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Abstract

Classes of graphs with bounded expansion have been introduced
in [15], [12]. They generalize both proper minor closed classes and
classes with bounded degree.

For any class with bounded expansion C and any integer p there
exists a constant N(C, p) so that the vertex set of any graph G ∈ C
may be partitioned into at most N(C, p) parts, any i ≤ p parts of
them induce a subgraph of tree-width at most (i−1) [12] (actually, of
tree-depth [16] at most i, what is sensibly stronger). Such partitions
are central to the resolution of homomorphism problems like restricted

homomorphism dualities [14].
We give here a simple algorithm to compute such partitions and

prove that if we restrict the input graph to some fixed class C with
bounded expansion, the running time of the algorithm is bounded by
a linear function of the order of the graph (for fixed C and p).



This result is applied to get a linear time algorithm for the sub-
graph isomorphism problem with fixed pattern and input graphs in a
fixed class with bounded expansion.

More generally, let φ be a first order logic sentence. We prove that
any fixed graph property of type

“ ∃X : (|X| ≤ p) ∧ (G[X] � φ) ”

may be decided in linear time for input graphs in a fixed class with
bounded expansion.

1 Introduction, the model and

previous work

The concept of tree-width [10],[21],[27] is central to the analysis of graphs
with forbidden minors of Robertson and Seymour. This concept gained much
algorithmic attention thanks to the general complexity result of Courcelle
about monadic second-order logic graph properties decidability for graphs
with bounded tree-width [3],[4]. It appeared that many NP-complete prob-
lems may be solved in polynomial time when restricted to a class with
bounded tree-width. However, bounded tree-width is quite a strong restric-
tion, as planar graphs for instance do not have bounded tree-width.

An alternative approach consists in the partition of graphs, such that p
parts induce a subgraph of tree-width at most (p− 1). Answering a question
of Thomas [26], DeVos et al. [6] proved that for any proper minor closed
class of graphs C — that is: any minor closed class C excluding at least one
graph — and any integer p there exists a constant N(C, p) such that the
vertex set of any graph G ∈ C may be partitioned into at most N(C, p) parts
in such a way that any j ≤ p parts induce a subgraph of tree-width at most
(j − 1), what the authors call a low tree-width partition of G. This proof,
which relies on the Structural Theorem of Robertson and Seymour [22] fails
to be effective from a computational point of view.

It appears that low tree-width decomposition may be established in a
more general setting for classes with bounded expansion [15][12]. These re-
sults are reported here together with the algorithmic analysis. The definition
of bounded expansion classes is based on a new graph invariant, the great-
est reduced average degree (grad) with rank r of a graph G, ∇r(G). This

invariant is defined by ∇r(G) = max |E(H)|
|V (H)|

, where the maximum is taken
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over all the minors H of G obtained by contracting a set of vertex-disjoint
subgraphs with radius at most r and then deleting any number of edges and
vertices. A class of graphs C has bounded expansion if supG∈C∇r(G) <∞ for
any integer r. Not only proper minor closed classes of graphs have bounded
expansion (as then ∇r is uniformly bounded independently of r), but so are
classes with bounded degree or some usual classes arising from finite element
meshes (as skeletons of d-dimensional simplicial complexes with bounded as-
pect ratio [11]). One of the main fundamental properties of these classes may
be stated as follows: If C is a class with bounded expansion, then so are the
following classes:

• C/?, the class of the graphs obtained from graphs in C by contracting
a star forest,

• C • K2, the class of the graphs obtained from graphs in C by blowing
every vertex into two adjacent vertices (i.e. by taking the lexicographic
product with K2).

Note that the second property does not hold for proper minor closed classes:
If P is the class of all planar graphs then any minor closed class including
P •K2 contains all finite graphs. It is established in [12] that for every class
C with bounded expansion and any integer p, there exists a constant N ′(C, p)
such that any graph G ∈ C has a vertex-partition into at most N ′(C, p)
parts such that any j ≤ p parts induce a subgraph of tree-width at most
(p − 1) (actually of tree-depth at most p, which is quite a stronger result).
For properties of tree-depth, see [16]). The strong benefit of this later proof
is that it does not rely on the Structural Theorem and that it actually leads
to a very simple linear time algorithm to compute such a partition [13].

Our technique facilitates the detection of local graph properties. For
instance, the subgraph isomorphism problem for a fixed pattern H is known
to have complexity at most O(nωl/3) where l is the order of H and where
ω is the exponent of square matrix fast multiplication algorithm [17] (hence
O(n0.792 l) using the fast matrix algorithm of [2]). The particular case of
subgraph isomorphism in planar graphs have been studied by Plehn and
Voigt [20], Alon [1] with super-linear bounds and then by Eppstein [7][8]
who gave the first linear time algorithm for fixed pattern H and G planar
and then extended his result to graphs with bounded genus [9]. It appears
that one of the main lemmata of [8] actually induces a linear time algorithm
to solve the problem of counting all the isomorphs of H in a graph G as soon
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as we have a linear time algorithm allowing to compute a low-tree width
partition of G.

Such complexity improvements hold for a quite general class of decisional
problems, namely the problems having the form

“ ∃X : (|X| ≤ p) ∧ (G[X] � φ) ”

where φ is a first-order sentence, according to the general results of Courcelle
[3][4]. This includes for instance, for a fixed graph H and for input graphs
G belonging to a fixed class with bounded expansion, the problems

• “Does H have a homomorphism to G?”,

• “Is H isomorphic to a subgraph of G?”,

• “Is H isomorphic to an induced subgraph of G?”.

In the following, we only will be concerned with simple loopless graphs.

2 The grad of a graph and class expansion

The distance d(x, y) between two vertices x and y of a graph is the minimum
length of a path linking x and y, or ∞ if x and y do not belong to the
same connected component. The radius ρ(G) of a connected graph G is
the minimum maximum distance of the vertices from a fixed vertex, that
is: ρ(G) = minr∈V (G) maxx∈V (G) d(r, x). A vertex r is a center of G if the
maximal distance of vertices of G to r is equal to ρ(G). The radius ρ(G) of
a non-connected graph G is the maximum of the radii of its components.

