
Fast Algorithms and Lower Bounds for

Temporal Reasoning

Manuel Bodirsky∗ Jan Kára†

Abstract

We introduce two new tractable temporal constraint languages,
which both strictly contain the class Ord-Horn of Bürkert and Nebel.
The presented algorithms decide whether a given set of constraints
from these languages is consistent in time that is quadratic in the in-
put size; this also yields a new algorithm for Ord-Horn constraints,
where the best known algorithms also have quadratic running time.
We also prove that the two languages are maximally tractable, i.e., if we
add a new temporal relation to one of these constraint languages, the
corresponding constraint satisfaction problem becomes NP-complete.
Our proof applies the so-called product Ramsey theorem, which we
believe will be useful in similar contexts of constraint satisfaction com-
plexity classification. Finally, we prove that (unlike Ord-Horn) the
two languages cannot be solved by Datalog or by establishing local
consistency.

1 Introduction

One of the most fundamental and well-known temporal constraint languages
is the so-called point algebra. This language contains relation symbols for
≤, <, and 6=, interpreted over a dense linear order. Vilain, Kautz and van
Beek showed that consistency of a given set of constraints over this language
can be decided in polynomial time by local consistency techniques [23]. Later,

∗Humboldt-Universität zu Berlin, Germany
†Charles University, Prague, Czech Republic

1

van Beek described an algorithm that runs in O(n2), where n is the number
of variables [29].

A considerably larger tractable temporal constraint language was intro-
duced by Bürkert and Nebel [9]. Their language, called Ord-Horn, strictly
contains the point algebra. Bürkert and Nebel used resolution to show that
consistency of a set of Ord-Horn constraints can be decided in O(s3), where s
is the size of the input. They also showed that establishing path-consistency
can be used to decide whether a given set of Ord-Horn constraints has a so-
lution. Koubarakis [25] later presented an algorithm with a running time in
O(s2). Our results lead to a new algorithm for Ord-Horn constraints, which
also has a quadratic running time.

Ord-Horn is motivated by temporal reasoning tasks for constraints on
time intervals. The study of constraints on intervals (which can be used to
model events in time) was initiated by Allen [1], who introduced an algebra
of binary constraint relations on intervals. Allen’s interval algebra is stud-
ied intensively in Artificial Intelligence, where it is one of the benchmark
applications of constraint satisfaction in general [10], but also in graph the-
ory [17], database theory [30], and the theory of relation algebras [26]. The
complexity to decide the consistency of a given set of constraints from Allen’s
algebra is in general NP-complete [1]. However, several fragments of Allen’s
interval algebra are tractable. All tractable fragments have been classified
recently [12,22].

It is well-known that every constraint on intervals can be translated into
a constraint on time points. Bürkert and Nebel used this translation to
identify one of the tractable fragments of Allen’s interval algebra, namely
the set of all interval constraints that translate to Ord-Horn constraints on
points. Our work only concerns constraints on time points. However, using
the translation from constraints on intervals to constraints on time points,
our algorithms gives new results for reasoning on intervals as well.

There are temporal constraint languages for time points where one can
not expect a polynomial time algorithm. A well-known temporal constraint
language with an NP-complete consistency problem consists of a single re-
lation symbol for the betweenness relation, which is the ternary relation
{(x, y, z) | x<y<z ∨ z<y<x}; another example of such an NP-complete lan-
guage consists of the cyclic ordering relation, which is the ternary relation
{(x, y, z) | x<y<z ∨ y<z<x ∨ z<x<y}. The constraint satisfaction problems
for these two languages are listed as NP-complete in the book of Garey and
Johnson [16]. A general classification of tractable and NP-complete temporal

2

constraint languages is not known.
We present two new tractable temporal languages that both strictly con-

tain all Ord-Horn relations. These languages are defined by universal-algebraic
closure properties. We will from now on call the constraints in the first
of these languages ll-closed, and constraints in the second language dual ll-
closed. Examples of ll-closed relations are the following four relations, defined
by the formulas x ≤ y, x 6= y, (x=y ∨ u=v) → a=b, and x>y ∨ x>z. The
presented algorithms for ll-closed and for dual ll-closed constraints have a
running time that is quadratic in the input size.

Both languages are provably maximally tractable: we show that every
language that strictly contains one of our two languages has an NP-complete
constraint satisfaction problem. Our proof has three main ingredients: First,
we apply the so-called (universal-) algebraic approach, which was previously
mainly applied to finite domain constraint satisfaction [8]. Second, we need
some fundamental concepts from model theory to make the algebraic ap-
proach work for temporal constraint languages, building on work in [2–6].
Third, we use the so-called product Ramsey theorem (PRT), which becomes
a particularly powerful tool for complexity classification of infinite domain
constraint satisfaction problems.

Traditionally, one of the main algorithmic tools in constraint satisfac-
tion, and in particular in temporal reasoning, are local consistency tech-
niques [1, 9, 12, 17, 23], for instance algorithms based on establishing path-
consistency. Consistency based algorithms can be formulated conveniently
as Datalog programs [4,14,24]. Roughly speaking, Datalog is Prolog without
function symbols, and comes from Database theory [13]. We show that, un-
like Ord-Horn [9], ll-closed and dual ll-closed constraints can not be solved by
a Datalog program. This shows in particular that there are path-consistent
instances with ll-closed constraints that do not have a solution. In our proof
we apply a pebble-game argument that was originally introduced for finite
domains [14, 24], but has been shown to generalize to a wide range of infi-
nite domain constraint languages, including temporal languages [4]. This is
also interesting from a theoretical point of view: for constraint satisfaction
problems of languages over a finite domains, all known algorithms are es-
sentially based on group-theoretic algorithms or Datalog [14]. However, the
algorithms we present for temporal reasoning are neither group-theoretic nor
based on Datalog.

3

2 Temporal Constraint Languages

A (qualitative) temporal relation is a relation that is first-order definable in
an unbounded countable dense linear order. All such linear orders are iso-
morphic [20,27], and we therefore use (Q, <) to denote this structure. An ex-
ample of a temporal relation is the ternary Betweenness relation {(x, y, z) ∈
Q3 | x<y∧y<z ∨ z<y∧y<x}mentioned in the introduction. It is well-known
that every temporal relation also has a quantifier-free definition [20,27], i.e.,
we can define every temporal relation with a formula that is a Boolean com-
bination of literals of the form x < y (as shown above in the case of the
Betweenness relation).

A temporal constraint language is an (at most countable) set of relation
symbols R1, R2, . . . , where each relation symbol Ri is associated with an arity
ki ≥ 2, and is interpreted by a ki-ary temporal relation. As an example,
consider the set Γ0 := {6=,≤, <,=}, with the obvious interpretation over
(Q, <). For simplicity, we use the same symbol for the relation symbol and
the corresponding temporal relation.

