
Constraint Based Reasoning over Mutex Relations in
Planning Graphs during Search

Pavel Surynek

Charles University
Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic
surynek@ktiml.mff.cuni.cz

Abstract. We deal with the search process of the GraphPlan algorithm in this paper. We con-
centrate on the problem of finding supports for a sub-goal which arises during the search. We
model the problem of finding supports as a constraint satisfaction problem in which arc-
consistency or singleton arc-consistency is maintained. Contrary to other works on the similar
topic, we do not model the whole planning problem as a CSP but only a small sub-problem
within the standard solving process. Our model is based on dual views of the problem which are
connected by channeling constraints. We performed experiments with several variants of propa-
gation in the constraint model through channeling constraints. Experiments confirmed that the
dual view of the problem enhanced with maintaining of arc-consistency is a good choice.

1 Introduction

Planning is an intensively studied area of artificial intelligence. The importance of studying plan-
ning arises from needs of real-life applications such as industrial automation, transportation, robot-
ics and other braches [20]. The research in planning is also motivated by needs of researches in
other areas. One of the most spectacular examples of the use of planning in science is the space ex-
ploration by autonomous spacecrafts [5] and vehicles [1]. However there is a great deal of other
situations both in science and real-life where autonomous devices are used. The autonomous behav-
ior is controlled by planning techniques and algorithms in many of these cases.
 From the traditional view of planning, the planning problem is posed as finding of a sequence of
actions which transform a specified initial state of the planning world into a desired goal state of the
world [2,10]. The limitation is that only actions from a set of allowed actions can be used. An indi-
vidual action typically makes a small local change of the state of the world. Therefore it is neces-
sary to carry out a set of actions in the right order to achieve the goal.
 Among the most successful techniques for solving planning problems belong algorithms based on
state reachability analysis. The first such algorithm was GraphPlan [7]. The algorithm introduced a
concept of so called planning graphs. The planning graph is a structure which makes easier answer-
ing questions whether a certain state of the planning domain can be reached by using a certain set of
actions. The structure of the planning graph allows discovering majority of forbidden situations
quickly. This feature significantly helps to prune the search space during search for solution. Unfor-
tunately the planning graph does not allow discovering all forbidden situations. Therefore the search
is still necessary.
 In this paper we concentrate on planning graphs from the constraint programming perspective.
We study the problem of how to make the planning graph stronger for answering question of state
reachability. We exploit consistency techniques [4, 18] known from constraint programming to en-
force additional consistencies in planning graph during the search. This method allows us to deduce
a required answer from planning graph more quickly than it is allowed by standard approach.

2 Pavel Surynek

 Specifically, we use consistency techniques for solving sub-problem of finding supports for a
sub-goal. This kind of sub-problem arises many times during the GraphPlan style solving process.
Therefore the fast answering of this problem is a key factor for the efficiency of the solving algo-
rithm. We build a constraint model for solving the sub-goal sub-problem. The sub-goal sub-problem
is then solved as a constraint satisfaction problem [8] which significantly improves the search since
constraint programming techniques can be used. We maintain a certain type of consistency during
the search over the sub-goal model to obtain further speedup.
 The paper is organized as follows. First we put our work into relation with other works. Then we
introduce some basic definitions and facts from constraint programming and planning methodology.
Next we describe planning graphs and GraphPlan algorithm. The main part of the paper is about our
enrichment of GraphPlan solving process with sub-goal model and its consistencies. Finally we
present some experimental results and discuss our contribution. Several variants of our approach are
compared with the standard version of the GraphPlan algorithm in this part.

2 Related works

Several techniques for solving planning problems are trying to directly translate the problem into
another formalism. After translation they solve the problem in a new formalism. Many of these ap-
proaches use Boolean formula (SAT) or constraint satisfaction as the target formalism. SAT based
planners are described in [13,15,16]. The drawback of these methods is that the information induced
by the original formulation is often lost during translation into the target formalism. Some planners
are trying to overcome this drawback by hand tailored encoding of a planning problem into the tar-
get formalism [21].

The significant breakthrough in planning was done when reachability analysis using planning
graphs was incorporated into planners. Many of the successful existing planners use some Boolean
formula or constraint satisfaction algorithms to solve models based on planning graph formulation
of the planning problem [3,9,11,12,14,17]. Constraint programming represents a technique which is
intensively used in this way [19]. This kind utilization of constraint programming in planning is
more typical than the direct translation of the problem from one formalism into another. In this pa-
per we will use constraint programming just in this way.

More specifically we use constraint programming techniques to solve a small sub-problem which
arises during the GraphPlan style solving process. This is in contrast to other approaches which use
constraint programming formalism on the planning problem as a whole [9, 11].

