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Riste Škrekovski¶

Abstract

Wang and Lih conjectured that for every g ≥ 5, there exists a number
M(g) such that the chromatic number of the square of every planar graph
of girth at least g and maximum degree ∆ ≥ M(g) is ∆ + 1. We disprove
the conjecture for g ∈ {5, 6} and prove the existence of the number M(g)
for g ≥ 7. More generally, we show that every planar graph of girth at
least 7 and maximum degree ∆ ≥ 190 + 2dp/qe has an L(p, q)-labeling of
span at most 2p + q∆ − 2. For q = 1, the bound is tight for all pairs of
∆ and p. We also show that the square of every planar graph of girth at
least six and sufficiently large maximum degree ∆ is (∆ + 2)-colorable.

1 Introduction

We study colorings of squares of planar graphs with no short cycles. The square
G2 of a graph G is the graph with the same vertex set in which two vertices are
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joined by an edge if their distance in G is at most two. The chromatic number of
the square of a graph G is between ∆ + 1 and ∆2 + 1 where ∆ is the maximum
degree of G. However, it is not hard to infer from Brooks’ theorem that there
are only finitely many connected graphs for which the upper bound is attained.
On the other hand, the chromatic number of the square of a planar graph is
bounded by a function linear in the maximum degree (note that this does not
follow directly from the 5-degeneracy of planar graphs [14]). In this paper, we
show that if the girth (the length of the shortest cycle) of a planar graph is at
least seven and its maximum degree is sufficiently large (at least 192), then the
chromatic number of its square is the lowest possible, i.e., ∆ + 1. This yields a
proof of Conjecture 2 by Wang and Lih [31] for g ≥ 7 (the conjecture is stated
below).

Let us briefly survey the rich history of coloring of the squares of planar graphs.
Wegner [32] proved that the squares of cubic planar graphs are 8-colorable. He
conjectured that his bound can be improved:

Conjecture 1 (Wegner 1977). Let G be a planar graph with maximum degree
∆. The chromatic number of G2 is at most 7, if ∆ = 3, at most ∆ + 5, if
4 ≤ ∆ ≤ 7, and

⌊

3∆
2

⌋

+ 1, otherwise.

If Conjecture 1 were true, the bounds would be the best possible. The reader
is welcome to see Section 2.18 in [17] for more details. Though Conjecture 1 has
been verified for several special classes of planar graphs, including outerplanar
graphs [24], it remains open for all values of ∆. However, there is a series of
partial results. The following upper bounds on the chromatic number of the
square of a planar graph with maximum degree ∆ have been established: 8∆ −
22 by Jonas [18], 3∆ + 5 by Wong [33], 3∆ + 9 for ∆ ≥ 8 by Jendrol’ and
Skupien [15], 2∆ + 18 for ∆ ≥ 12 by Madaras and Marcionová [25], 2∆ + 25 by
van den Heuvel and McGuiness [14], d9∆/5e+ 2 for ∆ ≥ 749 by Agnarsson and
Halldórsson [2, 3], and d9∆/5e + 1 for ∆ ≥ 47 by Borodin, Broersma, Glebow
and van den Heuvel [6]. The best known upper bounds are due to Molloy and
Salavatipour [27, 28]: d5∆/3e + 78 for all ∆ and d5∆/3e + 25 for ∆ ≥ 241.
Some of the above results were obtained by identifying so-called light structures
in planar graphs—the reader is welcome to see the survey [16]. Coloring of higher
powers of planar graphs was addressed by Agnarsson and Halldórsson [2, 3] who
established an asymptotically tight upper bound on their chromatic numbers.

Besides ordinary colorings, we study L(p, q)-labelings of graphs. An L(p, q)-
labeling of a graph G is a labeling c of the vertices by non-negative integers such
that the colors (labels) assigned to neighboring vertices differ by at least p and
the colors of pairs of vertices at distance two differ by at least q. The least integer
K such that there exists a proper L(p, q)-labeling of G by integers between 0 and
K is called the span and denoted by λp,q(G). Clearly, if p = q = 1, an L(p, q)-
labeling of G is just a proper coloring of the square of G with numbers between
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0 and K and χ(G2) = λ1,1(G) + 1. Because of this close relation, we refer to the
numbers used as vertex labels as to colors.

A special attention of researchers was devoted to L(2, 1)-labelings, partly be-
cause of the conjecture of Griggs and Yeh [13] that λ2,1(G) ≤ ∆2 for every graph
G with maximum degree ∆ ≥ 2. This conjecture remains widely open, ver-
ified only for few classes of graphs including graphs of maximum degree two,
chordal graphs [29] (see also [7, 23]) and Hamiltonian cubic graphs [19, 20].
For general graphs, the original bound λ2,1(G) ≤ ∆2 + 2∆ from [13] was im-
proved to λ2,1(G) ≤ ∆2 + ∆ in [8] and a recent more general result of Král’
and Škrekovski [22] yields the present record λ2,1(G) ≤ ∆2 + ∆ − 1. Optimal
L(p, q)-labelings are also intensively studied for the class of planar graphs. The
following bounds are known: λp,q(G) ≤ (4q − 2)∆ + 10p − 38q − 23 due to van
den Heuvel et al. [14], λp,q(G) ≤ (2q − 1)d9∆/5e + 8p− 8q + 1 if ∆ ≥ 47 due to
Borodin et al. [6], and λp,q(G) ≤ qd5∆/3e + 18p + 77q − 18 due to Molloy and
Salavatipour [27]. The algorithmic aspects of L(p, q)-labelings also attracted a lot
of attention of researchers [1, 5, 10, 11, 21, 26] because of potential applications
in radio frequency assignment.

In this paper, we study colorings of the squares of planar graphs with no short
cycles. There are several upper bounds on the chromatic number of the squares of
such planar and non-planar graphs: if the girth of a (not necessarily planar) graph
G with maximum degree ∆ is at least 7, then χ(G2) ≤ O(∆2/ log∆) [4]. Since
the incidence graphs of finite projective planes have girth six and the chromatic
number of their squares is Θ(∆2), the assumption on the girth cannot be further
decreased. The following bounds for planar graphs were proven by Wang and
Lih [31]:

• λp,q(G) ≤ (2q − 1)∆ + 4p + 4q − 4 if G is a planar graph of girth at least
seven,

• λp,q(G) ≤ (2q − 1)∆ + 6p+ 12q − 9 if G is a planar graph of girth at least
six, and

• λp,q(G) ≤ (2q− 1)∆+ 6p+ 24q− 15 if G is a planar graph of girth at least
five.

In addition, they conjectured the following:

Conjecture 2 (Wang and Lih 2003). For any integer g ≥ 5, there exists an
integer M(g) such that the chromatic number of the square of every planar graph
G of girth at least g and maximum degree ∆ ≥M(g) is ∆+ 1.

In this paper, we prove the conjecture for g ≥ 7 and show that it is not true
for g ∈ {5, 6}. Our main result (Theorem 17) is the following: if G is a planar
graph of maximum degree ∆ ≥ 190 + 2p, p ≥ 1, and its girth is at least seven,
then λp,1(G) ≤ 2p + ∆ − 2. This yields a proof of Conjecture 2 for g ≥ 7. Our
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upper bound is tight for all pairs of ∆ and p with ∆ ≥ 190 + 2p as discussed at
the end of the paper.

Wang and Lih [31] also conjectured that there exists a number M(g) such
that λ2,1(G) = ∆ + 1 for every planar graph G of girth at least g and maximum
degree ∆ ≥ M(g). However, this is not true even for trees (Proposition 24). On
the other hand, Theorem 17 yields that the latter conjecture becomes true for
g ≥ 7 when ∆ + 1 is replaced by ∆ + 2. Moreover, an argument used in [27]
applied to our results yields that λp,q(G) ≤ 2p + q∆ − 2 for planar graphs with
girth at least seven and sufficiently large maximal degree.

We also prove a weakened version of Conjecture 2 for girth g = 6 (Theo-
rem 23): if G is a planar graph of maximum degree ∆ ≥ 8821 and its girth is at
least six, then λ1,1(G) ≤ ∆+ 1, i.e., χ(G2) ≤ ∆+ 2.

2 Preliminaries

In this section, we introduce notation used throughout the paper. All graphs
considered in the paper are simple, i.e., without parallel edges and loops. A d-
vertex is a vertex of degree exactly d. An (≤ d)-vertex is a vertex of degree at
most d. Similarly, an (≥ d)-vertex is a vertex of degree at least d. A k-thread
is an induced path comprised of k 2-vertices. The set of all the neighbors of a
vertex v is called the neighborhood of v and the neighborhood enhanced by v is
called the closed neighborhood of v.

An `-face is a face of length ` (counting multiple incidences, i.e., bridges inci-
dent to the face are counted twice). If the boundary of a face f forms a connected
subgraph, then the subgraph formed by the boundary (implicitly equipped with
the orientation determined by the embedding) is called the facial walk. A face f
is said to be biconnected if its boundary is formed by a single simple cycle. The
neighbors of a vertex v on the facial walk are called f -neighbors of v. Note that if
f is biconnected, then each vertex incident with f has exactly two f -neighbors.

Let us consider a biconnected face f , and let v1, . . . , vk be (≥ 3)-vertices
incident to f listed in the order on the facial walk of f . The type of f is a k-
tuple (`1, . . . , `k) where `i is the length of the 2-thread between vi and vi+1. In
particular, if vi and vi+1 are f -neighbors, then `i is zero. Two face types are
considered to be the same if they can be types of the same face, i.e., they differ
only by a cyclic rotation and/or a reflection.

If the face f is biconnected and v is a vertex incident to f , then the neighbors
of v that are not its neighbors on the facial walk are said to be opposite to the face
f . Similarly, if both the faces f1 and f2 incident to an edge uv are biconnected,
then the faces incident to v distinct from f1 and f2 are opposite to the vertex u
(with respect to the vertex v).

