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Abstract

We show that an Eulerian triangulation of the Klein bottle has
chromatic number equal to six if and only if it contains a complete
graph of order six, and it is 5-colorable, otherwise. As a consequence
of our proof, we derive that every Eulerian triangulation of the Klein
bottle with face-width at least four is 5-colorable.

1 Introduction

A graph is said to be Eulerian if all of its vertices have even degree. In this
paper we study colorings of Eulerian triangulations. These are triangulations
of closed surfaces whose graph is Eulerian.
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University, Malostranské náměst́ı 25, 118 00 Prague, Czech Republic. E-mail:
pangrac@kam.mff.cuni.cz.

¶Tsuruoka National College of Technology, Tsuruoka, Yamagata 997-8511, Japan. E-
mail: y-suzuki@tsuruoka-nct.ac.jp.

1



The celebrated Four Color Theorem [2, 25] asserts that every planar
graph, in particular, every triangulation of the plane, is 4-colorable. However,
only a handful of planar triangulations are 3-colorable, and it is relatively
easy to see that a planar triangulation is 3-colorable if and only if it is Eule-
rian [26].

Eulerian triangulations are interesting because of their tight connection
to 3-colorability of planar graphs. From the algorithmic point of view, it
is trivial to decide whether a planar graph is 4-colorable, and an algorithm
based on the proof of the Four Color Theorem [24] finds a 4-coloring of a
given planar graph in quadratic time. On the other hand, it is NP-complete
to decide whether a planar graph is 3-colorable [12]. Knowing this, it is
surprising that a planar graph is 3-colorable if and only if it is a subgraph
of an Eulerian triangulation. This fact has appeared in [16] and [18]. Other
conditions for 3-colorability of plane graphs can be found e.g. in [7].

In this paper we study Eulerian triangulations of more general surfaces, in
particular those of the Klein bottle. We refer the reader for a detailed intro-
duction into graph embeddings on surfaces to a recent monograph [21] and
we provide here only the basic results that we need in our further exposition.

Going off the plane, the situation concerning chromatic properties of Eu-
lerian triangulations changes drastically. For example, the complete graph
K7 of order seven forms an Eulerian triangulation of the torus – and yet,
it needs seven colors to be colored. Even more is true. It can be shown
that every graph is a subgraph of some Eulerian triangulation, so the study
of chromatic properties of Eulerian triangulations of arbitrary surfaces is as
hard as the same problem for arbitrary graphs. However, there are two di-
rections, where one can make some breakthrough. One is to study locally
planar graphs, those with large edge-width (see [21] for more details), and
the other possibility is to restrict to a fixed surface.

Eulerian triangulations of the projective plane are still well understood.
A set C of vertices of a triangulation T is called a color class if every face of T
has precisely one vertex in C. If C is a color class in the Eulerian triangulation
T , then T − U is an even-faced map, i.e. an embedded graph whose faces
all have even size. Fisk [11] proved that any Eulerian triangulation of the
projective plane contains a color class. Mohar [19] extended this result by
proving:

Theorem 1 (Mohar [19]). Let T be an Eulerian triangulation of the pro-
jective plane, and let C be a color class in T . Then the chromatic number

2



χ(T ) of T is equal to 3 if and only if T − C is bipartite. If T − C is non-
bipartite and contains a subgraph which is a quadrangulation of the projective
plane, then χ(T ) = 5; otherwise χ(T ) = 4. Moreover, given T , one can find
a color class in T and determine χ(T ) in polynomial time.

The proof of Theorem 1 is based on a discovery of Youngs [31] that
quadrangulations of the projective plane are either bipartite or 4-chromatic,
but their chromatic number is never equal to 3. It also uses an extension
by Gimbel and Thomassen [13] who proved that a graph of girth at least
4 embedded in the projective plane is 3-colorable if and only if it does not
contain a non-bipartite quadrangulation of the projective plane.

As a corollary of Theorem 1 we have:

Theorem 2. Every Eulerian triangulation of the projective plane is 5-color-
able.

This result can be proved directly by first observing that every projective
planar graph is 6-colorable. Next, Dirac’s theorem [1, 8] asserts that the
only obstacle for 5-colorability is the presence of a complete graph of order
six: the chromatic number of a projective planar graph is six if and only if it
contains a complete graph of order six as a subgraph. Finally, K6 cannot be
a subgraph of an Eulerian triangulation of the projective plane (this follows
from Proposition 4).

There are some extensions of these results to more general surfaces. The
strongest results in this area have been obtained by DeVos et al. [9]. Other
results stem from the corresponding results about even-faced maps. Note
that Eulerian triangulations can be obtained from even-faced maps by placing
a single vertex into each face of it and joining it to all the other vertices
incident with that face.

An important parameter that quantitatively measures local planarity of
an embedded graph G is the length of a shortest non-contractible cycle in
G, which is called the edge-width of G. As an example, let us mention the
following result of Hutchinson [14] (cf. also [9] for a strengthening of this
result). For every genus g, there exists an integer r(g) such that every graph
embedded on an orientable surface of genus g with all faces even and with
edge-width at least r(g) is 3-colorable. The claim trivially holds in the plane,
since such a graph must be bipartite. For the torus, the original bound of
25 from [14] on r(1) has been improved to 9 by Archdeacon et al. [3]. A
recent improvement [17] of r(1) to 6 is best possible since the Cayley graph
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C(Z13; 1, 5) has chromatic number four and can be embedded on the torus
with edge-width five [3]. In fact, this Cayley graph is the only obstacle
for a triangle-free even-faced map on the torus to be 3-colorable. The same
phenomena appear for other classes of graphs: every Eulerian triangulation of
an orientable surface that has sufficiently large edge-width is 4-colorable [14]
and every graph embedded on a fixed surface (orientable or non-orientable)
with sufficiently large edge-width is 5-colorable [29].

Note that the assumption in the results of Hutchinson [14] that a surface
is orientable is essential since every non-orientable surface admits quadran-
gulations of arbitrarily large edge-width, whose chromatic number is four
[3, 9, 20]. However, such non-3-colorable quadrangulations can be character-
ized [20].

Similarly, Eulerian triangulations on orientable surfaces having sufficiently
large edge-width are 4-colorable as proved by Hutchinson, Richter, and Sey-
mour [15]. On the other hand, every non-orientable surface has non-4-
colorable Eulerian triangulations of arbitrarily large edge-width [3, 9], and
they can also be characterized [22].

As colorings of Eulerian triangulations of the projective plane are well-
understood (cf. Theorem 1), we focus on Eulerian triangulations of the Klein
bottle, the next simplest non-orientable surface. Our goal is to characterize
non-5-colorable Eulerian triangulations of the Klein bottle. In particular, we
prove that an Eulerian triangulation of the Klein bottle is 5-colorable if and
only if it does not contain the complete graph of order six as a subgraph.
Let us mention at this point that graphs considered in this paper can have
parallel edges as long as they do not form bigons. As a corollary we prove
that every Eulerian triangulation of the Klein bottle with edge-width at
least four is 5-colorable. It seems to be more difficult to establish analogous
results for 4-colorable Eulerian triangulations of the Klein bottle since there
are 5-chromatic Eulerian triangulations with arbitrarily large edge-width; in
particular, the list of “forbidden” subgraphs in this case cannot be finite.

Our main result is the following:

Theorem 3. An Eulerian triangulation G of the Klein bottle is 5-colorable
if it does not contain a complete graph of order six. If G contains K6, then
it can be obtained from one of the maps TA, TB, TC , TD and TE, which are
depicted in Figures 1, 11, 14 and 16, by adding vertices and edges and its
chromatic number is equal to 6.

Theorem 3 is a combination of Theorems 28 and 31, which are proved in
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Sections 8 and 10, respectively.

2 Outline of the proof

Before we start proving our main result, we would like to explain the major
steps of the proof. First, we realize that it is enough to prove our results for
proper triangulations as defined in Section 3. In Section 3, we also define a
special type of contraction that can be applied to vertices of degree four. This
operation has the property that if it is applied to an Eulerian triangulation,
the resulting triangulation is also Eulerian and if the resulting triangulation
is 5-colorable, so is the original one. This leads us to the need to analyze
Eulerian triangulations without contractible vertices.

