — S)w,. The total is at
most (2 — Swy, < (2 — flwe/a = Rw,.
O-jobs. Let e be an O-job executed at time ¢, and let h be the heaviest
pending job. By the algorithm, either e = h or d, =t + 1 (i.e., e expires). If
e gets no backward charge, the charging ratio is at most R by (2.5). If e gets
a backward EB-charge then d, > ¢t 4+ 1 and thus e = h. The upward charge
is at most awy, = aw, and the forward NF-charge is at most (1 — f)w,. So
the charging ratio is at most 2 +a — 5 < R.

EH-pairs. Let e be the E-job scheduled at time ¢, i be the heaviest pending
job at time ¢, and h' be the H-job at time £ + 1. Let 7 and ;' be the jobs
executed at times ¢t and t+1 in ADV, respectively. By the algorithm, we have
e # h, which implies d, > d,. as otherwise h is chosen as e. Furthermore,
de 2t+2 and W > Wk, -

Case 1: ADV schedules e after time ¢. Then j' dominates e or j' = e, as
ADV schedules j' at t + 1 when e is pending. Also, j dominates e. Thus the
U-charges to e and b’ are each at most awy. In addition, e could receive an
NF-charge of at most (1 — 8)w, and the EB-charges are w, + wy,. The total
charge to the EH-pair is at most (2 — f)w, + 2wy, + wy, and the charging

11

ratio 1s at most

(1 — B)we + 20wy, <1+(1—ﬂ)we+2awh <1+(1—5)a+2a:

R.
We + Wy - We + Wy, - a+1

1+

The first inequality follows from wjy > wj, and the next inequality holds
because its left-hand side is decreasing in w, > awy, (note that 1 — § < 2a«).

Case 2: ADV does not schedule e after time t. We estimate the charges to e
and h' separately. The charging ratio of e is at most R by (2.5).

We claim that the upward charge to h' is at most Swy. If j' is scheduled
before ¢, then there is no charge. If dy > t + 2, then this follows by the
NF-charge definition. Otherwise d;; < d, < dj, and thus 7y < 7, <t and j'
is pending at ¢. Thus w; < w,, as otherwise j' would be chosen as e at time
t (note that e # j' by the case condition.) So the upward charge is at most
we < awy < Pwyp and the claim is proven. The total charge to h', including
a possible EB-charge, is at most (1 4+)wy = Rwy and the charging ratio is
at most R. O

5 2-Uniform Instances

In this section we consider 2-uniform instances, where each job j satisfies
dj = r; + 2. Let @ =~ 1.377 be the largest root of @* + Q? —4Q + 1 = 0.
First, we prove that no online algorithm for this problem can be better than
Q-competitive. Next, we show that this lower bound is in fact tight.

5.1 Lower Bound

In this sub-section we prove that no deterministic online algorithm for 2-
uniform instances can have a competitive ratio smaller than) =~ 1.377.
Recall that @ is defined as the largest root of @3 + Q? — 4Q + 1 = 0.

Fix some 0 < € < 2QQ — 2. We define a sequence ¥;, 1 = 1,2,..., as
follows. For : =1, ¥; = (Q — 1 — €. Inductively, for : > 1, let

RE2-Q)¥; +3Q%—5Q +1 _ 2-Q)¥; —(Q—1)
RE2—-Q -y 2-Q -, ’

where the second equality follows from Q® + Q? — 4Q + 1 = 0.

Vi =

12

Lemma 5.1 For all 1, we have 1 — Q < ¥, < Q — 1. Furthermore, the
sequence {V;} converges to 1 — Q.

Proof: Substituting ¥; = 2z; + 1 — @), we get z;,1 = (3382“. Ifo<z <

2QQ — 2 — €, then 0 < 2,41 < 33(2,235% Thus 0 < z; < 2QQ — 2 — € for all 4,

lim;_, z; = 0, and the lemma follows. O

Theorem 5.2 There is no deterministic online algorithm for the 2-uniform
case with competitive ratio smaller than Q).

Proof: The proof is by contradiction. Assume that there exists a (Q — €)-
competitive algorithm A, for some € > 0. We develop an adversary strategy
that will force A’s ratio to be bigger than () — .

