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Abstract

We fully characterise the situations where the existence of a ho-
momorphism from a digraph G to at least one of a finite set H of
directed graphs is determined by a finite number of forbidden sub-
graphs. We prove that these situations, called generalised dualities,
are characterised by the non-existence of a homomorphism to G from
a finite set of forests.

Furthermore, we characterise all finite maximal antichains in the
partial order of directed graphs ordered by the existence of homo-
morphism. We show that these antichains correspond exactly to the
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generalised dualities. This solves a problem posed in [13]. Finally,
we show that it is NP-hard to decide whether a finite set of digraphs
forms a maximal antichain.

1 Introduction and Previous Results

Several classical colouring problems (such as bounding the chromatic number
of graphs with given properties) can be treated more generally and sometimes
more efficiently in the context of graphs and homomorphisms between them.
Recall that, given graphs G = (V,E), G′ = (V ′, E ′), a homomorphism is any
mapping f : V → V ′ which preserves edges:

xy ∈ E ⇒ f(x)f(y) ∈ E ′.

This is denoted by f : G → G′. For a recent introduction to the topic of
graphs and their homomorphisms, we refer the reader to the book [5].

Let H be a fixed graph (sometimes called a template). For an input
graph G, the H-colouring problem asks whether there exists a homomorphism
G → H. Such a homomorphism is also called an H-colouring ; the Kk-
colouring problem is simply the question whether χ(G) ≤ k. Of course, the
complexity of the H-colouring problem depends on H. This complexity was
determined for undirected graphs in [4]. However, already for directed graphs
the problem is unsolved.

The H-colouring problem is also (and perhaps more often) called the
constraint satisfaction problem (CSP(H)). This is particularly used when the
problem is generalised to relational structures and their homomorphisms, as
these structures can encode arbitrary constraints. This setting, originally
motivated by problems from Artificial Intelligence, leads to the important
problem of dichotomy, general heuristic algorithms (consistency check) and,
more recently, to an interesting and fruitful algebraic setting (pioneered by
Bulatov, Jeavons and Krokhin, cf. [7], [2]).

Further work in the area of CSP complexity led to the following dichotomy
conjecture.

Conjecture 1 ([3]). Let H be a finite relational structure. Then CSP(H) is
either solvable in polynomial time or NP-complete.

Some particular instances of CSP were studied intensively. This includes
the case when the graphs for which there exists an H-colouring are deter-
mined by well-described forbidden subgraphs (see [6], [10]) and as a special
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case, when they are determined by a finite family of forbidden subgraphs. Of
course, in these cases we get polynomial instances of CSP.

A pair (F,D) of directed graphs is called a duality pair if for every directed
graph G, we have F → G if and only if G 9 D. Here, and from now on,
A → B denotes the fact that there exists a homomorphism from A to B.
The duality relationship is denoted by the equation

F→ = 9D

where F→ denotes the class of graphs admitting a homomorphism from F

and 9D the class of graphs not admitting a homomorphism to D. The
dualities in the category of directed graphs are characterised in [8], [12]:

Theorem 2 ([8], [12]). Given a directed graph F , there exists a directed
graph DF such that (F,DF ) is a duality pair if and only if F is homomorphi-
cally equivalent to an orientation of a tree. For a ∆-tree F , such a ∆-struc-
ture DF is unique up to homomorphism equivalence.

We say that A and B are homomorphically equivalent if both A → B

and B → A. The unique D such that (F,D) is a duality pair is called the
dual of the ∆-tree F . We use the notation D = D(F ).

Here we generalise the notion of a duality pair: for two finite sets of
graphs F , D, we say that (F ,D) is a generalised duality if for any graph G,
there exists F ∈ F such that F → G if and only if G → D for no D ∈ D;
briefly ⋃

F∈F

F→ =
⋂

D∈D

9D.

The special case |D| = 1 is characterised by the following theorem proved
in [12].

Theorem 3 ([12]). Let F = {F1, F2, . . . , Fm} be a finite nonempty set of
∆-structures. The pair (F , {D}) is a generalised duality if and only if D =∏m

i=1
Di and (Fi, Di) is a duality pair for i = 1, 2, . . . ,m.