Some of our arguments used in Section 4 are based on elementary facts from
the notion of list colorings (choosability). List colorings were introduced inde-
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pendently by Erdős, Rubin and Taylor [9] and Vizing [30]. A graph G is said to
be `-choosable if for any assignment of lists L(v) of sizes ` to the vertices of G,
there exists a proper coloring c of G such that c(v) ∈ L(v) for every vertex v.
The gap between the list chromatic number (the smallest ` for which the graph
is `-choosable) and the usual chromatic number can be arbitrary large: for every
integer `, there exists a bipartite graph that is not `-choosable. However, the
only simple fact that we need in our consideration is the following: any cycle of
even length is 2-choosable. The reader can figure out details of a simple proof of
this statement him/herself or can consult [9].

3 Planar graphs of girth at least seven

In this section, we show that every planar graph of girth seven and sufficiently
large maximum degree ∆ is (∆ + 1)-colorable and prove our general result on
L(p, q)-labelings of such graphs. For an integer D ≥ 192, a graph G is D-good if
its maximum degree is at most D and it has an L(p, 1)-labeling of span at most
D + 2p − 2 for every p ≤ (D − 190)/2. A planar graph G of girth at least 7
and maximum degree at most D is said to be D-minimal if it is not D-good but
every proper subgraph of G is D-good. Clearly, if G is D-minimal, then it is
connected. Observe that every `-face of G with ` ≤ 13 is biconnected because of
the girth assumption and that the facial walk of every `-face with ` ≤ 11 induces
a chordless cycle of G. A vertex of G is said to be small if its degree is at most
95, and big otherwise.

The proof presented in this section is based on the discharging method. We
show that there is no D-minimal graph, i.e., all planar graphs of girth at least
seven and maximum degree at most D are D-good. In order to show this, we
first describe configurations that cannot appear in a D-minimal graph (reducible
configurations). In the proof, we consider a potentialD-minimal graph and assign
each vertex and each face a certain amount of charge. The amounts are assigned
in such a way that their sum is negative. The charge is then redistributed among
the vertices and faces according to the rules described in Subsection 3.3. It is
shown that if the considered graph is D-minimal, then the final charge of every
vertex and every face is non-negative after the redistribution. Since the sum of
the initial charges is negative, we obtain a contradiction and conclude that there
is no D-minimal graph.

3.1 Structure of D-minimal graphs

In this section, we identify configurations that cannot appear in D-minimal
graphs. The following argument is often used in our considerations: we first
assume that there exists a D-minimal graph G that contains a certain configu-
ration. We remove some vertices of G and find a proper L(p, 1)-labeling of the
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new graph (the labeling exists because G is D-minimal). We then recolor some
of the vertices: at this stage, we state the properties that the new colors of the
recolored vertices should have and say that the vertices are recolored with colors
that have this property (and show that it is possible). If the original colors of
such vertices have already the desired properties, then the vertices just keep their
original colors. Finally, the labeling is extended to the removed vertices.

We have already seen that every D-minimal graph is connected. Similarly, it
is not hard to see that the minimum degree of a D-minimal graph is at least two:

Lemma 1. If G is a D-minimal graph, then its minimum degree is at least two.

Proof. Assume that G contains a vertex v of degree one (since G is connected,
it has no vertices of degree zero). Fix an integer p ≤ (D − 190)/2 such that G
has no proper L(p, 1)-labeling of span D+ 2p− 2. Let v′ be the neighbor of v in
G. Remove v from G. Since G is D-minimal, the obtained graph has a proper
L(p, 1)-labeling c of span D+2p− 2. We extend the labeling c to v: the vertex v
cannot be assigned at most 2p− 1 colors whose difference from the color of v ′ is
less than p and it cannot be assigned at most D− 1 colors which are assigned to
the other neighbors of v′. Therefore, there are at most D+2p−2 forbidden colors
for v. In particular, there exists a color that can be assigned to v, and thus c can
be extended to v. This contradicts our assumption that G is D-minimal.

Next, we focus on 2-, 3- and 4-threads contained in D-minimal graphs:

Lemma 2. If vertices v and w of a D-minimal graph G are joined by a 2-thread,
then at least one of the vertices v and w is big.

Proof. Fix an integer p ≤ (D−190)/2 such that G has no proper L(p, 1)-labeling
with span D + 2p− 2. Let v′w′ be the 2-thread between v and w in G (where v′

is the neighbor of v). Assume for the sake of contradiction that neither v nor w
is big. Remove the vertices v′ and w′ from G. Since G is D-minimal, there exists
a proper L(p, 1)-labeling c of the obtained graph whose span does not exceed
D + 2p− 2. We extend the labeling c to the vertices v′ and w′.

Let Av be the set of the colors that differ by at least p from the color of v
and are different from the colors of all the neighbors of v and from the color of
w. Similarly, let Aw be the set of the colors that differ by at least p from the
color of w and are different from the colors of all the neighbors of w and from
the color of v. Since w is not a big vertex, the number of these colors is at least
(D + 2p − 1) − (2p − 1) − 94 − 1 ≥ 2p, since D − 95 ≥ 2p. Similarly, we have
|Av| ≥ 2p.

Color now the vertices v′ and w′ by colors from Av and Aw that differ by
at least p (observe that such colors always exist). The obtained labeling c is a
proper L(p, 1)-labeling of G with span at most D + 2p− 2.

The following two statements readily follow:
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Lemma 3. No D-minimal graph G contains a 4-thread.

Proof. Assume that a D-minimal graph G contains a 4-thread vv ′v′′v′′′. By
Lemma 2, v or v′′′ is big and vv′v′′v′′′ is not a 4-thread.

Lemma 4. If vertices v and w of a D-minimal graph G are joined by a 3-thread,
then both v and w are big.

Proof. Let v′v′′v′′′ be the 3-thread joining v and w. By Lemma 2, v or v′′′ is big.
Since v′′′ is a 2-vertex, v is big. Similarly, we infer that w is big.

Next, we focus on cycles of lengths seven and eight contained in D-minimal
graphs. Note that the boundary of every 7-face and 8-face is biconnected (because
of the girth assumption), i.e., its boundary is a simple cycle of length seven or
eight, and thus the following lemma can always be applied in such cases.

Lemma 5. Let v1v2v3v4v5v6v7 be a part of a 7-cycle or an 8-cycle contained in
a D-minimal graph G. If v2, v3, v5 and v6 are 2-vertices, then v1 or v7 is a big
vertex.

Proof. Fix an integer p ≤ (D−190)/2 such that G has no proper L(p, 1)-labeling
with span D + 2p − 2. Note that the distance between the vertices v1 and v7 is
at most two. Assume that neither v1 nor v7 is big. Remove the vertices v2, v3,
v5 and v6 from G. Since G is D-minimal, the new graph has an L(p, 1)-labeling
c of span at most 2p +D − 2. Let A be the set of colors γ that differ from the
color of v4 by at least p and such that no neighbor of v4 is colored with γ. Since
there are 2p+D − 1 colors available and the degree of v4 in the new graph does
not exceed D − 2, we infer that |A| ≥ 2.

We extend the labeling c to the removed vertices. Color the vertices v5 and v3
by distinct colors from A in such a way that the colors of v5 and v7 are different,
and the colors of v3 and v1 are also different. Since the colors of v7 and v1 are
different (the distance of v7 and v1 in G is at most two), this is always possible.

Color now the vertex v6 by a color that differs by at least p from the colors
of v5 and v7 and that differ from the colors of v4 and (at most 94) neighbors of
v7. Since there are at most 95 + 4p− 2 ≤ 2p+D− 2 forbidden colors for v6, the
vertex v6 can be colored. Similarly, it is possible to color the vertex v2. Since the
obtained labeling is a proper L(p, 1)-labeling with span at most 2p+D − 2, the
graph G is not D-minimal.

The following result is an easy consequence of Lemma 5:

Lemma 6. No D-minimal graph G contains a pair of vertices joined by two
3-threads.

Proof. Assume for the sake of contradiction that G contains two vertices v and
w joined by two 3-threads. The vertices v, w and the two 3-threads joining them
comprise an 8-cycle in G. By Lemma 5, at least one of the neighbors of w in the
3-threads is big, but both the neighbors are 2-vertices.
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Figure 1: Notation used in the proof of Lemma 8.

We now focus on 3-vertices in D-minimal graphs:

Lemma 7. Let v1v2v3v4 be a path of a D-minimal graph G where v2 is a 3-vertex.
If neither v1 nor v4 is big and v3 is a 2-vertex, then the remaining neighbor w of
v2 is big.

Proof. Fix an integer p ≤ (D − 190)/2 such that G has no L(p, 1)-labeling of
span 2p+D− 2. Assume that w is not big. Remove the vertex v3 from G. Since
G is D-minimal, there exists a proper L(p, 1)-labeling of the obtained graph with
span at most 2p+D− 2. We first change the color of v2 and then we extend the
labeling c to the vertex v3.

Recolor the vertex v2 by a color that differs from the colors of v1 and w by
at least p, and that is different from the colors of all the neighbors of v1 and
w and from the color of v4. Since neither v1 nor w is big, there are at most
2(2p− 1) + 2 · 94 + 1 ≤ 2p+D − 2 forbidden colors for v2. Hence, the vertex v2
can be recolored.

Finally, color the vertex v3 by a color that differs from the colors of v2 and v4
by at least p, and that is different from the colors of all the neighbors of v2 and
v4. Since v2 is a 3-vertex and v4 is not big, there are at most 2(2p− 1)+94+2 ≤
2p+D − 2 forbidden colors and v3 can be colored.

We finish this section by establishing a lemma on the structure of faces of
type (2, 1, 1):

Lemma 8. The following configuration does not appear in a D-minimal graph
G: a 7-face f of type (2, 1, 1) with one big and two 4-vertices such that both the
4-vertices of f are adjacent only to small vertices.