Throughout this proof, to simplify notation, we will identify jobs by their
weight. Thus, when we say “job x”, we mean the job with weight x. Such
job will be always either uniquely defined by the context, or there will be two
such identical jobs, in which case one of them can be chosen arbitrarily. At
each step ¢, we distinguish old pending jobs, that is, those that were released
at time ¢ — 1 but not executed, from the newly released jobs. Without loss
of generality, we can assume that there is always (except for the last step)
exactly one old pending job. (All old pending jobs except the heaviest one
can be ignored. The situation with no old pending jobs can be simulated by
pretending that we have an old pending job with weight 0.)

By a configuration we mean a pair (z,y), where z, y denote the old
pending jobs of A and the adversary, respectively.

Let {U;} be the sequence from Lemma 5.1. For ¢ > 1 define

YT -1 YT @y
Note that by the first part of Lemma 5.1 we have b; > a; > 1 for all .

We now describe the adversary strategy. Initially, we issue two jobs of
some arbitrary weight x; > 0. Both 4 and the adversary execute one job z;
and we enter the configuration (z1, z1).

Suppose now that after i—1 iterations, the current configuration is (z;, x;).
The adversary now follows the following steps:

Q.

13

issue one job a;x;
(1) if A executes a;x; execute z;, a;x; and halt
else (A executes z;)
at the next time step issue b;zx;

(2) if A executes b;z; execute x;, a;x;, b;x;, and halt
else (A executes a;x;)
(3) at the next time step issue two jobs x;,1 = b;x;

execute a;T;, bixi, ble

If A executes first x; and then a;x;, then after step (3) it will execute one
job x;11 = b;z;, and the new configuration will be (z;,1, z;11), and the game
continues. The adversary strategy is illustrated in Figure 1, where we assume
that x; = 1, and to simplify notation we write a; = a and b; = b. Jobs are
represented by line segments, with dark rectangles representing if and when
the job is executed by A, while the lightly shaded rectangles represent job
executions by the adversary.

adversary move

(no new jobs) e X

algorithm and 4 algorithm move
Y adversary move / -

adversary move

adversary move

next iteration

[—] >
algorithm

Y
and |
adversary adversary !
move move
1:— bx bx |

Figure 1: The adversary strategy.

If the game completes ¢ — 1 iterations, then define gain, and adv; to be
the gain of A and the adversary in these i — 1 iterations (that is, ending in
configuration (x;, z;).)

We claim that for any ¢, either the adversary wins the game before iter-

14

ation ¢, or else in iteration ¢ we have
(Q — €)gain; — adv; < V,z;. (1)

The proof of (1) is by induction on i. For i = 1, (Q — €)gain, — adv; <
(Q — €)1 — 21 = ¥yz4, as claimed. Suppose that (1) holds after iteration
i—1, that is, when the configuration is (z;, ;). If A executes a;x; in step (1),
then, denoting by £ the sequence of jobs up to this step, using the inductive
assumption, and substituting the formula for a;, we have

(Q — €)gain (&) — adv(§) = (Q — €)gain; — adv; +
+(Q — C)CLZ'ZEi — (.CUZ + CL@LL’Z’)
< [\Pi—1+(Q—e—1)ai]xi < 0,

contradicting the (@ — €)-competitiveness of A. If A executes z; and then
b;x; in step (2), then, again, denoting by &' the sequence of jobs up to this
step, using the inductive assumption, and substituting the formulas for a;, b;,
we have

(Q — €)gain (&) — adv (&) = (Q — €)gain, — adv; + (Q — €)(x; + bix;) —
—(x; + a;x; + bix;)
< [W4+Q—-1—€e+(Q—€e—1)b — agx;
< 0,

and this again contradicts the (@) — €)-competitiveness of A.

The only other possibility is that A will execute first z;, then a;x;,
and then it will have no choice but execute b;z;. In the new configuration
(Tiv1,xi41) we will have

(Q — €)gain, ; — adviyr < (Q — €)gain; — adv; +

+(Q — €)(z; + aiz; + bix;) — (ax; + 2b;z;)
(W + Q(1 + a; + b;) — (a; + 2b;)]z;

= biziVit1 = @iy Wita,

IA

completing the proof of (1).
From (1) and from Lemma 5.1, we obtain that for i large enough we will
have (Q — €)gain;, — adv; < ¥,x; < (1 — Q + €)z;. But this contradicts the

15

(Q — e)-competitiveness of A, since, denoting by o the sequence of all jobs
issued up to this time (including the pending jobs x;), we have

(Q — €)gainy (o) — adv(p) = (Q — €)gain; — adv; + (Q — €)z; — x;
< 1-Q+¢éz;+(Q—¢€)x; —x; = 0.