In this paper, we study the complexity of the validity problem for first-
order sentences of the form

∃x1, . . . , xn. φ1 ∧ · · · ∧ φm ,

where Φ := {φ1, . . . , φm} is a set of atomic formulas with variables from
x1, . . . , xn and relation symbols from a fixed constraint language Γ. This
problem is also called the constraint satisfaction problem CSP(Γ) of Γ. The
set Φ is called the instance of the CSP, and the atomic formulas φ1, . . . , φm are
called the constraints of the instance. Let φ = R(x1, . . . , xk) be a constraint.
We say that φ has arity ar(φ) = k. Let xi be from {x1, . . . , xk}. We then
say that φ is imposed on xi. A tuple (a1, . . . , an) ∈ Qn is called a solution
for Φ, if the assignment xi := ai satisfies all formulas in Φ.

Example. Let R be the 4-ary temporal relation defined by (x=y ∧ y<u ∧
u=v) ∨ (x<y ∧ y<u ∧ u<v). Then Φ1 := {R(x1, x2, y1, y2), R(x1, x2, y2, y3),
R(x1, x2, y3, y1)} is an instance of CSP({R}). It is easy to see that the sen-
tence ∃x1, x2, y1, y2, y3

∧

φ∈Φ1
φ is true, and a solution to Φ1 is (0, 0, 1, 1, 1).

It is straightforward to verify that whether or not an n-tuple t is a solu-
tion to an instance only depends on the weak linear order tp(t) defined on

4

{1, . . . , n} by (i, j) ∈ tp(t) iff xi ≤ xj. We also say that t satisfies tp(t) 1.
This observation leads to a natural way to represent temporal relations. If R
is a k-ary temporal relation, R can be represented by a set R of weak linear
orders on {1, . . . , k} as follows. For every k-tuple t ∈ R, the weak linear
order tp(t) is contained in R. Conversely, for every weak linear order w in
R there is a k-tuple t ∈ R such that w = tp(t). As an example, the relation
R in the example above can be characterized as the set of all tuples that
satisfies either tp((0, 0, 1, 1)) or tp((0, 1, 2, 3)).

We call a finite constraint language Γ tractable, if CSP(Γ) can be solved in
polynomial time. The constraint language Γ0 mentioned at the beginning of
this section, for instance, corresponds to the well-studied point-algebra that
we mentioned in the introduction, and is tractable. Classically, an infinite
constraint language Γ is called tractable if every finite subset of the constraint
language is tractable. However, the algorithmic results established for the
tractable languages in the present paper are stronger. We therefore also in-
troduce a stronger notion of tractability. An (finite or infinite) constraint
language Γ is called globally tractable, if CSP(Γ) can be solved in polynomial
time in the input size, where the relation symbols in the instance are rep-
resented as sets of weak linear orders as described above2. In this case, we
measure the input size of a given instance Φ by the number n of variables in
Φ and the weighted number m =

∑

R(x1,...,xk)∈Φ k|R| of constraints. This is, m
denotes the size of the representations of all the constraints in the instance.
Note that the input size grows with the same order as n+m.

If Γ is the set of all temporal relations, then CSP(Γ) is well-known to
be NP-complete: in fact, already the constraint language that only contains
a relation symbol for the Betweenness relation is NP-complete [16]. For
containment in NP, note that one can verify in polynomial time whether a
given vector a ∈ Qn is a solution for a given instance Φ. We can therefore
nondeterministically verify in polynomial time whether there exists a weak
linear order on n elements and an (arbitrary) n-tuple t satisfying this weak
linear order such that t is a solution to Φ.

To study the computational complexity of the CSP, reductions from one

1The notation tp is motivated by the concept of (complete) types in model theory; see
e.g. [20, 27].

2Also for constraint satisfaction with finite domains, there is a potential difference
between the notion of tractability and notions of global tractability. It is an open problem
whether these notions coincide; in fact, for finite domain CSPs it has been conjectured
that tractability and global tractability are equivalent [8].

5

constraint language to another can be described conveniently using the no-
tion of primitive positive definability from logic (see e.g. [20,27]). A formula
is called primitive positive, if it has the form ∃x1, . . . , xl. ψ1 ∧ · · · ∧ψl, where
ψi is atomic (it might be of the form x = y, i.e., we always include equality
in our language). The atomic formulas might contain free variables and ex-
istentially quantified variables from x1, . . . , xl. As usual, every formula with
k free variables defines on a structure Γ a k-ary relation. Primitive positive
definability of relations is an important concept in constraint satisfaction,
because primitive positive definable relations can be ’simulated’ by the con-
straint satisfaction problem. The following is frequently used in hardness
proofs for CSPs [8].

Lemma 2.1. Let Γ be a constraint language, and let R be a relation that
has a primitive positive definition in Γ. Then CSP(Γ) is NP-complete if and
only if CSP(Γ ∪ {R}) is NP-complete.

Primitive positive definability can be characterized by preservation under
so-called polymorphisms – this is the starting point of the so-called (univer-
sal-) algebraic approach to constraint satisfaction (see e.g. [7, 8]). This ap-
proach brought together several research areas and proved to be extremely
productive for constraint satisfaction with finite domains. We introduce the
fundamentals in the next section.

3 The Algebraic Approach

We first introduce the fundamental concepts from model theory and universal
algebra; they are standard, see e.g. [20, 28].

We say that a k-ary function (also called operation) f : Qk → Q pre-
serves an m-ary relation R ⊆ Qm if whenever R(xi

1, . . . , x
i
m) holds for all

1 ≤ i ≤ k in Γ, then R
(

f(x1
1, . . . , x

k
1), . . . , f(x1

m, . . . , x
k
m)

)

holds in Q. If f
preserves all relations of a temporal constraint language Γ, we say that f
is a polymorphism of Γ. The unary bijective polymorphisms are called the
automorphisms of Γ; the set of all automorphisms of Γ is denoted by Aut(Γ).

The set of all polymorphisms Pol(Γ) of a temporal constraint language
forms an algebraic object called clone [28], which is a set of operations defined
on a set D that is closed under composition and that contains all projections.
Moreover, Pol(Γ) is also closed under interpolation: We say that a k-ary

6

operation f is interpolated by a set of k-ary operations F if for every finite
subset A of Q there is some operation g ∈ F such that f(x) = g(x) for every
x ∈ Ak. The set of operations that are interpolated by F is called the local
closure of F ; if F equals its local closure, we say that F is locally closed.
We say that F locally generates an operation g if g is in the smallest locally
closed clone containing all operations in F .

An operation f : Qk → Q depends on its i-th argument if there exist
tuples (d1, . . . , dk), (d

′

1, . . . , d
′

k) ∈ D
k such that f(d1, . . . , dk) 6= f(d′1, . . . , d

′

k),
dj = d′j for all j 6= i, and di 6= d′i. In other words, there is a k-tuple such that
changing the i-th coordinate of the k-tuple changes the value of the tuple
under f .

The universal-algebraic approach to constraint satisfaction for temporal
constraint languages rests on the following fact, which follows directly from
a result in [6] (since temporal constraint languages are first-order definable
in (Q, <), and therefore ω-categorical [20, 27]).

Theorem 3.1. (follows from [6]) Let Γ be a temporal constraint lan-
guage. Then a temporal relation R has a primitive positive definition in Γ if
and only if R is preserved by all polymorphisms of Γ.

