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Abstract. Dynamic Constraint Satisfaction Problems play a very important role 
in modeling and solving real-life problems where the set of constraints is 
changing. The paper addresses a problem of maintaining arc consistency after 
removing a constraint from the constraint model. A new dynamic arc consis-
tency algorithm is proposed that improves the practical time efficiency of the 
existing AC|DC algorithm by using additional data-structures. The algorithm 
achieves real time efficiency close to the so far fastest DynAC-6 algorithm 
while keeping the memory consumption low. 

1 Introduction 

For solving many real-life problems, the traditional static formulation of the con-
straint satisfaction problem (CSP) is not sufficient because the problem formulation is 
changing dynamically. Assume for example the problem of train scheduling [6] 
where the system must respond to train delays or the university timetabling problem 
[1,16] where the system must accommodate the changes proposed by the teachers. 
There exist many other dynamic problems requesting changes in the problem formu-
lation to which the system must react by modifying the existing solution or proposing 
a new solution [9,10,11]. To model such problems Dechter and Dechter [8] proposed 
a notion of Dynamic Constraint Satisfaction Problem (DCSP) that is a sequence of 
static CSPs, where each CSP is a result of addition or retraction of a constraint in the 
preceding problem. 

Several techniques have been proposed to solve Dynamic CSPs, including search-
ing for robust solutions that are valid after small problem changes [18], searching for 
a new solution that minimizes the number of changes from the original solution 
[1,10], reusing the original solution to produce a new solution [17], or reusing the 
reasoning process. A typical representative of the last method – reusing the reasoning 
process – is maintaining dynamic arc consistency. The goal of maintaining dynamic 
arc consistency is keeping the problem arc consistent after constraint addition or 
constraint retraction. Adding a new constraint is a monotonic process which means 
that domains can only be pruned. Existing arc consistency algorithms are usually 
ready for such incremental constraint addition so they can be applied when a new 
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constraint is added to the problem. When a constraint is retracted from the problem 
then the problem remains arc consistent.  However, some solutions of the new prob-
lem might be lost because the values from the original problem that were directly or 
indirectly inconsistent with the retracted constraint are missing in the domains. Con-
sequently, such values should be returned to the domains after constraint retraction. 
Then we are speaking about maximal arc consistency. 

In this paper we address the problem of maintaining maximal arc consistency after 
constraint retraction. The straightforward method how to do it is to restore the origi-
nal domains for all the variables and then to call some arc consistency algorithm that 
removes the inconsistent values. However, this method is very inefficient because it 
repeats many constraint checks that were already tested in the previous runs. There-
fore more efficient algorithms were proposed to exploit the information that the prob-
lem was arc consistent before the constraint retraction. For example, DnAC-4 [3] and 
DnAC-6 [7] are based on extended data structures of the underlying AC algorithm, 
namely AC-4 [14] and AC-6 [4]. These algorithms are very fast because they mini-
mize the number of constraint checks but they are also memory consuming and com-
plicated for implementation. To keep low space complexity, the AC|DC algorithm [2] 
was proposed as a reverse version of the popular AC-3 algorithm. Like AC-3, AC|DC 
can also be easily extended to non-binary constraints. However, AC|DC is not as time 
efficient as DnAC-6, the so far fastest dynamic arc consistency algorithm. 

When exploring the behavior of AC|DC we have found out that the main reason 
for its inefficiency is restoring too many values in the domains that are immediately 
pruned in the completion stage of the algorithm when calling AC-3. Via using some 
additional data structures, similar to DnAC, that keep information about the reason of 
value removal, we can improve the time efficiency of AC|DC by restoring only the 
most promising values. The hope is that if fewer values are restored then fewer values 
will be pruned during the subsequent run of the AC-3 algorithm. This should improve 
the practical time efficiency of the algorithm. We call the resulting algorithm 
AC|DC-2 and we will show by an experimental evaluation that AC|DC-2 improves 
significantly the practical time efficiency of AC|DC without increasing much the 
space complexity. Actually, the practical time efficiency of AC|DC-2 is comparable 
to DnAC-6 while the memory consumption of AC|DC-2 is much smaller than this of 
DnAC-6. 