When p = |D| = 1, the generalised duality (F ,D) is called a finitary
homomorphism duality in [12]. The theorem states that the finitary dual
is the product of the duals of the ∆-trees F1, . . . , Fm; this product will be
denoted by D(F1, . . . , Fm) or D(M) if M = {F1, . . . , Fm}.

We can also consider the case F = ∅. Then D = {1}, where 1 is a single
vertex with a loop.
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The relation → induces a partial order C on the classes of homomorphic
equivalence of graphs. This order is called the homomorphism order. The
homomorphism order is actually a distributive lattice, with the disjoint union
(the sum) of graphs being the supremum and the categorical product being
the infimum. The standard order-theoretic terminology is applied here.

Particular properties of the homomorphism order, that were studied, are
density (solved for undirected graphs by Welzl [15] and for directed graphs
by Nešetřil and Tardif [12]) and the description of finite maximal antichains.

Earlier results characterise all maximal antichains of size 1 and 2 in the
homomorphism order of directed graphs.

Theorem 4 ([14]). The only maximal antichains of size 1 in the homomor-
phism order of directed graphs are directed paths of length 0, 1, and 2 and a
single vertex with a loop.

Theorem 5 ([13]). The maximal antichains of size 2 in the homomorphism
order of directed graphs are precisely the pairs {T,DT}, where T is a tree
different from P0, P1 and P2, and DT is its dual.

2 Generalised Dualities

In this section, we characterise all generalised dualities. We restrict ourselves
to the case |F| ≥ 2, as the other cases are described in the previous section.
First, we present a construction of generalised dualities from a family of
forests.

2.1 The Construction

Let F = {F1, F2, . . . , Fm} be an arbitrary fixed nonempty finite set of core
(cf. [5]) ∆-forests that are pairwise incomparable.

Consistently with the above notation, let Fc = {C1, . . . , Cn} be the set
of all distinct connected components of the graphs in F ; each of these com-
ponents is a core ∆-tree.

A subset M ⊆ Fc is a quasitransversal if it satisfies

(T1) M is an antichain, i.e. for every C 6= C ′ ∈ M we have C ‖ C ′, and

(T2) M supports F , i.e. for every F ∈ F there exists C ∈ M such that
C → F .
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For two quasitransversals M , M ′ we define M � M ′ if and only if for
every C ′ ∈ M ′ there exists C ∈ M such that C → C ′. Note that this order
is different from the homomorphism order of forests corresponding to the
quasitransversals. On the other hand, we have:

Lemma 6. Let M , M ′ be two quasitransversals. Then D(M) → D(M ′) if
and only if M � M ′

Lemma 7. The relation � is a partial order on the set of all quasitransver-
sals.

A quasitransversal M is a transversal if

(T3) M is a maximal quasitransversal in �.

Set D = D(F) = {D(M) : M is a transversal}.
We have:

Theorem 8. The pair (F ,D) is a generalised duality.

Before outlining the proof, we give three of examples.

Example. First, let F = {T1, T2, . . . , Tn} be a set of pairwise incomparable
trees and D1, D2, . . . , Dn their respective duals. By (T2), every transversal
contains all these trees. Therefore there exists only one transversal M =
{T1, T2, . . . , Tn} and D = {D1 × D2 × . . . × Dn}. This situation shows how
the finitary duality is a special case of the generalised duality.

Now, let T1, T2, T3 and T4 be pairwise incomparable trees with duals D1,
D2, D3, D4. Let F = {T1 + T2, T1 + T3, T4}. Then we have two transversals
{T1, T4} and {T2, T3, T4}; and D = {D1 × D4, D2 × D3 × D4}.

Finally, let T1 → T3 and F = {T1 + T2, T3 + T4}. The transversals are
{T1}, {T2, T3} and {T2, T4}. Hence D = {D1, D2 × D3, D2 × D4}.

Proof of Theorem 8. Let X be a ∆-structure such that X → D for some
D ∈ D. We want to prove that Fi 9 X for i = 1, . . . ,m. For contradiction,
assume that Fi → X for some i. Let M be the transversal for which D(M) =
D. By (T2), there exists C ∈ M such that C → Fi → X, therefore X 9
D(C). That is a contradiction with the assumption that X → D → D(C).