For a temporal constraint language Γ, every automorphisms of (Q, <) is a
polymorphism of Γ. Therefore, for this article we make the convention to say
that an operation f locally generates another operation g if {f}∪Aut((Q, <))
locally generates g. By the above remark this should cause no confusion.

Also observe that a surjective k-ary polymorphism can be represented by
a weak linear order on Qk: we let x ≤ y iff f(x) ≤ f(y). It is easy to see that
if two surjective operations f and g define the same weak linear order on Qk,
then there is an automorphism α of (Q, <) such that f = α(g). Hence, f
is a polymorphism of a temporal constraint language Γ if and only if g is a
polymorphism of Γ.

4 ll-closed Constraints

Let lex be a binary operation on Q such that lex(a, b) < lex(a′, b′) if either
a < a′, or a = a′ and b < b′. Note that every operation l satisfying these
conditions is by definition injective. By the concluding paragraph in the
previous section it is easy to see that all such operations locally generate the
same clone.

7

y

x

Figure 1: A visualization of the ll operation.

Let ll be a binary operation on Q such that ll(a, b) < ll(a′, b′) if one of
the following cases applies

• a ≤ 0 and a < a′

• a ≤ 0 and a = a′ and b < b′

• a > 0 and b < b′

• a > 0 and b = b′ and a < a′

For an illustration, see Figure 1. In diagrams like this one we draw a directed
edge from (a, b) to (a′, b′) if ll(a, b) < ll(a′, b′).

Again, all operations satisfying these conditions are by definition injective,
and locally generate the same clone. It is also easy to see that ll locally
generates lex. In the following we study equivalent characterizations of the
relations that are preserved by ll.

Definition 1. We say that a relation R is ll-closed if for every two weak
orders o1 and o2 in R and every index e ≤ k the weak order o3 is also in R,
where o3 is defined as follows: (i, j) ∈ o3 iff one of the following holds

• (i, j) ∈ o1 and (i, j) ∈ o2,

• (i, j) ∈ o1, (j, i) /∈ o1, and (i, e) ∈ o1, or

• (i, j) ∈ o2, (j, i) /∈ o2, and (e, j) ∈ o1

The following is not hard to show.

8

Proposition 4.1. A temporal relation R is preserved by the operation ll if
and only if R is ll-closed.

What is the complexity to decide whether a given constraint language
is a tractable constraint language? This is known as the meta-problem for
constraint satisfaction problems. We show that at least we can efficiently
decide whether a given temporal constraint language is ll-closed.

Theorem 4.1. Given a constraint language where all relations are repre-
sented as lists of weak linear orders, one can decide in polynomial time in
the input size whether the constraint language is ll-closed.

Proof. (Sketch) We test for each relation R in the constraint language sepa-
rately, whether it is ll-closed. Let R be k-ary. For all pairs (o1, o2) of weak
linear orders on {1, . . . , k} in the representation of R, and for each index
e ≤ k, we can verify in linear time in k whether the weak linear order o3 as
described in Definition 1 is also contained in the representation of R.

Similarly to the ll operation we can define a dual ll operation, as depicted
in Figure 2. It is straightforward to dualize Definition 1, Proposition 4.1,
Theorem 4.1, and their proofs accordingly. To show that the ll operation and
the dual ll operation locally generate distinct clones, we define the following
two relations, that will be also of importance in later arguments.

Definition 2. We define Rmin to be the ternary relation {(x, y, z) | x>y ∨
x>z}, and Rmax to be {(x, y, z) | x<y ∨ x<z}.

Observe that Rmin(x, y, z) holds if and only if x is larger than the minimum
of y and z. Similarly, Rmax(x, y, z) holds if and only if x is smaller than the
maximum of y and z.

Proposition 4.2. The ll operation does not locally generate the dual ll op-
eration and vice versa.

Proof. To show that the operation ll does not locally generate the dual ll op-
eration, it suffices to show that there is a temporal relation that is preserved
by ll but not by dual ll (see Theorem 3.1). We claim that the relation Rmin

is preserved by the ll operation: Let (x1, y1, z1) and (x2, y2, z2) be triples that
both satisfy the relation Rmin. Without loss of generality, x1 < y1 (note that

9

y

x

Figure 2: A visualization of the dual ll operation.

the relation is symmetric in the second and third argument). If in this case
x2 ≤ y2, then, because ll preserves ≤, we have that ll(x1, x2) ≤ ll(y1, y2),
and because ll is injective, we have that ll(x1, x2) < ll(y1, y2). Therefore
(ll(x1, x2), ll(y1, y2), ll(z1, z2)) satisfies Rmin, and we are done. So let us
assume that x2 > y2, and therefore x2 < z2. We can then show that
(ll(x1, x2), ll(y1, y2), ll(z1, z2)) satisfies Rmin unless x1 > z1. So let us as-
sume that x1 > z1. Now, in the cases where y1 ≥ 0 or z1 < 0 the operation
ll preserves Rmin, since in this case ll acts like a lexicographic order on the
two triples. Otherwise, y1 < 0 and z1 ≥ 0. It is easy to check that then
ll(y1, y2) < ll(x1, x2).

However, Rmin is not preserved by the dual ll operation: consider the
tuples t1 := (−1, 1,−2) and t2 := (−1,−2, 1) that both satisfy Rmin. If we
apply the dual ll operation to these two tuples, we obtain dual-ll(−1,−1) <
dual-ll(−2, 1) < dual-ll(1,−2), and hence the tuple dual-ll(t1, t2) does not
satisfy the relation Rmin.

This shows that the ll operation does not locally generate the dual ll
operation. Analogously, we can use the relation Rmax to show that the dual
ll operation does not locally generate the ll operation.

5 Ord-Horn Constraints are ll-closed

The class of Ord-Horn constraints was introduced by Bürckert and Nebel [9]
to identify a tractable class of interval constraints. It is always possible to
translate interval constraints into temporal constraints [23]. If the translation
of an interval constraint language falls into a tractable temporal constraint

10

language, the interval constraint language is tractable as well. Bürckert and
Nebel showed that the class of interval constraints having a translation into
Ord-Horn temporal constraints is a maximally tractable fragment of Allen’s
interval algebra. Note that this does not imply that the class of Ord-Horn
constraints is a maximally tractable temporal constraint language on time
points. Indeed, this is not the case, as we show in this section. Proposition 5.1
below shows that the class of Ord-Horn constraints is ll-closed. Since the
relation Rmin defined in Section 4 is ll-closed but not Ord-Horn, the class
of ll-closed constraints is strictly larger than Ord-Horn. Finally, we prove in
Section 6 that ll-closed constraints are tractable. Therefore, Ord-Horn is not
a maximally tractable class of temporal constraints.

Definition 3. A temporal relation is contained in the temporal constraint
language Ord-Horn iff it can be defined by a conjunction of formulas of the
form

(x1 = y1 ∧ · · · ∧ xk−1 = yk−1)→ xk C yk ,

where C ∈ {<,≤,=}.

Proposition 5.1. All relations in Ord-Horn are preserved by ll and by
dual ll.