The paper is organized as follows. First, we will describe the basic terminology 
followed by a survey of existing approaches to maintaining dynamic arc consistency. 
Then, we will introduce the AC|DC-2 algorithm, we will prove its correctness, and 
we will present its theoretical worst-case time and space complexity. The paper is 
concluded by an experimental comparison of AC|DC-2 to AC|DC and DnAC-6. 

2 Preliminaries 

A constraint satisfaction problem (CSP) P is a triple (X,D,C), where X is a finite set 
of variables, for each xi∈X, Di∈D is a finite set of possible values for the variable xi 
(the domain), and C is a finite set of constraints. In this paper we expect all the con-
straints to be binary, that is the constraint cij∈C defined over the variables xi and xj is 
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a subset of the Cartesian product Di×Dj. The value a of the variable xi is arc consis-
tent (AC) if and only if for each variable xj connected to xi by the constraint cij, there 
exists a value b∈Dj such that (a,b)∈cij. The CSP is arc consistent if and only if every 
value of every variable is arc consistent. The CSP is maximally arc consistent if every 
arc consistent value stays in the respective domain. Arc consistency algorithms make 
the problems maximally arc consistent by removing only the values that are not arc 
consistent from respective domains. 

Dynamic constraint satisfaction problem (DCSP) is a sequence P0, P1,…, Pn, 
where each Pi is a CSP resulting from the addition or retraction of a constraint in Pi-1. 
For simplicity reasons, we expect that P0 contains no constraints; hence it is maxi-
mally arc consistent. The task of dynamic arc consistency is to make the problem Pi 
maximally arc consistent using the information that the problems P0, P1,…, Pi-1 are 
maximally arc consistent. 

3 Related Works 

Arc consistency (AC) is the most frequently used consistency technique thanks to its 
good ratio between the number of removed inconsistencies and the time and space 
complexity. Many AC algorithms have been proposed to make the constraint satisfac-
tion problem arc consistent. Among them, AC-3 [13] is the most popular algorithm 
that is implemented in many existing constraint solvers. There are three reasons for 
popularity of AC-3: the algorithm is easy to implement, it can be naturally extended 
to non-binary constraints, and its practical time and space efficiency is very good 
despite the fact that AC-3 is not a (worst-case) time optimal AC algorithm. AC-4 [14] 
was the first AC algorithm with the optimal worst-case time complexity. However, 
the average time complexity of AC-4 is not as good and moreover, its space complex-
ity is quite large. Therefore, another optimal algorithm called AC-6 [4] has been pro-
posed to decrease the memory consumption and to improve the average time effi-
ciency. Recently, two new versions of AC-3 algorithm, AC-3.1 [19] and AC-2001 
[5], have been independently proposed to achieve the optimal worst-case time com-
plexity without the complex data structures typical for AC-4 and AC-6. 

All above described AC algorithms can be used when the constraints are incremen-
tally added to the problem. However, the algorithms should be modified to work 
effectively with constraint retraction. DnAC-4 [3] was one of the first dynamic arc-
consistency algorithms. As the name indicates, the algorithm is based on AC-4 and, 
actually, it uses all data structures proposed for AC-4. In addition to them, a new data 
structure justification was added to improve the efficiency of constraint retraction. 
This data structure keeps a link to the variable that caused deletion of a value from 
the variable domain during the AC domain pruning. Constraint addition in DnAC-4 is 
realized via the AC-4 algorithm; the only difference is that justifications are being 
computed there. The constraint retraction is realized in three steps. First, the values 
deleted due to the retracted constraint are added back to the domains. Second, the 
extension of domains is propagated to other domains and selected values are added 
back to them. Justifications are used there to minimize the number of restored values, 
for details see [3]. Because, the values that are possibly inconsistent might also be 
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recovered, the third step ensures that only the arc consistent values stay in the do-
mains by calling AC-4. DnAC-4 inherits the disadvantages of AC-4 and therefore 
DnAC-6 [7] has been proposed to improve memory consumption and average time 
complexity. DnAC-6 uses the same principles like DnAC-4 but it is integrated with 
the AC-6 algorithm rather than using AC-4. DnAC-6 is currently the fastest dynamic 
arc consistency algorithm but it has the disadvantage of the fine grained consistency 
algorithms which is a large space complexity. Moreover, implementation of DnAC-4 
and DnAC-6 is quite complicated. 