Before we proceed with further analysis, we realize that unless the Eu-
lerian triangulation of the Klein bottle contains a vertex of degree two, is
6-regular or of a very special type (all these cases are easy to handle), it con-
tains a vertex of degree four adjacent to a vertex of degree six (Lemma 16).
In Section 5, we then analyze Eulerian triangulation with a non-contractible
vertex of degree four adjacent to a vertex of degree six and identify one
particular configuration that requires a finer analysis—we call such a config-
uration the resistant configuration and the vertex of degree four involved in
it a resistant vertex. Eulerian triangulations with the resistant configuration
are then analyzed in Section 6. All these results are combined in Section 7
where we prove that every minimal (under our operation of the contraction)
non-5-colorable Eulerian triangulation of the Klein bottle is isomorphic to
one of the five triangulations that are denoted by TA, TB, TC , TD and TE

and are introduced later.
We observe that each of the five minimal triangulations contains the com-

plete graph K6 of order six as a subgraph. Moreover, there are only four
non-isomorphic embeddings of K6 in such triangulations. We call these em-
beddings bad. In Section 8, we show that they are the only embeddings of
K6 that can be contained in an Eulerian triangulation of the Klein bottle. In
Section 9, we invert the operation of contraction and introduce expansions of
vertices. We show that if an expansion of a vertex results in a triangulation
with no complete graph of order six (and the original graph contained the
complete graph of order six as a subgraph), then the obtained graph is 5-
colorable. Hence, every Eulerian triangulation of the Klein bottle that is not
5-colorable must contain one of the four bad embeddings of K6. We formally
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combine the just explained results in Section 10 in which we state and prove
our main result (Theorem 31).

3 Preliminaries

In this section, we introduce notation used throughout this paper. Graphs
which we consider have no loops but they can contain multiple edges. If G
is a graph and W a subset of its vertices, then G[W ] is the subgraph of G
induced by W . A k-vertex is a vertex of degree k. Similarly, a k-cycle is a
cycle of length k. If G is embedded on a surface and 2-connected, then a
k-face is a face bounded by a k-cycle.

Most of our proofs deal with graphs on surfaces. We refer to the mono-
graph [21] for definitions related to graphs embedded on surfaces not men-
tioned here. If G is such a graph and C = v1 . . . v` is a non-contractible
`-cycle in G, we can cut the surface along C. This decreases the genus of the
surface. In the obtained graph G′, the cycle C is either replaced by two copies
C ′ and C ′′ of the original cycle C or by a 2`-cycle C ′. In the former case, the
vertices of C ′ will always be denoted by v′

1 . . . v′

` and the vertices of C ′′ by
v′′

1 . . . v′′

` . In the latter case, the vertices of C ′ are denoted by v′

1 . . . v′

`v
′′

1 . . . v′′

` .
The reader is referred for an example to Figure 5 where the Klein bottle was
cut along a one-sided cycle vwu0. Note that the star in the figure denotes a
cross-cap. Let us now introduce some additional notation used in our figures.
The regions of a graph that are faces are always filled with the white color
and those that can contain additional vertices and edges of G with the gray
color.

A triangulation of a surface is an embedding of a loopless graph such
that each face is a 3-face and an Eulerian triangulation of the surface is
a triangulation in which all vertices have even degrees. A triangulation is
proper if it has no contractible cycles of length two, every contractible 3-
cycle is facial, and every 4-cycle bounds a region that contains at most one
vertex of G.

Besides Eulerian triangulations, we are also interested in near-triangu-
lations and Eulerian near-triangulations. An embedding of a graph G in
a surface is a near-triangulation if all its faces are 3-faces with a possible
exception of a single distinguished face. An Eulerian near-triangulation is
a near-triangulation such that all the vertices not incident with the distin-
guished face have even degrees.
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An embedding of a graph G is a defective Eulerian triangulation if it is a
triangulation and all the vertices of G have even degrees except for a single
pair of adjacent vertices. Similarly, a 2-defective Eulerian triangulation is a
triangulation with all the vertices of even degrees except for either two pairs
of adjacent vertices or two non-adjacent vertices at distance two.

Proposition 4. There is no defective Eulerian triangulation of the plane.

Proof. Suppose that G is a defective Eulerian triangulation of the plane and
let v and w be two adjacent vertices of odd degree. Remove the edge vw from
G and consider the dual graph G∗ of G. Since the degrees of all the vertices
of G \ vw are even, G∗ is bipartite. On the other hand, all its vertices have
degree three except for a single vertex of degree four (which corresponds to
the face from which the edge vw was removed). Clearly, such a graph cannot
exist.

On the other hand, defective Eulerian triangulations of the projective
plane exist. In the next lemma, we show that defective and 2-defective
Eulerian triangulations of the projective plane are 5-colorable.

Lemma 5. Every defective or 2-defective Eulerian triangulation of the pro-
jective plane is 5-colorable.

Proof. Consider a defective or a 2-defective triangulation G of the projec-
tive plane that is not 5-colorable. By Dirac’s Theorem [1, 8], G contains a
complete graph of order six as a subgraph. Let H be such a subgraph of G.
Note that the complete graph of order six has a unique embedding in the
projective plane and this embedding is a triangulation.

If G is a defective triangulation, color the edge joining the vertices of odd
degree red. If G is 2-defective, color the two edges joining vertices of odd
degree red or color a two-edge path between two such vertices red. Note that
G contains at most two red edges and a vertex of G has odd degree if and
only if it is incident with exactly one red edge.

We now observe that it can be assumed without loss of generality that G
has no separating contractible 3-cycle with all inner vertices of even degree.
Assume that T is a separating 3-cycle of G and let GT be the subgraph of
G formed by the vertices and edges lying inside the closed disc bounded by
T . By Proposition 4, the degrees of all the vertices of GT are even. Hence,
removing the interior of T yields a defective or a 2-defective triangulation G′

of the projective plane. Clearly, G is 5-colorable if and only if G′ is.
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Since each facial cycle of H bounds a 2-cell, each face of H either bounds
a face in G or contains a vertex of odd degree (and thus a red edge) in its
interior. On the other hand, every vertex v of H is incident either with a red
edge (that can be an edge of G contained in H) or with a face containing
a red edge in its interior. Otherwise, v would have odd degree and would
be incident with no red edges. Since H contains six vertices and G contains
at most two red edges, there are exactly two non-empty faces of H each
containing a single red edge. Moreover, these faces of H are vertex-disjoint.
However, there are no two disjoint facial triangles in the unique embedding
of K6 in the projective plane. This contradiction completes the proof.

Next, we establish a lemma on the existence of special 5-colorings in plane
graphs. This lemma straightforwardly follows from the Four Color Theorem,
but we decided to provide a proof independent of it.

Lemma 6. Let G be a plane graph. For every two non-adjacent vertices w1

and w2 of G, G has a 5-coloring that assigns the vertices w1 and w2 the same
color.

Proof. Consider a counterexample G of the smallest size. Clearly, such a
graph G is connected and simple. By Euler’s formula, G has at least three
vertices of degree at most five. In particular, G has a vertex w of degree at
most five that is neither w1 and w2. By the choice of G, G − w has a 5-
coloring that assigns the vertices w1 and w2 the same color. If the neighbors
of w in G are colored with at most four distinct colors, the coloring can be
extended to G which is impossible. Hence, the degree of w is five and its five
neighbors v1, . . . , v5 are colored with mutually distinct colors. By symmetry,
we can assume that v5 is colored with the color of w1 and w2. Let Gij be
the subgraph of G induced by the vertices colored with the color of vi or vj,
i, j ∈ {1, . . . , 4}. Since G is plane, the vertices v1 and v3 are not contained in
the same component of G13 or the vertices v2 and v4 are not contained in the
same component of G24. By symmetry, we can assume that the former is the
case, and switch the two colors used in the component of G13 that contains
v3. In this way, we obtain a 5-coloring of G that assigns the vertices w1 and
w2 the same color and such that the neighbors of w are colored with at most
four distinct colors. Such a coloring can be extended to w. We conclude that
G is not a counterexample to the statement of the lemma and thus there is
no counterexample at all.
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We next focus our attention to Eulerian near-triangulations and show that
if the size of the distinguished face is small and G is embedded in the plane,
then the parities of degrees of the vertices incident with the distinguished
face are very restricted.

Proposition 7. If G is an Eulerian near-triangulation of the plane with the
distinguished face bounded by a two-cycle v1v2, then the degrees of both v1

and v2 are odd.

Proof. By the hand-shaking lemma, the parities of the degrees of v1 and v2 are
the same. If they are both even, we obtain by removing one of the two parallel
edges v1v2 a defective plane Eulerian triangulation which is impossible by
Proposition 4.

Proposition 8. If G is an Eulerian near-triangulation of the plane with the
distinguished face bounded by a three-cycle v1v2v3, then the degrees of v1, v2

and v3 are even.