O

5.2 Upper Bound

In this section we present an online algorithm for 2-uniform jobs with com-
petitive ratio (). Given that the 2-uniform case seems to be the most elemen-
tary case of unit job scheduling (without being trivial), our algorithm (and
its analysis) is surprisingly difficult. Recall, however, that any algorithm
for 2-uniform instances whose competitive ratio is better than /2 cannot
be memoryless (see [2]). In other words, in addition to the pending jobs, it
needs to use some information about the jobs that were already executed or
that expired. Further, when the adversary uses the strategy from the lower
bound proof in the previous section, any online algorithm needs to behave in
an essentially unique way in order to be Q-competitive. Our algorithm was in
fact designed to match this optimal strategy, and then extended (by interpo-
lation) to other adversarial strategies. Thus we suspect that the complexity
of the algorithm is inherent in the problem and cannot be avoided.

We start with some intuitions. Let A be our online algorithm. Suppose
that at a certain time ¢ we have one old pending job z, and two new pending
jobs b, c with b > ¢. In some cases, the decision which job to execute is easy.
If ¢ > z, A can ignore z and execute b in the current step. If z > b, A can
ignore ¢ and execute z in the current step. If ¢ < z < b, A faces a dilemma:
it needs to decide whether to execute z or b. In general, the choice will be
made based on the ratio z/b. If z/b exceeds a certain threshold (possibly
dependent on the past computation), we execute z, otherwise we execute b.
We can handle all three cases by using a parameter, say 7, and making the
decision according to the following procedure:

Procedure SSP,: If 2 > nb+ (1 — n)c schedule z, otherwise schedule b.

To derive an online algorithm, say A, we examine the adversary strategy
in the lower bound proof. Consider the limit case, when ¢+ — oo, and let
a, = lim;_,oa; = Q/(Q —1) and b, = lim; oo b; = Q/(Q —1)2. Assume that

16

in the previous step two jobs z were issued, so that the current configuration
is (z, z). If the adversary now issues a single job a, then A needs to do the
following: if a < a,z, execute z, and if a > a,z, then execute a. (The tie for
a = a,z can be broken either way.) Thus in this case we need to apply SSP,,
with the threshold a =1/a, = (Q — 1)/Q.

Then, suppose that in the first step A executed z, so that in the next
step a is pending. If the adversary now issues a single job b, then (assuming
a ~ a,) A must to do the following: if b < b,z, execute a, and if b > b,z,
then execute b. Thus in this case we need to apply SSPs with the threshold
B:a*/b*:Q_l-

Suppose that we execute a. In the lower-bound strategy, the adversary
would now issue two jobs b in the next step. But what happens if he is-
sues a single job, say ¢? Routine calculations show that A, in order to be
(Q-competitive, needs to use yet a different parameter in SSP,. This param-
eter is not uniquely determined, but it must be at least v = (3—20Q)/(2—Q),
which is greater than () — 1. Further, it turns out that the same value v can
be used on subsequent single-job requests.

Our algorithm is derived from the above analysis: on a sequence of single-
job requests in a row, use SSP, with parameter « in the first step, then 3
in the second step, and v in all subsequent steps. In general, of course, two
jobs can be issued at each step (or more, but only two heaviest jobs need to
be considered.) We think of an algorithm as a function of several arguments.
The values of this function on the boundary are determined from the optimal
adversary strategy, as explained above. The remaining values are obtained
through interpolation.

We now give a formal description of our algorithm. We define constants

Q-1 3—2Q

a = — x0.27 B =0Q—-—1=~0.38 =
Q 7T 2Q

We also use two functions

E—a
g -«
where 0 < <1 and a < & < 7. Note that for the parameters u, & within

their ranges, we have 0 < A\(§) < 1, a < §(p, &) < . Function § also satisfies
6(1,€) = e, 0(0,€) = B for any &, and 6(0, @) = f, 6(0, 3) = 7.

