
On Recognizing Graphs by Numbers of

Homomorphisms
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Abstract

Let Hom(G,H) be the number of homomorphisms from a graph
G to a graph H. A well-known result of Lovász states that the func-
tion Hom(.,H) from all graphs uniquely determines the graph H upto
isomorphism. We study this function restricted to smaller classes of
graphs. We show that several natural classes (2-degenerated graphs
and non-bipartite graphs with bounded chromatic number) are suffi-
cient to recognize all graphs, and provide description of graph prop-
erties that are recognizable by other classes (graphs with bounded
tree-width and clique-width).

We consider simple undirected graphs without loops and multiple edges,
unless specified otherwise. Let A be the class of all such graphs. Let
Hom(G, H) be the number of homomorphisms from a graph G to a graph
H . Sometimes we use the empty graph Z (without any vertices and edges).
For each H , Hom(Z, H) = 1. Let G≤H be the class of graphs G that have a
homomorphism to H , i.e., such that Hom(G, H) > 0.

Lovász [1] has proved that the function Hom(., H) uniquely determines
the graph H upto isomorphism, i.e., that if we know the number of isomor-
phisms from each graph in A to H , we can uniquely reconstruct the graph
H . In fact, the proof of this statement implies that knowledge of Hom(., H)
from all graphs on at most |V (H)| vertices is sufficient. We are interested in
what graphs and graph properties can be recognized using smaller classes of
graphs (independent on H).

1Supported as project 1M0545 by the Czech Ministry of Education
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We say that a class of graphs G distinguishes non-isomorphic graphs H1

and H2, if there exists a graph G ∈ G such that Hom(G, H1) 6= Hom(G, H2).
We say that a class of graphs G determines a graph property P , if G dis-
tinguishes all pairs of graphs H1 and H2 such that H1 has the property
P and H2 does not. In other words, the function Hom(., H) restricted
to G determines whether H has the property P or not. For example, the
Lovász’s result [1] shows that the class A distinguishes all pairs of non-
isomorphic graphs. We inverstigate whether smaller classes of graphs (e.g.,
graphs with bounded tree-width, chromatic number, etc.) are sufficient to
distinguish all graphs. We call such classes distinguishing. Fisk [6] studied
a related problem—he considered G to distinguish between H1 and H2 if
Hom(H1, G) 6= Hom(H2, G). In that setting, A is still distinguishing; how-
ever, the choice of suitable smaller classes is more restricted, since the chro-
matic number of graphs in such a distinguishing class must be unbounded.

A simple demonstration of the concepts is the following observation:

Observation 1 For each H, the class G≤H distinguishes all pairs of non-
isomorphic graphs in G≤H .

Proof. Let H1, H2 ∈ G≤H be the graphs we want to distinguish. Let G be an
arbitrary graph. If G ∈ G≤H , we know both Hom(G, H1) and Hom(G, H2).
On the other hand, if G 6∈ G≤H , then Hom(G, H1) = Hom(G, H2) = 0.
Therefore, we know the functions Hom(., H1) and Hom(., H2) completely,
and we are able to determine whether H1 and H2 are isomorphic by the
result of Lovász [1]. �

Note however that G≤H does not necessarily determine whether a graph
belongs to G≤H or not. For example C6 and 2K3 cannot be distinguished
using only bipartite graphs, as we will show in Section 5.

We use the ideas of [2] intensively, and we also use a similar notation. The
set {1, 2, . . . , k} is denoted by [k]. A k-labeled graph is a graph G together
with a partial function f : [k] → V (G), i.e., we assign labels between 1 and
k (but not necessarily all of them) to some (not necessarily distinct) vertices
of G. The set of labels of G is the set of i such that f(i) is defined. For a
k-labeled graph G, let base(G) be the same graph without labels. Suppose G

and H are k-labeled graphs such that the set of labels of H is a superset of the
set of labels of G. We define Hom(G, H) as the number of homomorphisms
from G to H that also preserve the labels, i.e., the vertex of G with label i

is mapped to the vertex of H with the same label i.
A (k-labeled) quantum graph is a formal linear combination with real co-

efficients of (k-labeled) graphs. We extend the functions Hom(., H) linearly
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to quantum graphs. Note that if there exists a linear combinations of graphs
from class G that distinguish two graphs H1 and H2, then there also exists a
graph in G that distinguishes them. Indeed, at least one of the graphs whose
coefficient in the linear combination is nonzero must distinguish H1 from H2.