Proof. By the hand-shaking lemma, either the degrees of all the vertices v1,
v2 and v3 are all even or exactly two of them have odd degree. In the latter
case, G is a defective Eulerian triangulation of the plane which is impossible
by Proposition 4.

Arguments similar to those used in the proofs of Propositions 7 and 8 yield
the proofs of the next two propositions. We have decided not to include their
(short) proofs.

Proposition 9. If G is an Eulerian near-triangulation of the plane with the
distinguished face bounded by a four-cycle v1v2v3v4, then one of the following
holds:

• the degrees of all the vertices v1, v2, v3 and v4 are odd,

• the degrees of v1 and v3 are even, and those of v2 and v4 are odd, or

• the degrees of v1 and v3 are odd, and those of v2 and v4 are even.

Proposition 10. If G is an Eulerian near-triangulation of the plane with
the distinguished face bounded by a 5-cycle v1v2v3v4v5, then there exists an
index i such that the degrees of the vertices vi and vi+1 are odd (the indices
are modulo five) and the degrees of the vertices vj, j 6= i, i + 1, are even.
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Since we are interested in colorings of Eulerian triangulations, we will also
need some tools that allow us to extend precolorings of some of the vertices
of a graph to the entire graph.

Proposition 11. Let G be a plane Eulerian near-triangulation with the dis-
tinguished face bounded by a k-cycle v1 . . . vk, k ≤ 5, and let W = {v1, . . . , vk}.
Every precoloring c of the vertices of W that is a proper coloring of G[W ]
can be extended to a proper 5-coloring of G.

Proof. If k ≤ 3, then all the vertices v1 . . . vk have mutually distinct colors.
Clearly, G is 5-colorable and the colors of such a 5-coloring of G can be
permuted to match the colors of v1 . . . vk. Suppose now that k = 4. By
Proposition 9, G can be completed to an Eulerian triangulation either by
adding an edge or a vertex of degree four. Hence, G is 3-colorable.

Fix a 3-coloring of G. If the vertices v1, . . . , v4 should be colored with
four mutually distinct colors, recolor v3 and v4 with the fourth and the fifth
color. If two of the vertices, say v1 and v3 should have the same color, recolor
v1 and v3 with the fourth color and v4 with the fifth color. If, in addition, the
colors of v2 and v4 should be the same, also recolor v2 with the fifth color. In
this way we obtain a coloring that matches the precoloring of v1, . . . , v4 (up
to a permutation of the colors).

It remains to consider the case k = 5. By Proposition 10, we can assume
that the degrees of v3 and v4 are odd and the degrees of the remaining vertices
are even. Consider the plane graph G′ obtained by adding edges v1v3 and
v1v4. G′ is an Eulerian triangulation of the plane and it is thus 3-colorable.
Since all the vertices v2, . . . , v5 must receive colors different from the color of
v1, the colors of v2 and v4 and the colors of v3 and v5 are the same. We now
recolor some of the vertices v1, . . . , v5 to match the colors in the precoloring.

Let Ai, i = 1, . . . , 5, be the set of the vertices v1, . . . , v5 precolored with the
i-th color. Suppose first that the vertices v1, . . . , v5 are precolored with three
distinct colors. By symmetry, we can assume that |A1| = 1 and |A2| = |A3| =
2. We proceed as follows: the vertex of A1 keeps its color and the vertices of
A2 and A3 are recolored with the fourth and the fifth color, respectively.

If the vertices v1, . . . , v5 are precolored with four distinct colors, we may
assume that |A1| = |A2| = |A3| = 1, |A4| = 2 and the vertices contained
in A1 and A2 are adjacent. In this case, the vertices of A1 ∪ A2 keep their
colors, the vertex of A3 is recolored with the fourth color and the vertices of
A4 with the fifth color.

10



Finally, if the vertices v1, . . . , v5 are precolored with five distinct colors,
the vertices v1, . . . , v3 keep their colors and the vertices v4 and v5 are recolored
with the fourth and the fifth colors.

Similarly, some special precolorings of plane Eulerian near-triangulations
with the distinguished face of length six or seven can also be extended as we
show in the next three propositions. Note that the vertex v6 is not assumed
to be precolored in the next proposition and its color is determined by the
extended coloring.

Proposition 12. Let G be a plane Eulerian near-triangulation with the dis-
tinguished face bounded by a 6-cycle v1 . . . v6 and let W = {v1, . . . , v5}. Every
precoloring c of the vertices of W with five colors that is a proper coloring
of G[W ] such that c(v1) = c(v4) can be extended to a 5-coloring of the entire
graph G.

Proof. Let G′ be an isomorphic copy of G, v′

1 . . . v′

6 the vertices bounding the
distinguished face of G′, and H a plane graph obtained from G and G′ by
identifying the vertices vi and v′

i for i = 1, . . . , 6. Clearly, H is an Eulerian
triangulation of the plane and thus it is 3-colorable. Consider the 3-coloring
of G that is the restriction of a 3-coloring of H. Recolor the vertices v1 and v4

with an unused (fourth) color and the vertex v5 with another unused (fifth)
color. If c(vi) = c(v5) for i ∈ {2, 3}, also recolor such a vertex vi with the fifth
color. Note that the colors c(v2) and c(v3) are distinct from c(v1) = c(v4).
The coloring of v1, . . . , v5 now matches the precoloring of G[W ] (up to a
permutation of the colors).

Proposition 13. Let G be a plane Eulerian near-triangulation with the dis-
tinguished face bounded by a 6-cycle v1 . . . v6 and let W = {v1, . . . , v5}. Every
precoloring c of the vertices of W with five colors that is a proper coloring
of G[W ] such that c(v1) = c(v3) can be extended to a 5-coloring of the entire
graph G.

Proof. Let G′ and H be the graphs as in the proof of Proposition 12 and
consider the 3-coloring of G obtained by restricting a 3-coloring of H. Recolor
the vertices v1 and v3 with an unused (fourth) color and the vertex v2 with
another unused (fifth) color. If c(vi) = c(v1) for i ∈ {4, 5}, also recolor such
a vertex vi with the fourth color, or if c(vi) = c(v2), recolor vi with the fifth
color. The coloring of v1, . . . , v5 now matches the precoloring.
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Proposition 14. Let G be a plane Eulerian near-triangulation with the dis-
tinguished face bounded by a 7-cycle v1 . . . v7 and let W = {v1, . . . , v6}. Every
precoloring c of the vertices of W with five colors that is a proper coloring
of G[W ] such that c(v1) = c(v5) and c(v2) = c(v6) can be extended to a
5-coloring of the entire graph G.

Proof. As in the previous two proofs, we consider the 3-coloring of G obtained
by restricting a 3-coloring of two copies of G pasted along the boundary of
the distinguished face. Recolor now the vertices v1 and v5 with an unused
(fourth) color and the vertices v2 and v6 with another unused (fifth) color.
If c(v3) = c(v1), also recolor v3 with the fourth color, and if c(v4) = c(v2),
recolor v4 with the fifth color. The coloring of the vertices v1, . . . , v6 now
matches the precoloring of G[W ].

We now introduce a special type of contractions which will be used later
in the paper. If G is a triangulation with a vertex v of degree four that is
adjacent to vertices v1, v2, v3 and v4 (in this cyclic order around v), a tri-
angulation obtained by a contraction of v1vv3 is the triangulation G.v1vv3

constructed from G in the following way: the edges vv1 and vv3 are con-
tracted to a new vertex w, the edges v2v1, v2v and v2v3 are identified to
a single edge v2w and the edges v4v1, v4v and v4v3 to a single edge v4w.
If v1 6= v3 and the vertices v1 and v3 are not adjacent, G.v1vv3 is again a
triangulation. Moreover, if the original triangulation is Eulerian, then the
obtained triangulation is also Eulerian: the degrees of the vertices v2 and
v4 decrease by two and the degree of the vertex w is equal to the sum of
the degrees of the vertices v1 and v3 decreased by four. Similarly, if G is a
defective Eulerian triangulation, then G.v1vv3 is also a defective Eulerian tri-
angulation, and if G is 2-defective, then G.v1vv3 is either Eulerian, defective
or 2-defective Eulerian triangulation.

A vertex v of degree four such that G.v1vv3 or G.v2vv4 is a triangulation
is said to be contractible; otherwise, v is called non-contractible. Note that
if v is a non-contractible vertex, then v1 = v3 or the vertices v1 and v3 are
adjacent, and similarly, v2 = v4 or the vertices v2 and v4 are adjacent. In
the case of the Klein bottle, we call a non-contractible vertex v resistant if
the degrees of v1, v2, v3 and v4 are at least six, the cycle vv1v3 is a two-sided
non-separating 3-cycle and vv2v4 is a one-sided non-separating 3-cycle.