~ 0.39

AE) = min{l, } (1, €) = v+ (1= I + (7 — BINE)]

17

Algorithm SwiTcH. Fix a time step ¢. Let u, v be the two jobs released at
time ¢t — 1 (we assume that v > v) and b, ¢ (where b > ¢) be the jobs released
at time t. Let z € {u, v} be the old pending job. Let also £ be the parameter
of SSP used at time ¢ — 1 (initially £ = «). Then SWITCH chooses the job
to execute as follows:

o If z = wu run SSP, with n = 4(2,¢),

e If z = v run SSP, with n = «.

Theorem 5.3 Algorithm SWITCH s (Q-competitive for the 2-uniform case,
where QQ ~ 1.377 is the largest root of Q* + Q* —4Q +1 = 0.

The proof of the theorem is by tedious case analysis of an appropriate
potential function, and is included in the appendix.

6 Conclusions

We established the first upper bound better than 2 on the competitiveness of
deterministic scheduling unit jobs to maximize weighted throughput. There
is still a wide gap between our upper bound of ~ 1.939 and the best known
lower bound of ¢. Closing or substantially reducing this gap is a challenging
open problem. We point out that our algorithm GENFLAG is not memoryless,
as it uses one bit of information about the previous step. Whether it is
possible to reduce the ratio of 2 with a memoryless algorithm remains an
open problem.

Another intriguing open problem is to determine the competitiveness of
the case when the jobs are similarly ordered, or when they all have the same
span. We gave an algorithm for this version with competitive ratio ~ 1.838.
The lower bound of ¢ applies to similarly ordered jobs. As for the uniform
span case, to the best to our knowledge, the best lower bound is ~ 1.377
given in this paper for the 2-uniform case.

References

[1] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies
in QoS switches. In Proc. 14th Symp. on Discrete Algorithms (SODA),
pages 761-770. ACM/STAM, 2003.

18

2]

Y. Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, R. Lavi,
J. Sgall, and T. Tichy. Online competitive algorithms for maximizing
weighted throughput of unit jobs. In Proc. 21st Symp. on Theoretical
Aspects of Computer Science (STACS), 2004. to appear.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
architecture for differentiated services. Internet RFC 2475. 1998.

F.Y. L. Chin and S. P. Y. Fung. Online scheduling for partial job values:
Does timesharing or randomization help? Algorithmica, pages 149-164,
2003.

B. Hajek. On the competitiveness of online scheduling of unit-length
packets with hard deadlines in slotted time. In Conference in Information
Sciences and Systems, pages 434-438, 2001.

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and
M. Sviridenko. Buffer overflow management in QoS switches. In Proc.
33rd Symp. Theory of Computing (STOC), pages 520-529. ACM, 2001.

19

A An Algorithm for the 2-Uniform Case

Recall that the algorithm uses the following constants

Q-1 A1 0 3-2Q

where @ is the largest root of Q3+ Q% —4Q +1 = 0. We also use the following

two functions
M) = min {1, E:Z}

01, &) = po+ (L= p)(B+ (v —B)AE)),
where 0 < pu, & < 1. Note that these functions satisfy the following properties:

~ 0.39

A(€) > 0 for any &

0:[0,1] x [a,7] — [a,7]
0(1,¢§) = aforany &
6(0,§) > pBforany ¢

Algorithm SwiTcH. Fix a time step ¢. Let u, v be the two jobs released at
time ¢t — 1 (we assume that v > v) and b, ¢ (where b > ¢) be the jobs released
at time ¢. Let z € {u, v} be the old pending job. Let also £ be the parameter
of SSP used time ¢ — 1 (initially £ = a). Then SWITCH chooses the job to
execute as follows:

o If z = u run SSP, with n = 4(2,¢),

e If z = v run SSP,, with n = a.
Analysis. We use a potential function argument to show that SWITCH is
(Q-competitive.

The proof for the 2-uniform cases is based on a potential function argu-
ment. We define below a potential function ® that maps all possible config-
urations into real numbers. (In general, a configuration at a given step may
encode all information about the computation up to this step, both for the
algorithm and the adversary. Here it is sufficient only to remember the jobs
issued in last two steps.) Intuitively, the potential represents A’'s savings at a
given step. At each time step, an online algorithm and the adversary execute
a job. The proof is based on the following lemma which can be proven by a
simple summation over all steps.

