
The Complexity of

Equality Constraint Languages

Manuel Bodirsky1 and Jan Kára2

1 Department Algorithms and Complexity, Humboldt University, Berlin,
bodirsky@informatik.hu-berlin.de

2 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, kara@kam.mff.cuni.cz ? ? ?

Abstract. We apply the algebraic approach to infinite-valued constraint
satisfaction to classify the computational complexity of all constraint
languages where the constraint types are Boolean combinations of the
equality relation. We show that such a constraint language is tractable
if it admits a constant unary or an injective binary polymorphism, and
is NP-complete otherwise.

1 Introduction

In a constraint satisfaction problem we are given a set of variables and a set
of constraints on that variables, and want to find an assignment of values to
the variables such that all the constraints are satisfied. We are interested in
the computational complexity of the constraint satisfaction problem depending
on the constraint language that we are allowed to use in the instances of the
constraint satisfaction problem; see e.g. [6] for an introduction to the state-of-the-
art of the techniques used to study the computational complexity of constraint
satisfaction problems.

Formally, we can define constraint satisfaction problems (CSPs) as homo-
morphism problems for relational structures. Let Γ be a (not necessarily finite)
structure with a relational signature τ . Then the constraint satisfaction problem
CSP(Γ) is a computational problem, where we are given a finite τ -structure
S and want to know whether there is a homomorphism from S to Γ ; for the
detailed definitions, see Section 2. It is easy to see that the class of constraint
satisfaction problems equals the class of problems that is closed under so-called
inverse homomorphisms (if we add constraints to an unsatisfiable instance it
stays unsatisfiable) and disjoint unions (two satisfiable constraints on distinct
variables have a joint solution). We show two examples.

? ? ? The author has been supported by a Marie Curie Fellowship of the European Com-
munity programme ”Combinatorics, Geometry, and Computation” under contract
number HPMT-CT-2001-00282.

Example 1. Let Γ be the relational structure (N; =, 6=). Then CSP(Γ) is the
computational problem to decide for a given set of equalities and inequalities
on a finite set of variables whether the variables can be mapped to the natural
numbers such that variables with a constraint x = y are mapped to the same,
and variables with a constraint x 6= y are mapped to distinct values.

This problem is tractable: we sketch a simple algorithm that solves this prob-
lem in polynomial time. The algorithm iteratively identifies variables with an
equality constraint. If it has to identify two variables with an inequality con-
straint, it outputs that the constraint has no solution. Otherwise, we know that
we can finally map all the remaining variables to distinct values and satisfy all
the constraints.

Example 2. Let Γ be the relational structure (N; 6=, Q), where Q is the relation
Q := {(x, y, z) ∈ N

3 | x = y ∨ y = z}. Here the problem CSP(Γ) turns out to be
NP-complete (see Section 3).

In this paper we consider constraint satisfaction problems with templates of
the form Γ = (V ;R1, . . . , Rk) where V is a countably infinite domain and each
relation R1, . . . , Rk is a Boolean combination of atoms of the form x = y. (A
Boolean combination is a relation built from atomic relations with the usual
operations of intersection, union, and complementation.) We say that such a
relational structure defines an equality constraint language. Later, we also discuss
the case where the template has infinitely many relation symbols R1, R2,
Note that Example 1 and 2 are both equality constraint languages. The main
result of this paper is the following (again, for definitions of the involved concepts
see Section 2).

Theorem 1. An equality constraint language with template Γ is tractable if Γ
has a constant endomorphism or an injective homomorphism from Γ 2 to Γ .
Otherwise it is NP-complete.

In Theorem 1, the containment in NP is easy to see: a nondeterministic algo-
rithm can guess which variables in an instance S denote the same element in Γ ,
and can verify whether this gives rise to a solution for S. Both the hardness result
and the algorithmic tractability result in Theorem 1 are nontrivial. The hard-
ness proof presented in Section 3 relies on the algebraic approach to constraint
satisfaction, which was previously mainly applied to constraint satisfaction with
finite templates.

The algorithm introduced in Section 4 that solves all problems with an injec-
tive binary polymorphism is of a new type, as compared to the known algorithms
that are used to solve tractable constraint satisfaction problems with finite tem-
plates. Note that the ‘simple’ algorithm that was described in the beginning and
solves Problem 1 does not work in general for problems that are closed under an
injective binary polymorphism. Consider for example the problem CSP(N;R),
where R is the 4-ary relation defined as follows.