At the end of this section, let us recall Theorem 3.1 from [6]. The theorem
is stated in [6] for simple plane graphs G but the proof readily translates to
graphs with multiple edges as long as there are no 2-faces.
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Theorem 15 ([6]). Let G be a plane near-triangulation with the distin-
guished face bounded by a k-cycle. If all the vertices that are not incident
with the distinguished face have degree at least six, then G contains at most
k2/12 + k/2 + 1 vertices.

In particular, if k = 6, then G contains at most one vertex that is not
incident with the distinguished face and if k = 8, then G contains at most
two such vertices.

4 Degree structure of Eulerian triangulations

of the Klein bottle

In this section, we first describe Eulerian triangulations of the Klein bottle
with minimum degree at least four that do not contain a 4-vertex adjacent
to a 6-vertex. Such triangulations are either 6-regular or of a very special
type:

Lemma 16. Let G be an Eulerian triangulation of the Klein bottle with
minimum degree at least four. Then, either G is 6-regular, or G contains
a vertex of degree four adjacent to a vertex of degree at most six, or G
contains only vertices of degree four and eight, no two vertices of degree four
are adjacent and each vertex of degree eight is adjacent to four vertices of
degree four.

Proof. Assume that neither of the first two cases apply. Let Q be the set of
vertices of degree four of G and O the set of vertices of degree at least eight
and set q = |Q| and o = |O|. Note that all neighbors of each vertex of Q
are in the set O by our assumption. Color now the edges incident with the
vertices of degree four by blue. Next, the edges that are contained in a 3-face
incident with a vertex of degree four and that are not blue are colored red.
Let b = 4q be the number of blue edges and r the number of red edges.

Each 3-face incident with a vertex of degree contains one red and two
blue edges. Since each vertex of degree four is contained in four faces, there
are b 3-faces incident with vertices of degree four. On the other hand, the
number of such 3-faces is at most 2r (each red edge is contained in at most
such faces). We conclude b ≤ 2r. By Euler’s formula, the average degree of
G is six. Therefore, o ≤ q and the equality holds if only if all the vertices in
O have degree exactly eight.
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Figure 1: The Eulerian triangulation TA of the Klein bottle.

The number of incidences of the vertices in O with red edges and blue
edges is b + 2r ≥ 2b = 8q. Hence, the average degree of G is at least

4q + 8q + 6s

o + q + s
≥

12q + 6s

2q + s
= 6 (1)

where s is the number of vertices of degree six of G. Since the average degree
of G is six, all the inequalities b + 2r ≥ 2b and (1) are equalities. It follows
that o = q and b + 2r = 2b = 8q. Therefore, all the vertices of O have
degree exactly eight, all the edges incident with vertices of O are red or blue
and b = 2r. Since two consecutive edges incident with a vertex of O cannot
be blue, each vertex of O is incident with four blue and four red edges. In
particular, it is not adjacent to a vertex of degree six. Since G is connected,
we conclude that G contains no vertices of degree six. The statement of the
lemma follows.

At the end of this section, we briefly deal with one of the cases described
in Lemma 16. The structure of 6-regular triangulations of the Klein bot-
tle is well-understood [23, 28] and in particular, the chromatic number of
every 6-regular triangulation of the Klein bottle has been determined by
Sasanuma [27]. The only 6-chromatic 6-regular triangulation of the Klein
bottle is the one obtained from the complete graph of order six by adding
a perfect matching (it is depicted in Figure 1). We henceforth refer to this
triangulation as the triangulation TA.

Lemma 17. A 6-regular triangulation G of the Klein bottle is 5-colorable
unless G is the triangulation TA depicted in Figure 1.
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5 Eulerian triangulations with non-contracti-

ble 4-vertices

In this section, we analyze Eulerian triangulations of the Klein bottle that
contain a 4-vertex that is neither contractible nor resistant. Those with resis-
tant vertices are analyzed in the next section. We start with the simplest case
that a 4-vertex is non-contractible since it is contained in a short separating
cycle.

Lemma 18. If G is an Eulerian triangulation of the Klein bottle that con-
tains a surface-separating 2-cycle or 3-cycle, then G is 5-colorable.

Proof. Cut the surface along the non-contractible 2- or 3-cycle. In case that
the length of the cycle is two, remove one of the two parallel edges bounding
a new 2-face. In this way, we obtain two Eulerian triangulations of the
projective plane or two defective Eulerian triangulations of the projective
plane which are 5-colorable by Theorem 2 or by Lemma 5. Their colorings
can be easily combined to obtain a coloring of G with five colors.

We now deal with Eulerian triangulations with a 4-vertex contained in a
cycle of length two.

Lemma 19. If G is a proper Eulerian triangulation of the Klein bottle that
contains a surface-non-separating 2-cycle vw such that the degree of v is four,
then G is 5-colorable.

Proof. Let u1 and u2 be the two neighbors of v different from w. The 2-cycle
vw forms either a one-sided or a double-sided non-separating curve in the
Klein bottle. We cut the surface along it.

If the 2-cycle is one-sided, we obtain the projective plane graph G′ de-
picted in Figure 2. Remove the vertices v′ and v′′ and the edges w′u1 and
w′u2 and identify the vertices w′ and w′′. In this way, we obtain an Eulerian
triangulation of the projective plane which is 5-colorable by Theorem 2. As-
signing the same colors to the vertices of G − v yields a proper 5-coloring of
G that can be extended to the vertex v (since its degree is four).

If the 2-cycle is double-sided, we obtain the plane graph G′ as depicted
in Figure 3. By Lemma 6, G′ − {v′, v′′} has a 5-coloring that assigns the
vertices w′ and w′′ the same color. Assign now the vertices of G the colors of
their counterparts in G′ and extend the coloring to v. In this way, we obtain
a 5-coloring of G.
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v w

u2

w

u1

v′ w′

v′′w′′

u1

u2
G

G′

Figure 2: The projective plane graph obtained by cutting along a one-sided
2-cycle vw in the proof of Lemma 19.

v w

u2

w

u1 u1 u2

v′ v′′

w′ w′′
G G′

Figure 3: The plane graph obtained by cutting along a two-sided 2-cycle vw
in the proof of Lemma 19.
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u0 v w u0

u1
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G

Figure 4: The notation used in the proof of Lemma 20.

u′′
0 u1 w′

w′′ u2
u′

0

v′

v′′

u′′
0 u1 w′

w′′ u2
u′

0

v′

v′′

u′′
0 u1 w′

w′′ u2
u′

0

v′

v′′

Figure 5: The projective plane graph G′ obtained by cutting along the one-
sided cycle vwu0 in the proof of Lemma 20. The left or the middle graph
is obtained if the cycle vu1u2 is one-sided, and the right one if the cycle is
two-sided.

Next, we analyze the case that one neighbor of a non-contractible 4-vertex
is also a 4-vertex.

Lemma 20. Let G be a proper Eulerian triangulation of the Klein bottle with
no contractible vertices. If G contains two adjacent vertices of degree four,
then G is 5-colorable.

Proof. By Lemma 18, we may assume that G does not contain separating 2-
or 3-cycles. Let v and w be two adjacent vertices of degree four. If v or w is
contained in a non-contractible 2-cycle, then G is 5-colorable by Lemma 19.
Otherwise, each of v and w is contained in two non-contractible 3-cycles.
Let u0, u1 and u2 be their neighbors as depicted in Figure 4. Note that the
homotopies of the cycles vu1u2 and wu1u2 are the same.

If both the cycles vu1u2 and vwu0 are one-sided, then their homotopies
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u′
0

v′

w′

u1 u2

w′′

v′′

u′
0

G′

Figure 6: The plane graph G′ obtained by cutting along the two-sided cycle
vwu0 in the proof of Lemma 20.

are the same. Cutting the surface along the cycle vwu0 yields a projective
plane graph G′. Since the cycles vu1u2 and vwu0 are homotopic, one of the
areas bounded by u′

0u1u2 and u′′

0u1u2 is a 2-cell while the other one contains
a cross-cap (hence, we have obtained the left or the middle configuration
depicted in Figure 5). Color the vertices u′

0, u1 and u2 with three mutually
different colors and color the vertex u′′

0 with the same color as u′

0. The
coloring can be extended to both the graphs contained in the areas bounded
by u′

0u1u2 and u′′

0u1u2: these graphs are either Eulerian triangulations or
defective Eulerian triangulations of the plane or the projective plane and
thus they are 5-colorable by Five Color Theorem, Theorem 2 or Lemma 5.
The constructed 5-coloring of G′ readily yields a 5-coloring of G.