A product G1G2 of two k-labeled graphs is a graph constructed by taking
a disjoint union of G1 and G2, identifying the vertices with the same label,
and suppressing the parallel edges that might be created. Note that G1G2

may contain loops. The sets of labels of G1 and G2 do not have to be
the same, in particular, if they are disjoint, the product of G1 and G2 is
just their disjoint union. For quantum graphs G1 =

∑

i α1,iG1,i and G2 =
∑

i α2,iG2,i, we define G1G2 as
∑

i,j α1,iα2,jG1,iG2,j. In this case, we remove
the graphs with loops from this linear combination – this operation preserves
the value of Hom(., H) for each loop-less graph H . If G1 and G2 are two
labeled (quantum) graphs, then Hom(G1G2, H) = Hom(G1, H)Hom(G2, H)
for each H . We write Gk for product of k copies of a graph G.

1 Complexity remarks

An important open question of the complexity theory is whether the graph
non-isomorphism problem is in NP. The fact that A distinguishes all non-
isomorphic graphs “almost” gives answer to this question. If H1 and H2

are non-isomorphic, then there exists a proof that they are non-isomorphic
(the graph G such that Hom(G, H1) 6= Hom(G, H2)). This proof has a
polynomial size (it has at most as many vertices as H1 and H2 do). The
only problem is that deciding whether Hom(G, H1) = Hom(G, H2) is NP-
hard (with G, H1 and H2 in the input, and even for most fixed pairs of
graphs H1 and H2), and thus it is not likely that we would be able to find a
polynomial-time algorithm to verify this proof.

However, for some classes of graphs G (e.g., graphs with bounded tree-
width), it is possible to determine Hom(G, H) in polynomial time for each
G ∈ G. We might thus hope that all graphs can be distinguished by some
such G, which (assuming that the graph in G distinguishing H1 and H2 would
have polynomial size) would prove that graph non-isomorphism is in NP.

Of course, this turned out not to be the case. The classes of graphs
we studied for that the number of homomorphisms can be determined in
polynomial time (graphs with bounded tree-width) do not distinguish all
non-isomorphic graphs, as we show in the following section. In fact, in the
cases we have studied, such a polynomial time algorithm is the base of the
proof that the class is not distinguishing.
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2 Graphs with Bounded Tree-Width

A graph G has tree-width at most k if there exists a tree T whose vertices
are subsets of G of size at most k + 1, satisfying the following conditions:

• each edge e of G is a subset of a vertex of T , and

• vertices of T that contain a vertex v of G induce a connected subgraph
in T .

In particular, graphs with tree-width at most 1 are forests. Let us state
an equivalent definition that is more suitable for our purposes, and that also
extends to labeled graphs. A (k +1)-labeled graph G has tree-width at most
k if G is an arbitrary graph such that each of the vertices of G has at least
one label (thus G has at most k + 1 vertices), or if G can be obtained by a
finite sequence of the following operations:

• If G1 and G2 are (k +1)-labeled graph with tree-width at most k, then
G1G2 has tree-width at most k as well.

• If G is a (k + 1)-labeled graph with tree-width at most k, then a graph
obtained by removing the labels from some of the vertices of G has
tree-width at most k as well.

It is easy to see that trees (or forests) are not sufficient to distinguish all
graphs – any two d-regular graphs on the same number of vertices have
the matching numbers of homomorphisms from all trees. Similarly, two
strongly regular graphs with the same parameters cannot be distinguished us-
ing graphs with tree-width at most two. It might seem that we could proceed
in a similar manner with the other classes of graphs with bounded tree-width
by simply strengthening the constraints on the regularity of the graphs that
cannot be recognized; however, for graphs of tree-width at least 5, the only
sufficiently regular graphs are unions of complete graphs of the same size,
their complements, C5 and the line graph of K3,3 (proved by Cameron [4]
and independently by Gol’fand [5]). We need a more precise characterization
of the graphs that cannot be distinguished by graphs with small tree-width.
Let us start with a few definitions.

A degree refinement of a graph H is coloring of vertices of H by k distinct
vectors wi = (ni

1, n
i
2, . . . , n

i
k) such that for each 1 ≤ i, j ≤ k, a vertex with

color wi has exactly ni
j neighbors with color wj, and k is the smallest possible.

The degree refinement of a graph is unique up to permutation of colors. It is
often used in algorithms for determining isomorphism of graphs, since there
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is a polynomial time algorithm that determines the degree refinement in
a canonical form that enables to recognize two graphs with different degree
refinements. Also, an isomorphism of graphs H1 and H2 must preserve colors
of the canonical degree refinement.

The concept of the degree refinement can be extended to the classification
of k-tuples of vertices, see e.g. [3]. We call this a k-degree refinement.
The main result of this section states that two graphs are distinguished by
graphs with tree-width at most k if and only if their k-degree refinements
are different. We use the following reformulation that is easier to work with.