R := {(x1, y1, x2, x3) | (x1 = y1 ∧ x1 6= x2 6= x3 6= x1) ∨ x1 = y1 = x2 = x3}

Let S be the following instance of this problem on five variables denoted by
a, b, c, d, e, where the constraint R is imposed on (a, b, c, d) and on (b, c, d, e).
These constraints induce the equalities a = b = c. But assigning different values
to each equivalence class is not a correct assignment for S, because the first
constraint is violated. The only correct assignment here is to assign the same
value to all the variables.

The algebraic approach. A formula is called primitive positive, if it has the form
∃x1 . . . xk .ψ1∧· · ·∧ψl, where ψi is an atomic formula that might contain free vari-
ables and existentially quantified variables from x1, . . . , xk. A formula is called
existential positive, if it is a disjunctive combination of primitive positive formu-
las (equivalently, if it is a first-order formula without universal quantifiers and
negations). Every formula with k free variables defines on a structure Γ a k-
ary relation. Primitive positive definability of relations is an important concept
in constraint satisfaction, because primitive positive definable relations can be
’simulated’ by the constraint satisfaction problem. The following is frequently
used in hardness proofs for constraint satisfaction problems; see e.g. [11].

Lemma 1. Let Γ be a relational structure, and let R be a relation that has a
primitive positive definition in Γ . Then the constraint satisfaction problems of
Γ and of the expansion of Γ by R have the same computational complexity.

The algebraic approach to constraint satisfaction (see e.g. [4, 5, 11]) is based
on the following preservation statements that characterize syntactic restrictions
of first-order definability. For a formal definitions of all the involved concepts,
see Section 2.

Theorem 2 (from [3,8,12]). Let Γ be a finite relational structure. Then

1. A relation R has a first-order definition in Γ if and only if it is preserved by
all automorphisms of Γ ;

2. A relation R has an existential positive definition in Γ if and only if it is
preserved by all endomorphisms of Γ ;

3. A relation R has a primitive positive definition in Γ if and only if it is
preserved by all homomorphisms from Γ k to Γ , for all k ≥ 1.

These statements do not hold for infinite structures in general. However, we have
the following.

Theorem 3 (from [1, 2]). Let Γ be a countably infinite relational structure.
Then Statement 1 of Theorem 2 holds if and only if Γ is ω-categorical, i.e., if
the first-order theory of Γ has only one countable model up to isomorphism. For
ω-categorical Γ , Statements 2 and 3 hold as well.

The templates for equality constraint languages are easily seen to be ω-categorical,
since they all have a first-order definition in the ω-categorical empty structure
on a countable set of vertices; see e.g. [10].

2 Fundamental Concepts for the Algebraic Approach

We introduce classical concepts that are fundamental for the algebraic approach
to constraint satisfaction.

Structures. A relational signature τ is a (here always at most countable) set
of relation symbols Ri, each associated with a finite arity ki. A (relational)
structure Γ over relational signature τ (also called τ -structure) is a countable
set DΓ (the domain) together with a relation Ri ⊆ Dki

Γ for each relation symbol
of arity ki. For simplicity, we use the same symbol for a relation symbol and
the corresponding relation. If necessary, we write RΓ to indicate that we are
talking about the relation R belonging to the structure Γ . For a τ -structure Γ
and R ∈ τ it will also be convenient to say that R(u1, . . . , uk) holds in Γ iff
(u1, . . . , uk) ∈ R. If we add relations to a given structure Γ we call the resulting
structure Γ ′ an expansion of Γ , and Γ is called a reduct of Γ ′.

Homomorphisms. Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to
Γ ′ is a function f from DΓ to DΓ ′ such that for each n-ary relation symbol R in
τ and each n-tuple (a1, . . . , an), if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈
RΓ ′

. In this case we say that the map f preserves the relation R. Isomorphisms
from Γ to Γ are called automorphisms, and homomorphisms from Γ to Γ are
called endomorphisms. The set of all automorphisms of a structure Γ is a group,
and the set of all endomorphisms of a structure Γ is a monoid with respect to
composition.