Proof. By Lemma 2, the big vertex incident to f delimits the 2-thread. Let v
be the big vertex and w the other vertex delimiting the 2-thread and let v ′v′′

be the 2-thread (the 2-vertex v′ is an f -neighbor of v). Let w′, w′′ and w′′′ be
the neighbors of w different from v′′ (see Figure 1) and assume that w′ is an
f -neighbor of w.
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Fix an integer p ≤ (D − 190)/2 such that G has no proper L(p, 1)-labeling
with span 2p + D − 2. Remove the vertices v′′ and w′ from G. Since G is D-
minimal, there exists a proper L(p, 1)-labeling c of the new graph whose span is
at most 2p+D − 2. Next, we change the color of w and we extend the labeling
c to the vertices v′′ and w′.

Recolor the vertex w by a color that differs by at least p from the colors w′′

and w′′′, and that is different from the colors of all the neighbors of w′′ and w′′′

and that is also different from the color of v′ and the other 4-vertex incident to
f . Since none of the vertices w′′ and w′′′ is big, the number of colors forbidden
for w does not exceed 2(2p− 1) + 2 · 94 + 2 ≤ D + 2p− 2. Hence, the vertex w
can be recolored.

Next, color the vertex w′ by a color that differs from the colors of both the
4-vertices incident with f by at least p and that is also different from the colors of
all the six neighbors of the 4-vertices. Since the number of such forbidden colors
does not exceed 2(2p− 1) + 6 ≤ D + 2p− 2, the vertex w′ can be colored.

Finally, we color the vertex v′′ by a color that differs from the colors of v′ and
w by at least p and that is different from the colors of the vertices v, w′, w′′ and
w′′′. Since there are at most 4p+ 2 ≤ D+ 2p− 2 forbidden colors, the labeling c
can be also extended to the vertex v′′.

3.2 Initial charge

We now describe the amounts of initial charge of vertices. The initial charge of
a d-vertex v is set to

ch(v) = d− 3,

and the initial charge of an `-face f to

ch(f) = `/2− 3.

It is easy to verify that the sum of initial charges is negative:

Proposition 9. If G is a connected planar graph, then the sum of all initial
charges of the vertices and faces of G is −6.

Proof. Since G is connected, Euler’s formula yields that n + f = m + 2 where
n is the number of the vertices of G, m is the number of its edges and f is the
number of its faces. The sum of initial charges of the vertices of G is equal to

∑

v∈V (G)

(d(v)− 3) = 2m− 3n.

The sum of initial charges of the faces of G is equal to

∑

f∈F (G)

(

`(f)

2
− 3

)

= m− 3f.
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Therefore, the sum of initial charges of all the vertices and faces is 3m−3n−3f =
−6.

Note that the amounts of initial charge were chosen such that each face of
size at least 6 (consequently, each face of a D-minimal graph) has non-negative
charge, the charge of 6-faces is zero and only 2-vertices have negative charge of
−1 unit.

3.3 Discharging rules

Next, the charge is redistributed among the vertices and faces of a (potential)
D-minimal graph by the following rules:

R1 Each face f sends charge of 1/2 to every incident 2-vertex.

R2 Each 4-vertex sends charge of 1/4 to every incident face.

R3 Each small (≥ 5)-vertex sends charge of 5/16 to every incident face.

R4 Each big vertex adjacent to a 3-vertex w sends charge of 5/16 to the opposite
face through w.

R5 Each big vertex adjacent to a 4-vertex w sends charge of 1/16 to each of the
two opposite faces through w.

R6 If v is a big vertex incident to a face f and v1 and v2 are its f -neighbors,
then v sends the following charge to f :

1/2 if k = 0,
3/4 if k = 1,

15/16 if k = 2 and the type of f is not (3, 2), and
1 if the type of f is (3, 2),

where k is the number of 2-vertices in set {v1, v2}.

If there are multiple incidences, the charge is sent according to the appropriate
rule(s) several times, e.g., if a 2-vertex v is incident to a bridge, then it is incident
to a single face f and f sends charge of 1/2 to v twice by Rule R1.

3.4 Final charge of vertices

In this subsection, we analyze the final amounts of charge of vertices.

Lemma 10. If a graph G is D-minimal, then the final charge of every (≤ 4)-
vertex is zero.
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Proof. The initial charge of a 2-vertex v is −1 and it receives charge of 1/2 from
each of the two incident faces by Rule R1. Therefore, its final charge is zero.
Since a 3-vertex does not receive or send out any charge, its final charge is zero.
Similarly, a 4-vertex sends charge of 1/4 to each of the four incident faces by Rule
R2. Since its initial charge is 1, its final charge is also zero.

Lemma 11. If a graph G is D-minimal, then the final charge of every small
(≥ 5)-vertex is non-negative.

Proof. Consider a small vertex v of degree d ≥ 5. The vertex v sends charge of
5/16 to each of the d incident faces by Rule R3. Hence, it sends out charge of at
most 5d/16. Since the initial charge of v is d − 3 ≥ 5d/16, the final charge of v
is non-negative.

The analysis of final charge of big vertices needs finer arguments:

Lemma 12. If a graph G is D-minimal, then the final charge of every big vertex
is non-negative.

Proof. Let v be a big vertex of degree d. Let v1, . . . , vd be the neighbors of v in
a cyclic order around the vertex v and let f1, . . . , fd be the faces incident to v in
the order such that the fi-neighbors of v are the vertices vi and vi+1. Note that
some of the faces fi can coincide. Let ϕ(vi) be the amount of charge sent from v
through a vertex vi. Similarly, ϕ(fi) is the amount of charge sent to fi. Note that
this is a slight abuse of our notation since the faces fi are not necessarily mutually
distinct—in such case, ϕ(fi) is the amount of charge sent from v because of this
particular incidence to fi.

We show that the following holds for every i = 1, . . . , d (indices are modulo
d):

ϕ(vi)

2
+ ϕ(fi) + ϕ(vi+1) + ϕ(fi+1) +

ϕ(vi+2)

2
≤

31

16
. (1)

Summing (1) over all i = 1, . . . , d yields the following:

d
∑

i=1

(2ϕ(vi) + 2ϕ(fi)) ≤
(

2−
1

16

)

d. (2)

Recall now that the initial charge of v is d − 3. Because v is big, its degree d is
at least 96. Since the charge sent out by v is at most d − d/32 by (2), the final
charge of v is non-negative. Therefore, in order to establish the statement of the
lemma, it is enough to show that the inequality (1) holds.

Let us fix an integer i between 1 and d. We distinguish several cases according
to which of the vertices vi, vi+1 and vi+2 are of degree 2:

None of the vertices vi, vi+1 and vi+2 is a 2-vertex. In this case, the vertex
v sends through each of the vertices vi, vi+1 and vi+2 charge at most 5/16
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by Rules R4 and R5, i.e., ϕ(vi), ϕ(vi+1), ϕ(vi+2) ≤ 5/16. By Rule R6, both
the faces fi and fi+1 receive charge of 1/2 from v, i.e., ϕ(fi), ϕ(fi+1) ≤ 1/2.
Hence, the sum (1) of charges is at most 13/8 < 31/16.

The vertex vi+1 is not a 2-vertex and one of vi and vi+2 is a 2-vertex.
By symmetry, we can assume that vi is a 2-vertex and vi+2 is a (≥ 3)-
vertex. Since vi is a 2-vertex, v sends no charge through it, i.e., ϕ(vi) = 0.
By Rule R6, ϕ(fi) = 3/4 and ϕ(fi+1) = 1/2. By Rules R4 and R5,
the amounts of charge sent from v through vi+1 and vi+2 do not exceed
5/16, i.e., ϕ(vi+1), ϕ(vi+2) ≤ 5/16. Therefore, the sum (1) is bounded by
3/4 + 1/2 + 3/2 · 5/16 < 31/16.

The vertex vi+1 is not a 2-vertex and both vi and vi+2 are 2-vertices.
The vertex v sends charge of 3/4 to both the faces fi and fi+1 by Rule R6,
i.e., ϕ(fi) = ϕ(fi+1) = 3/4. No charge is sent through the vertices vi

and vi+2, i.e., ϕ(vi) = ϕ(vi+2) = 0. The amount of charge sent through
vi+1 is at most 5/16 (charge can be sent through it only by Rule R4 or
Rule R5), i.e., ϕ(vi+1) ≤ 5/16. We conclude that the sum (1) is at most
2 · 3/4 + 5/16 < 31/16.

The vertex vi+1 is a 2-vertex and neither vi nor vi+2 is a 2-vertex. The
vertex v sends charge of 3/4 to both the faces fi and fi+1 by Rule R6, i.e.,
ϕ(fi) = ϕ(fi+1) = 3/4. The amount of charge sent through each of vi or
vi+2 is at most 5/16 (charge can be sent through it only by Rule R4 or
Rule R5), i.e., ϕ(vi), ϕ(vi+2) ≤ 5/16. Since no charge is sent through vi+1,
i.e., ϕ(vi+1) = 0, the sum (1) is at most 2 · 3/4 + 5/16 < 31/16.

The vertex vi+1 is a 2-vertex and one of vi and vi+2 is a 2-vertex. By
symmetry, we can assume that vi is a 2-vertex and vi+2 is a (≥ 3)-vertex.
Since vi and vi+1 are 2-vertices, v sends no charge through vi or vi+1,
i.e., ϕ(vi) = ϕ(vi+1) = 0. By Rule R6, the face fi receives charge of
at most 1 and the face fi+1 charge of at most 3/4, i.e., ϕ(fi) ≤ 1 and
ϕ(fi+1) ≤ 3/4. Finally, the charge sent from v through vi+2 is at most
5/16, i.e., ϕ(vi+2) ≤ 5/16. We infer that the sum (1) is bounded by
≤ 1 + 3/4 + 5/32 < 31/16.