A (simple) graph H is a minor of a graph G if it may be obtained from
G by contracting edges, deleting edges and deleting vertices. This is denoted
by H < G. As edge deletion and contraction commute, we may consider
contractions first and deletions next. As we only consider simple loopless
graphs, each deletion is followed (if necessary) by the simplification of the
graph. In other words, a minor H of a graph G is obtained by contracting
some connected subset F of edges, simplifying and then taking a subgraph
(i.e. H ⊆ G/F ). Notice that the subset F is in general not uniquely deter-
mined by G and H. We denote by GF the subgraph of G induced by the
subset F of edges of G. The depth of a minor of a graph G is the minimum
radius of the part we have to contract in G to get H. More formally:

depth(H,G) = min{ρ(GF ) : H ⊆ G/F}
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Definition 2.1. The greatest reduced average density (grad) of G with rank
r is

∇r(G) = max
H<G

depth(H,G)≤r

|E(H)|

|V (H)|

The first grad, ∇0 , is closely related to the degeneracy or the maximum
average degree (G is k-degenerated iff k ≥ b2∇0(G)c; note that none of the
results of this paper holds for k- degenerated graphs, the higher grads are
needed). non decreasing sequence which, for every graph, starting from some
index (smaller than the order of the graph).

Definition 2.2. The expansion of a class C of graphs is the function f : N→
N ∪ {∞} defined by

f(r) = sup
G∈C
∇r(G)

A class C has bounded expansion if its expansion is finite for every r ∈ N,
that is:

∀r ≥ 0, sup
G∈C
∇r(G) <∞

Here are some examples of class with bounded expansion. Some are
included into others (see Fig 1). However, they are examples of different
expansion bounds.

• proper minor closed classes. Any proper minor closed class of
graphs has expansion bounded by a constant function. Conversely, any
class of graphs with expansion bounded by a constant is included in
some proper minor closed class of graphs.

• d-dimensional meshes with bounded aspect ratio. [11] intro-
duces classes of graphs which occur naturally in finite-element and
finite-difference problems. These classes, the classes of d-dimensional
meshes with bounded aspect ratio, are formed by the interior skeletons
of a family of d-dimensional simplicial complexes with bounded aspect
ratio. As such graphs exclude Kh as a depth L minor if h = Ω(Ld) [25]
they form (for each d) a class with polynomially bounded expansion.
Our results (and particularly linear algorithm for low tree decomposi-
tions) present a natural link of applicable results [11].

• bounded degree classes. Let ∆ be an integer. Then the class of
graphs with maximum degree at most ∆ has expansion bounded by
the exponential function f(r) = ∆r+1.
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• proper topologically closed classes. These classes are defined by
a (possibly infinite) set S of forbidden configurations, in the sense of
Kuratowski’s configurations: a graph G belongs to the class if no sub-
division of a graph in S is isomorphic to a subgraph of G. Such classes
have expansion bounded by a double exponential function f(r) =
2r−1(minH∈S |V (H)|)2r+1

(see Section 8.2).

• highly subdivided cliques. For any non-decreasing function f : N→
N\{0, 1, 2} we may construct a class Cf of graphs with expansion f by
including (for each integer r) the complete graph of 2f(r) + 1 vertices
whose edges are subdivided 3r − 1 times.

2.1 Further Definitions and Properties Related to the

grad

We give here further definitions and simple properties related to the definition
of the grad of a graph.

Definition 2.3. Let G be a graph. A ball of G is a subset of vertices inducing
a connected subgraph. The set of all the families of balls of G is noted B(G).

Let P = {V1, . . . , Vp} be a family of balls of G.

• The radius ρ(P) of P is ρ(P) = maxX∈P ρ(G[X])

• The complexity of P is ζ(P) = maxv∈V (G)|{i : v ∈ Vi}|.

• The quotient G/P of G by P is a graph with vertex set {1, . . . , p} and
edge set E(G/P) = {{i, j} : (Vi × Vj) ∩ E(G) 6= ∅ or Vi ∩ Vj 6= ∅}.

We introduce a refinement of the notion of grad:

Definition 2.4. The greatest reduced average density (grad) of G with rank
r and complexity c is

c

∇r(G) = max
P∈B(G)

ρ(P)≤r,ζ(P)≤c

|E(G/P)|

|P|
.

According to this definition, we have:

∇r(G) =
1

∇r(G) = max
P∈B(G)

ρ(P)≤r,ζ(P)=1

|E(G/P)|

|P|
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Notice the following well known facts (usually expressed by means of the
maximum average degree, see for instance [19] for a proof of Fact 2.1)

Fact 2.1. Let G be a graph of order n and size m. Then G has an orientation
such that the maximum indegree of G is at most k if and only if k ≥ ∇0(G).
Moreover, there is an O(n + m)-time algorithm which computes an acyclic
orientation of G with maximum indegree b2∇0(G)c.

Fact 2.2. Any graph G is b2∇0(G)c-degenerated, hence b2∇0(G)+1c-colorable.

2.2 Grad and Lexicographic Product

Let G,H be graphs. The lexicographic product G•H is defined by V (G•H) =
V (G) × V (H) and E(G • H) = {{(x, y), (x′, y′) : {x, y} ∈ E(G) or x =
x′ and {y, y′} ∈ E(H)}.

Let us note at this place that the lexicographic product (or blowing up of
vertices) is an operation which is incompatible with the minors. One can see
easily that every graph is a minor of a graph of the form G •K2 for a planar
graph G. But the lexicographic product is naturally related to the notion of
complexity we have introduced for grad:

Lemma 2.1. For any graph G and any integers c, r, we have:

c

∇r(G) = ∇r(G •Kc)

Proof. Let P = {V1, . . . , Vp} be a ball family of G with complexity c = ζ(P)
and radius r = ρ(P). As ζ(P) = c there exists a function f : V (G) ×
{1, . . . , p} → {1, . . . , c} such that if x ∈ Vi ∩ Vj then f(x, i) 6= f(x, j).

For 1 ≤ i′ ≤ p, define V ′
i = {(x, f(x, i)) : x ∈ Vi}. Then P ′ = {V ′

1 , . . . , V
′
p}

has radius r and complexity 1. Moreover, G/P is obviously isomorphic to a

subgraph of (G •Kc)/P
′. It follows that ∇r(G •Kc) ≥

c

∇r(G).
Conversely, let P ′ = {V ′

1 , . . . , V
′
q} be a ball family of G • Kc, define the

ball family P = {V1, . . . , Vq} of G by x ∈ Vi if there exists α ∈ {1, . . . , c}
such that (x, α) ∈ V ′

i . Then ρ(P) ≤ ρ(P ′) and ζ(P) ≤ c. It follows that
c

∇r(G) ≥ ∇r(G •Kc).