If the cycles vu1u2 and wu1u2 are double-sided and the cycle vwu0 is one-
sided, we also cut the surface along the cycle vwu0. This yields the projective
plane graph G′ depicted in the right part in Figure 5. Remove the vertices v ′,
v′′, w′ and w′′ and the edges u′

0u1 and u′

0u2 and identify the vertices u′

0 and u′′

0

to a vertex u′′′

0 . The obtained projective plane triangulation G′′ contains two
vertices of odd degree: u1 and u2. Note that u1 and u2 are adjacent and thus
G′′ is a defective Eulerian triangulation which is 5-colorable by Lemma 5.
The 5-coloring of G′′ can be extended to the vertices v and w to a 5-coloring
of G.

It remains to consider the case that the cycles vu1u2 and wu1u2 are one-
sided and the cycle vwu0 is double-sided. Let G′ be the plane graph obtained
by cutting along the cycle vwu0 (see Figure 6). By Lemma 6, G′ has a 5-
coloring that assigns the vertices u′

0 and u′′

0 the same color. This 5-coloring
can be easily extended to v and w yielding a 5-coloring of G.

It remains to analyze one more case when a 4-vertex is neither contractible
nor resistant. We do so in the next lemma.
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v

u4

u3 u1

u2

u3

G

Figure 7: The two possible configurations contained in the graph G in the
proof of Lemma 21.

Lemma 21. Let G be a proper Eulerian triangulation of the Klein bottle with
no contractible vertices. If G contains a vertex v of degree four that is not
resistant and that is adjacent to a vertex of degree six, then G is 5-colorable.

Proof. By Lemmas 18 and 19, we can assume that v is not contained in a
2-cycle. In particular, the vertices u1, u2, u3 and u4 are mutually distinct.
By symmetry, we assume that u1 is the neighbor of v of degree six. By the
assumption of the lemma, both the cycles vu1u3 and vu2u4 are one-sided.
In particular, one of the neighbors of u1 is the vertex u3, and G contains
one of the two configurations depicted in Figure 7. Hence, cutting along
the cycle vu1u3 yields one of the four projective plane graphs depicted in
Figure 8. Note that one of the two shaded areas in the figure is a 2-cell and
one contains a cross-cap since the homotopies of the cycles vu1u3 and vu2u4

are the same.
We now construct a 5-coloring of G for each of the four cases depicted in

Figure 8. In the first case, the projective plane graph bounded by u2u
′

3u4 is
either an Eulerian triangulation or a defective Eulerian triangulation. Hence,
it is 5-colorable by Theorem 2 or Lemma 5. Next, color the vertex u′′

3 by the
same color as u′

3 and the vertices u′

1 and u′′

1 with the same color different
from the colors of u2, u′

3 and u4, and extend the coloring to the graph inside
the 4-cycle u′′

1u2u4u
′′

3 by Proposition 11. In this way, we eventually obtain a
5-coloring of G by assigning a color to the vertex v.

In the second case, let G′ be the projective plane graph bounded by the
cycle u2w1w2u

′′

3u4. If the vertices w1 and u′′

3 are not adjacent, remove the
edge w2u

′′

3 and identify the vertices w1 and u′′

3. In this way, we obtain an
Eulerian triangulation or a defective Eulerian triangulation of the projective
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Figure 8: The four projective plane graphs G′ that can be obtained by cutting
along the cycle vu1u3 in the proof of Lemma 21.
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u′′
1u2

u′′
3u4

w1

w2

u′′
1u2

u′′
3u4

w1

w2

Figure 9: The configurations that appear in G′ in the proof of Lemma 21 in
the analysis of the second configuration depicted in Figure 9.

plane which is 5-colorable by Theorem 2 or Lemma 5. Next, color the vertices
u′

1 and u′′

1 with a color different from the colors of u2, u′

3 = u′′

3 and u4 and
extend the obtained coloring to v. In this way, we obtain a 5-coloring of G.
We proceed analogously if the vertices w2 and u2 are not adjacent.

Assume now that both the vertices w1 and u′′

3 and the vertices w2 and
u2 are adjacent (see Figure 9). If the vertices u4 and w1 are not adjacent,
precolor them with the same color and color the vertices u2, w2 and u′′

3

with mutually distinct colors different from the color of u4 and v1. Extend
this coloring to the graphs inside the 5-cycle u2u4u

′′

3w2w1 and the 4-cycle
w1u

′′

3w2u2 by Proposition 11. Next, color the vertices u′

1 and u′′

1 with the
same color and obtain a 5-coloring of G by assigning a color to the vertex v.
Again, we proceed similarly if the vertices w2 and u4 are not adjacent. If G′

contains both the edges w1u4 and w2u4, then the degree of u4 is seven—note
that all the faces incident with u4 in the graph depicted in Figure 9 are 3-
faces and G is a proper triangulation. However, this case is excluded by our
assumption that G is an Eulerian triangulation.

The third and the fourth configurations depicted in Figure 8 are symmet-
ric. Hence, we just analyze the third one. Let G′ be the projective plane
graph bounded by the 4-cycle u2u

′

3wu4. Add an edge between the vertices
u′

3 and u4. In this way, we obtain an Eulerian triangulation, a defective Eu-
lerian triangulation or a 2-defective Eulerian triangulation of the projective
plane. In all the cases, G′ with the added edge is 5-colorable by Theorem 2
or Lemma 5. Next, color the vertices u′

1 and u′′

1 with a color different from
the colors of u′

3, u2 and u4 and extend the coloring inside the cycle u2u
′′

1u
′′

3u4

by Proposition 11. A 5-coloring of G is then obtained by assigning a color
to the vertex v.
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v
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v

v1 = v5

v2 = v6

v3 = v8v4 = v7

v5

v6

v7 v8

Figure 10: The resistant configuration. Note that v1 = v5, v2 = v6, v3 = v8,
and v4 = v7.

6 Eulerian triangulations with resistant ver-

tices

In this section, we analyze Eulerian triangulations of the Klein bottle that
contain a resistant vertex. If G is such a triangulation, then it is of the form
depicted in Figure 10 in which the pairs of vertices v1 and v5, v2 and v6, v3

and v8, and v4 and v7 are the same. The resistant vertex is the vertex v.
Throughout this section, we refer to the configuration depicted in Figure 10
as to a resistant configuration and all the arithmetic with indices of the
vertices vi, i = 1, . . . , 8, throughout this section, is modulo eight. When
referring to adjacencies between a vertex vi and a vertex w different from all
vi, the vertices vi are treated as eight distinct vertices, i.e., if the configuration
contains an edge wv4 but not wv7, we say that w is adjacent to v4 and not
adjacent to v7.

Lemma 22. Let G be a proper Eulerian triangulation of the Klein bottle
with a resistant configuration. If G does not contain a vertex of degree four
different from v, then G is either 5-colorable or it is the triangulation TB

depicted in Figure 11.

Proof. By Theorem 15, G contains at most two vertices different from v and
different from all vi, i = 1, . . . , 8. If G contains at most one such vertex, then
a 5-coloring of G can be obtained as follows: first, color the neighbors of v by
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Figure 11: The Eulerian triangulation TB of the Klein bottle.

four mutually distinct colors and then extend the coloring to the remaining
(non-adjacent) vertices of G. The same argument works if G contains two
such non-adjacent vertices. Hence, we can assume that G contains adjacent
vertices w1 and w2 that are different from v and vi, i = 1, . . . , 8.

Since the degree of both w1 and w2 is at least six, each of them must
be adjacent to five consecutive vertices vi, . . . , vi+4. There are four such
triangulations G (see Figure 12): two of them are isomorphic to triangulation
TB and the remaining ones are not Eulerian.

Next, we observe that each vertex of degree four different from v is adja-
cent to at least two of the vertices v1, . . . , v8.

Lemma 23. Let G be a proper Eulerian triangulation of the Klein bottle with
the resistant configuration. If G contains a non-contractible vertex w 6= v,
then w is adjacent to at least two of the vertices v1, . . . , v8 and such two
vertices are consecutive in the cyclic order around w.

Proof. By Lemma 20, v and w are not adjacent. Let u1, . . . , u4 be the neigh-
bors of w in the cyclic order around w. Since w is resistant, all the four
neighbors of w are mutually distinct and G contains non-contractible 3-cycles
wu1u3 and wu2u4. If neither u1 nor u3 is one of the vertices v1, . . . , v8, the
3-cycle wu1u3 must be contractible. Hence, u1 or u3 (or both) are one of the
vertices v1, . . . , v8. Similarly, u2 or u4 is one of the vertices v1, . . . , v8. The
claim now readily follows.
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Figure 12: The four triangulations of the Klein bottle obtained in the proof
of Lemma 22.
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Figure 13: The three configurations analyzed in the proof of Lemma 24.