Polymorphisms. Let D be a countable set, and O be the set of finitary operations
on D, i.e., functions from Dk to D for finite k. We say that a k-ary operation
f ∈ O preserves an m-ary relation R ⊆ Dm if whenever R(xi

1
, . . . , xi

m) holds for
all 1 ≤ i ≤ k in Γ , then R

(

f(x1

1
, . . . , xk

1
), . . . , f(x1

m, . . . , x
k
m)

)

holds in Γ . If f pre-
serves all relations of a relational τ -structure Γ , we say that f is a polymorphism
of Γ . In other words, f is a homomorphism from Γ k = Γ × . . .× Γ to Γ , where
Γ1 × Γ2 is the (categorical- or cross-) product of the two relational τ -structures
Γ1 and Γ2. Hence, the unary polymorphisms of Γ are the endomorphisms of Γ ,
and the unary bijective polymorphisms are the automorphisms of Γ .

Clones. An operation π is a projection if for all n-tuples, π(x1, . . . , xn) = xi

for some fixed i ∈ {1, . . . , n}. The composition of a k-ary operation f and k

operations g1, . . . , gk of arity n is an n-ary operation defined by

f(g1, . . . , gk)(x1, . . . , xn) = f
(

g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)
)

.

A clone F is a set of operations from O that is closed under compositions
and that contains all projections. We write DF for the domain D of the clone F .
It is easy to verify that the set Pol(Γ) of all polymorphisms of Γ is a clone with
domain DΓ . Moreover, Pol(Γ) is also closed under interpolations: We say that
an operation f ∈ O is interpolated by a set F ⊆ O if for every finite subset B of

D there is some operation g ∈ F such that f |B = g|B (f restricted to B equals g
restricted to B, i.e., f(t) = g(t) for every t ∈ Bk). The set of operations that are
interpolated by F is called the local closure of F ; if F equals its local closure, we
say that F is locally closed. For a set of operations F from O we write 〈F 〉 for
the smallest locally closed clone containing all operations in F (the clone locally
generated by F). The following is a well-known fact:

Proposition 1 (see e.g. [15]). A set F ⊆ O of operations is locally closed if
and only if F is the set of polymorphisms of Γ for some relational structure Γ .

Oligomorphic clones. A permutation group G on a countably infinite set D is
called oligomorphic, if it has only finitely many orbits of G in its natural action
on n-tuples from D, for all n ≥ 1; see [7]. Similarly, we now define oligomorphic
clones.

Definition 1. A clone on a countably infinite set is called oligomorphic, if its
bijective unary operations form an oligomorphic permutation group.

Definition 2. A countable relational structure Γ is called ω-categorical, if all
countable models of the first-order theory of Γ are isomorphic to Γ .

The next theorem can be seen as a reformulation of the theorem of Ryll-
Nardzewski, Engeler, and Svenonius (see [10]), and is also equivalent to the first
part of Theorem 3.

Theorem 4 (See [7]). Let Γ be a relational structure. Then the following are
equivalent.

– Γ is ω-categorical;

– the set of polymorphisms of Γ forms an oligomorphic clone;

– every k-ary first-order definable relation in Γ is the union of a finite number
of orbits of k-tuples of the automorphism group of Γ .

3 A Generic Hardness Proof

We return to the class of equality constraint languages, which is a subclass of the
satisfaction problems with ω-categorical templates. Throughout this section, Γ
is a relational structure (V ;R1, R2, . . .) on a countably infinite domain V where
every relation Ri is a Boolean combination of atoms of the form x = y. Note
that the automorphism group of Γ is the full symmetric group on V , which is
clearly oligomorphic.

Lemma 2. If Γ has a non-injective endomorphism f , then Γ also has a constant
endomorphism.

Proof. Let f be an endomorphism of Γ such that f(x) = f(y) for two distinct
points x, y from V. Let a1, a2, . . . be an enumeration of V . We construct an
infinite sequence of endomorphisms e1, e2, ... where ei is an endomorphism that
maps the points a1, . . . , ai to a1, and maps all other points to values different
from a1. This suffices, since by local closure the mapping defined by e(x) = a1

for all x is an endomorphism of Γ .
For e1 we take the identity map, which clearly is an endomorphism with the

desired properties. To define ei for i ≥ 2 let h be an automorphism of Γ that
maps a1 = ei−1(a1) = · · · = ei−1(ai−1) to x, and ei−1(ai) to y. Then the endo-
morphism f(h(ei−1)) is constant on a1, . . . , ai. There is also an automorphism h′

that maps f(h(ei−1(a1))) to a1. Then ei := h′(f(h(ei−1))) is an endomorphism
with the desired properties. ut

Lemma 2 holds in general for ω-categorical structures Γ that have only one
orbit of 2-element subsets in the automorphism group of Γ . Similarly, the follow-
ing holds for ω-categorical structures Γ with only one orbit of pairs of distinct
elements in the automorphism group of Γ .