The rather technical proof of the following lemma is annexed in Sec-
tion 8.1 for sake of readability.
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Lemma 2.2. There exist polynomials Pi (i ≥ 0) such that for any graph G
and integers r and c:

c

∇r(G) ≤ Pr(c,∇r(G)) (1)

3 The Theory: Decompositions,

Augmentations and Colorings

3.1 Tree-width

A tree-decomposition of a graph G consists in a pair (T, λ) formed by a tree
T and a function λ mapping vertices of T to subsets of V (G) so that for all
v ∈ V (G), {x ∈ V (T ) : v ∈ λ(x)} induces a subtree of T , and such that for
any edge {v, w} of G there exists x ∈ V (T ) such that {v, w} ⊆ λ(x). The
width of a tree decomposition (T, λ) is maxv∈V (G)|λ(v)| − 1. The tree-width
of G is the minimum width of any tree-decomposition of G.

In the following, a directed graph ~G may not have a loop and for any two
of its vertices x and y, ~G includes at most one arc from x to y and at most
one arc from y to x (thus at most two arcs may connect x and y, one in each
direction).

A class C has a low tree-width coloring if, for any integer p ≥ 1, there
exists an integer N(p) such that any graph G ∈ C may be vertex-colored
using N(p) colors so that each of the connected components of the subgraph
induced by any i ≤ p parts has tree-width at most (i − 1). DeVos et al.
proved:

Theorem 3.1 ([6]). Any minor closed class of graphs excluding at least one
graph has a low tree-width coloring.

The proof of Theorem 3.1 relies on the Structural Theorem of Robertson
and Seymour [22] and fails to be applicable from a computational point of
view.

3.2 Tree-depth

A rooted forest is a disjoint union of rooted trees. The height of a vertex x
in a rooted forest F is the number of vertices of a path from the root (of
the tree to which x belongs to) to x and is noted height(x, F ). The height
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of F is the maximum height of the vertices of F . Let x, y be vertices of
F . The vertex x is an ancestor of y in F if x belongs to the path linking y
and the root of the tree of F to which y belongs to. The closure clos(F ) of
a rooted forest F is the graph with vertex set V (F ) and edge set {{x, y} :
x is an ancestor of y in F, x 6= y}. A rooted forest F defines a partial order
on its set of vertices: x ≤F y if x is an ancestor of y in F . The comparability
graph of this partial order is obviously clos(F ).

The tree-depth td(G) of a graph G is the minimum height of a rooted forest
F such that G ⊆ clos(F ) [16]. This graph parameter also appeared in the
literature as the minimum height of an elimination tree [5] and is analogous
to the definition of rank function of a graph which has been recently used for
analysis of countable graphs, see e.g. [18].

Lemma 3.2 ([16]). Let G = (V,E) be a graph and let G1, . . . , Gp be its
connected components. Then:

td(G) =















1, if |V | = 1;

1 + minv∈V td(G− v), if p = 1 and |V | > 1;

maxp
i=1 td(Gi), otherwise.

As we introduced low tree-width coloring, we say that a class C has a low
tree-depth coloring if, for any integer p ≥ 1, there exists an integer N(p) such
that any graph G ∈ C may be vertex-colored using N(p) colors so that each
of the connected components of the subgraph induced by any i ≤ p parts has
tree-depth at most i. As td(G) ≥ tw(G)− 1, a class having a low-tree depth
coloring has a low tree-width coloring. In [16] is proved a strengthening of
Theorem 3.1:

Theorem 3.3 ([16]). Any minor closed class of graphs excluding at least one
graph has a low tree-depth coloring.

This result has been extended in [12] where it is proved that classes with
bounded expansion allows low tree-depth partitions. This last result follows
another approach: instead of the Structural Theorem, the proof relies on the
properties of transitive fraternal augmentations. We shall prove in this paper
that this allows the partition and tree-decomposition of i ≤ p parts to be
computed in linear time.
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3.3 Transitive Fraternal Augmentation

Definition 3.1. Let ~G be a directed graph. A 1-transitive fraternal aug-
mentation of ~G is a directed graph ~H with the same vertex set, including all
the arcs of ~G and such that, for any distinct vertices x, y, z,

• if (x, z) and (z, y) are arcs of ~G then (x, y) is an arc of ~H (transitivity),

• if (x, z) and (y, z) are arcs of ~G then (x, y) or (y, x) is an arc of ~H
(fraternity).

A transitive fraternal augmentation of a directed graph ~G is a sequence
~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · · , such that ~Gi+1 is a 1-transitive
fraternal augmentation of ~Gi for any i ≥ 1.

The main key lemma here is that the notion of classes of bounded expan-
sion is stable under 1-fraternal augmentations. More precisely:

Lemma 3.4. Let ~G be a directed graph and let ~H be a 1-transitive fraternal
augmentation of ~G. Then

c

∇r(H) ≤
c(∆−( ~G)+1)

∇2r+1 (G)

≤ P2r+1(c(∆
−( ~G) + 1),∇2r+1(G)).

Proof. Consider a ball family P = {V1, . . . , Vp} of H with radius at most r
and complexity c.

Let P ′ = {V ′
1 , . . . , V

′
p}, where

V ′
i = Vi ∪ {z : ∃x ∈ Vi, (x, z) ∈ E( ~G)}

Then for any x, y ∈ Vi which are adjacent in H, either x and y are adjacent
in G or there exists z ∈ V ′

i so that {x, z} and {y, z} are edges of G. Hence
V ′

i is a ball of G with radius at most 2r + 1. Any vertex v of G belongs to a

most c+ ∆−( ~G) balls of P ′ for v belongs to V ′
i if and only if either v belongs

to Vi (there are at most c such Vi) or there exists an arc from a vertex z ∈ Vi

to v in ~G (there are at most ∆−( ~G) such z hence at most c∆−( ~G) such Vi).

Hence the complexity of P ′ is at most c(∆−( ~G) + 1). As H/P is isomorphic

to a subgraph of G/P ′ |E(H/P)| ≤ |E(G/P ′)| thus
c

∇r(H) = |E(H/P)|
|P|

≤

|E(G/P ′)|
|P ′|

≤
c(∆−( ~G)+1)

∇2r+1 (G). We conclude using Lemma 2.2.
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Hence, by induction:

Corollary 3.5. For any functions f : N → N and F : N
2 → N there exists

functions Af,F : N
2 → N and Bf,F : N→ N with the following property:

Assume that a transitive fraternal augmentation

~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · ·

of a graph G satisfies the following conditions:

∀r ≥ 0, ∇r(G) ≤ f(r)

∀i ≥ 1, ∆−( ~Gi) ≤

{

2f(0) if i = 1,

F (∆−( ~Gi−1),∇0(Gi)) otherwise.