All the vertices vi, vi+1 and vi+2 are 2-vertices. There is no charge sent
from v through any of the vertices vi, vi+1 and vi+2, i.e., ϕ(vi) = ϕ(vi+1) =
ϕ(vi+2) = 0. If at least one of the faces fi and fi+1 is not a (3, 2)-face, then
the total amount of charge sent to both of them by Rule R6 is at most
15/16 + 1 = 31/16 as desired. In the rest, we consider the case when both
the faces fi and fi+1 are (3, 2)-faces. Let v

′ be the other big vertex incident
to fi and fi+1. The vertex vi+1 lies in a 2-thread or a 3-thread shared by the
faces fi and fi+1. If the faces fi and fi+1 share a 2-thread, then the vertices
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v and v′ are joined by two 3-threads—this is impossible by Lemma 6. On
the other hand, if they share a 3-thread, then the vertices v and v ′ together
with the two 2-threads form a 6-cycle contradicting the girth assumption.

3.5 Final charge of faces

In this subsection, we analyze the final amounts of charge of faces. First, we start
with faces that are not biconnected.

Lemma 13. Let f be a face of a D-minimal graph G. If f is not biconnected,
then its final charge is non-negative.

Proof. Let P be the facial walk of f . Since f is not biconnected, P consists of
two or more blocks. In particular, it contains at least one cut-vertex. In addition
observe that the end-blocks of P are cycles of length at least seven. Let C1 and
C2 be two different end-blocks of P and w1 and w2 be their cut-vertices (note
that w1 may be equal to w2), respectively.

Let k be the number of incidences of f with (≥ 3)-vertices, counting multi-
plicities. If w1 6= w2, then each of w1 and w2 contributes by at least two to k,
thus w1 and w2 together contribute by at least 4 to k. Otherwise, the vertex
w1 = w2 contributes by at least two to k.

Since the length of C1 is at least seven, it has at least one (≥ 3)-vertex different
from w1 by Lemma 3. If C1 contains exactly one such (≥ 3)-vertex, then it has
a 3-thread (it cannot have a 4-thread by Lemma 3), and the vertex w1 is big by
Lemma 4. Similar statements hold for C2. Therefore k ≥ 4, and if w1 6= w2 or
w1 = w2 is small, then k ≥ 6.

If f is an `-face, its initial charge is `/2 − 3. The face f sends out charge of
(` − k)/2 by Rule R1. If k ≥ 6, then this is at most `/2 − 3 and thus the final
charge of the face is non-negative.

If k < 6, then w1 = w2 is a big vertex (this follows from our previous discus-
sion) and it has two incidences with f . Therefore f receives charge of at least one
unit from w1 by Rule R6 and its final charge is `/2− 3− (`− k)/2 + 1 ≥ 0.

Next, we analyze biconnected faces starting with 7-faces:

Lemma 14. The final charge of each 7-face f of a D-minimal graph G is non-
negative.

Proof. The initial charge of the face f is 1/2. By Lemma 3, f does not contain
a 4-thread, and thus the face f is incident to at least two (≥ 3)-vertices. We
distinguish five cases according to the number of (≥ 3)-vertices incident to f :
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The face f is incident to two (≥ 3)-vertices. In this case, the type of f is
(3, 2). By Lemma 4, both the (≥ 3)-vertices are big and each of them sends
charge of 1 unit to f by Rule R6. Since f sends out charge of 5/2 to the
five incident 2-vertices, its final charge is zero.

The face f is incident to three (≥ 3)-vertices. Since f sends out charge of
two units to the incident 2-vertices, it is enough to show that it receives
charge of at least 3/2 from the incident (≥ 3)-vertices. Since G does not
contain a 4-thread by Lemma 3, the type of f is (3, 1, 0), (2, 2, 0) or (2, 1, 1).

If f is incident to two big vertices, then each of them sends charge of at
least 3/4 to f by Rule R6, and the final charge of f is non-negative. In the
rest, we assume that f is incident to at most one big vertex. Consequently,
the type of f is (2, 2, 0) or (2, 1, 1) by Lemma 4 and f is incident to exactly
one big vertex by Lemma 2.

Assume that the type of f is (2, 2, 0). By our assumption, f is incident to a
single big vertex and, by Lemma 2, this vertex delimits both the 2-threads
of f . However, Lemma 5 yields that one of the other two (≥ 3)-vertices is
also big (contrary to our assumption).

The final case to consider is that the type of f is (2, 1, 1). Let v be the
big vertex incident to f . By Lemma 2, v delimits the 2-thread. Since both
f -neighbors of v are 2-vertices, v sends charge of 15/16 to f . Let v ′ be any
of the other two (≥ 3)-vertices incident to f . If v ′ is a 3-vertex, its neighbor
opposite to f is big by Lemma 7 and it sends (through v′) charge of 5/16
to f by Rule R4. If v′ is a 4-vertex, it sends charge of 1/4 to f , and if v′

has a big neighbor opposite to f , then the big neighbor sends f additional
charge of 1/16 by Rule R5. Finally, if v′ is a small (≥ 5)-vertex, it sends
charge of 5/16 to f by Rule R3. We conclude that if f receives total charge
of less than 3/2, then both the (≥ 3)-vertices incident to f are 4-vertices
with no big neighbors. However, this is impossible by Lemma 8.

The face f is incident to four (≥ 3)-vertices. Since f is incident to three 2-
vertices, it sends out charge of 3/2. We show that, on the other hand, it
receives charge of at least one unit from the incident (≥ 3)-vertices. This
will imply that the final charge of f is non-negative. If f is incident to two
big vertices, then it receives charge of at least 1/2 from each of them, i.e.,
charge of at least one unit in total. Hence, we can assume in the rest that
f is incident to at most one big vertex. In particular, by Lemma 4, f has
no 3-thread. Therefore, the type of f is one of the following: (2, 1, 0, 0),
(2, 0, 1, 0) or (1, 1, 1, 0).

Assume first that f is incident to no big vertex. By Lemma 2, the type
of f is (1, 1, 1, 0). Let v be any of the four (≥ 3)-vertices incident to f .
Note that v has an f -neighbor that is a 2-vertex. If v is a (≥ 4)-vertex,
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Figure 2: All configurations (up to symmetry) of a 7-face of types (2, 1, 0, 0),
(2, 0, 1, 0) and (1, 1, 1, 0) when the face is incident to a single big vertex. The
big vertices are represented by full squares, the small (≥ 3)-vertices by empty
squares and the 2-vertices by circles. Note that a 2-thread must be bounded by
at least one big vertex by Lemma 2.

then f receives charge of at least 1/4 units from v by Rules R2 and R3.
If v is a 3-vertex, then its neighbor opposite to f is big by Lemma 7 and
it sends charge of 5/16 through v to f by Rule R4. Since the choice of v
was arbitrary, the amount of charge sent from (or through) each incident
(≥ 3)-vertex is at least 1/4 and f receives charge of at least 1 unit in total.

We now consider the case that exactly one vertex incident to f is big. We
say that a vertex x incident to f has Property S if the following conditions
are satisfied:

1. x is small,

2. both f -neighbors of x are small, and

3. one of the f -neighbors of x is a 2-vertex with no big f -neighbor.

It is routine to check that the following claim holds (consult Figure 2):
unless the type of f is (2, 1, 0, 0) and the big vertex delimits both the 2-
thread and the 1-thread of f , the face f is incident to two different (≥ 3)-
vertices w1 and w2 that have Property S.

Under the assumption that the type of f is not (2, 1, 0, 0), we show that
the face f receives charge of at least 1/4 from (or through) each of w1 and
w2: if wi is a (≥ 4)-vertex, then f receives charge of at least 1/4 from it.
Otherwise, wi is a 3-vertex and, by Lemma 7, its neighbor opposite to f is
big. Consequently, it sends through wi charge of 5/16 to f . Since f receives
in addition the charge of at least 1/2 from the big vertex, its final charge
is non-negative as desired.

It remains to consider the case when the type of f is (2, 1, 0, 0) and the
big vertex delimits both the 2-thread and the 1-thread of f . In this case, f
receives charge of 15/16 from the incident big vertex by Rule R6. Moreover,
there exists a vertex w that has Property S (consult Figure 2). Similarly
as in the previous paragraph, the charge sent from w to f is at least 1/4.
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Altogether, f receives charge of at least 1 and the final charge is thus non-
negative.

The face f is incident to five (≥ 3)-vertices. The face f sends out charge of
1 unit to the two incident 2-vertices. Thus it is enough to show that the face
f receives charge of at least 1/2 from incident vertices. If f is incident to
a big vertex, then f receives charge of at least 1/2 from it by Rule R6. We
assume in the rest that f is incident only to small vertices. In particular,
f has no 2-thread (by Lemma 2).

Let v be a 2-vertex incident to f and let v− and v+ be the two f -neighbors
of v. Note that both v− and v+ are (≥ 3)-vertices. If v− is a (≥ 4)-vertex,
it sends charge of at least 1/4 to f . If v− is a 3-vertex, then its neighbor
opposite to f is big by Lemma 7, and it sends charge of 5/16 through v− to
f . Similarly, f receives charge of at least 1/4 from (or through) v+. Hence,
the total charge received by f from the vertices v− and v+ is at least 1/2
and the final charge of f is non-negative.

The face f is incident to six or seven (≥ 3)-vertices. Since the face f is
incident to at most one 2-vertex, it sends out charge of at most 1/2 and its
final charge is non-negative.

Next, we analyze the final charge of 8-faces.

Lemma 15. The final charge of each biconnected 8-face f of a D-minimal graph
G is non-negative.

