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Abstract. We relate signs of edge-colorings (as in classical Pen-

rose’s result) with “Pfaffian labelings”, a generalization of Pfaffian

orientations, whereby edges are labeled by elements of an Abelian

group with an element of order two. In particular, we prove a con-

jecture of Goddyn that all k-edge-colorings of a k-regular Pfaffian

graph G have the same sign. We characterize graphs that admit

a Pfaffian labeling in terms of bricks and braces in their match-

ing decomposition and in terms of their drawings in the projective

plane.

1. Introduction

Graphs considered in this paper are finite and loopless, but not

necessarily simple (parallel edges are allowed). A graph G is called

k-list-colorable if for every set system {Sv : v ∈ V (G)} such that

|Sv| = k there exists a proper vertex coloring c with c(v) ∈ Sv for

every v ∈ V (G). Not every k-colorable graph is k-list colorable. A

classic example is K3,3 with bipartition (A,B) and {Sv : v ∈ A} =

{Sv : v ∈ B} = {{1, 2}, {1, 3}, {2, 3}}.

A graph is called k-list-edge-colorable if for every set system {Se :

e ∈ E(G)} such that |Se| = k there exists a proper edge coloring c with

c(e) ∈ Se for every e ∈ E(G). The following famous list-edge-coloring

conjecture was suggested independently by various researchers and first

appeared in print in [3].

Conjecture 1.1. Every k-edge-colorable graph is k-list-edge-colorable.

In a k-regular graph G one can define an equivalence relation on k-

edge colorings as follows. Let c1, c2 : E(G)→ {1, . . . , k} be two k-edge

colorings of G. For v ∈ V (G) let πv : {1, . . . , k} → {1, . . . , k} be the

permutation such that πv(c1(e)) = c2(e) for every e ∈ E(G) incident

with v, and let c1 ∼ c2 if
∏

v∈V (G) sgn(πv) = 1. Obviously ∼ is an
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equivalence relation on the set of k-edge colorings of G and ∼ has at

most two equivalence classes. We say that c1 and c2 have the same sign

if c1 ∼ c2 and we say that c1 and c2 have opposite signs otherwise.

A powerful algebraic technique developed by Alon and Tarsi [2] im-

plies [1] that if in a k-edge-colorable k-regular graph G all k-edge color-

ings have the same sign then G is k-list-edge-colorable. In [6] Ellingham

and Goddyn prove the following theorem.

Theorem 1.2. In a k-regular planar graph all k-edge colorings have

the same sign. Therefore every k-edge-colorable k-regular planar graph

is k-list-edge-colorable.

By The Four-Color Theorem Theorem 1.2 implies that every 2-

connected 3-regular planar graph is 3–list-edge-colorable. This was

proven independently by Jaeger and Tarsi. Penrose [16] was the first

to prove that in a 3-regular planar graph all 3-edge colorings have the

same sign.

In a directed graph we denote by uv an edge directed from u to

v. A labeled graph or digraph is a graph or digraph with vertex-set

{1, 2, . . . , n} for some n. Let D be a directed labeled graph and let

M = {u1v1, u2v2, . . . , ukvk} be a perfect matching of D. Define the

sign of M to be the sign of the permutation

(

1 2 3 4 . . . 2k − 1 2k

u1 v1 u2 v2 . . . uk vk

)

.

Note that the sign of a perfect matching is well-defined as it does not

depend on the order in which the edges are listed. We say that a labeled

graph G is Pfaffian if there exists an orientation D of G such that the

signs of all perfect matchings in D are positive, in which case we say

that D is a Pfaffian orientation of G. An unlabeled graph G is Pfaf-

fian if it is isomorphic to a labeled Pfaffian graph. It is well-known and

easy to verify that in this case every labeling of G is Pfaffian. Pfaffian

orientations have been introduced by Kasteleyn [8, 9, 10], who demon-

strated that one can enumerate perfect matchings in a Pfaffian graph

in polynomial time. In [10] Kasteleyn proved the following theorem.