Then for all r ≥ 0 and i ≥ 1 we have:

∇r(Gi) ≤ Af,F (r, i),

∆−( ~Gi) ≤ Bf,F (i).

3.4 Centered Coloring

Definition 3.2. A centered coloring of a graph G is a coloring of the vertices
such that in any connected subgraph some color appears exactly once [16].
This notion is similar to the ones of vertex ranking and ordered coloring which
have been investigated in [5],[23].

As in [16], we refine this notion into a bounded version: for an integer
p, a p-centered coloring of G is a coloring of the vertices such that in any
connected subgraph either some color appears exactly once, or at least p
different colors appear.

For the sake of completeness we recall some lemmas of [16]:

Lemma 3.6 ([16]). Let G,G0 be graphs, let p = td(G0), let c be a q-centered
coloring of G where q ≥ p. Then any subgraph H of G isomorphic to G0 gets
at least p colors in the coloring of G.

From this lemma follows that p-centered colorings induce low tree-depth
colorings:
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Corollary 3.7. Let p be an integer, let G be a graph and let c be a p-centered
coloring of G. Then i < p parts induce a subgraph of tree-depth at most i

Proof. Let G′ be any subgraph of G induced by i < p parts. Assume td(G′) >
i. According to Lemma 3.2, the deletion of one vertex decreases the tree-
depth by at most one. Hence there exists an induced subgraph H of G′ such
that td(H) = i + 1 ≤ p. According to lemma 3.6 (choosing G0 = H), H gets
at least p colors, a contradiction.

Lemma 3.8 ([16]). Let p, k be integers. Then there exists an integer N(p, k)
such that any graph G with tree width at most k has a p-centered coloring
using N(p, k) colors.

The following lemma is proved in [16] for the particular case of proper
minor closed classes of graphs and tree-width. We shall state it here in its
general form.

Lemma 3.9. Let C be a class of graphs. Assume that for any integer p ≥ 1
there exists a class of graphs Cp such that:

• there exists an integer N(Cp, p), such that any graph G ∈ Cp has a
p-centered coloring using at most N(Cp, p) colors,

• there exists an integer C(p) such that any G ∈ C has a C(p) vertex
coloring such that p classes induce a graph in Cp.

Then there exists an integer X(p), such that every graph in C has a p-centered
coloring using X(p) colors.

Proof. Let G ∈ C. According to the assumption, there exists a vertex parti-
tion into C(p) parts, such that any p parts form a graph in Cp. This partition
will be defined as a coloring c̄ : V (G) −→ {1, 2, . . . , C(p)}. For any set P of
p parts let GP be the graph induced by all the parts in P . According to the
assumption, each of the GP has p-centered coloring cP using N(Cp, p) colors.
Consider the following (“product”) coloring c defined as

c(v) = (c̄(v), (cP (v); |P | = p, P ⊂ {1, 2, . . . , C(p)})).

This is the product of the coloring of G by C(p) colors and of the colorings

of the GP . This new coloring of G (with X(p) = C(p)N(Cp, p)(
C(p)

p ) colors.
Let H be a connected subgraph of G. Then, either H gets at least p + 1
colors, or V (H) is included in some subgraph GP of G induced by p parts.
In the later case, some color appears exactly once in H.
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Lemma 3.10. Let N(p, t) = 1 + (t − 1)(2 + dlog2 pe), let ~G be a directed

graph and let ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · be a transitive fraternal
augmentation of ~G.

Then ~GN(p,td(G)) either includes an acyclically oriented clique of size p or

a rooted directed tree ~Y such that G ⊆ clos(Y ) and clos(~Y ) ⊆ ~GN(p,td(G)).

Proof. We fix the integer p and prove the lemma by induction on t = td( ~G).
The base case t = 1 corresponds to a graph without edges, for which the
property is obvious. Assume the lemma has been proved for directed graphs
with tree-depth at most t and let ~G be a directed graph with tree-depth
t + 1. As we may consider each connected component of ~G independently,
we may assume that ~G is connected. Then there exists a vertex s ∈ V ( ~G)

such that the connected components ~H1, . . . , ~Hk of G− s have tree-depth at
most t. ~Hi = ~G1[V ( ~Hi)] ⊆ · · · ⊆ ~Gj[V ( ~Hi)] ⊆ · · · is a transitive fraternal

augmentation of ~Hi. By the induction hypothesis for each 1 ≤ i ≤ k there
exists in ~Hi either an acyclically oriented clique of size p or a rooted tree ~Yi

rooted at ri such that Hi ⊆ clos(Yi) and clos(~Yi) ⊆ ~GN(p,td(G))[V ( ~Hi)]. If the

first case occurs for some i, then ~G includes an acyclically oriented clique of
size p. Hence assume it does not. As ~G is connected, the vertex s has at least
a neighbor xi in ~Hi (for each 1 ≤ i ≤ k). Let x be any neighbor of s in ~Hi. If

y is an ancestor of x in ~Yi, (y, x) is an arc of ~GN(p,t) hence s and y are adjacent

in ~GN(p,t)+1. Moreover, if (x, s) is an arc of ~GN(p,t) then (y, s) is an arc of
~GN(p,t)+1. Let Di be the subset of V ( ~Hi) of the vertices x such that (x, s)

belongs to ~GN(p,t) and of their ancestors in ~Yi and let D =
⋃k

i=1 Di. Then D

includes a clique in ~GN(p,t)+2. Thus there exists a directed Hamiltonian path
~P in ~GN(p,t)+2[D].

Let r be the start vertex of ~P . Define π : V (G)− r → V (G) as follows:

• if x ∈ D, the π(x) is the predecessor y of x in ~P (the arc (y, x) belongs

to ~GN(p,t)+2);

• otherwise, if x = s, π(x) is the end vertex y of ~P (the arc (y, x) belongs

to ~GN(p,t)+1);

• otherwise, if x = ri then π(x) = s (the arc (s, ri) belongs to ~GN(p,t)+2);

• otherwise, if the father of x ∈ V ( ~Hi) \ D does not belong to D, then

π(x) is the father of x in ~Yi;
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• otherwise, if no descendant of x in ~Yi has an arc coming from s in
~GN(p,t)+1, π(x) is the father of x in ~Yi;

• otherwise, π(x) = s (the arc (s, x) belongs to ~GN(p,t)+2).