A k-variable first order formula with counting is a formula ϕ built in the
usual way from variables x1, . . . , xk (that stand for vertices), the relations
symbols = and E (adjacency), logical connectives ∧, ∨ and ¬, and quanti-
fiers ∃, ∀, and ∃t. Note that the variables may be “reused”, e.g., formula
(∀x1) (∃x2)

(

E(x1, x2) ∧ (∃x1) (x1 6= x2 ∧ ¬E(x1, x2))
)

says that each vertex
has a neighbor that is not universal. The set of all such formulas is denoted
by Ck. A variable is free in ϕ if it has a non-quantified occurrence in ϕ. A
formula is called closed if it has no free variables. The semantics is defined
as follows. Let H be a k-labeled graph such that all labels of free variables
of ϕ are present in H . We write H |= ϕ if

• ϕ is xi = xj and the labels i and j are on the same vertex in H .

• ϕ is E(xi, xj) and the labels i and j are on adjacent vertices in H .

• ϕ is ϕ1 ∧ ϕ2, and H |= ϕ1 and H |= ϕ2.

• ϕ is ϕ1 ∨ ϕ2, and H |= ϕ1 or H |= ϕ2.

• ϕ is ¬ϕ1, and H 6|= ϕ1.

• ϕ is (∃xi) ϕ1, and there exists a vertex v of H such that if H1 is obtained
from H by moving label i to v, then H1 |= ϕ1.

• ϕ is (∀xi) ϕ1, and for each vertex v of H , if H1 is obtained from H by
moving label i to v, then H1 |= ϕ1.

• ϕ is (∃t)xi ϕ1, and there exists at least t vertices v of H such that if H1

is obtained from H by moving label i to v, then H1 |= ϕ1.

We also use ∃!t to mean that there are exactly t vertices with the property,
i.e., (∃!txi) ϕ is a shorthand for (∃txi) ϕ ∧ ¬(∃t+1xi) ϕ. Informally, a formula
in Ck describes a property that can be determined only by working with
k-tuples of vertices of H . The following theorem was proved in [3]:
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Theorem 2 Two graphs H1 and H2 have the same k-degree refinement if
and only if for each closed formula ϕ ∈ Ck+1, H1 |= ϕ iff H2 |= ϕ.

Let us start with the following lemma that basically states that number
of homomorphisms from a graph with bounded tree-width can be described
by a formula with a few variables.

Lemma 3 If G is a k + 1-labeled graph of tree-width at most k, and m is a
non-negative integer, then there exists a formula ϕ ∈ Ck+1 such that for each
k + 1-labeled graph H whose set of labels is superset of the set of labels of G,
H |= ϕ if and only if Hom(G, H) = m.

Proof. We proceed inductively by the recursive construction of G. The basic
case is that G is a graph such that each vertex of G has a label. The set of
labels of H must be a superset of the set of labels of G, so that Hom(G, H)
is defined. If m > 1, then ϕ is false. If m = 1, then the formula ϕ is just
a conjunction of terms E(xi, xj) for each two labels i and j of G such that
the corresponding vertices are adjacent in G and xi = xj for each two labels
i and j that appear on the same vertex in G. If m = 0, then ϕ is negation
of this conjunction.

Suppose now that G is obtained from G′ by removing a label i. Let ϕn be
a formula such that H ′ |= ϕn iff Hom(G′, H ′) = n for each H ′ that satisfies
assumptions of this lemma. If m > 0, then let m =

∑

i cimi be a decompo-
sition of m such that the numbers ci are positive integers and the numbers
mi are distinct positive integers, and set c =

∑

i ci. For this decomposition
we construct a formula (∃!cxi)¬ϕ0 ∧

∧

i(∃!ci
xi) ϕmi

. The formula ϕ is a dis-
junction of such sub-formulas for all possible decompositions of m. In case
m = 0, we let ϕ = (∀xi) ϕ0.

Finally, suppose that G=G1G2, hence

Hom(G, H) = Hom(G1, H)Hom(G2, H).

Let ϕi
n be the formula such that H |= ϕi

n iff Hom(Gi, H) = n. If m 6= 0, then
the formula ϕ is a disjunction of terms ϕ1

m1
∧ ϕ2

m2
for each pair of positive

integers m1 and m2 such that m = m1m2. If m = 0, then ϕ = ϕ1
0 ∨ ϕ2

0. �

We now want to prove that we can simulate formulas with few variables
by number of homomorphisms from a graph with bounded tree-width. We
first need the following observation (made for series-parallel graphs in [2],
Claim 4.1).
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Observation 4 Let G be a k + 1-labeled quantum graph of tree-width at
most k. If X0 and X1 are disjoint finite sets of real numbers, then there
exists a k + 1-labeled quantum graph G[X0, X1] of tree-width at most k such
that for each H, if Hom(G, H) ∈ X0 then Hom(G[X0, X1], H) = 0 and if
Hom(G, H) ∈ X1 then Hom(G[X0, X1], H) = 1.