Now, let X be a ∆-structure such that Fi 9 X for i = 1, . . . ,m. We
want to prove that there exists D ∈ D such that X → D. Let Cji

be a com-
ponent of Fi such that Cji

9 X for i = 1, . . . ,m. Let M ′ = min→{Cji
: i =

1, . . . ,m}; by min→ S we mean the set of all elements of S that are minimal
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with respect to the homomorphism order →. Because M ′ is a quasitransver-
sal, there exists a transversal M such that M ′ � M . We have that C 9 X

for each C ∈ M , and therefore X → D(M) ∈ D.

2.2 The Characterisation

We will now prove that all generalised dualities are of the above form.

Theorem 9. If (F ,D) is a generalised duality, then all elements of F are
forests and D = D(F); in particular, D is uniquely determined by F .

Proof. The proof consists of five steps. Suppose that F = {A1, A2, . . . , Am}
and D = {D1, D2, . . . , Dp}. Consistently with the above notation, let Fc =
{C1, C2, . . . , Cn} be the set of all distinct connected components of the struc-
tures in F . Quasitransversals and transversals are defined in the same way
as above; we note that neither for the definition nor for proving Lemma 7 do
we need the fact that the elements of Fc are trees.

For a quasitransversal M , let M = {C ′ ∈ Fc : C ∈ M ⇒ C 9 C ′}.

Fact 1. If M ⊆ Fc is a transversal, then there exists a unique ∆-struc-
ture D ∈ D that satisfies

1. C 9 D for every C ∈ M ,

2. C ′ → D for every C ′ ∈ M .

Proof. If M = ∅, let D ∈ D be arbitrary. Otherwise set S =
∑

C′∈M C ′.
Because (F ,D) is a generalised duality, either there exists F ∈ F such that
F → S or there exists D ∈ D such that S → D. If F → S, by (T2) there
exists C ∈ M satisfying C → F → S, and since C is connected, C → C ′ for
some C ′ ∈ M , which is a contradiction with the definition of M . Therefore
there exists D ∈ D that satisfies S → D. It can be checked that such D

satisfies both (1) and (2) and that such a graph must be unique.

For a transversal M , the unique D ∈ D satisfying the conditions (1) and
(2) above is denoted by d(M).

Fact 2. D = {d(M) : M is a transversal}.
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Proof. Let D ∈ D. We want to show that D = d(M) for a transversal M . Let
M ′ = min→{C ′ ∈ Fc : C ′ 9 D} be the set of all C(∆)-minimal components
that are not homomorphic to D. The set M ′ is a quasitransversal: if some
F ∈ F is not supported by M ′, then all its components are homomorphic
to D, and also F → D, a contradiction.

Let M be a transversal such that M ′ � M . To prove that D = d(M),
it suffices (by the uniqueness part of Fact 1) to check conditions (1) and
(2).

Fact 3. For two distinct transversals M1, M2, we have (a) M1∩M2 6= ∅, (b)

d(M1) 6= d(M2).

Proof.
(a) By (T3), M1 � M2, so there exists C2 ∈ M2 such that C1 9 C2 for

any C1 ∈ M1. Obviously C2 ∈ M1 \ M2 ⊆ M1. Since we chose C2 ∈ M2, we
have C2 ∈ M1 ∩ M2.

(b) Let C2 ∈ M1∩M2, as above. Then C2 → d(M1) and C2 9 d(M2).

Fact 4. If M is a transversal, then the pair (M, {d(M)}) is a finitary ho-
momorphism duality, and consequently d(M) = D(M).

Proof. We can prove that for a ∆-structure G, the following statements are
equivalent:

(1) G ∈
⋂

C∈M(C 9)
(2) C 9 G for any C ∈ M

(3) C 9 G +
∑

Č∈M Č for any C ∈ M

(4) G +
∑

Č∈M Č → d(M)
(5) G → d(M)
(6) G ∈ (→ d(M))
The equivalence (1) ⇔ (6) is precisely the definition of finitary duality.

Fact 5. Each component C ∈ Fc is a tree.