Proof. First note that the initial charge of the face f is one. By Lemma 3, the
face f does not contain a 4-thread. Therefore, the face f is incident to at least two
(≥ 3)-vertices. We distinguish five cases based on the number of (≥ 3)-vertices
incident to the face f :

The face f is incident to two (≥ 3)-vertices. Since f does not contain a 4-
thread, the type of f is (3, 3). However, this is impossible by Lemma 6.

The face f is incident to three (≥ 3)-vertices. Since f sends out charge of
5/2 to the incident 2-vertices, it is enough to show that it receives charge
of at least 3/2 from the incident (≥ 3)-vertices. Since f does not contain a
4-thread, the type of f is (3, 2, 0), (3, 1, 1) or (2, 2, 1).

If the type of f is (3, 2, 0) or (3, 1, 1), then the 3-thread is delimited by two
big vertices (by Lemma 4) and f receives from each of them charge of at
least 3/4 by Rule R6. Hence, the final charge of f is non-negative.

Assume that the type of f is (2, 2, 1). It is enough to show that f is incident
to at least two big vertices because each of them would send charge of 3/4
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to f by Rule R6. If this is not the case, then f is incident to exactly one
big vertex that is common to the two 2-threads by Lemma 2. However,
by Lemma 5, at least one of the other two (≥ 3)-vertices is also big. We
conclude that f is incident to at least two big vertices.

The face f is incident to four (≥ 3)-vertices. Since f is incident to four 2-
vertices, f sends out charge of two units. We claim that it also receives
charge of at least one unit from the incident vertices. This will imply that
the final charge of f is non-negative. If f is incident to two big vertices,
then it receives charge of at least 1/2 from each of them and the claim
holds. We assume in the rest that f is incident to at most one big vertex.
In particular, by Lemma 4, f has not a 3-thread.

Assume that f contains a 2-thread. Let v and v′ be the vertices delimiting
the 2-thread. By Lemma 2, v or v′ is big, say v. Since v is incident to
a 2-vertex, it sends charge of at least 3/4 to f by Rule R6. If v ′ is a
(≥ 4)-vertex, then f receives charge of at least 1/4 from v ′ and the final
charge of f is non-negative. Otherwise, v′ is a 3-vertex incident to a 2-
thread and its f -neighbor not contained in the 2-thread is a small vertex.
By Lemma 7, the neighbor of v′ opposite to f is a big vertex. Hence, the
face f receives charge of 5/16 from the big neighbor of v′ and thus its final
charge is non-negative.

In the rest, we assume that f has neither a 3-thread nor a 2-thread. Con-
sequently, the type of f must be (1, 1, 1, 1). Let v1, v2, v3 and v4 be the
(≥ 3)-vertices incident to f in the order as they appear on the facial walk
of f . If f is incident to two or more big vertices, it receives charge of 15/16
from each of them and its final charge is positive. Assume that f is incident
to a single big vertex, say v1. Note that f receives charge of 15/16 from v1
by Rule R6. If v3 is a (≥ 4)-vertex, it sends charge of 1/4 to f and the final
charge of f is non-negative. If v3 is a 3-vertex, then its neighbor opposite
to f is big (by Lemma 7), v3 sends charge of 5/16 to f , and thus the final
charge of f is non-negative.

It remains to consider the case when the type of f is (1, 1, 1, 1) and f is
incident to no big vertex. Let us consider a vertex v1. If v1 is (≥ 4)-vertex,
it sends charge of at least 1/4 to f . If v1 is 3-vertex, then its neighbor
opposite to f is big, and it sends charge of 5/16 to f through v1. Similarly,
we can infer that f receives charge of at least 1/4 from (or through) the
vertices v2, v3 and v4. Hence, f receives charge of at least one unit from
the incident vertices and its final charge is non-negative.

The face f is incident to five (≥ 3)-vertices. The face f sends out charge
of 3/2 units to the incident 2-vertices. Thus it is enough to show that the
face f receives charge of at least 1/2 from incident (≥ 3)-vertices. If f is
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incident to a big vertex, then f receives charge of at least 1/2 from it and
the final charge is non-negative. We assume in the rest that f is incident
only to small vertices.

Let v be a 2-vertex incident to f . Since f is incident to no big vertex, both
the neighbors v− and v+ of v are (≥ 3)-vertices by Lemma 2. If v− is a
(≥ 4)-vertex, it sends charge of at least 1/4 to f . And if v− is a 3-vertex,
then its neighbor opposite to f is big by Lemma 7 and it sends through v−

to f charge of 5/16. Similarly, f receives charge of at least 1/4 from (or
through) v+. Hence, f receives charge of at least 1/2 in total from the two
neighbors of v and the final charge of f is non-negative.

The face f is incident to six or more (≥ 3)-vertices. Since the face f is in-
cident to at most two 2-vertices, it sends out charge of at most one unit
and the final charge of f is non-negative.

Finally, we analyze the case of (≥ 9)-faces:

Lemma 16. The final charge of each biconnected (≥ 9)-face f of a D-minimal
graph is non-negative.

Proof. Since f does not contain a 4-thread by Lemma 3, the face f is incident
to at least three (≥ 3)-vertices. The initial charge of f is `/2 − 3 where ` is the
length of f . We distinguish four cases according to the number of (≥ 3)-vertices
incident to f :

The face f is incident to three (≥ 3)-vertices. The face f sends charge of
(` − 3)/2 to the incident 2-vertices. It is enough to show that f receives
charge of at least 3/2 from the incident vertices. If f has a 3-thread, then
the 3-thread is delimited by two big vertices. Both of them send charge of
at least 3/4 to f by Rule R6. Therefore, if the total charge received by f
is less than 3/2, then f has no 3-thread. Consequently, the length of f is
nine and its type is (2, 2, 2). By Lemma 2, at least two of the (≥ 3)-vertices
are big and f receives charge of at least 3/2 from them by Rule R6 in this
case.

The face f is incident to four (≥ 3)-vertices. The face f sends charge of
(` − 4)/2 to the incident 2-vertices. It is enough to show that f receives
charge of at least 1 from the incident vertices. If f has a 3-thread, then
the 3-thread is delimited by two big vertices (by Lemma 4) and each of
them sends charge of at least 1/2 to f by Rule R6. If f has at least three
2-threads, then these threads are delimited by at least two different big ver-
tices by Lemma 2, and f receives charge of at least 1/2 from each of them
by Rule R6. If none of the above cases holds, i.e., f has no 3-thread and at
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Figure 3: Possible types of a 9-face or a 10-face with no 3-thread and at most
two 2-threads. The (≥ 3)-vertices are represented by squares and the 2-vertices
by circles.

most two 2-threads, then its type must be one of the following: (2, 2, 1, 0),
(2, 1, 2, 0), (2, 1, 1, 1), (2, 2, 1, 1), and (2, 1, 2, 1)—see Figure 3.

Assume that the type of f is one of the five types listed at the end of the
previous paragraph. Since f has a 2-thread, it must be incident to a big
vertex v by Lemma 2. Let v′, v′′ and v′′′ be the remaining (≥ 3)-vertices
incident to f . The face f receives charge of at least 1/2 from the vertex v
by Rule R6. If at least one of v′, v′′ and v′′′ is big, then it sends additional
charge of at least 1/2 to f by Rule R6, and the total amount of charge
received by f is at least one. Let us assume in the rest that all the vertices
v′, v′′ and v′′′ are small.

Observe that in this case the type of f is (2, 2, 1, 0), (2, 1, 1, 1) or (2, 2, 1, 1).
Note also that if v′ is a 3-vertex, then it satisfies the assumptions of
Lemma 7. Similar statements hold for v′′ and v′′′.

If v′ is a (≥ 4)-vertex, f receives charge of at least 1/4 from v ′ by Rule R2
or Rule R3. If v′ is a 3-vertex, its neighbor opposite to f is big by Lemma 7
and it sends through v′ to f charge 5/16 by Rule R4. Similarly, f receives
charge of at least 1/4 from v′′ and v′′′. We conclude that the total charge
received by f is at least one.

The face f is incident to five (≥ 3)-vertices. The face f sends out charge of
(` − 5)/2 to the incident 2-vertices. It is enough to show that f receives
charge of at least 1/2 from the incident vertices. If f is incident to a big
vertex, then it receives charge of at least 1/2 by Rule R6 from this vertex.
Assume in the rest that f is incident only to small vertices. In particular,
the length of every 2-thread of f is one by Lemma 2. Let v be a 2-vertex
incident to f and v− and v+ the f -neighbors of v. Note that both v− and
v+ are (≥ 3)-vertices. If v− is a (≥ 4)-vertex, then f receives charge of
at least 1/4 from v− by Rule R2 or Rule R3. If v− is a 3-vertex, then its
neighbor opposite to v is big by Lemma 7 and the face f receives charge
of 5/16 from it through v. Similarly, f receives charge of at least 1/4 from
(or through) v+. Altogether, f receives charge of at least 1/2 as required.
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The face f is incident to six or more (≥ 3)-vertices. The face f sends out
charge of at most (` − 6)/2 by Rule R1. Since the initial charge of f is
`/2− 3 and ` ≥ 9, the final charge is non-negative.

3.6 Final step

We now combine our observations from the previous subsections together:

Theorem 17. If G is a planar graph of maximum degree ∆ ≥ 190 + 2p, p ≥ 1,
and the girth of G is at least seven, then G has a proper L(p, 1)-labeling with span
2p+∆− 2.

Proof. Consider a possible counterexample G and set D = ∆. Since G is not
D-good, there exists a D-minimal graph G′. Assign charge to the vertices and
faces of G′ as described in Subsection 3.2. Apply the rules given in Subsection 3.3
to G′. By Proposition 9, the sum of the amounts of initial charge assigned to the
vertices and edges of G′ is −6. On the other hand, the final amounts of charge of
every vertex (Lemmas 10–12) and every face (Lemmas 13–16) are non-negative.
However, this is impossible since the total amount of charge is preserved by the
rules.