Theorem 1.3. Every planar graph is Pfaffian.

Goddyn [7] conjectured that Theorem 1.2 generalizes to Pfaffian

graphs. The main goal of this paper is to prove this conjecture. In
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fact, in Section 2 we prove that Theorem 1.2 extends to the larger class

of graphs that admit a “Pfaffian labeling”. Conversely, we prove that

if a graph G does not admit a Pfaffian labeling, then some k-regular

graph H obtained from G by replacing each edge by any non-negative

number of parallel edges does not satisfy Theorem 1.2.

We also give two characterizations of graphs that admit a Pfaffian

labeling. The first one in Section 3 characterizes graphs with a Pfaffian

labeling in terms of bricks and braces in their tight cut decomposition.

The relevant definitions are given in Section 3. The second character-

ization in Section 4 describes graphs with a Pfaffian labeling in terms

of their drawings in the projective plane.

We propose the following conjecture. If true, it would generalize the

Four-Color Theorem by Theorem 1.3.

Conjecture 1.4. Every 2-connected 3-regular Pfaffian graph is 3-edge-

colorable.

2. Pfaffian Labelings and Signs of Edge Colorings

We generalize Pfaffian orientations to Pfaffian labelings and prove

that Goddyn’s conjecture holds for those graphs that admit a Pfaffian

labeling. Let Γ be an Abelian multiplicative group, denote by 1 the

identity of Γ and denote by −1 some element of order two in Γ. Let

G be a graph with V (G) = {1, 2, . . . , 2n}. (We are only interested

in graphs that have a perfect matching, and hence an even number

of vertices.) For a perfect matching M = {u1v1, u2v2, . . . , unvn} of G,

where ui < vi for every 1 ≤ i ≤ n, define

sgn(M) = sgn

(

1 2 3 4 . . . 2n− 1 2n

u1 v1 u2 v2 . . . un vn

)

.

We say that l : E(G) → Γ is a Pfaffian labeling of G if for every

perfect matchingM of G, sgn(M) =
∏

e∈M l(e). We say that G admits

a Pfaffian Γ-labeling if there exists a Pfaffian labeling l : E(G) → Γ

of G. We say that G admits a Pfaffian labeling if G admits a Pfaffian

Γ-labeling for some Γ. It is easy to see that a graph G admits a Pfaffian

Z2-labeling if and only if G admits a Pfaffian orientation. Note also

that the existence of Pfaffian labeling of a graph does not depend on

the ordering of its vertices.

We need the following technical lemma.
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Lemma 2.1. Let X be a set and let A1, A2, . . . , An, B1, B2, . . . , Bm ⊆

X, such that |Ai ∩ Bj| = 1 for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, and every

x ∈ X belongs to exactly two of the sets A1, A2, . . . , An and exactly two

of the sets B1, B2, . . . , Bm. For every 1 ≤ i ≤ n let

Si = {{x, y} ⊆ X| x, y ∈ Ai, x ∈ Bi1 ∩Bi3 , y ∈ Bi2 ∩Bi4 for some

i1 < i2 < i3 < i4}.

Symmetrically for every 1 ≤ j ≤ m let

Tj = {{x, y} ⊆ X| x, y ∈ Bj, x ∈ Aj1 ∩ Aj3 , y ∈ Aj2 ∩ Aj4 for some

j1 < j2 < j3 < j4}.

Then
n
∑

i=1

|Si| =
m
∑

j=1

|Tj|

modulo 2.

Proof. For 1 ≤ i ≤ n, 1 ≤ j ≤ m denote by xij the unique vertex

of Ai ∩ Bj. Let Z = {(a1, b1, a2, b2)| 1 ≤ a1 < a2 ≤ n, 1 ≤ b2 <

b1 ≤ m,xa1b1 6= xa2b2}. Clearly |Z| = n(n − 1)m(m − 1)/4 − |X| and

|X| = nm/4. Moreover n andm are even, as n =
∑n

i=1 |B1∩Ai| = 2|B1|

and, similarly, m = 2|A1|. Consequently |Z| is even. For {u, v} ⊆ X

let Zuv = {(a1, b1, a2, b2) ∈ Z| {u, v} = {xa1b1 , xa2b2}}.