AC|DC [2] was built on different foundations than DnAC algorithms; in particular 
AC|DC does not use the supporting data structures and hence its space complexity is 
very low. AC|DC is built around the AC-3 algorithm and, actually, constraint addition 
is realized there via the original AC-3 algorithm. Like in DnAC, constraint retraction 
in AC|DC is realized in three steps: recovery of the values deleted due to the retracted 
constraint, propagation of these domain extensions to other variables, and removal of 
the inconsistent values. Propagation of domain extensions is realized via an inverted 
AC-3 procedure that does not use any additional data structures which keeps memory 
consumption low. On the other hand, many values that are not arc consistent are re-
covered in the second step and immediately deleted in the third step. This makes the 
algorithm less time efficient especially in comparison to DnAC-6. However, unlike 
DnAC-6 and DnAC-4, AC|DC is easily extendible to non-binary constraints without 
large memory consumption. Paper [15] proposed an improvement of the time com-
plexity for AC|DC by using the optimal AC-3.1 algorithm instead of AC-3. The re-
sulting algorithm is called AC-3.1|DC. The theoretical study and the experimental 
results showed that the time and space efficiency of AC-3.1|DC is comparable to 
DnAC-6. 

Table 1. Time and space complexity of existing dynamic arc consistency algorithms. 

 DnAC-4 DnAC-6 AC|DC AC-3.1|DC 
Space complexity O(ed2+nd) O(ed+nd) O(e+nd) O(ed+nd) 

Time complexity O(ed2) O(ed2) O(ed3) O(ed2) 

 

4 Algorithm AC|DC-2 

In this section we propose a new algorithm for maintaining dynamic arc consistency 
that improves the way of domain restoration in AC|DC. As in the case of AC|DC 
algorithm [2] the constraint retraction using AC|DC-2 is carried out in three phases. 
In the first (initialization) phase the algorithm puts back the values into the variable 
domains that have been removed directly because of the retracted constraint. The 
second (propagation) phase consists of a propagation of the initial restorations from 
the first phase. Finally, in the last (filtering) phase the algorithm removes the incon-
sistent values that have been incorrectly restored in the previous phases. 

The key idea of our algorithm is to exploit a certain type of information recorded 
during the filtering phase in order to perform the constraint retraction more effec-
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tively. The recorded information allows us to determine more accurately what values 
worth consideration whether to be put back into variable domains during the con-
straint relaxation process. In this way we reduce the number of incorrect value addi-
tions and consequently its ill-fated propagations and final filtrations. 

More precisely, we extend the original AC|DC algorithm with additional data 
structures that record a justification and a current “time” for every value eliminated 
from the variable domain. By the justification we mean the first neighboring variable 
in which the eliminated value lost all supports. A similar data structure is also used 
within DnAC-4 [3] and DnAC-6 [7] algorithms. To model the time we use a global 
counter which is incremented after every manipulation of the variable domains. When 
a constraint is retracted from the problem the algorithm uses the justifications and 
timestamps to determine the set of values which have been removed possibly because 
of the retracted constraint and that should be restored in the relaxed problem. 

4.1 Algorithm 

In this section we will describe the AC|DC-2 algorithm formally. The first step to-
wards the new algorithm is the slightly modified AC-3 algorithm which is used by 
AC|DC-2 as a procedure for the reestablishment of arc-consistency. The pseudo code 
of the modified AC-3 that we call AC-3’ is shown in Figure 1. 