Proof. We will give the argument for the ll operation only; the argument
for the dual ll operation is analogous. It suffices to show that every relation
that can be defined by a formula Φ of the form (x1 = y1 ∧ · · · ∧ xk−1 =
yk−1) → xk C yk is preserved by ll, where C ∈ {<,≤,=}. Let t1 and t2 be
two 2k-tuples that satisfy Φ. Consider a 2k-tuple k3 obtained by applying
ll componentwise to t1 and t2. We distinguish two cases: either there is an
i ≤ k − 1 such that in one of the tuples xi = yi is not satisfied – in this
case xi = yi is not satisfied in t3 as well by injectivity of ll, and therefore the
tuple t3 satisfies Φ. Or xi = yi holds for all i ≤ k − 1 in both tuples t1 and
t2. But then, as t1 and t2 satisfy Φ, the literal xkCyk holds in both t1 and
t2. Since ll preserves all relations in {<,≤,=}, the literal xkCyk holds in t3,
and therefore t3 satisfies Φ as well.

6 An Algorithm for ll-closed Constraints

In this section we present an algorithm for ll-closed constraints. It is straight-
forward to dualize all arguments and the algorithm, and we will therefore also

11

obtain a distinct algorithm for dual ll-closed constraints.
One of the underlying ideas of the algorithm is to try to find a variable in

the given instance such that there is a solution s where this variable denotes
the smallest value. For this task, we present a procedure called Spec. If Spec
fails to find such a solution s, it returns a set of at least two variables that
have to denote the same value in all solutions. Surprizingly, if there are no
such variables that denote the same value in all solutions, then Spec does
not fail, but produces a solution s for the instance.

To formally introduce our algorithm, the definitions below will be useful.
Let φ = R(x1, . . . , xk) be an atomic formula where R is a temporal relation
R that is preserved by an operation f . Clearly, for all xi from x1, . . . , xk the
temporal relation defined by ∃xi.φ is preserved by f as well. Therefore, if Φ
is an instance of the CSP with constraints that are preserved by f , and y is
a sequence of some of the variables of Φ, then Φ′ := {∃y.φ | φ ∈ Φ} can also
be viewed as an instance of the CSP with constraints preserved by f . We
call Φ′ the projection of Φ to X \ y. Note that if Φ′ is inconsistent, then Φ is
inconsistent as well.

The i-th entry in a k-tuple t is called minimal if t[i] ≤ t[j] for every
j ∈ [k]. It is called strictly minimal if t[i] < t[j] for every j ∈ [k] \ {i}.

Definition 4. Let R be a k-ary relation. A set of entries S ⊆ [k] is called
free for the i-th entry in R if there exists a tuple t ∈ R such that the i-th
entry is minimal in t, and for every j ∈ S it holds that t[i] = t[j]. We also
say that t defines a free set S.

Let R be a k-ary relation that is preserved by lex (recall that ll-closed
constraints are preserved by lex as well). If S1, . . . , Sl are all free sets for
the i-th entry in R, we consider the corresponding tuples t1, . . . , tl and the
tuple t := lex(t1, lex(t2, . . . lex(tl−1, tl))). Since i is minimal in every tuple
t1, . . . , tl and lex preserves both < and ≤, it is also minimal in t. Because lex
is injective, we have that t[i] = t[j] if and only if these two entries are equal
in every tuple t1, . . . , tl. Hence, the free set for the i-th entry in R defined
by the tuple t is a subset of every free set S1, . . . , Sl. We call this free set the
minimal free set for the i-th entry in R.

Lemma 6.1. Let R be a k-ary relation preserved by lex, let i ∈ [k] and S be
the minimal free set for the i-th entry in R. Then for every t ∈ R it holds
that either t[i] = t[j] for every j ∈ S, or there is a j ∈ S such that t[j] < t[i].

12

Proof. Let t′ ∈ R be the tuple that defines the minimal free set S. Suppose
there is a tuple t ∈ R such that not all entries in S are equal (in particular,
|S| > 1). Consider the tuple t′′ := lex(t′, t). By the properties of lex it holds
that t′′[i] < t′′[j] for every j ∈ [k] \ S. Furthermore, t′′[i] ≤ t′′[j] for j ∈ S if
and only if t[i] ≤ t[j]. So unless t′′ defines a smaller free set for i in R (which
would be a contradiction) it must hold that t′′[i] > t′′[j] for some j ∈ S.

Let Φ be an instance of the CSP where each constraint relation is pre-
served by lex. We create the following (directed) graph GΦ = (X,E) for
this instance. The vertices of the directed graph are the variables from the
instance Φ that can be minimal (i.e., in all the constraints from Φ the cor-
responding entries can be minimal). We now add edges for each constraint
φ ∈ Φ as follows. Suppose the constraint φ is of the form R(x1, . . . , xk). For
each 1 ≤ i ≤ k, let Si be the minimal free set for the i-th entry in R. We
then add for each y ∈ Si \ {xi} an edge (xi, y) to E. We call the graph GΦ

the constraint graph of Φ.

Example. We return to the example from Section 2. The constraint graph
GΦ1

for the instance in this example has the two vertices x1 and x2, and an
edge from x2 to x1. The projection Φ′

1 of Φ1 to {y1, y2, y3} has a constraint
graph GΦ′

1
with the three vertices y1, y2, y3, and edges from y2 to y1, from y3

to y2, and from y1 to y3.

A strongly connected component K (see [11]) of a directed graph G such
that no edge leaves K is called a sink component of G. A vertex of G that
belongs to a sink component of size one is called a sink.

Lemma 6.2. Let K be a sink component of the graph GΦ for Φ. Then all
variables from K must have equal values in all solutions of Φ.

Proof. We assume that K has at least two vertices (otherwise the lemma is
trivial). Consider some solution of Φ and let M ⊆ K be the set of vertices
assigned the minimal value among the variables of the sink component K. If
M = K, we are done. Otherwise, because K is strongly connected, there is
an edge from some vertex v ∈M to v′ ∈ K \M . But then there is a minimal
free set of a constraint imposed on v such that neither all variables of the free
set are equal (the value of v′ is different) nor there is some variable of the
free set with value smaller than the value of v (because v has the minimal
value among the variables in K). This contradicts Lemma 6.1.

13

Lemma 6.2 immediately implies that we can add constraints of the type
x = y for all variables x, y from the same sink component. Equivalently, we
can consider the CSP instance Φ′ where all the variables in sink components
are contracted. We formalize this idea as follows. Let S be a subset of the
variables of Φ. We define Φ′ to be the instance where all variables from S
are replaced by the same variable.

In some cases, a solution to a projected instance with ll-closed constraints
can be used to construct a solution to the original constraint. We say that a
tuple (in particular, a solution of an instance) x is injective if xi 6= xj for all
i 6= j.

Lemma 6.3. Let Φ be an instance of the CSP with variables X and ll-closed
constraints. Let x be a sink in GΦ. If the projection Φ′ of Φ to X \ {x} has
an injective solution, then Φ has an injective solution as well.