We claim that Zuv is odd if and only if {u, v} belongs to exactly one

of4n
i=1Si and4

m
j=1Tj. While simple case analysis can be used to verify

this claim, we would like to demonstrate another proof. Draw a blue

straight line between points (0, i) and (1, j) in R2 if {u} = Ai ∩Bj and

a red straight line if {v} = Ai ∩Bj. Then the resulting lines form blue

and red closed curves, and as such they cross an even number of times.

Note that |Zuv| is equal to the number of such crossings in R2 strictly

between the lines x = 0 and x = 1; the number of times {u, v} occurs

in the sets S1, . . . , Sn is equal the number of such crossings on the line

x = 0 and the number of times {u, v} occurs in the sets T1, . . . , Tm is

equal the number of crossings on the line x = 1. The claim follows.

From the claim,
∑n

i=1 |Si| +
∑m

j=1 |Tj| =
∑

{u,v}⊆X |Zuv| = |Z| = 0

modulo 2. ¤

Corollary 2.2. Let c1 and c2 be two k-edge-colorings of a k-regular

graph G and let V (G) = {1, . . . , 2n}. Then c1 and c2 have the same

sign if and only if
∏k

i=1 sgn(c
−1
1 (i)) =

∏k

i=1 sgn(c
−1
2 (i)).
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Proof. Define for 1 ≤ i ≤ 2k, Ai = c−11 (i) for 1 ≤ i ≤ k andAi = c−12 (i−

k) for k+1 ≤ i ≤ 2k. LetBj be the set of all edges incident with the ver-

tex j for 1 ≤ j ≤ 2n. Note that the sets A1, A2, . . . , A2k, B1, B2, . . . , B2n
satisfy the conditions of Lemma 2.1. Let Si and Tj be defined as in

Lemma 2.1. Note that sgn(Ai) is equal to

(−1)|{{u,v},{u′,v′}∈Ai|u<u′<v<v′}| = (−1)|Si|.

On the other hand sgn(πj) = (−1)|Tj |, where πj is as in the definition

of sign of edge-colorings. The colorings c1 and c2 have the same sign if

and only if
∏2n

j=1 sgn(πj) = 1, but by Lemma 2.1

2n
∏

j=1

sgn(πj) =
2k
∏

i=1

sgnAi =
k
∏

i=1

sgn(c−11 (i))
k
∏

i=1

sgn(c−12 (i)). ¤

Theorem 2.3. Let G be a k-regular graph, V (G) = {1, . . . , 2n}. If G

admits a Pfaffian labeling then all k-edge-colorings of G have the same

sign.

Proof. Let c1 and c2 be two k-edge-colorings of G. By Corollary 2.2 c1
and c2 have the same sign if and only if

k
∏

i=1

sgn(c−11 (i))
k
∏

i=1

sgn(c−12 (i)) = 1.

Let l : E(G) → Γ be a Pfaffian labeling of G for some Abelian group

Γ. Then
k
∏

i=1

sgn(c−11 (i))
k
∏

i=1

sgn(c−12 (i)) =
∏

e∈E(G)

l(e)×
∏

e∈E(G)

l(e) =

= (
k
∏

i=1

sgn(c−11 (i))2 = 1. ¤

By Theorem 2.1 in [6], as well as Corollary 3.9 in [1], a k-regular

graph is k-list-edge-colorable if the sum of signs of all of its k-edge

colorings is non-zero. Therefore the following corollary of Theorem 2.3

holds.

Corollary 2.4. Every k-edge-colorable k-regular graph that admits a

Pfaffian labeling is k-list-edge-colorable.