We use an argument applied in [27] to derive the following result for L(p, q)-
labelings:

Corollary 18. If G is a planar graph of maximum degree ∆ ≥ 190 + 2dp/qe,
p, q ≥ 1, and girth at least seven, then G has a proper L(p, q)-labeling with span
2p+ q∆− 2.

Proof. Let p′ = dp/qe. By Theorem 17, the graph G has a proper L(p′, 1)-labeling
c′ with span 2p′ + ∆ − 2. Define a labeling c by setting c(v) = qc′(v) for each
vertex v. The labeling c is a proper L(p′q, q)-labeling. Therefore, it is also a
proper L(p, q)-labeling of G. The span of c is at most the following:

q(2p′ +∆− 2) = 2

(

p′ −
q − 1

q

)

q + q∆− 2 ≤ 2p+ q∆− 2.

4 Planar graphs of girth six

In this section, we show that Conjecture 2 is not true for g ∈ {5, 6}, i.e., for
each ∆ ≥ 3, we construct a planar graph G of girth six and maximum degree ∆
such that the chromatic number of its square is ∆ + 2. Therefore, the numbers
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Figure 4: The graphs G′4 and G4.

M(5) andM(6) from Conjecture 2 do not exist. On the other hand, Conjecture 2
becomes true for g = 6 when the bound on the chromatic number is relaxed to
∆ + 2.

We start by constructing a counterexample to Conjecture 2. Let G′∆ be a
graph of order 2∆+2 formed by two vertices x and y joined by (∆−1) 2-threads
and a vertex z joined to y by a 1-thread. Let G∆ be a graph obtained by taking
∆− 1 copies of G′∆, identifying all the vertices z of the copies into a single vertex
v, and adding a vertex u joined to v by a 1-thread and by an edge to the vertex
x of each copy of G′∆ (see Figure 4). Clearly, the girth of G∆ is six and the
maximum degree of G∆ is ∆. The chromatic number of G∆ is determined in the
next proposition:

Proposition 19. The chromatic number of the square of the graph G∆ is ∆+ 2
for every ∆ ≥ 2.

Proof. It is easy to construct a coloring of G2∆ by ∆ + 2 colors. We focus on
showing that it cannot be colored by ∆ + 1 colors.

We first show that in any proper coloring of the square of G′∆, the colors
assigned to x and z are distinct. Suppose for contradiction that there exists a
proper coloring of G′2∆ by the colors 0, . . . ,∆ such that the colors of both x and
z are the same, say 0. Since the vertex y has degree ∆, either y or one of its
neighbors must have color 0. This is impossible because each of these vertices is
at distance at most two from x or z.

Suppose now that the graph G∆ can be colored by the colors 0, . . . ,∆. Let
x1, . . . , x∆−1 be the vertices of the copies of G′∆ adjacent to the vertex u. Let w
be the vertex adjacent to u and distinct from all xi, 1 ≤ i < ∆. We may assume
that the color of v is 0. By the observation from the previous paragraph, the
color of each vertex xi is distinct from 0. The vertex u has degree ∆. Therefore,
either u or one of its neighbors has color 0. This is impossible since the colors
of vertices xi are distinct from 0 and both u and w are at distance at most two
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from the vertex v. We conclude that there is no proper coloring of G2∆ with ∆+1
colors.

We now show that ∆+2 colors suffice to color the square of any planar graph
of girth 6 and maximum degree ∆, for ∆ ≥ 8821; the bound on the maximum
degree can be further improved, but we do not provide details in order to keep
the proof simpler.

The proof is again based on the discharging method. We redefine the terms of
a D-good graph and a D-minimal graph as well as the definitions of big and small
vertices for the course of our proofs in this section. For an integer D ≥ 8821, a
graph G is called D-good if its maximum degree is at most D and the chromatic
number of G2 is at most D+2. A planar graph G of girth at least 6 and maximum
degree at most D is D-minimal if G is not D-good but every proper subgraph of
G is D-good. If G is a D-minimal graph, then G is connected. Observe that G
is also 2-connected: otherwise, color the blocks of G separately and afterwards
permute the colors so that the colors of the cut-vertices match and the colors
of their neighbors are pairwise distinct. In particular, the minimum degree of a
D-minimal graph is at least two.

A vertex is said to be small if its degree is at most 1763, and it is said to be
big otherwise.

In the following, we show that there is no D-minimal graph. We assume that
there is a D-minimal graph and assign charge to its vertices and its faces. The
total amount of initial charge will be negative. We then redistribute charge in two
phases as determined by the rules presented in Sections 4.2 and 4.3. We eventually
obtain contradiction with our assumption that there exists a D-minimal graph
by showing that the total final amount of charge is non-negative.

4.1 Reducible configurations

Let us first describe several configurations that cannot appear in a D-minimal
graph. Such a configuration is called reducible.

Lemma 20. The following configurations are reducible:

1. A small vertex u and a vertex v joined by a 2-thread.

2. Vertices u and v joined by two 2-threads.

3. A small vertex v joined by a 1-thread to a vertex u of degree at most six,
such that all the neighbors of u are small.

4. Two adjacent 3-vertices u and v such that all the neighbors of u and v are
small and at least one of the neighbors of u is a 2-vertex.
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v1

v2

v3

v4

v5

v6

x6 x2

x4

y5 y3

z5

z3

w5

w3

Figure 5: The reducible configuration from Lemma 20(5). The vertices that are
not removed in the proof are represented by full circles.

5. The configuration in Figure 5, where v2, v4, v6, y3 and y5 are 3-vertices, v3,
v5, x2, x6, z3 and z5 are 2-vertices, and w3 and w5 are small vertices (there
is no restriction on the degrees of v1 and x4).

Proof. Let G be a D-minimal graph, in particular, χ(G2) > D + 2. We deal
with the configurations separately. In each of the cases, we first assume that G
contains the configuration described in the statement of the lemma and we obtain
contradiction by showing that G is not D-minimal.

1. Let x and y be the vertices of the 2-thread, where x is the vertex adjacent
to u. Consider the graph G′ = G\{x, y}. Since G is D-minimal, the square
of G′ is (D + 2)-colorable. Since the degree of v in G′ is at most D − 1,
there are at least two colors distinct from the colors of v and its neighbors.
At least one of them (call it γ) is distinct from the color of u. Assign the
color γ to the vertex y. Since u is small, the degree of x in G2 is at most
1763 + 3 < D. Therefore, we can choose a color distinct from colors of u,
its neighbors in G′, v and y for x. We obtained a proper coloring of G2 by
(D + 2) colors. This contradicts the D-minimality of G.

2. Let the vertices of the 2-threads be x1, x2, y1 and y2 where xi is adjacent
to yi and u for i = 1, 2. The square of the graph G′ = G \ {x1, x2, y1, y2} is
(D+2)-colorable by the D-minimality of G. Fix a coloring of G′ with D+2
colors. Let Cu and Cv be the sets of the colors which are assigned to no
vertex in the closed neighborhood of u and v, respectively. Since the degrees
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of u and v in G′ are at most D−2, both Cu and Cv have sizes at least three.
Let cu and cv be the colors of u and v, respectively. Let C ′u = Cu \{cv} and
C ′v = Cv \ {cu}. Assign the list C ′u to the vertices x1 and x2 and the list C ′v
to the vertices y1 and y2. The subgraph of G2 induced by {x1, x2, y1, y2} is
a 4-cycle. This graph is 2-choosable. Therefore, its vertices can be colored
from the assigned lists. The coloring obtained by extending the coloring
of G′ to G in this way is a proper coloring of G2 with D + 2 colors that
contradicts our assumption that G is D-minimal.

3. Let x be the 2-vertex of the 1-thread. The square of the graph G′ = G\{x}
is (D+ 2)-colorable. Fix such a coloring. The degree of u in G′2 is at most
5 · 1763 + 5 < D. Therefore, we can modify the coloring by changing the
color of u so that it is distinct from the color of v as well as from the colors
of the neighbors if u in G′2. The degree of x in G2 is at most 1763+7 < D.
Hence, we can extend this coloring to x. This contradicts the D-minimality
of G.

4. Let x be a 2-vertex adjacent to u. Let y be the vertex adjacent to x
distinct from u. Let w be the neighbor of u distinct from x and v. By the
D-minimality of G, the square of the graph G′ = G \ {x, u} is (D + 2)-
colorable. Fix such a coloring. The vertex y has degree at most D − 1 in
G′, therefore at least two colors are unused on closed neighborhood of y in
G′. Choose a color for x from the unused colors so that it is distinct from
the color of w. The degree of v in G′2 is at most 2 ·1763+2 < D. Therefore,
it is possible to change the color of v so that it is distinct from the colors of
x and w. Finally choose a color for u: its degree is at most 1763 + 6 < D
in G2. Therefore, it is always possible. This contradicts the D-minimality
of G.

5. The square of the graph G′ = G \ {v2, v3, v4, v5, v6, x2, x6, y3, y5, z3, z5} is
(D + 2)-colorable (the removed vertices are marked by empty circles in
Figure 5). Fix a coloring of G′ with D+ 2 colors. Since the degree of x4 in
G′ is at most D − 3, there are at least four colors which are not assigned
to a vertex of the closed neighborhood of x4 in G′. Let L4 be the set of
the unused colors. The degree of v1 in G′ is at most D − 2, therefore the
set L1 of colors that do not appear on closed neighborhood of v1 has size
at least three. Let c5 be the color of w5 and c3 the color of w3. Assign the
list L1 to vertices v2 and v6, the list L4 to the vertex v4, the list L4 \ {c5}
to the vertex y5 and the list L4 \ {c3} to the vertex y3. All 2-vertices of
the configuration are adjacent only to small vertices. Therefore, if we were
able to color the subgraph G′′ of G2 induced by {v2, v4, v6, y3, y5} from the
lists, we could choose colors for the 2-vertices of the configuration carefully
and extend the coloring to the coloring of the whole graph G2. This would
eventually contradict the D-minimality of G.
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However, such a coloring of G′′ always exists. Choose a color for v4 from
L4 arbitrarily, and remove this color from the lists of the remaining four
vertices. The graph G′′ \ {v4} is a 4-cycle. Since it is 2-choosable, the
remaining vertices of G′′ can be colored from the assigned lists.