Our first step towards the analysis of the triangulation with the resistant
configuration is excluding the case that G has non-contractible vertex w 6= v
adjacent to vertices vi and vj with |j − i| large.

Lemma 24. Let G be a proper Eulerian triangulation of the Klein bottle
with a resistant configuration. If G contains a non-contractible vertex w 6= v
that is adjacent to vi and vj such that j 6= i − 2, i − 1, i + 1, i + 2, then G is
5-colorable.

Proof. By symmetry, it is enough to analyze the case when w is adjacent to
one of the following pairs of vertices: v1 and v4, v1 and v5, v1 and v6, v3 and
v7, and v3 and v8. The cases that w is adjacent to v1 and v5, or to v3 and
v8 are handled by Lemma 19. In the remaining cases, let G1 and G2 be the
near-triangulations contained in the shaded areas as in Figure 13.

We now proceed with each of the three configurations separately:

w is adjacent to v1 and v4. Consider the near-triangulation G1, add an
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edge between v6 and v8, and identify the vertices v1 and v5. By
Lemma 6, the resulting plane graph G′

1 has a coloring with five colors
that assigns the vertices v4 and v7 the same color. Color the vertices
of G with the colors of their counterparts in G′

1. The obtained coloring
can be extended to G2 by Proposition 11 and eventually to the vertex
v as well.

w is adjacent to v1 and v6. Color the vertices v1, . . . , v8 with four mutu-
ally distinct colors in such a way that the pairs of the correspond-
ing vertices receive the same colors. Extend the precoloring to G1 by
Proposition 14. This determines the color of w. The coloring can now
be extend to G2 by Proposition 11 and eventually to v, since the degree
of v is four.

w is adjacent to v3 and v7. Precolor the vertices v1, . . . , v8 with four mu-
tually distinct colors in such a way that the pairs of the corresponding
vertices receive the same colors. The precoloring can be extend both
to G1 and G2 by Proposition 12. Since the degree of w in G is four, it
can be recolored so that its color is the same in both the extensions of
the precoloring. At the end, we color the vertex v.

Next case that we consider is when there is a non-contractible 4-vertex
that has exactly two neighbors in common with v.

Lemma 25. Let G be a proper Eulerian triangulation of the Klein bottle with
the resistant configuration and without contractible vertices. If G contains a
non-contractible vertex w 6= v that is adjacent to exactly two of the vertices
v1, . . . , v8, then G is 5-colorable or it is the Eulerian triangulation TC or TD

depicted in Figure 14.

Proof. Let vi and vj be the neighbors of w, and let x and y be the remaining
two neighbors of w. Since w is non-contractible, x is adjacent to the coun-
terpart of vi and y to the counterpart of vj. If j 6∈ {i ± 1, i ± 2}, then G is
5-colorable by Lemma 24. By symmetry, we can assume that i is equal to 1,
2 or 3, and j ∈ {i + 1, i + 2}. If i = 3 and j = 4, then the vertex x cannot
be adjacent to v8 and y to v7 (because of simple topological reasons). We
conclude that G contains one of the four configurations depicted in Figure 15
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Figure 14: The Eulerian triangulations TC and TD of the Klein bottle.
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Figure 15: The four configurations considered in the proof of Lemma 25.
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(the dashed edges are drawn for future reference and are not contained in
the configurations).

Let us analyze the first configuration depicted in Figure 15. Suppose
first that x is not adjacent to v3. Color the vertices v1, . . . , v4 and y with five
mutually distinct colors and the vertex x with the color of v3. The precoloring
can be extended to each shaded area by Proposition 11. We proceed similarly
if x is not adjacent to v4 or y is not adjacent to v7 and v8. Hence, we can
assume that all the four dashed edges depicted in Figure 15 are present in G.
Since G is proper and Eulerian, it must be isomorphic to the triangulation
TD.

We now analyze the second configuration. Assume first that the cy-
cle xv5v6v7v8y contains a chord. Unless the subgraph of G induced by the
vertices v1, . . . , v4, x and y is complete, the vertices v1, . . . , v4, x, y can be
properly colored with five colors and the coloring can be extended to the
shaded areas by Proposition 11. If the subgraph induced by the vertices
v1, . . . , v4, x, y is complete, then the vertex x is adjacent to the vertices v4 = v7

and v6 and the vertex y to the vertices v6 and v7. It is easy to conclude that
G must be the triangulation TC in such a case.

Next, we assume that the cycle xv5v6v7v8y is chordless. If there is no
vertex of degree four inside the cycle xv5v6v7v8y, then by Theorem 15, the
interior of the cycle xv5v6v7v8y contains a single vertex of degree six adjacent
to all the vertices on the boundary of the cycle and the degree of y in G
is five (recall that G is proper) which contradicts our assumption that G is
Eulerian. Otherwise, there is a non-contractible vertex w′ inside the cycle
xv5v6v7v8y. Since w′ is non-contractible, all its four neighbors are among
the vertices x, y, v5, . . . , v8. At least two such neighbors are not consecutive
on the cycle xv5v6v7v8y and thus the cycle contains a chord since G is a
triangulation. This violates our assumption that the cycle is chordless.

Let us now proceed with the third configuration depicted in Figure 15. If
y is not adjacent to v1, color the vertices v1, . . . , v8 with four distinct colors,
the vertex y with the color of v1 = v5 and x with the fifth color. The obtained
coloring can be extended to each shaded area by Proposition 11. Next, it
can be extended to v and w and we obtain a coloring of G with 5 colors. An
analogous argument applies if y is not adjacent to v7 or x is not adjacent to
v5.

Let us next assume that G contains all the edges yv1, yv7 and xv5. Let
G′ be the near-triangulation bounded by the 4-cycle xv6v7y. Since G is
Eulerian and proper, the degree of y in G′ is even. So is the degree of v6

28



v

vv

v

v1 = v5

v2 = v6

v3 = v8v4 = v7

v5

v6

v7 v8

Figure 16: The Eulerian triangulations TE of the Klein bottle.

by Proposition 9. However, the degree of v2 = v6 in G is then odd which is
excluded by our assumption that G is Eulerian.

The last configuration depicted in Figure 15 is the easiest to analyze.
First, color the vertices v1, . . . , v8 with four distinct colors and assign the
vertex y the fifth color. Next, color the vertex x with the color assigned to
the vertex v3 = v8. The precoloring can be extended to each shaded area by
Proposition 11 and it can eventually be extended to v and w.

The final case is when the triangulation with the resistant configuration
contains a non-contractible vertex with three neighbors in common with v.

Lemma 26. Let G be a proper Eulerian triangulation of the Klein bottle with
the resistant configuration and no contractible vertices. If G contains a non-
contractible vertex w 6= v that is adjacent to three of the vertices v1, . . . , v8,
then G is either 5-colorable or it is the Eulerian triangulation TE depicted in
Figure 16.

Proof. By Lemma 24, unless G is 5-colorable, w is adjacent to vertices
vi, vi+1, vi+2. By symmetry, we can assume that w is adjacent to either v1,
v2 and v3, or to v3, v4 and v5, see Figure 17. Let x be the neighbor of w that
is different from the vertices v1, . . . , v8.

Let us first consider the case that w is adjacent to v1, v2 and v3. Since
w is non-contractible, x must also be adjacent to v6. Let G1 and G2 be
the subgraphs of G as depicted in Figure 17. By Proposition 11, there exist
a coloring of G1 such that the vertices x and v3, . . . , v6 are colored with
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Figure 17: The two configurations that are considered in the proof of
Lemma 26.
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Figure 18: The final configurations considered in the proof of Lemma 26.

mutually distinct colors and a coloring of G2 such that the vertices x and
v6, . . . , v1 are colored with mutually distinct colors. Permute now the colors
in such a way, that the colors v1 and v5, v3 and v8 and v4 and v7 are the same.
Clearly, the obtained coloring can be extended to both v and w yielding a
coloring of G with five colors.

Let us now consider the second configuration. If the cycle that bounds
G1 contains a chord, then we precolor the vertices x, v1, . . . , v8 and extend
the precoloring to all the subgraphs contained in the shaded areas by Propo-
sition 11. The obtained colorings can clearly be combined and extended to
v and w. Hence, we assume the cycle v1v2v3xv7v8 is chordless.