Next we will prove a partial converse of Theorem 2.3. We have to

precede it by another technical lemma.
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Lemma 2.5. Let m and n be positive integers. Let A be an integer

matrix with m rows and n columns and let b be a rational column vector

of length m. Then either there exists a rational vector x of length n

such that Ax− b is an integer vector, or there exists an integer vector

c, such that cA = 0 and c · b is not an integer.

Proof. There exists a unimodular integer m×m matrix U = (uij) such

that H = UA is in the Hermitian normal form (see for example [17]):

if H = (hij) then there exist 1 ≤ k1 < k2 < . . . < kl ≤ n, such that

(1) l ≤ m,

(2) hiki
6= 0 for every 1 ≤ i ≤ l,

(3) hij = 0 for every 1 ≤ i ≤ l, 1 ≤ j < ki,

(4) hij = 0 for every l < i ≤ m, 1 ≤ j ≤ n.

There exists x ∈ Qn such that first l coordinates of Hx − Ub are

zeros. Let Ub = (dj)1≤j≤m. If dj 6∈ Z for some j > l then c =

{uj1, uj2, . . . , ujm} is as required. If, on the other hand, dl+1, . . . dm ∈ Z
then Hx−Ub is an integer vector and therefore so is U−1(Hx−Ub) =

Ax− b. ¤

Theorem 2.6. Let G be a graph with V (G) = {1, . . . , 2l}. If G does

not admit a Pfaffian labeling then there exist an integer k, a k-regular

graph G′ whose underlying simple graph is a subgraph of G and two

k-edge colorings of G′ of different signs.

Proof. Let M denote the set of all perfect matchings of G and let Γ

be the additive group Q/Z. The identity of Γ is 0 and the only other

element of order two is 1/2. We will use the additive notation in this

proof, instead of the multiplicative one we used before; in particular

sgn(M) ∈ {0, 1/2} for M ∈ M. The graph G does not admit a

Pfaffian Γ-labeling; i.e., there exists no function l : E(G) → Q/Z
such that

∑

e∈M l(e) = sgn(M) for every M ∈ M. By Lemma 2.5

there exists a function f : M → Z such that
∑

M3e f(M) = 0 for

every e ∈ E(G) and
∑

M∈M f(M)sgn(M) = 1/2. For every edge

e ∈ E(G) let m(e) = 1/2 ·
∑

M3e |f(M)|; then m(e) is an integer.

Let G′ be the graph constructed from G by duplicating every edge

m(e)− 1 times (if m(e) = 0 we delete e). Then G′ is k-regular, where

k = 1/2 ·
∑

M∈M |f(M)|. Moreover, there exist a k-edge coloring c1 of

G′ such that a perfect matching M appears as a color class of c1 if and

only if f(M) is positive, in which case it appears f(M) times. Similarly,
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there exist a k-edge coloring c2 of G′ such that a perfect matching M

appears as a color class of c2 if and only if f(M) is negative, in which

case it appears |f(M)| times. Note that
∑k

i=1 c
−1
1 (i) +

∑k

i=1 c
−1
2 (i) =

∑

M∈M |f(M)|sgn(M) =
∑

M∈M f(M)sgn(M) = 1/2. Therefore c1
and c2 have different signs by Corollary 2.2. ¤

3. Pfaffian Labelings and Tight Cut Decomposition

The previous section established a relation between graphs that ad-

mit a Pfaffian labeling and k-regular graphs in which all k-edge color-

ings have the same sign. This motivates the study of graphs that admit

a Pfaffian labeling. In this section we use the matching decomposition

procedure developed by Kotzig, and Lovász and Plummer [12], which

we briefly review, for this purpose.

We say that a graph is matching-covered if every edge in it belongs

to a perfect matching. Let G be a graph, and let X ⊆ V (G). We use

δ(X) to denote the set of edges with one end in X and the other in

V (G)−X. A cut in G is any set of the form δ(X) for some X ⊆ V (G).

A cut C is tight if |C ∩M | = 1 for every perfect matching M in G.