20

Lemma A.1 Let A be an online algorithm for scheduling unit jobs. Let ®
be a potential function that is 0 on configurations with no pending jobs, and
at each step satisfies

R - Againg > Aadv+ AP (2)

where A® represents the change of the potential, and Again 4, Aadv represent
A’s and the adversary gain in this step. Then A is R-competitive.

Each configuration is defined by the parameter { of SSP¢ used in the
previous step, the jobs released in the previous step, and the pending jobs
z,y € {u,v} of the algorithm and the adversary respectively. The configura-
tion is thus described by a five-tuple (u, v, z,y,&). To simplify the notation
we write @, (u, v,) instead of ®((u,v,z,y,&)). We define

2

u(u,0,6) = —(1- Q= BAE) +uBA(E)

Dun(u,0,6) = 0(Q—1=G+CAE) +u(-GNE) ~ 1/Q)
by (u,v,8) = u—Qu

(I)vv(uavag) = U(l_Q)

where £ =2 — Q% =a(Q —1),G = Q* + 3Q — 6. Note that F,G > 0.
Recall that by b and ¢ we denote the jobs released at this step and that
we assume that b > ¢. By Lemma A.1 it is sufficient to prove that

Puy(u,v,8) + QAGAING e > Aadv + Py (b, ¢, E) (3)

where £, &' are the parameters of SSP used in this and the next steps, and
x,y,x',y" are the pending jobs of the algorithm and the adversary in this and
the next steps respectively.

We start by introducing several lemmas and facts that let us avoid a
number of technical issues later in the proof.

Lemma A.2 ®,,(u,v,§) satisfies the following properties for any u,v,§
(where v < u):

(1) @uu(u,v,8) = Puy(u,v,§),

(2) Pyu(u,v,8) > Pyy(u,v,8),

(3) @pu(u,v,8) —u= Dy (u,v,&) — v.

21

Proof: (1) We have to show that

%2(1 —Q — EX&)) +uBX¢&) >

V(@ —1 -G+ GAE)) +u(=GA(E) —1/Q)

Note that the expression on the left-hand side is minimized for v = u, and
the expression on the right-hand side is maximized for v = u. We may thus
assume that v = u and reduce the inequality to 1 —Q > Q —1—-G —1/Q
which holds as G+ 1/Q = 2Q — 2.

(2) Note that @y (u,v,€) =u— Qv > v — Qu = By (u, v,).

(3) We have @, (u,v,&)—u=u—Qu—u=—Qu+(v—v) = (1-Q)v—v =
b, (v,0,€) —v. O

Lemma A.3 Let Q be the greatest root of Q* + @Q?> —4Q +1 = 0. The
following inequalities hold

7Q°—-6Q -5 > 0 (4)
~TQ* +14Q -6 > 0 (5)
Q*+3Q -6 > 0 (6)
—90? +32Q —27 > 0 (7)

For the purpose of this analysis, it is also convenient to define

I = X,
d(p,1) = po+ (L= p)(B+(y—=B)l) =0(u&).
Note that d satisfies the following properties:

d(1,l) = a for any [, (8)
d(0,1) > p for any [> 0. (9)

Solutions of the following linear programs will be used to obtain bounds
on certain expressions. In these programs A denotes a constant such that
a< A<~

22

Lprl: Lp2:
max (1 —Q)b— Qc max (1 —@Q)(b+c¢)
s.t. b > ¢ s.t. b > ¢
Ab+(1—-A)e > 1 Ab+(1—-A)e > 1
b,c > 0 b,c > 0
solution: ¢ = 0 solution: ¢ = 1
b = 1/A b = 1
Lr3:
max Ab+ Bc
s.t. b > ¢
Ab+(1—-A)e < 1
b,c > 0
(Q-1-G+GX\A)) = B
(1-GMNA)-1/Q) = 4
solution: ¢ = 0
b = 1/A

We are now ready to prove that (3) holds. Let SSP, be the algorithm
executed in the previous step. We distinguish the following cases.

Case 1: Suppose that u was executed in the previous step. Then v is pending
for SWITCH and the algorithm applies SSP,,.