If G1 does not contain an inner vertex of degree four, then it contains
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at most one vertex by Theorem 15. Since the cycle v1v2v3xv7v8 is chordless,
G must be the triangulation depicted in the left part of Figure 18 which
is 5-colorable (the vertices x and v2 = v6 can have the same color). If G1

contains a vertex w′ of degree four, then w′ is resistant by the assumption
of the lemma. By Lemma 23, w′ is adjacent to at least two of the vertices
v1, . . . , v8. Unless G is 5-colorable, w′ is adjacent to three consecutive vertices
v1, . . . , v8 by Lemma 25 (note that G cannot be the triangulation TC since TC

does not contain two vertices of degree four with three common neighbors). If
w′ is adjacent to v1 and v2 (and v8 or v3), we obtain a configuration analyzed
in the beginning of this proof and conclude that G is 5-colorable. Hence,
w′ is adjacent to v7, v8 and v1. The fourth neighbor x′ of the vertex w′ is
different from x, since otherwise, x = x′ would be adjacent to v1 and we have
already shown that the cycle v1v2v3xv7v8 is chordless. Hence, G contains the
configuration depicted the right part of Figure 18. If the vertices x and x′

are not adjacent, we precolor the vertices v1, . . . , v8 with four distinct colors
and the vertices x and x′ with the fifth color and extend the coloring to the
subgraphs contained in the shaded areas by Proposition 11. We eventually
obtain a coloring of G with 5 colors. Hence, we conclude that x and x′ are
adjacent. It is now easy to infer from the fact that G is proper that G must
be the triangulation TE.

7 Minimal 6-chromatic triangulations

All the 6-chromatic Eulerian triangulations of the Klein bottle with no con-
tractible vertices that were identified in the previous sections contain the
complete graph K6 of order six as a subgraph. In fact, they contain one of
the four non-isomorphic embeddings of K6 depicted in Figure 19. We refer
to these four embedding of K6 in the Klein bottle as bad embeddings. Let us
now state the just observed fact as a separate lemma.

Lemma 27. Let G be a proper Eulerian triangulation of the Klein bottle
with no contractible vertices. If G is not 5-colorable, then G contains a bad
embedding of the complete graph of order six. Moreover, every subgraph of G
isomorphic to K6 has a bad embedding.

Proof. By Lemma 18, G contains no separating 2- or 3-cycles. Since G is
proper, its minimum degree is at least four. By Lemma 16, every Eulerian
triangulation of the Klein bottle is either 6-regular, or contains a vertex
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Figure 19: The four bad embeddings of the complete graph of order six in
the Klein bottle. Note that the embeddings are distinct: only the bottom
one contains a 5-face, and the top ones contains one, two and three vertices
incident with three 4-faces, respectively.

of degree four adjacent to a vertex of degree at most six, or contains only
vertices of degree four and eight such that no two vertices of degree four are
adjacent and each vertex of degree eight is adjacent to four vertices of degree
four. If G is 6-regular and it is not 5-colorable, then G is isomorphic to TA

by Lemma 17. Since G is proper, it cannot contain a vertex of degree two;
otherwise, it would contain a separating contractible 2-cycle. If G contains
only vertices of degree four and eight and each vertex of degree eight is
adjacent to four vertices of degree four, we proceed as follows: first, we
remove the vertices of degree four. The resulting 4-regular graph is clearly
5-colorable. Next, we obtain a coloring of G with five colors by extending
the constructed coloring to the vertices of degree four.

Next, we analyze the case when G contains a vertex v of degree four
adjacent to a vertex of degree four or six. Note that v is non-contractible by
the assumption of the lemma. If v is adjacent to a vertex of degree four, then
G is 5-colorable by Lemma 20. If v is adjacent to a vertex of degree six and
it is not resistant, then G is 5-colorable by Lemma 21. In all other cases, G
contains the resistant configuration.
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If v is the only vertex of degree four of G, then G is 5-colorable by
Lemma 22 unless G is the triangulation TB. If G contains another vertex
w 6= v of degree four, then v and w have either two or three common neighbors
by Lemmas 23 and 24. If v and w have two common neighbors, then G is
5-colorable by Lemma 25 unless G is the triangulation TC or TD. If v and w
have three common neighbors, then G is 5-colorable by Lemma 26 unless G
is the triangulation TE.

We can now conclude that G is 5-colorable unless G is one of the five
triangulations TA, . . . , TE. We leave it to the reader to verify that each sub-
graph isomorphic to K6 of each of the five triangulations TA, . . . , TE yields
an embedding equivalent to one of the bad embeddings.

8 Eulerian triangulations containing K6

In this section, we prove that the only embeddings of the complete graph K6

of order six that can be extended to an Eulerian triangulation of the Klein
bottle are those that we have identified in the previous section.

Theorem 28. If H is an embedding of K6 in the Klein bottle that can be
extended to an Eulerian triangulation, then H is bad.

Proof. Let G be an Eulerian triangulation that contains H. We can assume
without loss of generality that G is proper. If H is not a 2-cell embedding,
then it is isomorphic to a unique embedding of K6 in the projective plane
with one of the faces containing a cross-cap. By Proposition 8, the three
vertices of H incident only with 2-cell faces have odd degrees in G. Hence,
we can assume that the embedding of H in the Klein bottle is 2-cell.

Observe next that H has no faces of size six: otherwise, by Euler’s for-
mula, all the remaining faces of H are 3-faces. Since no vertex of H can be
incident with five 3-faces (its degree in G would then be five), each vertex of
H is incident with the face of order six. However, inserting a new vertex in
this face and joining it to all the six distinct vertices on the boundary of the
face of order six, we obtain an embedding of K7 in the Klein bottle which is
impossible.

Hence, we can assume that H either contains three 4-faces or it contains
a 4-face and a 5-face. Let us first analyze the latter case: the subgraph of G
contained in the 5-face of H has exactly two vertices u and v of odd degree
and these vertices are adjacent on its boundary by Proposition 10. Hence, we

33



can assume that the 5-face of H contains in G two chords joining u and v to
the opposite vertex. The 4-face of H then contains a single vertex w of degree
of four (otherwise, G would not be both proper and Eulerian). It is now easy
to infer that w is not contractible since every two opposite neighbors of w
are adjacent. Hence, G is one of the triangulations described in Lemma 27.
Consequently, H is one of the four bad embeddings (by Lemma 27).

The case when H has three 4-faces is similar: since G is proper, each 4-
face either contains no vertices or a single vertex w of degree four. Again, w
is a non-contractible vertex and thus G is one of the triangulations identified
in Lemma 27. Hence, H is a bad embedding of K6.

9 Eulerian triangulations without K6

In this section, we analyze graphs G that do not contain a bad embedding,
but any contraction of each 4-vertex v yields a graph G0 = G.v1vv3 that
contains a bad embedding H0. Let w be the vertex of G0 obtained by the
contraction. We say that G is obtained from G0 by an expansion of w;
note that G is not necessarily uniquely determined by specifying G0 and w.
Since G contains no bad embedding, H0 contains w. Let w1, . . . , w5 be the
remaining vertices of H0.

A 4-expansion is an expansion of w such that v1 or v3 is in G adjacent
to four of the vertices w1, . . . , w5. Otherwise, we call the expansion a 3-
expansion. Note that neither v1 nor v3 can be adjacent to all the five vertices
w1, . . . , w5 since K6 is not a subgraph of G.

Let us consider the subgraph H of G obtained from H0 by splitting w
back into v1 and v3 and introducing a 2-vertex (the vertex v) joined to them.
The subgraph H is not necessarily an induced subgraph of G. Note that if
an expansion is a 4-expansion, then we can assume that the degree of v1 or
v3 in H is five (the choice of H0 in G0 can be ambiguous since the subgraph
of G0 induced by w, w1, . . . , w5 need not to be simple, but there is always a
choice of H0 with the described property). Also note that v1 and v3 are not
adjacent in G, but the vertex v can be adjacent in G to vertices of H distinct
from v1 and v3. The faces of H incident with v and their counterparts in
H0 are referred to as expanded faces. We keep the notation introduced in
this paragraph throughout this section. In particular, we always refer to the
expanded vertex as w and the vertices obtained from it as v, v1 and v3. The
subgraphs of G contained in the two expanded faces are further denoted by
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G1 and G2.
We establish in the following series of lemmas that every Eulerian triangu-

lation of the Klein bottle with no complete graph of order six that is obtained
by an expansion of a vertex of a bad embedding is 5-colorable. Before we do
so, we first observe the following simple fact about a bad embedding with a
5-face:

Proposition 29. If H0 contains a 5-face, then its 4-face contains no chord.
In particular, if two vertices of H0 are joined by multiple edges, then one of
such edges is contained in the interior of the 5-face of H0.