Every cut of the form δ({v}) is tight; those are called trivial, and all

other tight cuts are called nontrivial. Let δ(X) be a nontrivial tight

cut in a graph G, let G1 be obtained from G by identifying all vertices

in X into a single vertex and deleting all resulting parallel edges, and

let G2 be defined analogously by identifying all vertices in V (G)−X.

We say that G decomposes along C into G1 and G2. By repeating this

procedure any matching-covered graph can be decomposed into graphs

with no non-trivial tight cuts. This motivates the study of the graphs

that have no non-trivial tight cuts.

The graphs with no non-trivial tight cuts were characterized in [5,

11]. A brick is a 3-connected bicritical graph, where a graph G is

bicritical if G\u\v has a perfect matching for every two distinct vertices

u, v ∈ V (G). A brace is a connected bipartite graph such that every

matching of size at most two is contained in a perfect matching.

Theorem 3.1. [5, 11] A matching covered graph has no non-trivial

tight cuts if and only if it is either a brick or a brace.

Thus every matching covered graph G can be decomposed into a set

J of bricks and braces. Lovász [11] proved that, up to isomorphism,

the set J does not depend on the choice of tight cuts in the course of



8 SERGUEI NORINE AND ROBIN THOMAS

the decomposition. We say that the members of J are the bricks and

braces of G.

The following lemma reduces the study of graphs with Pfaffian la-

belings to bricks and braces. Its analogue for Pfaffian orientations is

due to Vazirani and Yannakakis [19].

Lemma 3.2. Let Γ be a group. A matching-covered graph G admits a

Pfaffian Γ-labeling if and only if each of its bricks and braces admits a

Pfaffian Γ-labeling.

Proof. Let C = δ(X) be a tight cut in G and let G1 and G2 be obtained

from G by identifying vertices in X and V (G) − X respectively. It

suffices to prove that G admits a Pfaffian Γ-labeling if and only if both

G1 and G2 admit a Pfaffian Γ-labeling. Without loss of generality, we

assume that V (G) = {1, 2, . . . , 2n}, V (X) = {1, 2, . . . 2k + 1} and that

G1 and G2 inherit the order on vertices from G; in particular, the vertex

produced by identifying vertices of V (G)−X has number 2k+2 in G1,

the vertex produced by identifying vertices of X has number 1 in G2.

For every perfect matching M of G the sets of edges M ∩ E(G1) and

M ∩E(G2) are perfect matchings of G1 and G2 respectively. Moreover,

sgn(M) = sgn(M ∩ E(G1))sgn(M ∩ E(G2)).

Suppose first that l : E(G) → Γ is a Pfaffian labeling of G. For

every e ∈ C fix a perfect matching M2(e) of G2 containing e. Define

l1(e) = sgn(M2(e))
∏

f∈M2(e)
l(f) for every e ∈ C and define l1(e) = l(e)

for every e ∈ E(G1)\C. For a perfect matchingM of G1 let e ∈ C∩M .

We have

∏

f∈M

l1(f) =
∏

f∈M\{e}

l(f)
∏

f∈M2(e)

l(f) sgn(M2(e)) =

= sgn(M ∪M2(e))sgn(M2(e)) = sgn(M).

Therefore l1 : E(G1)→ Γ is a Pfaffian labeling of G1.

Suppose now that li : E(Gi) → Γ is a Pfaffian labeling of Gi for

i ∈ {1, 2}. Define l(e) = li(e) for every e ∈ E(Gi) \ C and define

l(e) = l1(e)l2(e) for every e ∈ C. It is easy to see that l : E(G)→ Γ is

a Pfaffian labeling of G. ¤

For our analysis of Pfaffian labelings of bricks and braces we will

need two theorems. The first of them is proved in [4] for bricks and

in [12] for braces. It also follows from the results of [13].
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Theorem 3.3. Let G be a brick or brace different from K2, C4, K4,

the prism and the Petersen graph. Then there exists e ∈ E(G) such

that G \ e is a matching covered graph with at most one brick in its

brick decomposition and this brick is not the Petersen brick.