Case la: If v > ab+ (1 — «)c then SSP, schedules v, and we have to

verify the following four inequalities

q)vu(ua v, g) + QU Z

Dy (u,v,§) + Qv 2

u 4+ Py (b, ¢,)
max
@)

b+ Du.(0, c,

(
{v + Py (b, ¢, @)
max

b+ Dp.(b, c,)

Note that the first and the third inequalities are equivalent by Lemma
A.2. Also, the last inequality implies the second one by the same lemma.
Without the loss of generality we may assume that u = 1. After substitution,
the third and the fourth inequalities reduce to

(1-Qu+Qu > vti (1-Q (10)
1-Qu+Qu > b+ (Q—-1-G)c—b/Q (11)

23

The right-hand sides of inequality (10) is maximized for ¢ = 0 and the
inequality holds trivially.

After rearranging, and using the fact that 1 = u > v > ab+ (1 — a)c,
inequality (11) reduces to 0 > ¢(1 — @) which holds.

Case 1b: If v < ab+ (1 — a)c then SSP, schedules b, and we need to
verify the following inequalities

®C b7)
Dy (1, 0,8) + Qb > max{“+ o(0:¢,)

Dy (u,v,8) + Qb > max{

Note that the first and the third inequalities are equivalent by Lemma
A.2. Also, the last inequality implies the second one by the same lemma. We
may assume that u = 1, and the remaining inequalities reduce to

(b— Qc) (12)
(1-Q)c (13)

After using the case condition, the inequality (12) reduces to 0 > —ca
and holds.
The inequality (13) reduces to v < b+c which holds by the case condition.

Case 2: Now we assume that u was not executed in the previous step. So
v is now the pending job for SWITCH, and the algorithm applies SSP 4,
where p = 2.

Case 2a: If u < d(u,)b+ (1 — d(p,1))c then the algorithm executes b and
we need to show the following four inequalities

U+ (I)cb(ba ¢, d(lu’a l)
b+ D (b,c,d(u,l)

v+ Dy(b, e, d(p, 1)
max
b+ D (b,c,d(u,l)

Dy (u,v,6)+ Qb > max{

)
)
by (u,v,8) + Qb >))

24

Once again, note that the last inequality implies the second one by Lemma
A.2. We assume that v = 1, and the remaining inequalities reduce to

v¥(1—Q—-El)+El+Qb > 1+b—Qc (14)
vQ-1-G+G)-Gl—1/Q+Qb > v+b—Qc (15)
WQ—-1-G+G)—Gl—1/Q+Qb > b+ (1—Q)c (16)

Proof of inequality (16). We start by regrouping the terms to reduce (16)
to the following inequality

v’ (1—Q—E)+El > 1+b(1-Q)—Qc

We now face the following problem: we wish to maximize the right-hand
side of this inequality, subject to the case condition and conditions b, ¢ > 0,
b > c¢. For now, the term d(v,[) from the case condition is treated like a
constant, say A, where @« < A < 7. It is easy to see now, that the above
problem can be formulated as a linear program with variables b, c. In fact,
it is equivalent to the program LP1. We conclude that it is enough to verify
the inequality for b = 1/d(v,1),c = 0, as this is the solution of LP1. Further,
the left-hand side of (16) is minimized for v = 0 and [= 1, so overall this
inequality reduces to 2(Q) — 1) > G + 1/Q which holds.

Proof of inequality (14). Once again, we start by regrouping the terms to
reduce (14) to

v(Q—-1-G+G)-Gl-1/Q > v+b(1-Q)-Qc.

As in the proof of (16) we notice that it is enough to verify the inequality
for b = 1/d(v,l),c = 0, as this is the solution of Lpl. The inequality now
reduces to

v+ (1—0)(B+ (v = B)D][-v*(Q—-1+E)+El—1]+Q —1>0.

Let L(v,l) denote the expression on the left-hand side of this inequality. The
function L is a polynomial of third degree in v. The coefficient of v? is
(Q—1+El)(B—a+(y—p)l) >0, so to prove that the inequality holds it is
enough to show that for any [€ [0, 1], L(0,1) > 0, L(1,1) > 0, and that the
second derivative 3275(@, l) <0.