Lemma 3. If Γ does not have a constant endomorphism, then there is a prim-
itive positive definition of the relation x 6= y in Γ .

Proof. If Γ does not have a constant endomorphism, Lemma 2 implies that all
endomorphisms preserve the inequality relation. By Theorem 3, inequality has
an existential positive definition. Since the inequality relation is formed by a
single orbit of the automorphism group on pairs of elements (and each primitive
positive term adds at least one orbit on tuples), we do not need disjunctions in
its existential positive definition, and therefore the inequality relation even has
a primitive positive definition. ut

Lemma 4. If the relation S := {(x, y, z) | x = y 6= z ∨ x 6= y = z} has a
primitive positive definition in Γ , then CSP(Γ) is NP-hard.

Proof. First observe that by identification of arguments x and y, if S has a
primitive positive definition in Γ , then the inequality relation has a primitive
positive definition in Γ as well. We prove the NP-hardness by reduction from the
NP-hard problem 3-coloring. Let G = (V,E) be a graph that is an instance of
3-coloring. We construct an instance of CSP(Γ) that has a polynomial size in
|V | and |E| and is satisfiable if and only if G has a proper 3-coloring. Lemma 1
asserts we can use inequality constraints and the relation S to formulate this
instance. The set of variables in this instance is V ∪V ′ ∪{c1, c2, c3}, where V ′ is
a copy of V , and c1, c2, c3 are three new variables representing colors. We impose
inequality constraints on each pair in c1, c2, c3 and on each pair (u, v) for uv ∈ E.
We impose the constraint S on (c1, v

′, c2) for each v′ ∈ V ′, and on (v′, v, c3) for
each v ∈ V where v′ is the copy of v in V ′. It is now straightforward to check
that in every solution to these constraints each v ∈ V equals one of the values for
c1, c2, c3, and hence solutions of the constructed problem one-to-one correspond
to the proper 3-colorings of G. ut

Theorem 5. If Γ has no constant unary and no injective binary polymorphism,
then CSP(Γ) is NP-complete.

Proof. Assume that Γ has no injective binary and no constant unary polymor-
phism. We claim that in this case every polymorphism is essentially unary. Sup-
pose there is an at least binary polymorphism f that depends on at least two
of its arguments, say on the first and the second argument. Then the operation
g(x, y) := f(x, y, . . . , y) is a binary polymorphism, which cannot be injective by
assumption, and hence there are two distinct pairs t and t′ such that g(t) = g(t′).
We show that the operation g does not depend on the arguments where t and t′

differ, a contradiction.
Let s and s′ be two pairs where s and s′ differ in the arguments where t and t′

differ. We have to show that the difference does not affect the value of g, i.e., that
g(s) = g(s′). For that, note that for i = 1, 2 there is an automorphism hi that
maps s(i) to t(i) and s′(i) to t′(i). Then g(s) = g(s′) iff g(h1(s(1)), h2(s(2)))) =
g(h1(s

′(1)), h2(s
′(2)))) iff g(t) = g(t′), which holds by assumption. Hence, every

polymorphism is essentially unary.
If there is no constant unary polymorphism, then Lemma 2 asserts that every

essentially unary operation is injective, and therefore in particular preserves the
relation S. Therefore all polymorphisms preserve this relation, and by Theorem 3
it has a primitive positive definition. Lemma 4 implies that CSP(Γ) is NP-hard.

ut

4 Tractability Results

The case that Γ contains a constant unary polymorphism gives rise to trivially
tractable constraint satisfaction problems: If an instance of such a constraint
satisfaction problem has a solution, then there is also a solution that maps all
variables to a single point. In this case an instance of CSP(Γ) is satisfiable if and
only if it does not contain a constraint R where R denotes the empty relation
in Γ . Clearly, this can be tested efficiently. To finish the classification of the
complexity of equality constraint languages we are left with the case that Γ has
a binary injective polymorphism.