Proof. Let s be an injective solution to Φ′. Consider a constraint φ =
R(x1, . . . , xk) from Φ that is imposed on x. By the definition of Φ′ there
is a tuple t ∈ R such that t agrees with s on {x1, . . . , xk} \ {x}. Because
x is a sink, there is tuple t′ ∈ R such that the entry corresponding to x is
strictly minimal. It is now easy to check that there are automorphisms α, β
such that the tuple t′′ = α(ll(β(t′), t)) agrees with s on X \{x}, and that the
entry corresponding to x is strictly minimal. As R is ll-closed, t′′ ∈ R. Hence
we see that for each constraint there is a tuple where the entry corresponding
to x is strictly minimal and the rest of the tuple agrees with s on X \{x}. So
we can extend the solution by assigning to x a value smaller than any value
used in s and the lemma readily follows.

Now we are ready to state our algorithm for instances with ll-closed con-
straints.

Algorithm 6.1.
Spec(Φ) {
// Input: Φ constraints with variables X
// Output: If Φ has no solution, then return false

// If Φ has an injective solution, then return true

// Otherwise return S ⊆ X, |S| ≥ 2, s.t. for all
// x, y ∈ S we have x = y in all solutions of Φ

G := ConstructGraph(Φ)

14

Y := ∅, Φ′ := Φ
While G contains a sink s

Y := Y ∪ {s}
Φ′ := projection of Φ′ to X \ Y
G := ReconstructGraph(Φ′)

If Y = X then return true

else if VG = ∅ then return false

else return a sink component S from G
end if }

Solve(Φ): {
// Input: instance Φ with variables X
// Output: true or false

S := Spec(Φ)
If S = false then return false

else if S = true then return true

else

Let Φ′ be contraction of S in Φ
return Solve(Φ′)

end if }

Theorem 6.1. The procedure Solve(Φ) in Algorithm 6.1 decides whether a
given set of ll-closed constraints Φ has a solution. There is an implementation
of the algorithm that runs in time O(nm), where n is the number of variables
of Φ and m is the weighted number of constraints in Φ.

Proof. The correctness of the procedure Spec immediately implies the cor-
rectness of the procedure Solve. In the procedure Spec, after iterated deletion
of sinks in G′, we have to distinguish three cases.

In the first case Y = X, and VG = ∅. In this case we construct by
induction an injective solution of Φ as follows. Let x1, . . . , xn be the elements
from Y in the reverse order in which they were taken into Y . For 0 ≤ i ≤ n,
let Φi be the instance Φ projected to X \{x1, . . . , xi}. Note that Φ0 = Φ, and
that Φn = Φ′ is the projection of Φ to the empty set, which trivially has an
injective solution. We inductively assume that Φi, for i ≤ n, has an injective
solution. Then Lemma 6.3 applied to xi, the instance Φi−1, and the injective
solution to Φi implies that also Φi−1 has an injective solution. By induction,

15

Φi has an injective solution for all 0 ≤ i ≤ n, and in particular Φ0 = Φ has
an injective solution. Therefore, the output true of Spec is correct.

In the second case, Y 6= X and VG = ∅. Note that in every solution to
Φ′ some variable must denote the minimal value. However, since VG = ∅, no
variable can denote the minimal element, and therefore Φ′ has no solution.
Because Φ′ is a projection of Φ to X \ Y , the instance Φ is inconsistent as
well.

In the third case, VG 6= ∅, and therefore G must contain a sink component
S. Because VG does not contain sinks, |S| ≥ 2. We claim that for all variables
x, y ∈ S we have x = y in all solutions to Φ. Lemma 6.2 applied to the
projection of Φ to X \ Y implies that whenever some variables are in the
same sink component, they must have the same value in every solution, and
hence the output is correct in this case as well.

Since in each recursive call of Solve the instance in the argument has
at least one variable less, Solve is executed at most n times. Since the
projection Φ′ and the constraint graph G can be constructed in linear time
in the input size, the total running time is easily seen to be cubic in the input
size. However, we will now describe an implementation of the sub-procedures
such that the total running time is in O(nm).

First, note that we can assume that n is smaller than m. Otherwise, the
constraint is not connected (we use the notion of connectivity for instances
of the CSP as e.g. in [19]). We can in this case use the same implementation,
analyse the running time for each of the connected components separately,
and will get the same result.

In our implementation, if s is a sink of G at some iteration of the while-
loop, we first compute the projection of Φ′ to X \ Y by updating only the
constraints imposed on s in Φ′. The total number number of operations we
have to perform in all iterations of the while-loop is then bounded by m.

The constraint graph G is now updated as follows. Note that since the
new instance resulted from the previous instance by projection, some edges
in G need to be removed. Moreover, we might have to add some new vari-
ables and edges incident to these new variables. For the edge deletions, it
again suffices to process only constraints that are imposed on s, and the total
cost for this step during all iterations of the while-loop is bounded by m. To
see which variables have to be added to G, we maintain a data structure
that stores for each variable u the list of constraints in which u occurs at an
entry that can not be minimal in the constraint. When computing Φ′, we
can maintain this data structure without increasing our asymptotic running

16

time. As soon as some of these lists becomes empty, we add the correspond-
ing variable to G, and compute the outgoing edges in G for this variable.
Again, the total costs for these operations are in O(m). Finally, since we can
construct the graph G, we can clearly also maintain a list of sinks and decide
in constant time whether G has a sink or not. This shows that the algorithm
can be implemented in time O(nm).

7 ll-closed Constraints are Maximally

Tractable

Suppose ∆ is a constraint language that strictly contains all ll-closed con-
straints. In this section we want to show that CSP(∆) is NP-complete.
Unless P=NP, this shows that ll-closed constraints are maximally tractable
in the sense that every larger constraint language does not have a polynomial
time algorithm.

Since ∆ contains all ll-closed constraints, the polymorphism clone of ∆ is
contained in the clone locally generated by ll and Aut(Q, <). In particular,
all polymorphisms of ∆ are injective and preserve the relations ≤ and Rmin,
because the same holds for ll, for all automorphisms of (Q, <), and also for
all operations that are locally generated by these operations.

If all polymorphisms of ∆ preserve the Betweenness relation, then The-
orem 3.1 shows that the Betweenness relation is primitive positive definable
in ∆. Since Betweenness is NP-complete [16], Lemma 2.1 shows that in this
case CSP(∆) is NP-complete. So suppose that ∆ has a polymorphism that
violates the betweenness relation. One of the starting observations is that ∆
has in this case also a binary polymorphism that violates the Betweenness
relation. This follows from the following more general lemma.

Lemma 7.1. Let R be a k-ary temporal relation whose representation con-
sists of m weak linear orders on {1, . . . , k}. If f is an operation that violates
R, then f locally generates an m-ary operation that violates R.

Proof. Let f ′ be an operation of smallest arity l that is locally generated
by f and violates R. Then there are k-tuples t1, . . . , tl in R such that
f ′(t1, . . . , tl) /∈ R. For l > m there are two tuples ti and tj that satisfy
the same weak linear order, and therefore there is an automorphism α of
(Q, <) such that α(ti) = tj. Then the l − 1-ary operation g defined as

17

g(t1, . . . , tj−1, tj+1, . . . , tl) := f(t1, . . . , ti−1, α(tj), ti+1, . . . , tl) also violates R,
a contradiction. Hence, l ≤ m. In case that l = m, we are done. In case that
l ≤ m, the result also follows, because we can then always obtain an m-ary
operation that violates R by composing f ′ with projections.