For a graph G let the matching lattice, lat(G), be the set of all linear

combinations with integer coefficients of the incidence vectors of perfect

matchings of G. The next theorem of Lovász [11] gives a description

of the matching lattice.

Theorem 3.4. [11] If G has no brick isomorphic to the Petersen

graph, then

lat(G) = {x ∈ ZE(G) | x(C) = x(D) for any two tight cuts C and D}.

Lemma 3.5. A brace or a brick not isomorphic to the Petersen graph

admits a Pfaffian labeling if and only if it admits a Pfaffian orientation.

Proof. By induction on |E(G)|. The base holds for K2, C4, K4 and the

prism as all those graphs admit a Pfaffian orientation.

For the induction step let e ∈ E(G) be as in Theorem 3.3 and denote

G\e by G′. The bricks and braces of G′ satisfy the induction hypothesis

and therefore by Lemma 3.2 either G′ admits a Pfaffian orientation or

G′ does not admit a Pfaffian labeling. If G′ does not admit a Pfaffian

labeling then neither does G.

Therefore we can assume that G′ admits a Pfaffian labeling l :

E(G′) → Z2. It will be convenient to use additive notation for the

group operation. Suppose l does not extend to a Pfaffian labeling

of G. Then there exist perfect matchings M1 and M2 in G such that

e ∈M1∩M2 and
∑

f∈M1\{e}
l(f)−

∑

f∈M2\{e}
l(f) 6= sgn(M1)−sgn(M2).

We claim that |M1∩C| = |M2∩C| for any tight cut C = δ(X) in G′.

Indeed, G′ has at most one brick in its decomposition. Therefore we

can assume that the graph G′′ obtained from G′ by identifying vertices

in X is bipartite. It follows that |M1 ∩ E(G′′)| = |M2 ∩ E(G′′)| and,

consequently, that |M1 ∩ C| = |M2 ∩ C|.

By Theorem 3.4 we have χM1
− χM2

=
∑

M∈M cMχM , where M

denotes the set of perfect matchings of G′ and cM is an integer for

every M ∈ M. Therefore for every Pfaffian labeling l′ : E(G′) → Γ

of G′

∑

M∈M

cMsgn(M) =
∑

M∈M

(cM
∑

f∈M

l′(f)) =
∑

f∈M1\{e}

l′(f)−
∑

f∈M2\{e}

l′(f).
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Figure 1. A µ4-labeling of the Petersen graph

But for l′ = l this expression is not congruent to sgn(M1)−sgn(M2)

modulo 2. It follows that
∑

f∈M1\{e}
l′(f)−

∑

f∈M2\{e}
l′(f) 6= sgn(M1)−

sgn(M2) for every Pfaffian labeling l′ : E(G′)→ Γ. Therefore no Pfaf-

fian labeling of G′ extends to a Pfaffian labeling of G, i.e. G does not

admit a Pfaffian labeling. ¤

Note that the Petersen graph admits a Pfaffian µ4-labeling, where

µn is the multiplicative group of nth roots of unity. Figure 1 shows

an example of such labeling. Note that while the letter i was used for

indexing above, from this point on it is used to denote a square root

of −1.

The next theorem constitutes the main result of this section. It fol-

lows immediately from the observation above and Lemmas 3.2 and 3.5.

Theorem 3.6. A graph G admits a Pfaffian labeling if and only if every

brick and brace in its decomposition is either Pfaffian or isomorphic to

the Petersen graph. If G admits a Pfaffian Γ-labeling for some Abelian

group Γ then G admits a Pfaffian µ4-labeling.