 
 
function propagate-ac3'(P, data, revise) 
1 queue := revise 
2 while queue not empty do 
3   select and remove a constraint c from queue 
4   {u,v} := the variables constrained by c 
5   (P,data,revise_u) := filter-arc-ac3'(P, data, c, u, v) 
6   (P,data,revise_v) := filter-arc-ac3'(P, data, c, v, u) 
7   queue := queue ∪ revise_u ∪ revise_v 
8 return (P,data) 
 
function filter-arc-ac3'(P, data, c, u, v) 
1 modified := false 
2 for each d in P.D[u] do 
3   if d has no support in P.D[v] w.r.t. c then 
4     P.D[v] := P.D[v] - {d} 
5     data.justif[u,d].var := v 
6     data.justif[u,d].time := data.time 
7     data.time := data.time + 1 
8     modified := true 
9 if not modified then 
10   return (P,data,Ø) 
11 return (P,data,{e in P.C|u is constrained by e and e≠c}) 
 

Fig. 1.  A pseudo code of the modified arc-consistency algorithm AC-3’ 
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The AC-3’ algorithm consists of two functions. The first function propagate-ac3' 
repeatedly revises the constraints till an arc-consistent state is reached. The revision 
of the constraint is performed by the function filter-arc-ac3'. This function 
removes the values which are not consistent with a given constraint. The function is 
called separately for both directions of the constraint. That is, if the constraint binds 
two variables, say u and v, the function has to be called separately for both arcs (u,v) 
and (v,u). The main difference between the original AC-3 and our modified version is 
that we record the justification and the current time for every value eliminated from 
the variable domain. 

Both functions, which the algorithm consists of, get parameters named P and 
data. The parameter P represents the input constraint satisfaction problem. P is a 
compound structure – it consists of a set of variables denoted by P.V, a set of con-
straints denoted by P.C, and an array denoted by P.D, which represents the current 
domains of variables. In the following algorithm we will also need to access the 
original (non-pruned) variable domains that will be denoted by P.D0. The second 
parameter data holds the additional data structures used during domain restoration. It 
is again a compound data structure. The component denoted by data.justif repre-
sents an array, which stores the justifications and timestamps of every value elimi-
nated from the current domains. The second component denoted by data.time 
represents the global counter, which we are using to model the time. 

If we want to make a given constraint satisfaction problem P arc-consistent then we 
call the program by propagate-ac3'(P, data, P.C). Thus all the constraints 
occurring within the problem are subjected to revision by the AC-3’ algorithm. 

 
Now all the ingredients for AC|DC-2 are ready, so we can describe the algorithm 
itself. The pseudo code of both operations provided by the AC|DC-2 algorithm – an 
addition and a retraction of a constraint – is shown in Figure 2. For the addition of a 
constraint the function add-constraint-ac|dc2 is used. The operation of con-
straint retraction is realized by the function retract-constraint-ac|dc2. 

The addition of a constraint using AC|DC-2 is straightforward. Simply, the new 
constraint is added to the problem and its revision by AC-3’ is performed subse-
quently. The result of these two steps is an arc-consistent problem enlarged by the 
new constraint. 

The retraction of a constraint is a more difficult operation. One must be aware of 
the fact that the constraint retraction causes a relaxation of the restrictions and there-
fore it would be necessary to put back some values into the current domains to restore 
the maximum arc consistency after removing the constraint. As we said at the begin-
ning of this section, within the AC|DC-2 algorithm this is done in three phases. 

In the first phase the algorithm performs the initial restoration of the missing val-
ues in the current domains of variables constrained by a retracted constraint. This 
phase is carried out by the function initialize-ac|dc2. We restore the values, 
which were removed directly because of the retracted constraint. In other words, if 
the constraint binds the variables u and v, we restore the values in the current domain 
of u that were eliminated because of the fact that they lost all supports in the current 
domain of v. This step is, of course, done for both directions of the constraint, that is 
separately for arcs (u,v) and (v,u). As it is described in the pseudo code (Figure 2), the 
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absent value has to fulfill two criteria before it is put back into the domain. The justi-
fication for the value has to be the opposite variable with respect to the retracted con-
straint and the value has to have no support in the current domain of the opposite 
variable (line 4 in initialize-ac|dc2). 