It is easily checked that the so defined “father mapping” π actually defines
a directed rooted tree ~Y of ~GN(p,t)+2 with root r and that G ⊆ clos(~Y ).

Moreover, either ~Y has height at least p and ~GN(p,t)+2+dlog2 pe includes an

acyclically oriented clique of size p or clos(~Y ) ⊆ ~GN(p,t)+2+dlog2 pe. As N(p, t+
1) = N(p, t) + 2 + dlog2 pe, the induction follows.

Lemma 3.11. Let p be an integer, let ~G be a directed graph and let ~G =
~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · be a transitive fraternal augmentation of ~G. Then
either ~GN(p,p) includes an acyclically oriented clique of size p or td(G) ≤ p−1

and there exists in ~GN(p,p) a rooted directed tree Y so that G ⊆ clos(Y ) and

clos(~Y ) ⊆ ~GN(p,p).

Proof. If td(G) > p we may consider a connected subgraph of H of tree-

depth p. According to Lemma 3.10, there will exists in ~GN(p,p)[V (H)] an

acyclically oriented clique of size p or a rooted directed tree ~Y so that H ⊆
clos(Y ) and clos(~Y ) ⊆ ~GN(p,p)[V (H)]. In the later case, if td(G) = p then the

height of ~Y is at least td(H) = p and clos(~Y ) includes an acyclically oriented
clique of size p.

Corollary 3.12. Let R(p) = 1 + (p− 1)(2 + dlog2 pe) = O(p log2 p).

For any graph G, for any transitive fraternal augmentation ~G = ~G1 ⊆
~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · of G and for any integer p, any proper coloring of ~GR(p)

defines a p-centered coloring of G.

4 Application: Low Tree-width Partitions

in Linear Time

Now we turn to the algorithmic aspects of the above results. We will prove
that, for any class C with bounded expansion and any graph G ∈ C

1. the graph G has an orientation with indegree at most c1(C) which may
be computed in linear time;

14



2. the graph G has a transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆
· · · ⊆ ~GR(p) with ∆−( ~GR(p)) ≤ c2(C, p) which can be computed in linear
time (for fixed p);

3. a p-centered coloration of G may be computed from ~GR(p) in linear
time,

4. for any i ≤ p, a tree-decomposition of width at most (i − 1) of the
subgraph of G induced by i colors may be computed in linear time.

4.1 Transitive Fraternal Augmentation

Theorem 4.1. For any class C with bounded expansion and any fixed integer
c, there exists an algorithm which computes, given an input graph G ∈ C,
a transitive fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gc of G in
time O(n).

This follows from an iterative application of a linear time 1-fraternal
transitive augmentation and the application of Corollary 3.5.

In the augmentation process, we add two kind of arcs: transitivity arcs
and fraternity arcs. Let us start with transitivity ones:

Require: D represents the directed graph to be augmented.
Ensure: D′ represents the array of the added arcs.

Initialize D′.
for all v ∈ {1, . . . , n} do

for all (u, e) ∈ D[v] do

for all (x, f) ∈ D[u] do

m← m + 1; append (x,m) to D′[v].
end for

end for

end for

This algorithm runs in O(∆−( ~G)2n) time, where ∆−( ~G) is the maximum
indegree of the graph to be augmented. It computes the list array D′ of the
transitivity arcs which are missing in ~G, missing arcs may appear more than
once in the list, but the number of added edges cannot exceed ∆−( ~G)2n.

Now, we shall consider the fraternity edges.
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Require: D represents the directed graph to be augmented.
Ensure: L represents the list of edges to be added.

L = ().
for all v ∈ {1, . . . , n} do

for all (x, e) ∈ D[v] do

for all (y, f) ∈ D[v] do

if x < y then

append (x, y) to L.
end if

end for

end for

end for

This algorithm runs in O(∆−( ~G)2n)-time and computes the list of the
fraternity edges. Edges may appear in this list more than once but the
length of the list L cannot exceed ∆−( ~G)2n/2.

The simplification of L, the computation of a low indegree orientation of
the edges in L and the merge/simplification with the arcs in D and D′ may

be achieved in linear time (precisely: in O(∆−( ~G)2n)-time).

4.2 Computing a p-centered Coloring

Let G be a graph. Define f(r) = ∇r(G) and F (x, y) = x2 + 2y and let
R(p) = 1 + (p − 1)(2 + dlog2 pe). According to Corollary 3.5, the fraternal

augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~GR(p) of G computed by iterating R(p)
times the 1-transitive fraternal augmentation algorithm is such that GR(p)

is (2Af,F (0, R(p)))-degenerated. Thus a proper coloring of GR(p) may easily
be achieved in linear time. This coloring defines a p-centered coloring of G
according to Corollary 3.12.

4.3 Tree-decomposition of i ≤ p Parts

To construct a tree-decomposition (T, λ) of width (p− 1) of a graph G from
a centered coloring using p colors, we first construct a rooted forest of height
p including G in its closure:

Require: c is a centered-coloring of the graph G using colors 1, . . . , p.
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Ensure: F is a rooted forest of height p such that G ⊂ clos(F ).

Set F = ∅.
Let Big[ ] be an array of size p.
for all Connected component Gi of G do

Initialize Big[ ] to false.
Set root color← 0.
for all v ∈ V (Gi) do

if Big[c[v]] = false then

if c[v] = root color then

root color← 0, Big[c[v]]← true.
else

root← v; root color← c[v].
end if

end if

end for

Recurse on G− root thus getting some rooted forest F ′ = {Y ′
1 , . . . , Y

′
j }.

Add to F the tree with root root and subtrees Y1, . . . , Yj, where the sons
of root are the roots of Y1, . . . , Yj.

end for

This algorithms clearly runs in O(pm) time. If G is connected, it returns
a rooted tree Y of height at most p such that G ⊆ clos(Y ) (thus proving that
tree depth of G is at most p).