For the proof, we use the following

Theorem 10 ([12]). Let A and C be relational structures such that A <

C, and C is a connected structure that is not a tree. Then there exists a
structure X such that A < X < C.
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Proof of Fact 5. Using Theorem 10, it can be proved that if some component
C ∈ Fc is not a tree, then there exists a digraph X such that X < C and X

is homomorphic to exactly the same elements of Fc as C, and moreover for
any C ′ ∈ Fc, C ′ 6= C, we have C ′ → C if and only if C ′ → X. Then if G

is created by replacing C with X in some F ∈ F , the graph G violates the
definition of generalised duality (no F ∈ F is homomorphic to G and G is
homomorphic to no D ∈ D).

We finish the proof of Theorem 9. All elements of F are forests by virtue
of Fact 4, Fact 5 and Theorem 3. The set D is uniquely determined as a
consequence of Fact 2 and due to Fact 4 and Theorem 3 it is determined by
the transversal construction.

3 Finite Maximal Antichains

First, we discuss when a generalised duality forms a maximal antichain; pre-
cisely, for what families F of incomparable forests is Q = F∪D(F) a maximal
antichain in the homomorphism order of ∆-structures.

Obviously, if a generalised duality forms an antichain, then it is maximal.
It is also evident that F 9 D for any F ∈ F , D ∈ D. So, a generalised
duality does not form an antichain if and only if there exist D ∈ D and
F ∈ F such that D → F .

Let P1 = ({1, 2}, {(1, 2)}) be the ∆-structure consisting of a single edge
(the path of length 1). If P1 ∈ Fc, then obviously F = {P1} and D = {0}.
So for the rest, we can assume that P1 6∈ Fc.

Let P2 = ({1, 2, 3}, {(1, 2), (2, 3)} be the directed path of length 2.

Lemma 11. Let F be a set of pairwise incomparable core ∆-forests. Then
F∪D(F) is not an antichain if and only if F = {0}, F = {P1}, or F = {P2}.

Proof. We have just observed that if F ∪ D(F) is not an antichain, there
exist D ∈ D and F ∈ F such that D → F . Fix such F and D.

Let A be a ∆-structure. If there exists a ∆-tree T such that A → T , we
say that A is balanced. It is easy to see that A is balanced if and only if it is
homomorphic to a ∆-forest.

Since F is a ∆-forest, we have that D is balanced. Moreover, by Theo-
rem 9, D = D(M) for a transversal M ⊆ Fc.
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Let Zs be the orientation of a cycle of length 2s + 1 such that Zs does
not contain a directed path of length 3. Since Zs is not balanced, Zs 9
D = D(M); therefore (by the definition of finitary duality) for every positive
integer s there exists C ∈ M such that C → Zs. Hence there exists some
C ∈ Zs such that |V (C)| > 2s + 1. Since any proper subgraph of Zs is
homomorphic to P2, we get that C → P2. This finishes the proof as the
other implication is evident.

We have now observed that only three generalised dualities that are not
antichains exist: (∅, {1}), ({P1}, {0}) and ({P2}, {P1}). Let us now consider
the question when a maximal antichain is not a generalised duality.

Observe that a finite maximal antichain Q is formed from a generalised
duality if and only if there exist disjoint sets F , D such that Q = F ∪ D
and for an arbitrary ∆-structure X there exists F ∈ F such that F → X or
there exists D ∈ D such that X → D.

Lemma 12. Let Q be a finite maximal antichain in the homomorphism order
of digraphs. Then the following are equivalent:

1. Q is not formed from a generalised duality, i.e. whenever Q = F ∪ D,
the pair (F ,D) is not a generalised duality,

2. Q is one of the sets {0}, {P1}, or {P2}.

Proof. All the sets {0}, {P1}, {P2} are obviously finite maximal antichains
not formed from a generalised duality.

The other implication is proved by splitting Q into F and D in a suitable
way, which allows us to show that all elements of F are balanced. But since
(F ,D) is not a generalised duality, we can use an argument similar to the
above proof to show that F is one of the sets {0}, {P1}, or {P2}.

Thus we come to the astonishing correspondence between generalised
dualities and maximal antichains. This solves a problem posed in [13], where
maximal antichains of size 2 were characterised.