Proof. Let S be the set of labels of G. Let p(x) =
∑k

i=0 aix
i be a polynomial

such that p(x) = 0 for x ∈ X0 and p(x) = 1 for x ∈ X1. We set G[X0, X1] =
∑k

i=0 aiG
i, where G0 is the edge-less graph on |S| vertices, with vertices

labeled with elements of S. �

We say that a (labeled) quantum graph G models ϕ for graphs of size n if
the labels of G correspond to the free variables of ϕ, and for each graph H on
n vertices, if H |=ϕ then Hom(G, H)=1 and if H 6|=ϕ then Hom(G, H)=0.

Lemma 5 For each formula ϕ ∈ Ck+1 and for each positive integer n, there
exists a quantum graph G of tree-width at most k such that G models ϕ for
graphs of size n.

Proof. Let us proceed inductively by the structure of ϕ. If ϕ = (xi = xj),
then we let G be a graph with a single vertex with labels i and j. If ϕ =
E(xi, xj) and i 6= j, then we set G = K2 with one vertex with label i and the
other one j. If i = j, we let G = 0, since H is loop-less and this predicate
can never be satisfied.

If ϕ = ϕ1 ∧ ϕ2, G1 models ϕ1 and G2 models ϕ2, then G1G2 models ϕ.
Similarly, (G1+G2)[{0}, {1, 2}] models ϕ1∨ϕ2, and G1[{1}, {0}] models ¬ϕ1.

If ϕ = (∃xi) ϕ1, and G1 models ϕ1, then let G′
1 be the graph G1 without

the label i. The graph G′
1[{0}, {1, 2, . . . , n}] models ϕ. Similarly, G′

1[{0, 1, . . . ,
t−1}, {t, t+1, . . . , n}] models (∃txi) ϕ1 and G′

1[{0, 1, . . . , n−1}, {n}] models
(∀xi) ϕ1. �

Now we can state the main result of this section:

Theorem 6 The following two conditions are equivalent:

1. There exists a closed formula ϕ ∈ Ck+1 such that H1 |= ϕ and H2 6|= ϕ.

2. There exists a graph G of tree-width at most k such that Hom(G, H1) 6=
Hom(G, H2).

7



Proof. Let us first prove (1) =⇒ (2). If |V (H1)| 6= |V (H2)|, then G = K1.
Otherwise, if n = |V (H1)| = |V (H2)|, then let G′ be a quantum graph that
models ϕ for graphs of size n. That means that Hom(G′, H1) = 1 and
Hom(G′, H2) = 0. Therefore, there exists a graph G in the formal linear
combination that defines G′ such that Hom(G, H1) 6= Hom(G, H2).

Now let us prove that (2) =⇒ (1). By Lemma 3, there exists a formula
ϕ ∈ Ck+1 such that H |= ϕ if and only if Hom(G, H) = Hom(G, H1). Thus,
H1 |= ϕ and H2 6|= ϕ. �

Cai et al.[3] have proved that for each k, there exists non-isomorphic
graphs H1 and H2 such that for each ϕ ∈ Ck+1, H1 |= ϕ if and only if
H2 |= ϕ. These graphs thus cannot be distinguished using only graphs of
tree-width at most k.

3 Graphs with Bounded Clique-Width

Clique-width is another width parameter of graphs, in some sense stronger
than tree-width (a graph with bounded tree-width has also a bounded clique-
width). We show that concerning recognition of graphs, graphs with bounded
clique-width are not significantly more powerful than graphs with bounded
tree-width.

The clique-width is defined via a construction that manipulates labels of
vertices. In order to avoid confusion with the labels that we defined in the
previous section, we call the labels used during construction of a graph with
bounded clique-width marks. Unlike labels, each vertex has precisely one
mark, and several vertices may have the same mark.

Definition 1 A graph G in that each vertex has a mark in [k] has clique-
width at most k if G is a single vertex, or if G can be obtained by a finite
sequence of the following operations:

• If marked graphs G1 and G2 have clique-width at most k, then their
disjoint union also has clique-width at most k.

• If a marked graph G′ has clique-width at most k, and i, j ∈ [k], then the
graph obtained from G′ by changing all marks i to j has clique-width at
most k.

• If a marked graph G′ has clique-width at most k, and i 6= j ∈ [k], and
G′′ is the graph obtained from G′ by adding all edges {u, v} (that are
not already present in G′) such that mark of u is i and mark of v is j,
then G′′ has clique-width at most k.
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For example, graphs of clique-width 1 are exactly the disjoint unions of
cliques, and complete bipartite graphs have clique-width 2. Similarly as for
the tree-width, there are many problems that are NP-complete in general,
but become polynomial when restricted to graphs with bounded clique-width.
In particular, determining the chromatic number for graphs with bounded
clique-width is polynomial. But it is hard to determine Hom(G, H) even if
G is a graph with clique-width one (since determining the size of maximal
clique in a graph H is NP-complete). If we restrict H to be triangle-free,
this argument fails. Still, determining the size of the maximal bipartite
clique in a bipartite graph H is NP-complete, which shows that determining
Hom(G, H) remains hard even if H is bipartite and the clique-width of G is
at most two. However, if we restrict our attention to the case when H has
girth at least five, the number can be determined in polynomial time. To
simplify the argumentation a bit, we state the following equivalent definition
of a graph with bounded clique-width.