After the initialization phase the algorithm proceeds with the propagation phase, in 
which restorations from the initialization phase are propagated into other variables. 
This step is realized by the function propagate-ac|dc2. When a set of values is 
restored in the current domain of some variable, the algorithm schedules the restora-
tion of the current domains of the neighboring variables. The value will be put back 
into the current domain of the neighboring variable if a new support of the value is 
among the values restored in the previous step (line 11 in propagate-ac|dc2). 
Before a search for a support is started, the value is tested whether it was removed 
due to the previously restored variable (line 9) and whether there exists a chance that 
a new support may exist among the previously restored values (line 11). Moreover 
the value has to pass an additional test on removal time comparison (line 10). The 
removal time of the value has to be greater than the smallest removal time of the 
values restored in previous step. If both tests (lines 9,10) are passed successfully, it is 
possible that the value was removed due to the absence of the previously restored 
values and it should be also restored. In this case, the algorithm proceeds with the 
search for a support for the absent value among the restored values with respect to a 
given connecting constraint (line 11). The full argumentation of why this approach 
works and why it is correct is given in the next section. 

Note that these two additional tests (lines 9,10) make AC|DC-2 different from the 
original AC|DC. These tests reduce the number of constraint checks as well as the 
total number of incorrectly restored values and subsequently their ill-fated propaga-
tions. The consequence of this approach is a shorter running time of both the propa-
gation and the filtration phases. 

When the propagation phase is finished the algorithm continues with the filtration 
phase. At this phase the algorithm eliminates the values that were incorrectly restored, 
that is the values that did not gain another necessary supports in the current domains 
of their neighboring variables. This step is carried out at line 8 of the function 
retract-constraint-ac|dc2. 

During the whole process of propagation we collect all the constraints that restrict 
the variables for which the domain has been changed. At the end of the restoration 
phase we subject all these constraints to revision by the AC-3’ procedure. 

The result of the above described process is a maximum arc consistent problem 
from which a constraint was retracted. We will prove this claim formally in the next 
section. 
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function add-constraint-ac|dc2(P, data, c) 
1 P.C := P.C ∪ {c} 
2 (P,data) := propagate-ac3'(P, data, {c}) 
3 return (P,data) 
 
function retract-constraint-ac|dc2(P, data, c) 
1 (P,data,restored_u) := 
2     initialize-ac|dc2(P, data, c, u, v) 
3 (P,data,restored_v) := 
4     initialize-ac|dc2(P, data, c, v, u) 
5 P.C := P.C - {c} 
6 (P,data,revise) := 
7     propagate-ac|dc2(P, data,{restored_u,restored_v}) 
8 (P,data) := propagate-ac3'(P, data, revise) 
9 return (P,data) 
 
function initialize-ac|dc2(P, data, c, u, v) 
1 restored_u := Ø 
2 time_u := ∞ 
3 for each d in (P.D0[u] - P.D[u]) do 
4   if data.justif[u,d].var = v then 
5     P.D[u] := P.D[u] ∪ {d} 
6     data.justif[u,d].var := NIL 
7     restored_u := restored_u ∪ {d}  
8     time_u := min(time_u, data.justif[u,d].time) 
9 return (P,data,(u,time_u,restored_u)) 
 
function propagate-ac|dc2(P, data, restore) 
1 revise := Ø 
2 while restore not empty do 
3   select and remove (u,time_u,restored_u) from restore 
4   for each c in P.C|u is constrained by c do 
5     {u,v} := the variables constrained by c 
6     restored_v := Ø 
7     time_v := ∞ 
8     for each d in (P.D0[v] - P.D[v]) do 
9       if data.justif[v, d].var = u then 
10         if data.justif[v, d].time > time_u then 
11           if d has a support in restored_u w.r.t. c then 
12             P.D[v] := P.D[v] ∪ {d} 
13             data.justif[v,d].var := NIL 
14             restored_v := restored_v ∪ {d}  
15             time_v := min(time_v, data.justif[v,d].time) 
16     restore := restore ∪ {(v,time_v,restored_v)} 
17   revise := revise ∪ {e in P.C|u is constrained by e}) 
18 return (P,data,revise) 

 

Fig. 2. A pseudo code of the dynamic arc-consistency algorithm AC|DC-2 
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4.2 Correctness 

In this section we will prove formally the correctness of the idea which the AC|DC-2 
algorithm is based on. The correctness of the operation of constraint addition follows 
directly from the correctness of the AC-3 algorithm, thus extra argumentation is not 
necessary. 