The algorithm that we are going to present uses a special representation of
the relations in Γ . Theorem 4 implies that every k-ary relation in Γ is a union
of orbits of k-tuples of the automorphism group of Γ . Let t be a k-tuple from
one of these orbits. We define the equivalence relation ρ on the set {1, . . . , k}
that contains those pairs {i, j} where t(i) = t(j). Clearly, all tuples in the orbit
lead to the same equivalence relation ρ. Hence, every k-ary relation R in Γ

corresponds uniquely to a set of equivalence relations on {1, . . . , k}, which we
call the representation of R. Sometimes we identify a relation R from Γ with its
representation, and for example freely write ρ ∈ R if ρ is an equivalence relation
from the representation of R. Let |R| denote the number of orbits of k-tuples
contained in R. Hence, |R| also denotes the number of equivalence relations in
the representation of R. Next, we define several notions for equivalence relations
that will be useful to formulate our algorithm.

Definition 3. Let ρ and ρ′ be equivalence relations on a set X. We say that ρ
is finer than ρ′, and write ρ ⊆ ρ′, if ρ(x, y) implies ρ′(x, y) for each x, y ∈ X.
We also say that ρ′ is coarser than ρ. The intersection of these two equivalence
relations, denoted by ρ∩ ρ′, is the equivalence relation σ such that σ(x, y) if and
only if ρ(x, y) and ρ′(x, y).

Lemma 5. If Γ has a binary injective polymorphism, then for every relation R

from Γ the corresponding set of equivalence relations is closed under intersec-
tions, i.e., ρ ∩ ρ′ ∈ R for all equivalence relations ρ, ρ′ ∈ R.

Proof. Let R be a k-ary relation in Γ , and let ρ and ρ′ be two equivalence rela-
tions from the representation of R. Pick two k-tuples t and t′ in R that lie in the
orbits that are described by ρ and ρ′. If f is the injective binary polymorphism
of Γ , then by injectivity of f the k-tuple t′′ := (f(t(1), t′(1)), . . . , f(t(k), t′(k)))
satisfies t′′(i) = t′′(j) if and only if ρ(i, j) and ρ′(i, j). Hence we found a tuple
in R that lies in the orbit that is described by ρ ∩ ρ′, which is therefore also
contained in the representation of R. ut

We would like to remark that if the conclusion of Lemma 5 holds for all
relations R is Γ , then Γ has a binary injective polymorphism. In fact, it is easy
to verify that in this case any injection from Γ 2 to Γ preserves all relations.

Lemma 6. Let Γ be closed under a binary injective polymorphism, and let R
be a k-ary relation from Γ . Then for every equivalence relation ρ on {1, . . . , k}
either there is no σ ∈ R that is coarser than ρ, or there exists an equivalence
relation σ ∈ R such that σ is coarser than ρ and σ is finer than any σ′ ∈ R

coarser than ρ. Furthermore, σ can be computed in time O(k2|R|).

Proof. First we compute the set R′ of equivalence relations of R that are coarser
than ρ. The set R′ can be computed straightforwardly in time O(k2|R|) by
checking each equivalence relation in R. If R′ is empty we are done. Otherwise,
because R is closed under intersections, we know that σ = ∩σ′∈R′σ′ is in R. It
is even in R′, since if two equivalence relations are both coarser than another,
then so is their intersection. We can find σ with the following procedure.

– We start with an arbitrary equivalence relation τ in R′.
– For each σ′ ∈ R′, if σ′ is finer than τ , then set τ to be σ′.

The procedure clearly runs in time O(k2|R|). ut

Theorem 6. Let Γ be closed under a binary injective polymorphism, and let
S be an instance of CSP(Γ) with n variables and q constraints. Let k be the
maximal arity of the constraints, and let m be the maximal number of equivalence
relations in the representations for the constraints. Then there is an algorithm
that decides the satisfiability of S in time O(qm(qmk2 + n)).

Proof. We start by assigning each variable a unique value. Then we check whether
each constraint is satisfied. If we find an unsatisfied k-ary constraint R, let

x1, . . . , xl be the variables of that constraint. Let ρ be the equivalence relation
on the elements {1, . . . , l} that contains all pairs {i, j} where xi got the same
value as xj . Using the algorithm from Lemma 6 we either find that there is no
σ ∈ R coarser than ρ, in which case we answer that the problem does not have a
solution. Otherwise we find the unique finest equivalence relation σ. In this case
we reassign the values to the variables in the following way: If σ(i, j), we assume
without loss of generality that i < j, and change the value of all variables with
the value of xj to the value of xi. Finally we restart the procedure with the new
assignment for the variables. If all the constraints are satisfied we have computed
a solution.