Definition 2 A graph G in that each vertex has a mark (not necessarily in
[k]) has has clique-width at most k if G is a single vertex, or if G can be
obtained by a finite sequence of the following operations:

• If marked graphs G1 and G2 have clique-width at most k and their sets
of marks are disjoint, then their disjoint union also has clique-width at
most k.

• If a marked graph G′ has clique-width at most k, and i and j are marks,
then the graph obtained from G′ by changing all marks i to j has clique-
width at most k.

• If a marked graph G′ has clique-width at most k, all its marks belong
to [k], i 6= j ∈ [k], and G′′ is the graph obtained from G′ by adding all
edges {u, v} such that mark of u is i and mark of v is j, then G′′ has
clique-width at most k.

Given a construction of a graph according to Definition 1, we obtain a
construction according to Definition 2 by changing marks of G2 from i to
k + i before each disjoint union operation and by changing them back after
it. Thus we need only marks in [2k], and the new construction will be longer
by at most 2k|V (G)| operations.

Theorem 7 If H is a graph with girth at least 5 and G is a graph of clique-
width at most k, then Hom(G, H) can be determined in time O(|H|2k|G|k2),
assuming that the construction of G that witnesses its clique-width is given.
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Proof. If we add edges between vertices with marks i and j during the
construction of G, we force the subgraph induced by them to map to a
complete bipartite subgraph of H . Since the girth of H is at least five, this
subgraph must be a star, and thus vertices with marks i or j must map to a
single vertex x, while the ones with the other mark map to neighbors of x.
Given a graph G′ of clique-width at most k and a homomorphism f from G′

to H , we let the signature s of this homomorphism be a function that assigns
the following values to the marks:

• If there is no vertex with mark i in G, then s(i) = ∅.

• If f maps all vertices with mark i to a single vertex x, then s(i) = (=, x).

• If f does not map vertices with mark i to a single vertex, but maps
them to to neighbors of a single vertex x, then s(i) = (E, x). Note that
x is determined uniquely, because of the girth of H .

• Otherwise, s(i) = ?.

Throughout the construction of G (according to Definition 2, using marks
in [2k]), we count the number of homomorphisms to H for each possible sig-
nature. The total number of homomorphisms is then determined by summing
the numbers over all signatures. Determining these numbers for graphs with
a single vertex is trivial. Let us consider the operations by that G is con-
structed:

• If G is a disjoint union of G1 and G2, then we go through all signatures
s for G. Let s1 be the signature for G1 such that s1(i) = s(i) for marks
used in G1 and s1(i) = ∅ otherwise, and let s2 be the signature for G2

obtained in the same way. Suppose that there are n1 homomorphisms
from G1 to H with signature s1, and n2 homomorphisms from G2 with
signature s2. The number of homomorphism from G1 ∪ G2 to H with
signature s is n1n2.

• If G is obtained from G′ by changing marks i to j, then the set of
homomorphisms does not change. If a homomorphism from G′ to H

used to have signature s′, it has the signature s obtained in the following
way after the change: s(t) = s′(t) for t 6= i, j, s(i) = ∅, and

s(j) = s′(j) if s′(i) = ∅, or s′(i) = s′(j), or s′(j) = (E, x) and s′(i) =
(=, y) and x and y are adjacent,

s(j) = s′(i) if s′(j) = ∅, or s′(j) = (=, x) and s′(i) = (E, y) and x and
y are adjacent,

10



s(j) = (E, x) if s′(i) = (=, y) and s′(j) = (=, z) and y and z (y 6= z)
are neighbors of x,

s(j) = ? otherwise.

Thus it suffices to go over the signatures s′ and add the numbers of
homomorphisms to the signatures s obtained in this way.

• Suppose that G is obtained from G′ by adding edges between vertices
with marks i and j. If there are no vertices with marks i or j, this does
not change the graph and does not affect numbers of homomorphisms.
Otherwise, we need to set to zero the numbers of homomorphisms for
all signatures except for those with s(i) = (=, x) and s(j) = (E, x) for
some x, or s(i) = (E, x) and s(j) = (=, x) for some x, or s(i) = (=, x)
and s(j) = (=, y) for some adjacent vertices x and y.

If S is the number of possible signatures, then each of the operations can
be performed in time O(kS). Since the number of signatures S is at most
O(|H|2k), the time complexity of determining the number of homomorphisms
is at most O(k|H|2kt), where t is number of the operations during the con-
struction of G. We can assume that t ≤ k|G|, thus the time complexity is
O(k2|H|2k|G|). �

This algorithm is also a basis for the following result. A partial signature
p is a function that assign to each mark (from [2k]) one of the symbols ∅, =,
E or ?. Given a 2k-labeled graph H , a completion of the partial signature p

is the signature p such that if p(i) = ∅ or p(i) = ?, then p(i) = p(i), otherwise
p(i) = (p(i), x), where x is the vertex of H with label x.