Before we start with the proof the correctness of the constraint retraction, we first 
have to describe what it means to correctly retract a constraint from a problem with 
respect to maximal arc consistency. Let us consider the empty problem (that is, the 
problem which consists of several variables but which does not contain any con-
straint) into which we will add one by one the constraints from the set {c1,c2,…,cn} 
using the operation of constraint addition. At the end we will obtain a maximally arc-
consistent problem containing the constraints from the set {c1,c2,…,cn}. Now, the 
result of a correctly finished retraction of a constraint, say ci, is the problem with the 
same current domains of the variables as if it was constructed from the empty prob-
lem by the addition of the constraints from the set {c1,c2,…,c(i-1),c(i+1),…,cn}. Notice 
that the constraint ci is missing in this set. 

 
Proposition 1. The algorithm AC|DC-2 performs a correct retraction of a constraint 
with respect to maximal arc consistency. 

 
Proof. To prove the proposition it is sufficient to verify that the algorithm restores all 
the values that are necessary to be restored, that is the values that has to be present in 
the maximum arc consistent state of the new problem. If the algorithm restores some 
extra values, it does not matter because the final filtration phase will remove them. 
This fact directly follows from the correctness of the AC-3 consistency algorithm. 

Consider the following situation. We have a problem P, which is the result of addi-
tion of the constraints from the set {c1,c2,…,cn}, and we are retracting a constraint ci, 
that restricts the variables u and v. As a reference we will use an auxiliary arc-
consistent problem Q, which consists of the constraints {c1,c2,…,c(i-1),c(i+1),…,cn}. Our 
task is to show that all the values that are present in the current domains of the vari-
ables of the problem Q and are not present in the current domains of the variables of 
the problem P will be restored by the algorithm AC|DC-2. 

We will proceed by mathematical induction according to the removal time of the 
values. Let the constraint ci has been added to the problem P at time t0. Next, let t0+t1 
be the time when a value from a variable different from u or v has been removed for 
the first time (after the time t0). Thus the values removed from the problem in the time 
interval 〈t0, t0+t1〉 came only from the current domains of the variables u and v. The 
reason for elimination of these values has been directly the constraint ci together with 
the current state of given domains. All these values are restored within the initializa-
tion phase of the constraint retraction operation, particularly within the function 
initialize-ac|dc2. Every value removed in the time interval 〈t0, t0+t1〉 has the 
opposite variable as its justification with respect to ci and has no support in the cur-
rent domain of the opposite variable at the time between t0 and t0+t1 and thus also at 
the time when the constraint is retracted. This is just what is tested in the function 
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initialize-ac|dc2 before the value is put back into the domain. This concludes 
the initial induction step. 

Now, let us suppose that we need to restore a value d in the current domain of a 
variable x. In fact it means that the value d is present in the current domain of the 
variable x in the problem Q while this is not true in the problem P. To continue by 
induction let us suppose furthermore that the value d has been removed at time t2, 
where t2>t0+t1. By induction hypothesis we know that all the values removed before 
the time t2 have been already tested for restoration. If these values were present in the 
current domains of the problem Q they had been correctly restored in the problem P. 
Before the value d was removed from the current domain of the variable x it must 
have lost all supports in some of the neighboring variables first. Suppose that y is the 
variable with no support for the value d. It is clear that all supports for the value d 
were eliminated before the time t2 from the current domain of y. The value d is pre-
sent in the problem Q, thus there must be present also some supports for d in the 
current domain of y in the problem Q. By induction hypothesis these supports have 
been already restored and the restoration of their neighbors has been scheduled. Of 
course, the variable x and its value d belong among these neighbors and therefore it is 
also scheduled for restoration. When the propagation process reaches the restoration 
of the variable x, the value d will be put back into the current domain of x since it 
satisfies all necessary conditions for restoration. 