Proof. Suppose that H0 contains a 5-face. Note that H0 is 5-regular. We can
assume without loss of generality that G0 is proper since neither removing
the interior of any 3-face nor replacing the interior of the 4-face with a chord
or a single interior vertex change the parity of degrees of the vertices of G0

by Propositions 8 and 9. Similarly, we can assume by Proposition 10 that
the 5-face of H0 contains exactly two chords. Assume now for the sake of
contradiction that the 4-face of H0 contains a chord. Hence, we are assuming
that G0 contains precisely three edges in addition to those of H0. Since G0

is Eulerian, the three edges form a matching. However, two of these edges
(the chords in the 5-face) meet at the same vertex. This contradicts our
assumption that the 4-face of H0 contains a chord.

We are now ready to establish the main lemma of this section.

Lemma 30. If G is an Eulerian triangulation of the Klein bottle with no
complete graph of order six that can be obtained by an expansion from an
Eulerian triangulation containing a bad embedding, then G is 5-colorable.

Proof. Let us first consider the case when G is obtained from G0 by a 4-
expansion. By symmetry, we can assume that w1, . . . , w4 are adjacent to v1

and w5 to v3 in H (see Figure 20 for illustration). If neither of the expanded
faces is a 5-face, color the vertices w1, . . . , w4 with four mutually distinct
colors and the vertices v1 and w5 with the fifth color. Color next the vertex
v3 with a color distinct from all its precolored neighbors in G (note that
v3 is adjacent to at most four precolored vertices). The precoloring can be
extended to Gi, i = 1, 2, by Proposition 11 if Gi is bounded by a 5-cycle or
by Proposition 12 if it is bounded by a 6-cycle. Since v has degree four in G,
we can recolor it in such a way that the obtained coloring is proper. Finally,
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Figure 20: The configurations that can be obtained by a 4-expansion such
that one of the expanded faces is a 5-face.

the coloring is extended to the subgraphs contained in the remaining faces
of H by Proposition 11.

Assume now that one of the expanded faces is a 5-face, i.e., G contains
one of the two configurations depicted in Figure 20. If G contains an edge
between w1 and v3, then the edge w1v3 is contained in G1 by Proposition 29.
In such a case, we consider the same precoloring as in the previous paragraph
and extend it separately to the two parts of G1 delimited by the dashed edge
by Proposition 11. If G does not contain the edge w1v3, there is a precoloring
of the vertices v1, v3, w1, . . . , w5 such that the vertices v1 and w5 have the same
color and the vertices v3 and w1 have the same color. Such a precoloring can
be extended to G1 by Proposition 14. The remaining arguments needed to
finish this case are the same as in the previous paragraph.

We now analyze the case when G is obtained from G0 by a 3-expansion.
By symmetry, we can assume that v1 is adjacent to w1, w2 and w3, and v3 to
w4 and w5 in H (see Figure 21). Since the expansion is a 3-expansion, the
vertex v1 is not adjacent to w4 or w5 in G. Similarly, v3 cannot be adjacent
to both the vertices w1 and w3. If v3 is not adjacent to w1, then color the
vertices v3 and w1 with the same color, the vertices v1 and w4 with another
color and the remaining vertices w2, w3 and w5 with three mutually distinct
colors. Note that the boundaries of both G1 and G2 contain two vertices
with the same color. Hence, if neither of the expanded faces is a 5-face, the
precoloring of the vertices v1, v3, w1, . . . , w5 can be extended to G1 and G2

by Propositions 11 and 12 and to the rest of G (after a possible recoloring of
v) by Proposition 11. We conclude that G is 5-colorable in such a case.

It remains to consider the case when one of the expanded faces is a 5-face,
say, the face corresponding to G1. If G contains the edge w1v3, then the edge
w1v3 is contained in G1 by Proposition 29. We consider the precoloring of
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Figure 21: Some of the configurations that can be obtained by a 3-expansion.
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Figure 22: A unique 3-expansion such that the expanded faces are a 4-face
and a 5-face.

the vertices v1, v3, w1, . . . , w5 as in the previous paragraph and extend it to
the two parts of G1 delimited by the edge w1v3 by Proposition 11. The rest
of the analysis is analogous.

Hence, we can further assume that the vertices w1 and v3 are not adjacent
in G. Color the vertices w1 and v3 with the same color, the vertices w5

and v1 with the same color and the vertices w2, . . . , w4 with the remaining
three colors. This precoloring can be extended to G1 by Proposition 14. If
G2 is bounded by a 5-cycle, then the precoloring can be extended to it by
Proposition 11. If G2 is bounded by a 6-cycle, it has been obtained by an
expansion of a 4-face. However, such a configuration can be obtained from
the bad embedding containing the 5-face in a unique way (see Figure 22). In
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particular, the subgraph G1 is bounded by the 7-cycle v1w1w4w2w5v3v and
G2 by the 6-cycle v1w3w1w4v3v. Hence, the precoloring can be extended to
G1 by Proposition 14 and to G2 by Proposition 13. The rest of the analysis
follows the lines of the previous cases.

10 Characterization of six-chromatic Eulerian

triangulations

We now combine the results obtained in the previous sections to state and
prove our main results.

Theorem 31. An Eulerian triangulation G of the Klein bottle is 5-colorable
unless it contains a complete graph of order six.

Proof. The proof proceeds by induction on the order of G. If G is not proper,
then remove the interior of a separating 3-cycle or replace the interior of a
separating 4-cycle with a chord or a vertex keeping G Eulerian (note that this
is always possible by Proposition 9) and color the new triangulation by in-
duction. The obtained coloring can be extended to the original triangulation
G by Proposition 11. Hence, we assume in the rest that G is proper.

If G does not contain a contractible vertex, G is 5-colorable unless it con-
tains a complete graph of order six by Lemma 27. If G contains a contractible
vertex v with neighbors v1 and v3, apply induction to G.v1vv3. If G.v1vv3

does not contain a complete graph of order six, then it is 5-colorable and it
is easy to obtain a 5-coloring of G by assigning the color of the contracted
vertex to both v1 and v3. If both G and G.v1vv3 contain a complete graph of
order six, there is nothing to prove. Finally, if G.v1vv3 contains a complete
graph of order six, but G does not, then G is 5-colorable by Lemma 30.

An immediate corollary of Theorems 28 and 31 is the following:

Corollary 32. Every Eulerian triangulation of the Klein bottle with face-
width at least four is 5-colorable.

11 Concluding remarks

We outline two directions for possible future research. Let us start with
algorithmic issues. For every fixed surface Σ, Dvořák, Král’ and Thomas
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[10] found a polynomial-time algorithm for computing the chromatic number
of graphs without contractible triangles that can be embedded on Σ. In
particular, the chromatic number of quadrangulations of a fixed surface can
be determined in polynomial time. It would be interesting to see whether
their results can be adapted to the setting of Eulerian triangulations.

Another direction for future research could be extending the results to
list colorings. Let us recall that a graph G is list k-colorable, if for every
assignments of lists of k colors to its vertices, there exists a proper coloring
of the vertices with colors from their lists. Clearly, each list k-colorable graph
is k-colorable but the converse is not true, e.g., there are planar graphs that
are not list 5-colorable [30].

As proved in [4], every graph on the projective plane, which is not list 5-
colorable, contains K6 as a subgraph. Proposition 4 implies that no Eulerian
triangulation of the projective plane contain K6 as a subgraph. Hence, all
Eulerian triangulations of the projective plane are list 5-colorable.

Our Theorem 3 asserts that Eulerian triangulations of the Klein bottle,
which do not contain K6 as a subgraph, are 5-colorable. However, it is not
clear whether the same property holds for list colorings or not. One of the
results in this direction is that any graph embedded on the Klein bottle (or
any other fixed surface) with sufficiently large edge-width is list 5-colorable.
This follows from a recent result of DeVos, Kawarabayashi, and Mohar [5].

References

[1] M. O. Albertson, J. P. Hutchinson: The three excluded cases of Dirac’s
map-color theorem, Ann. New York Acad. Sci. 319 (1979), 7–17.

[2] K. Appel, W. Haken: Every planar map is four colorable, Bull. Am.
Math. Soc. 82 (1976), 449–456.

[3] D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami, K. Ota: Chro-
matic numbers of quadrangulations on closed surfaces, J. Graph Theory
37 (2001), 100–114.
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