Lemma 8 If G is a graph of clique-width at most k, p a partial signature
and n is a positive integer, then there exists a formula ϕ ∈ C2k+2 such that
for each 2k-labeled graph H of girth at least 5, H |= ϕ iff the number of
homomorphisms from G to H with signature p is exactly n.

Proof. The operations described in the proof of Theorem 7 only need the
knowledge of neighborhoods of the vertices selected by each signature, and
thus they can be emulated using the formulas in that xi stands for the vertex
selected by the signature for vertices with mark i. The additional variables
x2k+1 and x2k+2 are needed to express facts of type “xi has two distinct
neighbors x2k+1 and x2k+2 such that the number of homomorphisms from
G1 with signatures s1 such that s1(i) = (=, x2k+1) is n1 and the number of
homomorphisms from G2 with signatures s2 such that s2(i) = (=, x2k+2) is
n2.” that are needed to emulate changing marks. �
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Theorem 9 Suppose that H1 and H2 are graphs of girth at least 5, such that
for each closed formula ϕ ∈ C2k+2, H1 |= ϕ if and only if H2 |= ϕ. The graphs
H1 and H2 cannot be distinguished using graphs of clique-width at most k.

Proof. Suppose that G is a graph of clique-width at most k such that
Hom(G, H1) 6= Hom(G, H2). We may assume that all vertices of G have
mark 1. G must contain at least one edge, thus it can map neither to a
single vertex nor to a neighborhood of a single vertex in H1 or H2. Thus
Hom(G, Hi) (for i = 1, 2) is equal to the number of homomorphisms from G

to Hi with (partial) signature s(1) = ?, s(t) = ∅ for t > 1. This contradicts
Lemma 8. �

Let us take two arbitrary non-isomorphic graphs H ′
1 and H ′

2 that cannot
be distinguished using C4k+4, and construct graphs H1 and H2 by subdividing
each edge of H ′

1 and H ′
2 with a vertex. The graphs H1 and H2 cannot be

distinguished using C2k+2, since given a formula ϕ ∈ C2k+2 that speaks about
H1 and H2, we can construct an equivalent formula ϕ′ ∈ C4k+4 that speaks
about H ′

1 and H ′
2. We do that by introducing a pair of variables x′

i and
x′′

i for each variable xi of ϕ. If xi is an original vertex of H ′
1 or H ′

2, then
x′

i = x′′
i = xi, if xi is a vertex that splits an edge {u, v} of H ′

1 or H ′
2, then

x′
i = u and x′′

i = v. The graphs H1 and H2 are non-isomorphic and they have
girth at least six, thus they cannot be distinguished using only graphs with
clique-width at most k.

4 Graphs with Bounded Degeneracy

A graph G is k-degenerated if each subgraph of G contains a vertex of
degree at most k. Every graph with tree-width k is k-degenerated. 1-
degenerated graphs are exactly forests (graphs of tree-width 1), but there
are 2-degenerated graphs with arbitrarily large tree-width. It turns out that
2-degenerated graphs are sufficient to distinguish all graphs.

Let K be the 2-labeled graph on two vertices connected by an edge, with
one vertex with label 1 and the other one with label 2. A 2-labeled quantum
graph C is a connector for unlabeled graph H , if for each 2-labeled graph G,
Hom(base(GC), H) = Hom(base(GK), H). Equivalently, for each choice of
labels 1 and 2 in H , Hom(C, H) = Hom(K, H). Trivially, K is a connector.
More interestingly, Lovász and Szegedy [2] (Theorem 1.4) have proved that
for each H , there exists a connector that is a linear combination of paths
with at least three vertices (with the end vertices labeled with 1 and 2).

12



Lemma 10 If H1 and H2 are arbitrary unlabeled graphs, then there exists
a quantum graph C that is a linear combination of paths with at least three
vertices, such that C is connector for both H1 and H2.

Proof. Let C be a connector for the disjoint union of H1 and H2, such that
C is a linear combination of paths, that exists by [2]. The graph C is also a
connector for H1 and H2—this follows from the definition of the connector
and the fact that C is connected. �

We use the existence of the common connector to show that in each graph
that distinguishes H1 and H2, we may subdivide the edges.

Lemma 11 Let G, H1 and H2 be graphs such that Hom(G,H1) 6=Hom(G,H2).
If e is an edge of G, then there exists a graph G′ obtained from G by replac-
ing e by a path with at least one inner vertex, such that Hom(G′, H1) 6=
Hom(G′, H2).