Now the proof is finished and we can conclude that the AC|DC-2 algorithm cor-
rectly restores the maximum arc consistency in the problem after the retraction of a 
constraint. 

 
 
Proposition 2. The algorithm AC|DC-2 performs at most as many steps as the exist-
ing algorithm AC|DC. 

 
Proof. The proposition directly follows from the correctness of AC|DC-2 and from 
the fact that a value has to fulfill more conditions in the AC|DC-2 algorithm than in 
AC|DC before it is put back into the current domain of a variable. This theoretically 
shows that a propagation chain of the restoration phase is shorter in the AC|DC-2 
algorithm than in AC|DC. 

 

4.3 Time and Space Complexity 

The space complexity of the operations for constraint addition and constraint retrac-
tion is O(nd+e) where n is the number of variables, d is the size of the domains of 
variables, and e is the number of constraints. This is the space complexity of the 
AC|DC algorithm [2]. The additional data structures (justifications and removal 
times) requires a space of O(1) for every value in the variable domains. Exactly, the 
additional space of O(1) is required for every value that is not currently present in the 
domain of a variable. Thus, the additional data structures require O(nd) space which 
is included in the above total space complexity. 
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The worst case time complexity of the operation of constraint addition directly cor-
responds with the time complexity of the AC-3’ algorithm. It is well known that the 
worst case time complexity of this algorithm is O(ed3) [13]. The worst case time com-
plexity of the initialization and the propagation phases of the operation of constraint 
retraction together is O(ed2). This result is easily to see if we realize that every pair of 
values in the domains of different variables constrained by a constraint is tested at 
most once. The overall time complexity is O(ed3) because of the final filtration phase 
which calls the AC-3’ procedure. 

5 Experimental Results 

In order to show the practical efficiency of our new algorithm AC|DC-2, we have 
implemented the algorithm in C++ as a part of our experimental library for working 
with Dynamic CSPs. For comparison we have also implemented the algorithms 
AC|DC and DnAC-6. We performed the experiments on a set of randomly generated 
binary constraint satisfaction problems and we measured the number of constraint 
checks, the overall time, and the memory consumption. The experiments run under 
Red Hat Linux 9.0 on 2 GHz Pentium 4 with 512 MB of memory. 

Random Binary Constraint Satisfaction Problems represent probably the most fre-
quently used benchmark set in the area of constraint satisfaction [12]. Each problem 
instance is characterized by a tuple 〈n, d, p1, p2〉, where n is the number of variables, d 
is the uniform domain size, p1 is a measure of the density of the constraint graph, and 
p2 is a measure of the tightness of the constraints. We use a so called model A [12] of 
Random CSP where a pair of variables is selected randomly with the probability p1 to 
form a binary constraint and a pair of values is picked randomly with the probability 
p2 as incompatible. 

In the first set of experiments we measured the practical speed of the algorithms on 
random CSP 〈100, 50, 0.3, p2〉 for p2 in the range 0.68 – 0.95, where the phase transi-
tion is located. Constraints were added incrementally to the problem by the operation 
of constraint addition until a given density was reached or an inconsistent state was 
encountered (a variable with an empty domain appeared). After this step, 10% of 
randomly selected constraints were retracted from the problem by the operation of 
constraint retraction. We measured the number of constraint checks (Figure 3) and the 
overall time to perform all these operations (Figure 4). For each problem, ten random 
instances were generated and the mean values of runtime and number of constraint 
checks are presented here. 

The experiments confirmed our expectation that AC|DC-2 performs much less 
constraint checks than AC|DC even if the number of constraint checks is still higher 
than for DnAC-6. In terms of runtime, the results are even more encouraging because 
the runtime of AC|DC-2 is very close to the runtime of DnAC-6 despite the worse 
theoretical time complexity. Of course, the runtime of AC|DC-2 is much smaller than 
the runtime of AC|DC thanks to fewer constraint checks. 
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Fig. 3. Number of constraint checks (a logarithmic scale) as a function of tightness for random 
constraint satisfaction problems 〈100, 50, 0.3, p2〉. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Runtime (logarithmic scale in seconds) as a function of tightness for random constraint 
satisfaction problems 〈100, 50, 0.3, p2〉. 