From a rooted tree Y of height at most p such that G ⊆ clos(Y ) it is
straightforward to construct a tree-decomposition (T, λ) of G having width
at most (p − 1): Set T = Y and define λ(x) = {v ≤Y x}. Then for any
v, {x ∈ V (T ) : v ∈ λ(x)} = {x ≥Y v} induces the subtree of Y rooted
at v (hence a subtree of T ). Moreover, as G ⊆ clos(Y ), any edge {x, y}
with x <Y y is a subset of λ(y). Hence (T, λ) is a tree-decomposition of G.
As maxv∈V (G)|λ(v)| = height(Y ) ≤ p, this tree-decomposition has width at
most (p − 1). Last, this tree-decomposition may be obviously constructed
in linear time. (All this amounts to saying that tree width does not exceeds
tree depth.)
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5 Subgraph Isomorphism Problem

In [8] Eppstein gives a linear time algorithm to solve the subgraph isomor-
phism problem for a fixed planar pattern. In this paper, he gives a linear
time bound for a fixed pattern and an input graph with bounded width tree
decomposition:

Lemma 5.1 (Lemma 2 of [8]). Assume we are givengraph G with n vertices
along with a tree-decomposition T of G with width w. Let S be a subset of
vertices of G, and let H be a fixed graph with at most w vertices. Then in
time 2O(w log w)n we can count all isomorphs of H in G that include some
vertex in S. We can list all such isomorphs in time 2O(w log w)n + O(kw),
where k denotes the number of isomorphs and the term kw represents the
total output size.

We deduce from this lemma and Theorem 4.1 an extension of Eppstein’s
result of [8][9] to classes with bounded expansion:

Theorem 5.2. Let C be a class with bounded expansion and let H be a fixed
graph. Then there exists a linear time algorithm which computes, from a pair
(G,S) formed by a graph G ∈ C and a subset S of vertices of G, the number
of isomorphs of H in G that include some vertex in S. There also exists an
algorithm running in time O(n) +O(k) listing all such isomorphism where k
denotes the number of isomorphs (thus represents the output size).

6 Local decidability problems

Monadic second-order logic (MSOL) is an extension of first-order logic (FOL)
that includes vertex and edge sets and belonging to these sets. The following
theorem of Courcelle has been applied to solve many optimization problems.

Theorem 6.1 (Courcelle [3][4]). Let K be class of finite graphs G = 〈V,E,R〉
represented as τ2-structures, that is: by two sorts of elements (vertices V and
edges E) and an incidence relation R. Let φ be a MSOL(τ2) sentence. If K
has bounded tree width and G ∈ K, then checking whether G � φ can be done
in linear time.

Combining Theorem 6.1 with Theorem 4.1, we get:
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Subgraph isomorphism problem

Context Complexity Reference(s)

General O(n0.792 |V (H)|) [17] using [2]
Bounded tree-width O(n) [8] (also [3][4])
Planar O(n) [7][8]
Bounded genus O(n) [9]
Bounded expansion O(n) (this paper)
(includes the three
previous classes)

Table 1: Subgraph isomorphism problem: complexity for a fixed pattern H
and for an input graph restricted to some class of graphs.

Theorem 6.2. Let C be a class with bounded expansion and let p be a fixed
integer. Let φ be a FOL(τ2) sentence. Then there exists a linear time algo-
rithms to check ∃X : (|X| ≤ p) ∧ (G[X] � φ).

Thus for instance:

Theorem 6.3. Let K be a class with bounded expansion and let H be a
fixed graph. Then, for each of the next properties there exists a linear time
algorithm to decide whether a graph G ∈ K satisfies them:

• H has a homomorphism to G,

• H is a subgraph of G,

• H is an induced subgraph of G.

7 Summary, concluding remarks, directions

to future research

We introduced new conceptual framework (k-grad of a graph and classes
with bounded expansion). This generalizes many commonly studied classes
of graphs yet one can prove for these classes strong structural decomposition
theorems such as low tree width (and low tree depth) decompositions. Quite
surprisingly these decompositions may be obtained in linear time. This in
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turn solves several open problems (see e.g. [16]) and we listed several appli-
cations to subgraph testing and decision problems for satisfiability.

A natural question arises whether one can generalize low tree depth de-
compositions to yet larger classes of graphs. In this sense our results are
optimal: It is proved in [12] that a class C of graphs has bounded expansion
if and only if it has low tree-width (or low tree-depth) decompositions. It
should be also noted that the notion of tree depth enjoys finiteness property:
there are only finitely many cores of graphs of tree depth ≤ k. This is not
true even for series parallel graphs (i.e. for graphs with tree-width at most 2).

Our setting can also be generalized to oriented graphs and relational struc-
tures (see our full paper for further details and discussion). Particularly [13]
contains applications to homomorphism bounds which provided the original
motivation for our research.
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8 Annex

8.1 Proof of Lemma 2.2

Recall that Lemma 2.2 states that there exist polynomials Pi (i ≥ 0) such
that for any graph G and integers r and c:

c

∇r(G) ≤ Pr(c,∇r(G)).

In the following, a directed graph ~G may not have a loop and for any two
of its vertices x and y, ~G includes at most one arc from x to y and at most
one arc from y to x.

If a directed path ~P has starting vertex x and end vertex y, we note

x
~P

+3/o/o y.

If x
~P1

+3/o/o z, y
~P2

+3/o/o z and if no internal vertex or edges of ~P1 belongs to ~P2

nor the converse, we will write symbolically

x
~P1

+3/o/o z
~P2

ks o/ o/ y.

In such a case, either ~P1 ∪ ~P2 is a path, or ~P1 ∪ ~P2 is a cycle and x = y.
Moreover, if x 6= y, | ~P1| ≤ a and | ~P2| ≤ b, we say that y is (a, b)-reachable
from x.

Definition 8.1. Let ~G be a directed graph, let a, b be integers. A set ~Λ
of arcs with endpoints in V ( ~G) is an (a, b)-augmentation of ~G if, for any

x, y ∈ V ( ~G) with y (a, b)-reachable from x, either (x, y) or (y, x) belongs

to ~Λ.
The maximum indegree of ~Λ is

∆−(~Λ) = max
y∈V ( ~G)

|{x ∈ V ( ~G) : (x, y) ∈ ~Λ}|.

Notice that if a or b is at least 1, E( ~G) is obviously included in any

(a, b)-augmentation of ~G.

Lemma 8.1. Let ~G be a directed graph, let a, b be integers and let ~Λ be an
(a, b)-augmentation of ~G. Then there exists a vertex coloring γ~Λ using at

most 2∆−(~Λ) + 1 colors such that for any vertex x, γ~Λ(y) 6= γ~Λ(x) for any
vertex y (a, b)-reachable from x.
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Proof. Let ~H be the directed graph with vertex set ~G and arc set ~Λ. If y
is (a, b)-reachable from x in ~G then (x, y) or (y, x) belongs to E( ~H). As ~H

has maximum indegree ∆−(~Λ), it is (2∆−(~Λ) + 1)-choosable. Any proper

coloration of ~H will do.