Proof. Let C be the linear combination of paths that is a common connector
for H1 and H2. Let G′′ be the quantum graph obtained from G by replacing e

with C. By the definition of the connector, Hom(G′′, H1) = Hom(G, H1) 6=
Hom(G, H2) = Hom(G′′, H2). Therefore, for at least one graph G′ with
nonzero coefficient in the linear combination G′′, Hom(G′,H1) 6=Hom(G′,H2),
and G′ satisfies the requirements of this lemma. �

The main result of this section is the following:

Theorem 12 If H1 and H2 are not isomorphic, then there exists a 2-degene-
rated graph G such that Hom(G, H1) 6= Hom(G, H2).

Proof. There exists a graph G′ that distinguishes H1 and H2. Using Lem-
ma 11, we construct the graph G by replacing each edge of G′ by paths with
at least one vertex, while preserving that Hom(G, H1) 6= Hom(G, H2). The
graph G is 2-degenerated, as each subgraph of G that contains at least one
edge also contains at least one of the vertices of V (G) \ V (G′) that have
degree at most two. �

Another corollary of Lemma 11 is that there exists a class of graphs with
bounded expansion that distinguishes all graphs. This graph parameter was
recently introduced and studied by Nešetřil and Mendez [7]. A graph H

is rank r contraction of a graph G if there exists a set S of vertex disjoint
subgraphs of G such that each member of S has diameter at most r, and H

is a simple graph obtained from G by contracting all edges of the subgraphs
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that belong to S (the arising parallel edges are suppressed). For example, the
only rank 0 contraction of G is G itself, and a rank 1 contraction is obtained
from G by contracting edges of a partial matching. Maximum average degree
of graph G is the maximum of average degrees over all subgraphs of G.
Greatest reduced average density of rank r of G (denoted by ∇r(G)) is the
maximum of maximum average degrees over all rank r contractions of G. A
class G has bounded expansion if for each G ∈ G, ∇r(G) is bounded by a
constant cr for each r. In particular, nontrivial minor closed classes, as well
as graphs with bounded maximum degree, have bounded expansion.

Let sd(G) be the set of graphs that can be obtained from G by subdividing
each edge at least |V (G)| times. Consider a class A′ =

⋃

G∈A sd(G). This
class has bounded expansion, because for each r, there is only a finite number
of graphs G ∈ A′ such that a rank r contraction of G is not 2-degenerated.
For any G that distinguishes graphs H1 and H2, we can use Lemma 11 to
repeatedly subdivide edges of G to obtain a graph G′ ∈ A that distinguishes
H1 and H2 as well. Therefore, A′ distinguishes all pairs of graphs.

5 Graphs Homomorphic to a Fixed Graph

In this section, we consider classes G≤M of M-colorable graphs, with M

fixed. This class is very natural in this context. As we mentioned in the
introduction, bipartite graphs (case M = K2) do not distinguish all graphs.
The results of the previous section on the other hand show that if M is
not bipartite, then G≤M distinguishes all graphs (since a sufficiently fine
subdivision of every graph is M-colorable, for any fixed non-bipartite graph
M). However, it is interesting to derive these results in a more systematic
way.

We let H1×H2 denote a categorical product of two graphs, and let πH1×H2

1

and πH1×H2

2 be the associated projections.

Theorem 13 If H1, H2 and M are graphs, then Hom(G, H1) = Hom(G, H2)
holds for each G ∈ G≤M if and only if there exists an isomorphism f of H1×M

and H2 × M such that πH1×M
2 = πH2×M

2 f .

Proof. Suppose first that there exists the isomorphism f with the required
properties. We construct a bijection between the homomorphisms from G to
H1 and the homomorphisms from G to H2, thus showing that their numbers
are the same. Let c be a fixed homomorphism from G to M . Given a
homomorphism g1 from G to H1, we define the function g2 from G to H2

by g2(v) = πH2×M
1 (f(〈g1(v), c(v)〉)). The function g2 is a homomorphism,

since if uv is an edge of G, then g1(u)g1(v) and c(u)c(v) are edges, thus
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〈g1(u), c(u)〉〈g1(v), c(v)〉 is an edge, and g2(u)g2(v) is an edge of H2. The
mapping from g1 to g2 is a bijection, since g1(v) = πH1×M

1 (f−1(〈g2(v), c(v)〉)).
Suppose now that Hom(G, H1) = Hom(G, H2) for each G ∈ G≤M . We

use the idea of [1]. Let I(H, H2) be the number of homomorphisms g from
H×M to H2 such that for each two vertices x 6= y of H and each m ∈ V (M),
g(〈x, m〉) 6= g(〈y, m〉). Let Ax,y,m be the set of homomorphisms g from H×M

to H2 such that g(〈x, m〉) = g(〈y, m〉). By the principle of inclusion and
exclusion,

I(H, H2) =
∑

∅6=I⊆V (H)2×V (M)

(−1)|I|+1

∣

∣

∣

∣

∣

⋂

i∈I

Ai

∣

∣

∣

∣

∣

.