25

Since

L) =[8+ (v =H)EI-1]+Q -1

is quadratic in I, L(0,0) = 0, and the coefficient of [? is (y — 8)E > 0, it
is sufficient to show that %(O) > 0 to prove that L(0,7) > 0. Indeed,
W(O) = —(y — B) + BE, and the inequality —(y — 8) + SE > 0 reduces
to 7Q* — 6Q — 5 > 0 which holds.
Since, L(1,1) = 0, it remains to verify that the second derivative ‘327]5(7},) <0.
Since,

0?L

w(% l) -

Q-1+ E)4v(f—a+ (v =Bl —2(av+ (1 —v)(B+ (v - H)))]

it is enough to verify that

av+ (1 =0)(B+ (v =B)) —2v(B—a+(y-p)) >0

Since this is a linear inequality and the coefficient of v is 3(aw — 8 — (7 —
B)l) < 0, it is enough to verify it for v = 1. The inequality now reduces to
3a—2(6+ (v — B)l) > 0, and it is sufficient to show that it holds for [= 1
as the coefficient of [is —2(y —) < 0 and the inequality is linear in [. The
inequality now reduces to @? + 3Q — 6 > 0 and holds.

Proof of inequality (15). We start by regrouping the terms to obtain
reduce (15) to

v(R—-1-G+G)-Gl-1/Q > d(1-Q)+(1-Q)c

Similarly to the proof of (16) we notice that it is enough to verify the in-
equality for b = ¢ = 1, as this is the solution of LP2. It is now enough to
prove

dv,)(0(Q -2 -G+ Gl) —Gl—1/Q)+Q —1>0.

The coefficient of 12 is (1 —v)(y — B)G(v — 1) < 0 so it is enough to verify
that the inequality holds for [= 0, 1.
For [= 0 the inequality reduces to

(av+ B = po)(-v(2-Q+G)-1/Q)+Q@—-120 (17)

26

This is a quadratic inequality in v. The coefficient of v? is (8 — a)(2 —
@ + G) > 0 so it is enough to verify that the derivative with respect to v is
negative for v = 1. Let g denote the expression on the left-hand side of (17).
Then

g)=(a=B)(-v2-Q+G)-1/Q) = (av+ (1 - v))2-Q +G).

The inequality ¢'(1) < 0 can be reduced to 4 < 3@, so it holds.
For [= 1 the inequality reduces to

(v + (1= 0)y)(~02 = Q) =G —1/Q) +Q — 1> 0.

This again is a quadratic inequality in v with coefficient of v? equal (7 —
a)(2 — Q) > 0. So to show that it holds it is enough to verify that the
derivative in v is negative for v = 1. The derivative of the expression on the
left-hand side is

(@=)(-v(2-Q) -G —-1/Q) + (av+ (1 —v)7)(Q — 2)
and for v = 1 it reduces to 7Q? — 14Q + 6 < 0 which holds.

Case 2b: Suppose that v > d(yu,)b+ (1 — d(p,1))c. SSP g,y executes w.
We need to verify the following inequalities:

U+ Py (b, c, d(p, 1))

Dot 0,€) + Qu > max{b+ b e (18)
v+ Dy (b, ¢, d(p, 1))

Do, ,6) + Qu > max{b+ b e (19)

Note that the last inequality implies the second one by Lemma A.2. We may
assume that v = 1, and the remaining inequalities reduce to

2

P1-Q-E)+El+Q > 1+%(1—Q—Ek(d(v,l)))+
bEA(d(v,1)) (20)

2

WQ-1-G+G)-Gl-1/Q+Q > v+%(1—Q—E)\(d(v,l)))+
bEA(d(v,1)) (21)

WQ-1-G+G)—Gl-1/Q+Q > b+c(@Q—1—G+GAd(v,1)) +
b(=GA(d(v, 1)) =1/Q) (22)

27

Proof of inequality (20). It is enough to show that (1 —v)(Q + El —1) >
bEX(d(v,l)). By the case condition b < 1/d(v,1) so it is enough to show

d(v,1)(v — 1)(Q + El — 1) > EX(d(v,1)).

We distinguish two cases.
If d(v,l) > f then A(d(v,0)) =1, (1 —v)(f—a+ (y—p)l) > f—«a and
it is enough to show

B(B—a)(Q@+El—1)> E(f—a+ (y—B)I).

This inequality is linear in [so it is enough to verify it for [= 0, 1.
Actually it is enough to verify it for [= 0 as (8 — «) — (y —) > 0. For
[= 0 the inequality reduces to S(Q — 1) > E which holds.