Lemma 8.2. Let ~G be a directed graph with maximum indegree ∆−( ~G), let

a, b be integers and let ~Λ be an (a, b)-augmentation of ~G. Then there exists

an edge coloring Υ~Λ using at most (2∆−(~Λ) + 1)∆−( ~G) colors such that for

any x
~P1

+3/o/o z
~P2

ks o/ o/ y with | ~P1| ≤ a+1 and | ~P2| ≤ b+1, all the edges of ~P1∪ ~P2

get different colors.

Proof. Consider an edge coloring c0 such that two edges having the same
end vertex have different colors (this is achieved with ∆−( ~G) colors) and
the vertex coloring γ~Λ defined in Lemma 8.1. Then for any arc e = (x, y)
define Υ~Λ(e) = (c0(e), γ~Λ(y)). Then if e = (x, y) and f = (x′, y′) are two

different arcs in ~P1 ∪ ~P2 where either y 6= y′ thus y′ is (a, b)-reachable from
y or y is (a, b)-reachable from y′ hence γ~Λ(y′) 6= γ~Λ(y), or y = y′ hence
c0(e) 6= c0(f).

Notation 8.2. Let Υ be an arc-coloring of a directed graph ~G and let ~P be
a directed path of ~G of length l. We note Υ( ~P ) = ~α = (α1, . . . , αl) the

sequence of the colors Υ(e) of the arcs of ~P , taken in the order in which they

appear on ~P .

Lemma 8.3. Let ~G be a directed graph with maximum indegree ∆−( ~G), let

a, b be integers and let ~Λ be an (a, b)-augmentation of ~G. Let Υ~Λ be the edge
coloring defined in Lemma 8.2.

Let ~P1, ~P2 be two directed paths of length l ≤ max(a, b) + 1, such that the
initial vertex of one of them is different from the end vertex of the other one.
If Υ~Λ(~P1) = Υ~Λ(~P2) then either ~P1 and ~P2 do not intersect, or they share

the same initial vertex and there exists 0 ≤ a ≤ l such that ~P1 and ~P2 share
their a first edges and do not intersect thereafter.

Proof. Without loss of generality, we may assume a ≥ b. Let ~α = Υ~Λ(~P1).

Assume there exists a vertex v having one incoming edge in ~P1 (the ith of
~P1, hence colored αi) and one (different) incoming edge in ~P2 (the jth of ~P2,
hence colored αj). Without loss of generality, we may assume i ≥ j. Then

the (j+1)th vertex u of ~P1 has an incoming edge in ~P1 colored αj and belong

24



to the initial subpath of ~P1 ending at v. It follows that v is (a, 0) reachable
from u. Hence an incoming edge of u may not have the same color of an
incoming edge of v, contradiction. Similarly, the initial vertex of one of the
path may not be internal to the second one. As the case where the initial
vertex of one of the path is the end vertex of the other one, we conclude that
either the two paths do not intersect or they share their a first edges.

Lemma 8.4. Let ~G be a directed graph with maximum indegree ∆−( ~G), let

a, b be integers and let ~Λ be an (a, b)-augmentation of ~G. Let Υ~Λ be the edge
coloring defined in Lemma 8.2. Let ~α be a sequence of l ≤ max(a, b) + 1

distinct edge colors. Then the union T~Λ(~α) of all the directed paths ~P such

that Υ~Λ(~P ) = ~α is a directed rooted forest.

Proof. This is a direct consequence of Lemma 8.3.

Lemma 8.5. Let ~G be a directed graph with maximum indegree ∆−( ~G), let

a ≥ b be integers and let ~Λ be an (a, b)-augmentation of ~G. Let Υ~Λ be the

edge coloring defined in Lemma 8.2. Let ~α and ~β be sequences of respective
lengths p ≤ a + 1 and q ≤ b + 1. Let Π~Λ(~α, ~β) be the union of all the ~P1 ∪ ~P2

where Υ~Λ(~P1) = ~α, Υ~Λ(~P2) = ~β and there exists three distinct vertices x, y, z

so that x
~P1

+3/o/o z
~P2

ks o/ o/ y.
Then a directed tree Y1 in Π~Λ(~α, ~β) ∩ T~Λ(~α) and a directed tree Y2 in

Π~Λ(~α, ~β) ∩ T~Λ(~β) with different roots may only intersect at a leaf of both of
them.

Proof. Let r1, r2 be the roots of Y1 and Y2. If Y1 and Y2 intersects, there
exists vertices z, z′ so that:

• r1

~P1
+3/o/o z

~P2
ks o/ o/ y, x′

~P ′

1
+3/o/o z′

~P ′

2
ks o/ o/ r2,

• Υ~Λ(~P1) = Υ~Λ(~P ′
1) = ~α, Υ~Λ(~P2) = Υ~Λ(~P ′

2) = ~β,

• ~P ′
2 intersects ~P1 at a vertex v (up to an exchange of Y1 and Y2).

As r1 6= r2, v has in ~P2 an incoming edge e of color βi for some 1 ≤ i ≤ b+1.
Let w be the vertex of ~P2 having in ~P2 an incoming edge of color βi. If
w 6= v, we are led to a contradiction, according to Lemma 8.2, as w is then
(p, q)-reachable from v. Hence v = w and v is the end vertex of ~P1 and ~P2.