4. Drawing Graphs with Pfaffian Labelings

By a drawing Φ of a graph G on a surface S we mean an immersion

of G in S such that edges are represented by homeomorphic images of

[0, 1], not containing vertices in their interiors. Edges are permitted
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to intersect, but there are only finitely many intersections and each

intersection is a crossing. For edges e, f of a graph G drawn on a

surface S let cr(e, f) denote the number of times the edges e and f

cross. For a set M ⊆ E(G) let crΦ(M), or cr(M) if the drawing is

understood from context, denote
∑

cr(e, f), where the sum is taken

over all unordered pairs of distinct edges e, f ∈M .

We use sgnD(M) to denote the sign of the perfect matching M in

the directed labeled graph D. Note that it can differ from sgn(M)

defined in Section 2. The next lemma follows from the results of each

of the papers [14, 15, 18].

Lemma 4.1. Let D be an orientation of a graph G and let V (G) =

{1, 2, . . . , 2n}. Then there exists a drawing Φ of G in the plane such

that sgnD(M) = (−1)crΦ(M) for every perfect matching M of G. More-

over, for any S ⊆ E(G) the drawing Φ can be chosen in such a way

that there exists a point in the plane that belongs to the image of each

edge in S and does not belong to the image of any other edge or vertex

of G.

Conversely, for any drawing Φ of G in the plane there exists an

orientation D of G such that sgnD(M) = (−1)crΦ(M) for every perfect

matching M of G.

For a point p and a drawing Φ of a graph G in the plane, such that

Φ maps no vertex of G to p, let crp,Φ(e, f) denote the number of times

the edges e and f cross at points other than p. For a perfect matching

M of G let crp,Φ(M) denote
∑

crp,Φ(e, f), where the sum is taken over

all unordered pairs of distinct edges e, f ∈M .

Lemma 4.2. For a graph G the following are equivalent.

(1) G admits a Pfaffian labeling,

(2) There exists a point p and a drawing Φ of a graph G in the

plane, such that Φ maps no vertex of G to p and |M ∩ S| and

crp,Φ(M) are even for every perfect matching M of G, where

S ⊆ E(G) denotes the set of edges whose images contain p.

Proof. We assume V (G) = {1, 2, . . . , 2n}.

(1) ⇒ (2). By Theorem 3.6 there exists a Pfaffian µ4-labeling l :

E(G) → {±1,±i} of G. Let D be the orientation of G such that

uv ∈ E(D) if and only if u < v and l(uv) ∈ {1, i}, or u > v and

l(uv) ∈ {−1,−i}. Let S = {e ∈ E(G) | l(e) = ±i} and let S ′ = {e ∈



12 SERGUEI NORINE AND ROBIN THOMAS

E(G) | l(e) ∈ {−1,−i}}. Note that sgnD(M) = (−1)|M∩S′|sgn(M)

and
∏

e∈M l(e) = (−1)|M∩S′|i|M∩S| for every perfect matching M of G.

By Lemma 4.1 there exist a point p and a drawing Φ of the graphG in

the plane such that sgnD(M) = (−1)crΦ(M) for every perfect matching

M ofG, Φ maps no vertex ofG to p, the images of the edges in S contain

p and images of other edges do not contain p. Note that
∏

e∈M l(e) ∈ R
for every perfect matching M and therefore |M ∩ S| is even. Denote

|M ∩S|/2 by z(M). We have crp,Φ(M) = crΦ(M) + z(M)(2z(M)− 1).

It follows that

(−1)crp,Φ(M) = sgnD(M)(−1)z(M) = (−1)|M∩S′|i|M∩S|sgn(M) =

=
∏

e∈M

l(e)sgn(M) = 1.

Therefore crp,Φ(M) is even.

(2) ⇒ (1). By Lemma 4.1 there exists an orientation D of G such

that sgnD(M) = (−1)crΦ(M) for every perfect matching M of G. For

uv ∈ E(G) with u < v let l1(e) = 1 if uv ∈ E(D) and let l1(e) = −1

otherwise; let l2(e) = i if uv ∈ S and let l2(e) = 1 otherwise. Finally,

let l(e) = l1(e)l2(e). One can verify that l : E(G) → {±1,±i} is a

Pfaffian labeling of G by reversing the argument used above. ¤

We say that a region C of the projective plane is a crosscap if its

boundary is a simple closed curve and its complement is a disc. We

say that a drawing Φ of a graph G in the projective plane is proper

with respect to the crosscap C if no vertex of G is mapped to C and

for every e ∈ E(G) such that the image of e intersects C and every

crosscap C ′ ⊆ C the image of e intersects C ′.