We now want to prove that every binary injective operation that preserves
≤ and Rmin but violates the Betweenness relation already locally generates
the operation ll. This contradicts our assumption that ∆ strictly contains
all ll-closed constraints, and we have shown that ll-closed constraints are
maximally tractable.

In our argument we make use of the so-called product Ramsey theorem,
which is given here in a formulation that follows from Theorem 4.1 in [15];
see [18] for a general introduction to Ramsey theory. If S1, . . . , Sd are sets,
we call a set of the form S1× · · · ×Sd a grid, and also write Sd for a product
of the form S × · · · × S with d factors. A [k]d-subgrid of a grid S1 × · · · × Sd

is a subset of S1 × · · · × Sd of the form S ′

1 × · · · × S
′

d where S ′

i is a k-element
subset of Si.

Theorem 7.1. (follows from [15]) Let k, r, and d be positive integers,
and S1, . . . , Sd be infinite sets. If S1 × · · · × Sd is linearly ordered, and the
[k]d-subgrids of S1× · · · × Sd are colored with r colors such that [k]d-subgrids
inducing isomorphic linear orders get the same color, then there exist infinite
sets S ′

i ⊂ Si such that all [k]d-subgrids of S ′

1 × · · · × S
′

d have the same color.

We use this theorem for d = k = r = 2. To illustrate the way in which
we use the theorem, let us first show the following result.

Proposition 7.1. Every binary injective operation f that preserves ≤ lo-
cally generates lex.

Proof. Let (x1, y1), (x2, y1), (x1, y2), (y2, y2) be four points from Q2. Since
f preserves ≤ and is injective, either f(x1, y1) < f(x2, y1) < f(x1, y2) <
f(x2, y2) or f(x1, y1) < f(x1, y2) < f(x2, y1) < f(x2, y2). Color the [2]2 sub-
grids of Q2 with two colors according to these two cases. The product Ramsey
theorem implies that we find infinite sets X,Y ⊂ Q such that all [2]2-subgrids
of X × Y are monochromatically colored. Then it is easy to verify that the
operation f together with the automorphisms of (Q, <) interpolates lex.

18

1

2

0 1 2 3

3

Figure 3: An illustration of the operation g from Lemma 7.2 for k = 3.

Note that preservation by lex alone does not give rise to a tractable con-
straint language, since lex preserves the Betweenness relation. For an illus-
tration of the next lemma, see Figure 3.

Lemma 7.2. Let f be a binary injective operation that preserves ≤ and
Rmin, but does not preserve Betweenness. Then for every k ≥ 0 there
are automorphisms α and β of (Q, <) such that the operation g defined as
g(x, y) := f(α(x), β(y)) or g(x, y) := f(α(y), β(x)) satisfies for natural num-
bers i, j, p, q with 0 ≤ i ≤ p ≤ k and 1 ≤ j, q ≤ k that g(i, j) < g(p, q) if and
only if

• i = 0 and p ≥ 1,

• i = p and j < q, or

• 0 < i < p and j ≤ q.

Note that the operation g of Lemma 7.2 is injective and preserves ≤. Also
note that the ll operation satisfies the conditions formulated for g.

Proof. Since f does not preserve the Betweenness relation, and is injective,
there are elements a1, b1, c1 and a2, b2, c2 such that a1 < b1 < c1, a2 > b2 > c2,
and one of the following four cases applies:

1. f(a1, a2) < f(c1, c2) < f(b1, b2)

2. f(c1, c2) < f(a1, a2) < f(b1, b2)

19

3. f(b1, b2) < f(c1, c2) < f(a1, a2)

4. f(b1, b2) < f(a1, a2) < f(c1, c2).

We can exclude cases 3 and 4, because (b1, a1, c1) and (b2, a2, c2) satisfy the
relation Rmin, but f(b1, b2), f(a1, a2), f(c1, c2) does not.

In case 1, define x := b1, x
′ := c1, y := c2, y

′ := b2, and in the second
case define x := a1, x

′ := b1, y := b2, y
′ := a2. Now choose an infinite set

X1 ⊂ Q of elements between x and x′, and an infinite set Y1 ⊂ Q of elements
between y and y′.

As in the proof of Proposition 7.1, we apply the product Ramsey theorem
to X1×Y1, and find infinite sets X ′

1 ⊂ X1, Y
′

1 ⊂ Y1 such that all [2]2-subgrids
of X ′

1 × Y
′

1 are monochromatically colored.
Next, select an infinite set X2 of elements from Q that are larger than

c1, and an infinite set Y2 of elements from Q that are larger than a2. We
apply the product Ramsey theorem two more times: this time we color the
[2]2 subgrids of X ′

1× Y2 and the [2]2 subgrids of X2× Y
′

1 and get infinite sets
X ′′

1 ⊂ X ′

1, Y
′

2 ⊂ Y2, X
′

2 ⊂ X2, Y
′′

1 ⊂ Y1 such that the [2]2-subgrids of X ′′

1 × Y
′

2

and of X ′

2 × Y
′′

1 are monochromatically colored.
Now suppose that two of these infinite grids are colored differently. In

this case it is easy to see that we get ll or dual ll by local interpolation. In the
case that we get the ll operation, we are done. It is impossible that g locally
generates the dual ll operation, since g is generated by the ll operation, but
we have seen in Proposition 4.2 that the clone locally generated by ll and the
clone locally generated by the dual ll operation are incomparable.

So, assume that all three grids are oriented in the same direction. Up to
reflection of arguments of g, we can assume without loss of generality that
for all four points (x1, y1), (x2, y1),(x1, y2), (y1, y2) from one of these grids we
have f(x1, y1) < f(x2, y1) < f(x1, y2) < f(x2, y2). See Figure 4.

Now, let p be the minimal element of X ′

2, and let r be the minimal and
s the maximal element of Y ′′

1 . Suppose that we are in the case f(a1, a2) <
f(c1, c2) < f(b1, b2). Since f preserves ≤ and is injective, we have that
f(a1, s) < f(a1, a2). We know that f(a1, a2) < f(c1, c2). Again, since f
preserves ≤ and is injective, we have that f(c1, c2) < f(p, r). By transitivity,
f(a1, s) < f(p, r). It is now straightforward to construct the automorphisms
α and β as required in the statement of the Lemma (α maps a1 to 0). The
case f(c1, c2) < f(a1, a2) < f(b1, b2) is analogous.

20

Lemma 7.3. Let g be an operation that satisfies the conditions of Lemma 7.2.
Then every relation that is preserved by g is ll-closed.

Proof. Let R be a k-ary relation that is preserved by f . We show that R
is ll-closed. Let t1 and t2 be two k-tuples from R. We have to show that
t3 := ll(t1, t2) is in R as well. Without loss of generality we can assume that
ti < tj if i < j (otherwise, rename arguments of R). If all entries of t1 are
larger than 0, then we choose automorphisms α, β ∈ Aut(Q, <) such that
the entries of α(t1) and β(t2) are from {1, . . . , k}. Clearly we can then also
choose an automorphism γ ∈ Aut(Q, <) that maps g(α(t1), β(t2)) to t3, and
we are done.