However,
∣

∣

∣

∣

∣

⋂

i∈I

Ai

∣

∣

∣

∣

∣

= Hom(HI , H2),

where HI is the graph obtained from H × M by identifying all pairs of
vertices 〈x, m〉 and 〈y, m〉 such that 〈x, y, m〉 ∈ I. Since we only identify the
vertices with the same m, HI is homomorphic to M . Thus, Hom(HI , H2) =
Hom(HI , H1), and thus I(H, H1) = I(H, H2) for any graph H . In partic-
ular, this means that I(H1, H1) = I(H1, H2). Since the projection πH1×M

1

is one of the homomorphisms counted by I(H1, H1), these numbers are
both nonzero, hence there exists a homomorphism g from H1 × M to H2

such that g(〈x, m〉) 6= g(〈y, m〉) for each x 6= y and each m. We define
the function f by f(〈v, m〉) = 〈g(〈v, m〉), m〉. The function f is obviously
injective. It is surjective, since Hom(K1, H1) = Hom(K1, H2) and thus
the graphs H1 and H2 have the same number of vertices. Similarly, since
Hom(K2, H1) = Hom(K2, H2), the graphs H1 and H2 have the same num-
ber of edges, thus if f is a homomorphism, it is an isomorphism as well.
Suppose that 〈u, m1〉〈v, m2〉 is an edge of H1 × M . Then m1m2 is an edge
of M , and since g is a homomorphism, g(〈u, m1〉)g(〈v, m2〉) is an edge of H2.
Therefore also f(〈u, m1〉)f(〈v, m2〉) is an edge, and f is the isomorphism we
look for. �

For example, for any graph G, consider the graphs H1 = 2G (i.e., the
disjoint union of two copies of G) and H2 = G × K2. If G is not bipartite,
then these graphs are non-isomorphic, as H2 is bipartite but H1 is not. For
a vertex v of G, let v0 and v1 be the corresponding vertices in 2G. Then the
function f defined by f(〈vi, j〉) = 〈〈v, (i+ j) mod 2〉, j〉 is an isomorphism of
H1 ×K2 and H2 ×K2 that satisfies conditions of Theorem 13. Therefore, H1

and H2 cannot be distinguished using just bipartite graphs. It remains to
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show that non-bipartite graphs are sufficient to distinguish all graphs. To do
this, we need to prove that if we are given a graph H×M and the projection
πH×M

2 , then the graph H is uniquely determined.

Theorem 14 Suppose that M is a non-bipartite graph. If we know H × M

and the projection πH×M
2 , then the graph H is uniquely determined up to

isomorphism.

Proof. Let m1m2 . . .mk be an odd cycle in M . Let x be an arbitrary vertex
in H×M such that π2(x) = m1. A vertex 〈π1(x), m3〉 must have the same set
of neighbors y such that π2(y) = m2 as the vertex x, thus we can determine
this vertex (up to permutation of twin vertices of H). Similarly, using the
neighbors with π2(y) = m4, we can find the vertex 〈π1(x), m5〉, etc. Since k

is odd, finally we find the vertex 〈π1(x), m2〉. The graph H is isomorphic to
the graph obtained by taking the subgraph of H ×M induced by π−1

2 (m1)∪
π−1

2 (m2), and identifying the pairs of vertices 〈π1(x), m1〉 and 〈π1(x), m2〉 for
each x. �

Theorems 13 and 14 together imply that any class G≤M for non-bipartite
M is sufficient to distinguish all graphs.

6 Conclusions

There are many other classes of graphs that might be interesting to study.
One natural example are graphs with bounded maximum degree. Lovász and
Szegedy [2] proved that series-parallel connectors (2-labeled quantum graphs
with labels on distinct vertices, equivalent to a single vertex with two labels)
exist. If contractors with bounded maximum degree exist, then the graphs
with bounded maximum degree distinguish all graphs.

Other possibility is to consider directed graphs. In particular, Theo-
rem 13 is true also for directed graphs, but the characterization similar to
Theorem 14 seems harder to obtain.

Finally, one might consider determining some other properties of graphs
using numbers of homomorphisms. For example, since 2K3 and C6 cannot be
distinguished using bipartite graphs, it is not possible to determine whether
a graph is connected or not, or whether a graph is bipartite or not, using only
bipartite graphs. Somewhat curiously, given a connected graph, it is possible
to determine whether it is bipartite using only paths and even cycles (in limit,
connected bipartite graphs have twice as large probability that a walk of even
length starts and ends in the same vertex). Of course, it is also possible to
determine whether a graph is bipartite using just odd cycles. Is it possible
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to determine whether a graph is connected using only paths and cycles? One
might also ask what classes are sufficient to recognize other graph properties.
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