4.2 Initial charge and the first discharging phase

We assign initial charge to the vertices and the faces of a graph in the same
way as in Section 3.2. In particular, the sum of initial charges is negative by
Proposition 9. Let ε = 1/588. The goal of the first phase is that each 2-vertex
receives 2ε units of charge and the amount of charge of other vertices and faces
is not decreased too much.

If u is a 2-vertex, an edge e = uv is void if either d(v) ∈ {2, 4, 5, 6}, or v is
a 3-vertex and all its neighbors are small. Intuitively, the void edges are those
through which it may be impossible to send any charge to u.

In order to simplify the analysis of final charge of big vertices, we send all
charge transfered from a big vertex through the edges incident to it. Each rule
that deals with big vertices specifies through which edge the charge is (considered
to be) sent. The value of ε and the bound on the degree of big vertices was chosen
in such a way that a big vertex is able to send 1− ε units of charge through each
edge incident to it, and its final charge is still non-negative.

If v is a big vertex, we call an edge uv red if one of the following conditions
holds:

• the vertex u is a 2-vertex, e 6= uv is the other edge incident to u, and e is
void, or

• the vertex u is a 3-vertex, x1 and x2 are the neighbors of u distinct from v,
both x1 and x2 are 2-vertices, and all the neighbors of x1 and x2 are small.

The edges incident to big vertices which are not red are called green. Intu-
itively, the green edges are those through which the big vertex does not need to
send “too much” charge and the red ones are those through which almost one
unit of charge has to be sent.

In order to simplify the description of the rules, we define the following oper-
ation: if f is a 6-face and F is the set containing f and all the 6-faces sharing an
edge with f , a 6-face f is boosted from a vertex or face z when 3ε units of charge
are transferred from z to each face of F . Note that the charge of z decreases by
at most 21ε.

The discharging rules of the first phase are the following:

F1 Each (≥ 7)-face boosts all the 6-faces sharing an edge with it.
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F2 If v is a big vertex, e is a green edge incident to it and f is a 6-face incident
to e, then the vertex v boosts f . The charge is sent through the edge e.

F3 If v is a small vertex of degree at least 4, then it boosts all the incident
6-faces.

F4 If v is a 2-vertex and f is a face incident to v, then f sends ε units of charge
to v.

Note that no charge is sent through a red edge in the first phase. We now
analyze the amounts of charge after the first phase:

Lemma 21. Let G be a D-minimal graph. After the first phase of discharging,
the following claims hold:

1. at most 1/8 units of charge was sent through each green edge,

2. the charge of a small vertex of degree d ≥ 4 has decreased by at most d/16,

3. the charge of each 2-vertex is 2ε− 1, and

4. the charge of each face is non-negative.

Proof. We prove each claim separately:

1. Charge is sent through green edges only by Rule F2. Each green edge e is
incident to at most two 6-faces and thus the total amount of charge sent
through e is at most 42ε ≤ 1/8.

2. Charge is sent from small vertices only by Rule F3. A d-vertex is incident
to at most d 6-faces. Therefore, the total amount of sent charge is at most
21εd ≤ d/16.

3. Each 2-vertex receives ε units of charge from both the incident faces by
Rule F4. Therefore, its charge becomes 2ε− 1.

4. Charge is sent from faces by Rules F1 and F4. A d-face f shares an edge
with at most d 6-faces. Therefore, the total amount of charge sent from f
by Rule F1 is at most 21εd. Since at most d 2-vertices are incident to f , at
most εd units of charge are sent by Rule F4. In total, at most 22εd units
of charge are sent from f .

The charge of a d-face with d ≥ 7 after the first phase is at least

d

2
− 3− 22εd =

(

1

2
− 22ε

)

d− 3 ≥
3

7
d− 3 ≥ 0.

Hence, if f is a (≥ 7)-face, its final charge is non-negative.
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It remains to consider the case when f is a 6-face. Let k be the number
of 2-vertices incident to f . Observe that k does not exceed 3: otherwise f
contains at least four 2-vertices and it thus contains either a 3-thread or
two vertices connected by two 2-threads. Both configurations are reducible
by Lemma 20.

Initial charge of f is zero and f sends out charge of kε by Rule F4. If k = 0,
the final charge of f is non-negative. Assume that k > 0. It is sufficient to
prove that f receives at least 3ε units of charge by Rules F1, F2 and F3.
We show that f or one of the 6-faces incident to f is boosted during the
first phase.

If f shares an edge with a (≥ 7)-face, f is incident to a small vertex of
degree at least 4, or f is incident to a green edge, then f itself is boosted.
Therefore, we may assume that no edge incident to f is green, all the
vertices incident to f are either big or have degree 2 or 3, and all the faces
sharing an edge with f are 6-faces.

Let v1, . . . , v6 be the vertices of f in a cyclic order around the face.

Suppose first that f is incident to at least two big vertices. Assume that
v1 is a big vertex. The second big vertex of f is v4: otherwise, the two big
vertices are either f -neighbors or share an f -neighbor and at least one of
the edges of f is green. If all the f -neighbors of v1 and v4 were 2-vertices,
then v1 and v4 would be joined by two 2-threads, which is impossible by
Lemma 20. Therefore at least one of the big vertices is adjacent to a 3-
vertex. Assume that v2 is a 3-vertex. But since v4 is big, the edge v1v2 is
green regardless of the degree of v3. Therefore, the face f is boosted.

If f is incident to no big vertex, then no two 2-vertices of f are adjacent
by Lemma 20(1). Assume that v2 is a 2-vertex. Therefore, v1 and v3 are
3-vertices. Let x1 and x3 be the neighbors of v1 and v3 not incident to f .
Since v6 and v4 are small, both x1 and x3 are big by Lemma 20(3). Let
f ′ be the 6-face incident to v2 distinct from f . Note that both x1 and x3
belong to the 6-face f ′ and share a common f ′-neighbor. Hence, at least
one of the edges incident to f ′ is green. Consequently, f ′ is boosted and f
receives the charge of 3ε units.

It remains to consider the case when f contains exactly one big vertex,
say v1. If v4 were a 2-vertex, we could use a similar argument as in the
previous paragraph to show that the other face incident to v4 is boosted.
Therefore, we can assume that v4 is a 3-vertex. In addition, either v2 or v3
is a 2-vertex, since the edge v1v2 is not green.

First suppose that v2 is a 2-vertex. Hence v3 is a 3-vertex. Let x3 and x4 be
the neighbors of v3 and v4 not incident to f . If x3 is big, then the edge v1v2
is green. And, if x4 is big, then the edge x4v4 is green. In both the cases, f
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receives the required charge. If both x3 and x4 are small, the configuration
is reducible by Lemma 20(4). The case that v6 is a 2-vertex is symmetrical.

Suppose now that both v2 and v6 are 3-vertices and v3 is a 2-vertex. We
may assume that the neighbors of v2 and v6 (including v5) distinct from v1
are 2-vertices: otherwise, one of the edges v1v2 and v1v6 would be green.
Let x2, x4 and x6 be the vertices adjacent to v2, v4 and v6 and not incident
to f . By Lemma 20(3), the vertex x4 is big. Let f3 and f5 be the faces
incident to v3 and v5 and distinct from f . Let y5 be the remaining vertex
of f5 distinct from x6, x4, v4, v5 and v6. Let y3 be the remaining vertex
of f3 distinct from x2, x4, v2, v3 and v4. The degrees of both y3 and y5
must be 3: they cannot be two by Lemma 20(1) and if one of them were
greater than 3, then one of the edges y3x4 and y5x4 would be green and
f would receive charge because of boosting from f3 or f5. Let z3 and z5
be the neighbors of y3 and y5 distinct from x6, x4 and x2. Both z3 and z5
must be 2-vertices and all their neighbors must be small, since otherwise
one of edges y3x4 or y5x4 is green. However, the resulting configuration is
reducible by Lemma 20(5). This finishes the proof of the claim.

4.3 The second phase of discharging

In this phase we redistribute the charge so that the final charge of all vertices is
non-negative. The following rules are used during this phase:

S1 If v is a big vertex adjacent to a 2-vertex u, then v sends 1−ε units of charge
to u if uv is red and it sends 3/4 units of charge to u if uv is green. The
charge is sent through the edge uv.

S2 If v is a big vertex adjacent to a 3-vertex u and the edge uv is red, then v
sends (1 − ε)/2 units of charge to both the 2-vertices adjacent to u. The
charge is sent through the edge uv.

S3 Suppose that v is a big vertex adjacent to a 3-vertex u, the edge uv is green,
and x is a 2-vertex adjacent to u. If x has a big neighbor, then v sends
charge of 1/4 to x. Otherwise, v sends charge of 1/2 to x. The charge is
sent through the edge uv.

S4 If v is a big vertex adjacent to a d-vertex u, 4 ≤ d ≤ 6, then the vertex v
sends 3/4 units of charge to u. The charge is sent through the edge uv.

S5 If v is a d-vertex, 4 ≤ d ≤ 6, adjacent to a 2-vertex u, and if v has at least
one big neighbor, then v sends 1/2 units of charge to u.
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S6 If v is a small vertex of degree d > 6 adjacent to a 2-vertex u, then v sends
1/2 units of charge to u.

We now analyze the amounts of charge sent during the second phase:

Lemma 22. Let G be a D-minimal graph. The following claims hold:

1. at most 3/4 units of charge was sent through each green edge during the
second phase,

2. at most 1 − ε units of charge was sent through each red edge during the
second phase, and

3. the charge of each vertex is non-negative after performing the first and the
second phase.