We now prove by induction on s ≥ 1 that there is a tuple r in R that
coincides with ll(t1, t2) on the first s entries. For the initial case of the
induction, let l1 ≥ 1 be the largest index such that t1[l1] = t1[1] ≤ 0. Then,
let α ∈ Aut(Q, <) be such that α(t1[i]) = 0 for i ≤ l1 and such that the
remaining entries of α(t1) are from {1, . . . , k}. Let β ∈ Aut(Q, <) be such
that the entries of β(t2) are from {1, . . . , k}. It is easy to verify that there
is a permutation γ in Aut(Q, <) that maps g(α(t1[i]), β(t2[i])) to t3[i] for
0 ≤ i ≤ l1. Then we let r be the tuple γ(g(α(t1), β(t2))) from R.

For the induction step, suppose that we have already constructed a tuple
r that conincides with t3 on the first s entries. If the remaining entries of t3
are all positive, it is easy to find a permutation γ in Aut(Q, <) that maps
r to t3. Let ls ≥ 1 be the largest index such that t1[s + ls] = t1[s + 1] ≤ 0.
Let α, β ∈ Aut(Q, <) be such that α(t1[s + 1]) = 0, α(t1[i]) ∈ {1, . . . , k}
for i > s + ls, and β(r) ∈ {1, . . . , k}. Then it is again easy to see that
there is a permutation γ in Aut(Q, <) that maps g(α(t1[i]), β(r[i])) to t3[i]
for 1 ≤ i ≤ s + ls: for 1 ≤ i ≤ s, this follows from the fact that g preserves
≤. For s + 1 ≤ i ≤ s + ls this follows from the properties of g derived in
Lemma 7.2.

Lemma 7.2 and 7.3 together yield the following.

Theorem 7.2. Let f be a binary injective operation that preserves ≤ and
Rmin, but does not preserve Betweenness. Then every relation that is pre-
served by f is ll-closed.

21

Figure 4: A diagram for Lemma 7.2. The non-straight arcs are present
because f violates Betweenness. We also see three [3]2 grids that are oriented
in the same direction. The dashed arcs are present, because f preserves ≤.
The dotted edge follows from transitivity. We finally have the situation of
Lemma 7.2 for k = 3.

8 ll-closed Constraints and Datalog

In this section, we introduce Datalog, and then prove that the constraint
satisfaction problem for ll-closed constraints can not be solved by Datalog
programs. This result should not be confused with the weaker fact that
establishing k-consistency does not imply global consistency, for any k. This
was shown for Ord-Horn in [25]. But recall that Ord-Horn can be solved by
a Datalog program [9].

All constraint satisfaction problems studied in the literature so far where
one can show that they can not be solved by Datalog have the ability to
count [14]. However, it is easy to verify that the temporal constraint language
that only contains the ternary relation Rmin does not have the ability to
count. However, we present a proof that CSP({Rmin}) can not be solved by
a Datalog program.

We will now define Datalog. Our definition will be purely operational;
for the standard semantical approach to the evaluation of Datalog programs,
see [13]. A Datalog program is a finite set of Horn clauses, i.e., clauses of
the form ψ ← φ1, . . . , φl, where l ≥ 0 and where ψ, φ1, . . . , φl are atomic
formulas of the form R(x). The formula ψ is called the head of the rule, and
φ1, . . . , φl are called the body. We assume that all variables in the head also

22

occur in the body. The relation symbols occurring in the head of some clause
are called intentional, and all other relation symbols in the clauses are called
extensional.

If Γ is a finite temporal constraint language, we might use Datalog pro-
grams to solve CSP(Γ) as follows. Let Π be a Datalog program whose ex-
tensional symbols are from Γ, and let L be the set of intentional relation
symbols of Π. We assume that there is one distinguished 0-ary intentional
relation symbol false. Now, suppose we are given an instance Φ of CSP(Γ).
The evaluation of Π on Φ proceeds in steps i = 0, 1, At each step i we
maintain a set of literals Φi with relation symbols from L; it always holds
that Φi ⊂ Φi+1. Each clause of Π is understood as a rule that may derive a
new literal (with a relation symbol from L) from the literals in Φi. Initially,
we have Φ0 := Φ. Now suppose that R1(x

1
1, . . . , x

1
k1

), . . . , Rl(x
l
1, . . . , x

l
kl

) are
literals in Φi, and R0(y

0
1, . . . , y

0
k0

) ← R1(y
1
1, . . . , y

1
k1

), . . . , Rl(y
l
k1
, . . . , yl

kl
) is a

rule from Π, where yi
j = yi′

j′ if and only if xi
j = xi′

j′ . Then R0(x
0
1, . . . , x

0
l)

is the newly derived literal in Φi+1, where x0
j = xi

j′ if and only if y0
j = yi

j′ .
The procedure stops if no new literal can be derived. We say that Π solves
CSP(Γ), if for every instance Φ of CSP(Γ) there exists an evaluation of Π on
Φ that derives falseif and only if Φ has no solution.

We want to remark that the so-called method of establishing path-consis-
tency, which is very well-known and frequently applied in Artificial Intelli-
gence, can be formulated with Datalog programs where the intentional sym-
bols are at most binary and all rules use at most three variables in the body.

We prove that already for the temporal language that only consists of
Rmin there is no Datalog program that solves the corresponding constraint
satisfaction problem. We use a pebble-game characterization of the expres-
sive power of Datalog, which was originally shown in [14] and [24] for finite
domain constraint satisfaction, and which holds for a wide variety of in-
finite domain constraint languages as well, including qualitative temporal
constraint satisfaction (see the journal version of [4]).

Let Γ be a temporal constraint language, and let Φ be an instance of
CSP(Γ). Then the existential k-pebble game on Φ is the following game
between the players Spoiler and Duplicator. Spoiler has k pebbles p1, . . . , pk.
He places his pebbles on variables from Φ Initially, no pebbles are placed. In
each round of the game Spoiler picks some of this pebbles. If they are already
placed on Φ, then Spoiler first removes them from Φ. Spoiler then places these
pebbles on variables from Φ, and Duplicator responds by assigning elements

23

from Q to these variables. This assignment has to satisfy all the constraints φ
from Φ where all variables in φ are pebbled, otherwise Spoiler wins the game.
Duplicator wins, if the game continues forever, i.e., if Spoiler can never win
the game.

Theorem 8.1. (from [4]) Let Γ be a temporal constraint language. There
is no Datalog program that solves CSP(Γ) if and only if for every k there exists
an inconsistent instance of CSP(Γ) such that Duplicator wins the existential
k-pebble game on Φ.

The rest of this section is devoted to the proof of the following theorem.

Theorem 8.2. There is no Datalog program that solves CSP({Rmin}).

Proof. Let k be an arbitrary number. To apply Theorem 8.1 we have to
construct an inconsistent instance Φ of CSP({Rmin}) such that Duplicator
wins the existential k-pebble game on Φ.