Thus v is also the end vertex of ~P ′
1 and ~P ′

2. It follows that v is a leaf of both
Y1 and Y2.
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Lemma 8.6. Let ~G be a directed graph with maximum indegree ∆−( ~G), let

r be an integer and let ~Λ be an (r, r − 1)-augmentation of ~G. Then ~Λ may

be extended into an (r + 1, r)-augmentation ~Λ′ such that:

∆−(~Λ′) ≤ ∆−(~Λ) + ((2∆−(~Λ) + 1)∆−( ~G))2r+1∇r(G)

Proof. Let Υ~Λ be the edge coloring defined in Lemma 8.2. For two sequences

~α and ~β of respective lengths p ≤ r+1 and q ≤ r, let Π~Λ(~α, ~β) be the union of

all the ~P1∪ ~P2 where Υ~Λ(~P1) = ~α, Υ~Λ(~P2) = ~β and there exists three distinct

vertices x, y, z so that x
~P1

+3/o/o z
~P2

ks o/ o/ y. Also, let G~α,~β be the graph obtained

from G by contracting all the edges of Π~Λ(~α, ~β) but those colored αp.
Let x, y be vertices of G so that y is (r + 1, r)-reachable from x, as

witnessed by x
~P1

+3/o/o z
~P2

ks o/ o/ y. Let ~α = Υ~Λ(~P1) and ~β = Υ~Λ(~P2). The vertices

x, y are the roots of directed trees in Π~Λ(~α, ~β)∩T~Λ(~α) and Π~Λ(~α, ~β)∩T~Λ(~β),
respectively, hence to two adjacent distinct vertices in G~α,~β. Similarly, two
distinct vertices of G~α,~β adjacent by an edge of color αp (where p = |~α|)

correspond uniquely to the roots of a tree in Π~Λ(~α, ~β)∩T~Λ(~α) and Π~Λ(~α, ~β)∩

T~Λ(~β), respectively.

It follows that there exists an (r + 1, r)-augmentation ~Λ′ of ~G extending
~Λ such that

∆−(~Λ′)−∆−(~Λ) ≤
∑

|~α|≤r+1

|~β|≤r

∇0(G~α,~β)

≤ ((2∆−(~Λ) + 1)∆−( ~G))2r+1∇r(G)

Corollary 8.7. For any integer r, there exists a polynomial Φr such that
any directed graph ~G has a (r + 1, r)-augmentation ~Λ, where ∆−(~Λ) ≤

Φr(∆
−( ~G),∇r(G)), where G is the underlying simple graph of ~G.

Proof of Lemma 2.2. Define Pr(x, y) = Φr(x + y, y). Consider a family P of
balls of G with radius at most r and complexity at most c. We construct a
directed graph ~G with underlying undirected graph G. Recall that ~G may
have, for each edge of G, one arc in each direction. First we orient the edges
of G with indegree∇0(G) (thus obtaining one arc per edge). For each X ∈ P ,
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let v be the center of G[X]. Let Y be a minimum distance tree of G[X] with

root v. If ~G does not include the arcs corresponding to an orientation of Y
from its root v, we add the missing arcs. We also add if necessary all the
arcs going from a leaf of Y to a vertex out of X.

Notice that the vertices of ~G have indegree at most ∇0(G)+ c. Moreover,
if r1, r2 are the roots of the trees Y1 and Y2 corresponding to some parts
X1, X2 ∈ P which are adjacent in G/P then r2 is (r +1, r)-reachable from r1

in ~G (by a directed path of length at most r in Y1, possibly followed by an arc
between the parts and a directed path of length at most r in Y2 in opposite
direction). Hence r1 and r2 are adjacent in any (r + 1, r)-augmentation of
~G. According to Corollary 8.7, there exists such an augmentation ~Λ with
∆−(~Λ) ≤ Φr(∇0(G) + c,∇r(G)). As G/P is isomorphic to a subgraph of

the graph with vertex set V (G) and edge set ~Λ. As this subgraph has an

orientation with indegree at most ∆−(~Λ) we have, according to Fact 2.1 and
Corollary 8.7:

c

∇r(G) = ∇0(G/P) ≤ ∆−(~Λ)

≤ Φr(∇0(G) + c,∇r(G))

≤ Pr(c,∇r(G)).

8.2 Proof that topologically closed classes

have bounded expansion

We recall the following result of Komlós and Szemerédi [24]: If a simple graph
on n vertices has at least 1

2
p2n edges, then it has a Kp-subdivision. Hence

a graph G with no Kp-subdivision is such that ∇0(G) < p2

2
. Inequalities for

the grads of further ranks are inductively deduced using the following lemma
(which yields ∇r(G) < 2r−1p2r+1

):

Lemma 8.8. Let H be a minor of depth 1 of a graph G. Assume H includes
a subdivision of Kp′. Then G includes a subdivision of Kp if p′ ≥ 2p2−6p+8.

Proof. If p = 1, 2 or 3 the result is obvious as p′ ≥ p and G will obviously
include a vertex, an edge or a cycle (respectively). Thus we may assume
p ≥ 4 hence p′ − p(p− 1) ≥ max(p, (p− 2)(p− 3) + 2).

By considering a subgraph of G if necessary, we may assume that V (G)
is partitioned into A1, . . . , Ai, . . . , Ap′ ,L1,1, . . . , Li,j , . . . , Lp′,p′ where:
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• for 1 ≤ i ≤ p′, G[Ai] is a star (possibly reduced to a single vertex or a
single edge);

• for 1 ≤ i < j ≤ p′, there exists vi,j ∈ Ai and vj,i ∈ Aj such that
G[Li,j ∪ {vi,j, vj,i}] is a path with endpoint vi,j and vj,i.

For sake of simplicity, we define Lj,i = Li,j and Li,i = ∅. For a subset Y of
{1, . . . , p} we also define GY has the subgraph of G induced by

⋃

i∈Y Ai ∪
⋃

i,j∈Y Li,j.
We first claim the following result: Let N be a positive integer and let X

be a subset of {1, . . . , p′} of cardinality at least max(N, (N − 2)(N − 3) + 2).
Then there exists a subset X ′ = {ka,1, . . . , ka,N} of X of cardinality (N − 1)
such that there exists in GX′ a spider (that is: a subdivision of a star) with
center ra ∈ Aka,a

and
leaves la,1, . . . , la,a−1, la,a+1, . . . , la,N with la,i ∈ La,ka,i

. This claim is easily
proved as follows: Assume no vertex of Aka,a

has degree at least (N − 1) in
GX . Then |X| − 1 ≤ (N − 2)(N − 3), a contradiction. Choose for ra any
vertex of Aka,a

with degree at least (N−1) in GX . Then there exists in GX a
spider with center ra and at least (N − 1) leaves belonging to different Aka,i

.
Assume p′ − N(N − 1) ≥ (N − 2)(N − 3) + 2, i.e. p′ ≥ 2N 2 − 6N +

8. Using the previous claim, we inductively define Z1, . . . , ZN with Zi =
{ki,1, . . . , ki,N} such that GZi

contains a spider with center ri ∈ Aki,i
and

leaves li,j ∈ Aki,j
: to construct Zi, we consider X = {1, . . . , p′} \

⋃

1≤j<i Zj.
Then G includes a subdivision of KN with principal vertices r1, . . . , rN as the
union of all the spiders (and connections within the Li,j if necessary).
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