Proof. We prove each claim separately:

1. At most one of Rules S1, S3 and S4 applies to each green edge. At most
3/4 units of charge is sent through such an edge by any of the rules. The
only case in which this is not obvious is the case of Rule S3. However,
there can be at most one vertex x without a big neighbor that satisfies the
assumptions of the rule: otherwise the edge uv is red.

2. At most one of Rules S1 and S2 applies to each red edge and the charge
sent through such an edge is exactly 1− ε by any of the rules.

3. Let v be a d-vertex of G. We consider several cases regarding the degree of
the vertex v:

d = 2: Let x and y be the neighbors of v. It suffices to show that v received
at least 1− ε units of charge during the second phase because charge
of v was at least 2ε after the first phase by Lemma 21.

Suppose first that x is big. If the edge vy is void, then the edge xv is
red and v received charge of 1 − ε from x by Rule S1. Assume that
the edge vy is not void and that the edge xv is green. Consequently, v
received 3/4 units of charge by Rule S1. Additionally, since vy is not
void, then either y is a 3-vertex and has a big neighbor w, or y is a
(≥ 7)-vertex. In the former case, v receives 1/4 units of charge from
w by Rule S3. In the latter case, y sends 1/2 units of charge to v by
Rules S1 or S6. In both the cases, the total charge received by v is at
least 1.

The final case is that both x and y are small. By Lemma 20(1), neither
x nor y has degree 2. We show that v receives at least (1− ε)/2 units
of charge through x. Note that by symmetry v also receives at least
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(1−ε)/2 units of charge through y, i.e., v receives 1−ε units of charge
in total. Let d′ be the degree of x. If 3 ≤ d′ ≤ 6, at least one neighbor
of x must be big by Lemma 20(3). Consequently, v receives at least
(1− ε)/2 by one of Rules S2, S3 and S5. If d′ ≥ 7, then v receives 1/2
from x by Rule S6.

d = 3: None of the discharging rules changes the charge of a vertex of degree
three. Therefore, the final charge of v is zero.

4 ≤ d ≤ 6: The d-vertex v sent charge of at most d/16 units during the first
phase by Lemma 21(2). If v is not adjacent to a big vertex, then it
does not send anything during the second phase. Otherwise, it sends
at most (d− 1)/2 units of charge by Rule S5 and receives charge of at
least 3/4 units by Rule S4. Therefore, the final charge of v is

d− 3−
d

16
−
d− 1

2
+

3

4
=

7d

16
−

7

4
≥ 0.

d ≥ 6 and v is small: The vertex v sends at most d/16 units of charge
during the first phase by Lemma 21(2) and at most d/2 units of charge
during the second phase by Rule S6. Therefore, the final charge of v
is at least

d− 3−
d

16
−
d

2
=

7d

16
− 3 > 0.

v is big: All the charge sent out from the big vertex v was sent through
some of the edges incident to it. Charge is sent through a red edge
e only in the second phase and the total amount of such charge is at
most 1− ε by the previous claim of this lemma. At most 1/8 units of
charge is sent through a green edge e in the first phase by Lemma 21
and at most 3/4 units in the second phase, thus in total 7/8 < 1− ε.
Therefore, v has the final charge of at least d−3−(1−ε)d = εd−3 ≥ 0
(recall that v is a d-vertex with d > 1763).

4.4 Final step

We now combine our claims from the previous subsections:

Theorem 23. If G is a planar graph of maximum degree ∆ ≥ 8821 and girth at
least six, then G has a proper L(1, 1)-labeling with span ∆+1, i.e., χ(G2) ≤ ∆+2.

Proof. If the statement of the theorem is false, then there exists a D-minimal
graph. Consider such a D-minimal graph G. Assign charge to the vertices and
the faces of G as described in Section 3.2. By Proposition 9, the sum of all the
charges is negative. Apply the discharging rules of the two phases described in
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Sections 4.2 and 4.3. The final amount of charge of each face is non-negative
after the first phase by Lemma 21 and it is preserved during the second phase,
i.e., it is non-negative after the second phase. The final amount of charge of each
vertex is non-negative after the second phase by Lemma 22. Therefore, the total
final amount of charge is non-negative. We conclude that there is no D-minimal
graph.

5 Conclusion

One may ask whether the bound proven in Theorem 17 cannot be further im-
proved, e.g., to 2p +∆− 3. However, the bound is tight for all considered pairs
of ∆ and p as shown in the following proposition (though the next proposition
follows from results of [12], see Proposition 25, we include its short proof for the
sake of completeness):

Proposition 24. Let p and ∆ ≥ 2p be arbitrary integers. There exists a tree T
with maximum degree ∆ such that the span of an optimal L(p, 1)-labeling of T is
2p+∆− 2.

Proof. It can be easily proven by induction on the order of a tree that the span
of an optimal labeling of any tree with maximum degree ∆ is at most 2p+∆−2.
Therefore, it is enough to construct a tree with no L(p, 1)-labeling with span less
than 2p + ∆ − 2. Let us consider the following tree T : a vertex v0 is adjacent
to ∆ vertices v1, . . . , v∆ and each of the vertices v1, . . . , v∆ is adjacent to ∆ − 1
leaves. Clearly, the maximum degree of T is ∆.

Assume that T has a proper L(p, 1)-labeling c of span at most 2p + ∆ − 3.
Since ∆ ≥ 2p, the color of at least one of the vertices v0, . . . , v∆ is between p− 1
and p +∆− 2, i.e., c(vi) ∈ {p− 1, . . . , p +∆− 2} for some i. The color of each
neighbor of vi is either at most c(vi)− p or at least c(vi)+ p. Since there are only
∆−1 such colors, two of the neighbors of vi have the same color and the labeling
c is not proper.

One may also ask whether the condition ∆ ≥ 190+2p in Theorem 17 cannot be
further weakened. The answer is positive (we strongly believe that Conjecture 2
holds with M(7) ≈ 50) but we decided not to try to refine the discharging phase
and the analysis in order to avoid adding more pages to the paper. It is also
natural to consider L(p, q)-labelings of planar graphs with no short cycles for
q > 2. In such case, the following result of Georges and Mauro [12] comes to use:

Proposition 25. Let p and q, p ≥ q, be two positive integers. There exists a ∆0
such that the span of an optimal L(p, q)-labeling of the infinite ∆-regular tree T∆,
∆ ≥ ∆0, is the following:

λp,q(T∆) =

{

q∆+ bp−1
q
cq + p− q if bp

q
c ≤ p

q
≤ bp

q
c+ 1

2
,

q∆+ 2bp

q
cq otherwise.
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We now derive the following theorem on the spans of optimum L(p, q)-
labelings of planar graphs for q > 1 with large girth:

Theorem 26. Let p and q, p ≥ q, be two positive integers. There exists an
integer ∆0 such that the following holds for every planar graph G of maximum
degree ∆ ≥ ∆0 and of girth at least 21:

λp,q(G) ≤

{

q∆+ bp−1
q
cq + p− q if bp

q
c ≤ p

q
≤ bp

q
c+ 1

2
,

q∆+ 2bp

q
cq otherwise.

The bounds are tight for all p, q and ∆ ≥ ∆0.

Proof. Choose ∆0 to be the maximum of ∆0 from Proposition 25 and 4 · p+q−1
q

.

Let Λ be the optimum span of an L(p, q)-labeling of the infinite ∆-regular tree
T∆. Let G be a planar graph of the smallest order such that the maximum degree
of G is at most ∆, G contains no cycle of length less than 21 and λp,q(G) > Λ.
Clearly, G is connected. Moreover, G contains a cycle (any tree of maximum
degree at most ∆ is a subgraph of T∆ and thus it has an L(p, q)-labeling of span
at most Λ). Keep now removing vertices of degree one from G until there is no
such vertex. Let G′ be the obtained (non-empty) subgraph of G.

Since G′ is a planar graph of minimum degree two with girth at least 21, it
contains a 4-thread. Let the 4-thread be comprised of vertices v1, v2, v3 and
v4. By our assumption, the graph G \ {v2, v3} has an L(p, q)-labeling c of span
at most Λ. The labeling c can be extended to v2 and v3: there are at most
2p−1 colors forbidden for v2 because of the color assigned to v1 and 2q−1 colors
forbidden because of the other neighbor of v1, and 2q − 1 colors because of the
vertex v4. In total, there are at most 2p+4q−3 forbidden colors for v2. Similarly,
there are at most 2p + 4q − 3 forbidden colors for v3. Hence, there are at least
Λ + 1− (2p+ 4q − 3) > q∆0 − (2p+ 4q − 3) ≥ 2p available colors for each of v2
and v3. Consequently, the vertices v2 and v3 can be assigned colors that differ by
at least p and the labeling c can be extended to v.

We now show that the bound from the statement is tight. By the compactness
principle and Proposition 25, there exists a finite tree T of maximum degree ∆
with λp,q(T ) = Λ. Therefore, the bounds from the statement of the theorem
cannot be improved.

Note that Theorem 26 holds for any minor-closed class of graphs. We think
that the assumption on the girth from Theorem 26 can be weakened to seven:

Problem 1. Is it true that for every positive integers p and q, p ≥ q, there exists
an integer ∆0 such the following holds for every planar graph G of maximum
degree ∆ ≥ ∆0 and of girth at least seven:

λp,q(G) ≤

{

q∆+ bp−1
q
cq + p− q if bp

q
c ≤ p

q
≤ bp

q
c+ 1

2
,

q∆+ 2bp

q
cq otherwise.
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In this paper, we have settled Conjecture 2. However, it remains open whether
the following weakened version of it is true:

Problem 2. Is it true that there exists an integerM such that the square of every
planar graph G with maximum degree ∆ ≥ M and girth at least 5 is (∆ + 2)-
colorable?
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