If d(v,l) < then \(d(v,1)) = (d(v,l) — a)/(8 — a), and we need to show

(6 — a)d(v,[)(1 = v)(Q+ Bl —1) 2 E(d(v,]) — a)
Note that d(v,l) —a = (1 —v)(8 — a+ (v — B)l), so it is enough to show

(8 —a)d(v,)(@+ El—-1) > E(—a+(y—B)I) (23)

This is a linear inequality in v. So it is enough to verify it for v = 0, 1.
Actually, it is enough to verify it for v = 1, as the coefficient of v is (6 —
a)(Q+ FEl—1)(a—pB—(y—B)l) < 0. The inequality reduces to (5 —a)a(Q+
El-1)— E(a— p+ (y— B)l) > 0. This inequality is linear in ! and the
coefficient of [is E[(f — a)a — (v — B)] > 0, so it is enough to verify it for
[= 0. The inequality reduces now to a(@Q) — 1) — E > 0 which holds.

Proof of inequality (21). It is enough to show that
(v—=1)(Q —2—G+Gl) > bEXd(v,]))

We distinguish two cases.
If d(v,1) > B, then A(d(v,l)) =1,and (1 —v)(B—a+ (y—H)Il) > B — «a.
The inequality reduces to

BB-=72+G-Q—-G)-E@B—-a+(y-0))>0

This is a linear inequality in [. The coefficient of [is —3(f—a)G—E(y—0) <
0, so it is enough to verify the inequality for [= 1. The inequality now reduces
to () > 1, which holds.

28

If d(v,l) < B, then A(d(v,l)) = (d(v,l) — a)/(f — «), and the inequality
reduces to

d(v,1)2+G = Q- Gl)(B—a) > BE(B—a+ (v B)).

It is now enough to prove that 2+G—Q—GIl > Q+ FEl—1 for any [€ [0, 1], to
show that this inequality follows from (23). For [= 0 the inequality reduces
to 3+ G > 2@Q), which holds. For [= 1 the inequality reduces to 3 > 2Q) + F,
which also holds.

Proof of inequality (22). We first observe that the problem of maximizing
the right-hand side of (22) subject to case conditions can be formulated as
the linear program LP3. It is therefore enough to verify the inequality for
b=1/d(v,l),c=0. As in the proof of (20) we distinguish two cases.

If d(v,l) > @ the inequality reduces to

dw,)w(Q -1-G+Gl) —Gl—1/Q+ Q) >3 —2Q

This is a quadratic inequality in v. The coefficient of v? is (Q — 1 — G +
Gl)(a— = (v — P)l) <0 so we need to verify that it holds for v = 0, 1.

For v = 0 the inequality reduces to [+ (y—5)I|(-Gl—-1/Q+Q) > 3—-20Q).
This is a quadratic inequality in [. For [= 0 it reduces to f(—1/Q + Q) >
3 — 2@ which holds. For [=1 it reduces to y(2 — Q) > 3 — 2Q) which also
holds. The coefficient of [? is —G(y —) < 0 so the inequality holds.

For v = 1 the inequality reduces to o > 3 — 2() which holds.

If d(v,l) < B the inequality reduces to

dv,)(v(Q—-1-G+Gl)—-Gl—-1/Q+ Q) >
1-1/Q ~ Gld(v,1) ~ a)/(5 ~)
Since the coefficient of v? is (Q —1 -G+ Gl)(a—— (y—B)]) <0 it is
enough to verify the inequality for v =0 and v = 1.
For v = 1 the inequality reduces to a > 1 — 1/ which holds.
For v = 0 the inequality reduces to
B+ =B)(-Gl-1/Q+ Q) >
1-1/Q=G(B-a+(v—B))/(B—a)

This is a quadratic inequality in [. For [= 0 it reduces to 5(Q — 1/Q) >
1 — 1/Q — G which holds. For [= 1 it reduces to y(2 - Q) > 1 —1/Q —

29

G(v — «)/(B —), which in turn reduces to —9Q? + 32Q — 27 > 0, which
holds. The coefficient of I? is (y — 8)(—G) < 0, so the inequality holds.

This completes the proof of inequality (3). The @Q-competitiveness of
SwiITCH follows now from Lemma A.1.

30