Theorem 13. The correspondence

(F ,D) 7→ Q = F ∪ {D ∈ D : D 9 F for any F ∈ F}

is a one-to-one correspondence between generalised dualities and finite max-
imal antichains in the homomorphism order of directed graphs.

Proof. Follows immediately from Theorems 4 and Lemmas 11 and 12.
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4 Extensions

4.1 MAC Decidability

We are interested in the following decision problem, called the MAC decision
problem: given a finite nonempty set Q of ∆-structures, decide whether Q
is a maximal antichain. The results of the previous section allow us to state
the following result.

Theorem 14. The MAC decision problem is decidable. Moreover, it is NP-
hard.

Another consequence of Theorem 13 is the following.

Theorem 15. Let Q be a finite maximal antichain in C. An element of Q
that is comparable with an input structure A can be found in polynomial time.

4.2 Duality Decidability

Using a recent result of [9], we can deduce that it is decidable whether for a
set H of ∆-structures there exists a set F of ∆-structures such that (F ,H)
is a generalised duality.

It is easy to see that H is the right-hand side of a generalised duality
if and only if each structure in H is a finitary dual and they are pairwise
incomparable. The former is decidable (and even in NP) due to [9], the
latter is obviously in NP. It also follows from [9] that in general, the problem
is NP-complete.

4.3 GCSP Dichotomy

As an analogy to CSP, we define GCSP, the generalised constraint satisfaction
problem, as the following: given a finite set H of ∆-structures, decide for an
input ∆-structure G whether there exists H ∈ H such that G → H.

Note that if (F ,D) is a generalised duality, then GCSP(D) is polynomially
solvable.

As in Conjecture 1, one could ask whether there is a dichotomy for GCSP.
However, this problem is not very captivating, as the positive answer to the
dichotomy conjecture for CSP would imply a positive answer here as well:
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Theorem 16. Let H be a finite nonempty set of pairwise incomparable ∆-
structures.

1. If CSP(H) is tractable for all H ∈ H, then GCSP(H) is tractable.

2. If CSP(H) is NP-complete for some H ∈ H, then GCSP(H) is NP-
complete.

Thus from the complexity (and dichotomy) point of view, generalised CSP
is equivalent to CSP. But their first-order definability is another matter: it
is both interesting and more involved.

4.4 First-order Definable GCSP

We remark that GCSP(H) is first-order definable if and only if there exists
a set F such that (F ,H) is a generalised duality. This result is an extension
of a similar theorem for CSP contained in [1], and its proof follows the same
way.

5 Summary and Concluding Remarks

In Sect. 2, we characterised all the generalised dualities (F ,D) in the category
of directed graphs: the set D such that (F ,D) is a generalised duality exists
if and only if F is a finite family of forests; if this is the case, D is determined
uniquely (up to homomorphic equivalence).

In Sect. 3 we described all finite maximal antichains in the homomorphism
orderof directed graphs. They all appear to be formed from generalised
dualities by taking all maximal elements of F ∪ D.

We mention here that the result on generalised dualities extends to the
fully general setting of relational structures with relations of arbitrary arity.
Similarly, Theorem 13 can be generalised for relational structures with one
relation of arbitrary arity. The maximal antichains which are not of the form
F ∪ D for a generalised duality (F ,D) are {0}, {P1} and S, where S is the
set of all core trees with two edges. Both these results will appear in the full
version of this paper.

Let us note that the characterisation of finite maximal antichains is hard
and interesting for infinite graphs. It has been proved in [11] that for every
countable infinite graph G, G not equivalent to K1, K2, Kω, there exists
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a graph H incomparable with G. There are also infinitely many maximal
antichains, however, as pointed out in [11], all maximal antichains seem to
contain a finite graph.

We believe that the interplay of order theoretic notions (such as maximal
antichain) and descriptive complexity notions (such as generalised duality
and first order definability) leads to further insight into the structure of
CSP. For example, the duality theorems present a rich supply of non-trivial
CSP problems, for which polynomial algorithms exist.
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[14] J. Nešetřil and X. Zhu. Path homomorphisms. Math. Proc. Cambridge
Philos. Soc., 120:207–220, 1996.

[15] E. Welzl. Color families are dense. Theoret. Comput. Sci., 17:29–41,
1982.

13