To show the correctness of this algorithm we prove by induction that each
of the introduced equalities holds in every solution of the problem. In the be-
ginning we introduced no equality (all the values were mutually different). We
introduce an equality only if we find an unsatisfied constraint. In that case we
have computed the set of equalities (an equivalence relation) that is contained in
every other set of equalities acceptable for the constraint. Because the constraint
must be satisfied in every solution we introduce only the equalities that hold in
every solution.

Because the set of acceptable equivalence relations is made smaller each time
the constraints are not yet satisfied, we have to recompute the assignment at
most qm times. Finding the unsatisfied constraint can take O(qmk2) and chang-
ing the assignment can take O(n). Putting the terms together yields the claimed
bound on the time complexity. ut

Note that the asymptotic running time of the algorithm can be substantially
improved by using better data structures. In the standard case that the signature
of Γ is finite, the algorithm clearly establishes the tractability of CSP(Γ) for
injective binary polymorphisms, since in this case k and m are bounded by
constants that only depend on Γ .

If Γ has a countable signature, there are various possibilities to define tractabil-
ity of CSP(Γ). We refer to the discussion in [6]. The definition of tractability
chosen there is to require that for every reduct Γ ′ of Γ with a finite signature
the problem CSP(Γ ′) is tractable. If Γ has an injective binary polymorphism,
this requirement is clearly fulfilled, because we can again use the above algo-
rithm with the same argument. If we allow that the instances contain arbitrary
relations from the signature, we have to discuss how to represent the constraints
in the instance.

For equality constraint languages, one natural candidate to represent the
constraints in the instance is the representation that we already used in the
formulation of the algorithm: a constraint is represented by a list of equivalence
relations on its arguments. Now, the detailed complexity analysis given above
shows that we even obtain tractability in the stronger sense where instances
might contain arbitrary constraints in the above representation.

5 Conclusion and Remarks

Combining the results obtained in Sections 3 and 4 we proved Theorem 1, which
can be reformulated as follows in the terminology of the algebraic approach to
constraint satisfaction.

Theorem [Reformulation of Theorem 1]. An equality constraint language
with template Γ is tractable if Γ has a constant unary or an injective binary
polymorphism. Otherwise it is NP-complete.

We would like to conclude with a remark on the relationship of the pre-
sented results with questions from universal algebra. Clones that contain all the
permutations are a recent research focus in universal algebra [9, 13, 14], and a
full classification seams to be out of reach. However, the lattice of locally closed
clones that contain the set of all permutations Sω is considerably simpler. The
lattice has a smallest element, the clone that is locally generated by Sω. Above
this clone, we have seen that it has exactly two minimal clones that correspond
to the maximal tractable equality constraint languages. Is it possible to give a
full description of the locally closed clones that contain all the permutations?

References

1. M. Bodirsky. The core of a countably categorical structure. In V. Diekert and
B. Durand, editors, Proceedings of the 22nd Annual Symposium on Theoretical
Aspects of Computer Science (STACS’05), Stuttgart (Germany), LNCS 3404, pages
100–110, Springer-Verlag Berlin Heidelberg, 2005.

2. M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. In Proceedings of CSL’03, pages 44–57, Vienna, 2003.

3. V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory
for post algebras, part I and II. Cybernetics, 5:243–539, 1969.

4. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings
of LICS’03, pages 321–330, 2003.

5. A. Bulatov, A. Krokhin, and P. Jeavons. The complexity of maximal constraint
languages. In Proceedings of STOC’01, pages 667–674, 2001.

6. A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of con-
straints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

7. P. J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press,
1990.

8. D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathe-
matics, 27:95–100, 1968.

9. L. Heindorf. The maximal clones on countable sets that include all permutations.
Algebra univers., 48:209–222, 2002.

10. W. Hodges. A shorter model theory. Cambridge University Press, 1997.
11. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal

of the ACM, 44(4):527–548, 1997.
12. M. Krasner. Généralisation et analogues de la théorie de Galois. Congrés de la

Victoire de l’Ass. France avancement des sciences, pages 54–58, 1945.

13. M. Pinsker. The number of unary clones containing the permutations on an infinite
set. Acta Sci. Math. (Szeged), 2005. To appear.

14. M. Pinsker. Precomplete clones on infinite sets which are closed under conjugation.
Monatsh. Math., 2005. To appear.

15. R. Pöschel and L. A. Kalužnin. Funktionen- und Relationenalgebren. Deutscher
Verlag der Wissenschaften, 1979.