Now we can reformulate Lemma 4.2 in terms of drawings in the

projective plane.

Theorem 4.3. For a graph G the following are equivalent.

(1) G admits a Pfaffian labeling,

(2) There exists a crosscap C in the projective plane and a proper

drawing Φ of G with respect to C, such that |M∩S| and crΦ(M)

are even for every perfect matching M of G, where S ⊆ E(G)

denotes the set of edges whose images intersect C.



PFAFFIAN LABELINGS AND SIGNS OF EDGE COLORINGS 13

References

[1] N. Alon, Restricted colorings of graphs, in “Surveys in combinatorics”, 1993

(Keele), London Math. Soc. Lecture Note Ser., 187, 1-33, Cambridge Univ.

Press, Cambridge, 1993.

[2] N. Alon and M.Tarsi, Colorings and orientations of graphs, Combinatorica 12

(1992), 125-134.

[3] B. Bollobás and A. J. Harris, List coloring of graphs, Graphs and combinatorics

1 (1985), 115-127.

[4] M. H. de Carvalho, C. L. Lucchesi and U. S. R. Murty, On a conjecture of

Lovász concerning bricks. II. Bricks of finite characteristic., J. Comb. Theory

B 85 (2002), 137-180.

[5] J, Edmonds, L. Lovász and W. R. Pulleyblank, Brick decompositions and the

matching rank of graphs, Combinatorica 2 (1982), 247-274.

[6] M. Ellingham and L. Goddyn, List edge colourings of some 1-factorable multi-

graphs, Combinatorica 16 (1996), 343–352.

[7] L. Goddyn, private communication.

[8] P. W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer

arrangements on a quadratic lattice, Physica 27 (1961), 1209-1225.

[9] P. W. Kasteleyn, Dimer statistics and phase transitions, J. Mathematical Phys.

4 (1963), 287-293.

[10] P. W. Kasteleyn, Graph Theory and Crystal Physics, Graph Theory and The-

oretical Physics, Academic Press, London, 1967, 43-110.

[11] L. Lovász, Matching structure and matching lattice, J. Comb. Theory B 43

(1987), 187-222.

[12] L. Lovász and M.Plummer, Matching Theory, Annals of Discrete Math. 29,

North-Holland, Amsterdam (1986).

[13] S. Norine and R. Thomas, Generating bricks, submitted.

[14] S. Norine, Drawing Pfaffian graphs, Proc. 12th Int. Symposium on Graph

Drawing, to appear.

[15] S. Norine, Pfaffian graphs, T-joins and crossing numbers, submitted.

[16] Roger Penrose, Applications of negative-dimensional tensors, in “Combinato-

rial Mathematics and its Applications” Proc. Conf. Oxford, 1969, Academic

Press, London, 1971, 221-244.

[17] A. Schrijver, Theory of linear and integer programming, Wiley-Interscience

Series in Discrete Mathematics, John Wiley & Sons Ltd., Chichester, 1986,

xii+471.

[18] G. Tesler, Matching in graphs on non-orientable surfaces, J. Comb. Theory B

78 (2000), 198-231.

[19] V. V. Vazirani and M. Yannakakis, Pfaffian orientations, 0 − 1 permanents,

and even cycles in directed graphs, Discrete Appl. Math. 25 (1989), 179-190.

This material is based upon work supported by the National Science
Foundation under Grants No. 0200595 and 0354742. Any opinions,



14 SERGUEI NORINE AND ROBIN THOMAS

findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

School of Mathematics, Georgia Tech, Atlanta, GA 30332-0160