In the second set of experiments we measured the memory consumption of the algo-
rithms. We use the same random CSP 〈100, d, 0.3, p2〉 but now we also vary the size 
of variable domains. Recall that the problems are not static and the set of constraints 
is changing. So we were adding randomly selected constraints until we reached the 
inconsistent state when some of the domains became empty. We measure the memory 
consumption just before the constraint causing inconsistency was added. At that point 
the data structures stored the maximum number of records and so the memory con-
sumption was the largest. In Table 2, we present the total memory consumption for 
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AC|DC, DnAC-6, and AC|DC-2. Note that this memory consumption also includes 
the memory necessary for the extensional representation of the constraints. In fact, the 
memory consumption of AC|DC (and AC|DC-2 as well) consists mainly from the 
extensional representation of the constraints. 

Table 2. Memory consumption depending on the size of variable domains for random con-
straint satisfaction problems 〈100, d, 0.3, p2〉. 

Domain size (d) 20 25 30 35 40 45 

100*p2 68% 74% 77% 78% 80% 81% 

AC|DC 20MB 22MB 27MB 38MB 44MB 51MB 

DnAC-6 41MB 48MB 59MB 80MB 93MB 106MB 

AC|DC-2 20MB 22MB 27MB 38MB 44MB 51MB 

 
50 55 60 65 70 75 80 

18% 83% 84% 84% 85% 85% 85% 

60MB 66MB 72MB 87MB 90MB 110MB 127MB 
124MB 137MB 149MB 174MB 184MB 217MB 247MB 

60MB 66MB 72MB 87MB 90MB 110MB 127MB 

 
 
The results showed that the memory consumption of AC|DC-2 is comparable to 
AC|DC. Moreover, the memory consumption of AC|DC-2 is much smaller than for 
DnAC-6. Note again, that a significant portion of the memory consumption is due to 
the extensional representation of the constraints, in which every binary constraint is 
represented by a list of all compatible pairs of values, that is, by the pairs of values 
satisfying the given constraint. 

5 Conclusions 

In the paper, we proposed a new algorithm AC|DC-2 for maintaining arc consistency 
in dynamic environments where the constraints are added and retracted incrementally. 
Our main goal was to improve the time efficiency of the algorithm AC|DC while 
keeping its low space complexity. Rather than just switching the AC-3 algorithm in 
the AC|DC scheme for a more time efficient AC-3.1 algorithm like AC-3.1|DC did, 
we accompanied the AC|DC algorithm by additional data structures that helped us to 
decrease the number of initially restored values. Consequently, we improved signifi-
cantly the practical time efficiency of the AC|DC algorithm and the time is now com-
parable to the so far fastest DnAC-6 algorithm. Moreover, the additional data struc-
tures did not increase much the space complexity of AC|DC which remains much 
smaller than for DnAC-6. Moreover, AC|DC is easier to implement than DnAC-6, it 
is easier to extend to non-binary constraints, and it consumes much less memory for 
non-binary constraints than DnAC-6. 
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We did not perform yet the detail comparison to the new AC-3.1|DC algorithm. 
According to the results presented in [15], we expect similar time efficiency because 
AC-3.1|DC is comparable to DnAC-6. Practical space complexity of AC-3.1|DC was 
not compared to AC|DC in [15] but we expect that AC|DC-2 will consume less mem-
ory than AC-3.1|DC because AC|DC-2 does not use the additional data structures 
necessary for AC-3.1. Combining the ideas of AC|DC-2 with the optimal AC-3 based 
arc consistency algorithms like AC-3.1 or AC-2001 might be a promising direction of 
the future research. In any case, using AC-3.1 instead of AC-3 in AC|DC-2 will im-
prove the theoretical time complexity of AC|DC-2 to O(ed2). 
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