For this, let G be a 4-regular graph of girth 2k+1, i.e., all cycles in G have
more than 2k vertices. It is known and easy to see that such graphs exist; it
is even known that there are such graphs of size exponential in k [21]. Orient
the edges in G such that there are exactly two outgoing and two incoming
edges for each vertex in G (since G is 4-regular, there exists an Euler tour
for G, which shows that such an orientation exists [11]).

Now we can define our instance Φ of CSP({Rmin}) as follows. The vari-
ables of Φ are the vertices from G. The instance Φ contains the constraint
Rmin(w, u, v) iff uw and vw are the two incoming edges at vertex w. We
claim that Φ does not have a solution: if there was a solution, some variable
w must denote the minimal value. But for every variable w we find a con-
straint Rmin(w, u, v) in Φ, and this constraint is violated since either u or v
must be strictly smaller than w.

Consider a connected non-empty subgraph G′ of G having at most 2k
vertices where only one vertex r has no outgoing edges, and where all vertices
have either two or no incoming edges. Since G has girth 2k+1, G′ must be a
binary tree with root r. We call G′ dominated, if all leaves in G′ are pebbled.

Duplicator always maintains the property that whenever the root r in
a dominated tree is pebbled during the game, then the value assigned to r
is strictly larger than the minimum of all the values assigned to the leaves.
Clearly, this property is satisfied at the beginning of the game.

24

Suppose that during the game Spoiler pebbles the variable u. Let T1, . . ., Ts

be those newly created dominated trees inG that have pebbled roots r1, . . ., rs,
for s ≥ 0. If s > 0, let ri be the root which received the minimal value a
among all the roots r1, . . . , rs. We claim that if u is the root of a dominated
tree T , then a is strictly larger than the minimum b of all the values assigned
to the leaves of T . Otherwise, the graph T ∪ Ti was a dominated tree that
violates the invariant even before the variable u has been pebbled, a contra-
diction. Therefore, in this case Duplicator can choose a value c between b
and a for the variable u. Since c is smaller than a, in all the new dominated
trees T1, . . . , Ts in G the value assigned to r1, . . . , rs is strictly larger than c,
and hence the invariant is preserved. Moreover, if R(w, u, v) (or R(w, v, u))
is a constraint in Φ where w and v have been pebbled, then this constraint
is satisfied by the assignment.

Since c is larger than b, this choice also guarantees that if v, v ′ are pebbled
variables then any constraint of the form Rmin(u, v, v′) is satisfied, because
in this case the variables u, v, v′ induce a dominated tree with root u in G.

If there is no dominated tree T where u is the root, then Duplicator
assigns a value to u that is smaller than all values assigned to other variables.
If s = 0, Duplicator plays a value that is larger than all values assigned to
other variables. In both cases it is easy to check that Duplicator maintains the
invariant, and satisfies all constraints φ ∈ Φ where all variables are pebbled.
By induction, we have shown that Duplicator has a winning strategy for the
existential k-pebble game on Φ.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communica-
tions of the ACM, 26(11):832–843, 1983.

[2] M. Bodirsky. The core of a countably categorical structure. In Proceedings
of the 22nd Annual Symposium on Theoretical Aspects of Computer Science
(STACS’05), LNCS 3404, pages 100–110, Springer-Verlag, 2005.

[3] M. Bodirsky and H. Chen. Oligomorphic clones. To appear in Algebra
Universalis, 2006.

[4] M. Bodirsky and V. Dalmau. Datalog and constraint satisfaction with infinite
templates. In Proceedings of the 23rd International Symposium on Theoret-
ical Aspects of Computer Science (STACS’06), LNCS 3884, pages 646–659.
A journal version is available from the webpage of the first author, 2006.

25

[5] M. Bodirsky and J. Kára. The complexity of equality constraint languages.
In Proceedings of the International Computer Science Symposium in Russia
(CSR’06), 2006.

[6] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homoge-
neous templates. Journal of Logic and Computation (JLC), 16(3):359–373,
2006.

[7] A. Bulatov, P. Jeavons, and A. Krokhin. The complexity of constraint sat-
isfaction: An algebraic approach (a survey paper). In: Structural Theory
of Automata, Semigroups and Universal Algebra (Montreal, 2003), NATO
Science Seiries II: Mathematics, Physics, Chemistry, 207:181–213, 2005.

[8] A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34:720–742,
2005.

[9] H.-J. Bürckert and B. Nebel. Reasoning about temporal relations: A max-
imal tractable subclass of Allen’s interval algebra. Journal of the ACM,
42(1):43–66, 1995.

[10] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[11] R. Diestel. Graph Theory. Springer–Verlag, New York, 1997.
[12] T. Drakengren and P. Jonsson. Twenty-one large tractable subclasses of

allen’s algebra. Artif. Intell., 93:297–319, 1997.
[13] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999. 2nd

edition.
[14] T. Feder and M. Vardi. The computational structure of monotone monadic

SNP and constraint satisfaction: A study through Datalog and group theory.
SIAM Journal on Computing, 28:57–104, 1999.

[15] S. Felsner, P. C. Fishburn, and W. T. Trotter. Finite three dimensional
partial orders which are not sphere orders. Discrete Math., 201:101–132,
1999.

[16] Garey and Johnson. A Guide to NP-completeness. CSLI Press, Stanford,
1978.

[17] M. C. Golumbic and R. Shamir. Complexity and algorithms for reason-
ing about time: a graph-theoretic approach. Journal of the ACM (JACM),
40(5):1108 – 1133, 1933.

[18] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley
& Sons, Inc., 1990. Second edition.

[19] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combi-
natorial Theory, Series B, 48:92–110, 1990.

[20] W. Hodges. A shorter model theory. Cambridge University Press, 1997.
[21] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. John Wiley and

26

Sons, 2000.
[22] P. Jeavons, P. Jonsson, and A. A. Krokhin. Reasoning about temporal rela-

tions: The tractable subalgebras of Allen’s interval algebra. Journal of the
ACM, 50(5):591–640, 2003.

[23] H. Kautz, P. van Beek, and M. Vilain. Constraint propagation algorithms: A
revised report. Qualitative Reasoning about Physical Systems, pages 373–381,
1990.

[24] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and con-
straint satisfaction. In Proceedings of PODS’98, pages 205–213, 1998.

[25] M. Koubarakis. Tractable disjunctions of linear constraints: Basic results and
applications to temporal reasoning. Theoretical Computer Science, 266:311–
339, 2001.

[26] P. B. Ladkin and R. D. Maddux. On binary constraint problems. Journal of
the Association for Computing Machinery, 41(3):435–469, 1994.

[27] D. Marker. Model Theory: An Introduction. Springer, 2002.
[28] A. Szendrei. Clones in universal Algebra. Seminaire de mathematiques su-

perieures. Les Presses de L’Universite de Montreal, 1986.
[29] P. van Beek. Reasoning about qualitative temporal information. Artificial

Intelligence, 58:297–326, 1992.
[30] R. van der Meyden. The complexity of querying indefinite information

about linearly ordered domains. Journal of Computer and Systems Science,
54(1):113–135, 1997.

27