3 CSP and Planning Basics

A constraint satisfaction problem (CSP) is a triple (X,D,C) [8], where X is a finite set of variables, D
is a finite domain of values for the variables from X and C is a finite set of constraints over the vari-
ables from X. The constraint is an arbitrary relation over the elements of the domains of its vari-
ables. Having a constraint satisfaction problem the task is to find an assignment of values from D to
all the variables from X such that all the constraints from C are satisfied. The problem of finding a
solution of the constraint satisfaction problem is NP-hard in general [8].

In the description of a planning problem we are using the similar notations and definitions as it is
used in [10]. Consider that we have a first-order language L with finitely many predicate and con-

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 3

stant symbols. There are no function symbols or variable symbols in the language L. Thus all con-
structs built over the language L are ground. We will use following notations. Let l be a set of liter-
als, then l+ denotes a set of all atoms occurring in positive literals of the set l and l- denotes a set of
all atoms occurring in negative literals of the set l. Notions by which the planning problem is de-
scribed, i.e planning domain, its states, goals and actions changing the planning domain are formal-
ized using constructs built over the language L. A planning domain is an abstraction of real envi-
ronment where planning task take place. For example, if we want create plans for manufacturing
operations in a factory [20] our planning domain is that factory or only the single manufacturing-
line where operations are carried out. Real environment around the factory or around the manufac-
turing-line is irrelevant with respect to the planning task and it is possible to omit that in the formal-
ization. Changes of the planning domain are captured by the notion of a state. For example, the
planning domain of the manufacturing-line is changed if a product is moved by a robot from one
machine to another machine. The state before the move operation is different from the state after the
operation. Transitions of this type are formalized by following definitions.

Definition 1 (State). A state s is a finite set of atoms. Semantically it is a set of propositions that
are true in a certain planning domain.

Definition 2 (Action). An action a is a pair (precond(a), effects(a)), where precond(a) is a finite set
of atoms and effects(a) is a finite set of literals for which a condition effects+(a) ∩ effects-(a) = Ø
holds. Semantically the action determines how the state can be changed (the change is specified by
effects(a)) provided that the state allow the use of the action (the allowance is specified by pre-
cond(a)).

Definition 3 (Applicability). An action a is applicable to the state s if and only if precond(a) ⊆ s.
The result of the application of the action a to the state s, where a is applicable to s, is a new state
γ(s,a), where γ(s,a) = (s - effects-(a)) ∪ effects+(a).

Example 1. A planning domain of the manufacturing line contains three machines: a drilling-machine, a
turning-machine and a packing-machine. There is also a product which is processed by these machines and a
transportation robot which moves the processed product between machines. A set of actions in the planning
domain of the manufacturing line consists of actions representing processing of the product on a machine
and transportation of the product between machines by the robot.

Actions: process(product, drilling-machine) = ({in(product, drilling-machine); unprocessed(product,
 drilling-machine)}; {processed(product,drilling-machine); ¬unprocessed(product, drilling-machine)})
 load(robot, product, drilling-machine) = ({in(product, drilling-machine); at(robot,

 drilling-machine)}, {loaded(robot, product); ¬in(product, drilling-machine)}), ...

The action process(product, drilling-machine) is applicable to the state {in(product, drilling-machine);
unprocessed(product, drilling-machine)}, but not applicable to the state {in(product, drilling-machine);
processed(product, drilling-machine)}.

A no-operation action (noop) is also considered to be a valid action. It does not change anything
when it is applied on the state. The no-operation noop(p) action is associated with every possible

4 Pavel Surynek

atom p. Formally we have an action noop(p) = ({p}, {p}) for every atom p. Normally, this type of
action is useless, but is important for the Graphplan algorithm.

Definition 4 (Goal). A goal g is a finite set of literals. The goal g is satisfied in a state s if and only
if g+⊆ s and g-∩ s = Ø. Semantically the goal is a set of propositions we want to be true in a certain
state.

Given a set of actions and a goal the task is to find out how to reach a state satisfying the given goal
by using the allowed actions only. The whole process of finding of how to satisfy the goal starts in a
specified initial state of the planning domain. This notion is described in the following definitions
more formally.

Definition 5 (Problem). A planning problem P is a triple (s0, g, A), where s0 is an initial state, g is
a goal and A is a finite set of allowed actions. Semantically the initial state describes the planning
domain state at the beginning and g represents a condition which a state we want to reach must
satisfy. The required goal can be satisfied by using the allowed actions from the set A only.

Definition 6 (Solution). We inductively define the application of a sequence of actions
θ = (a1, a2, ..., an) to a state s0 in the following way: a1 must be applicable to the state s0, let us de-
note si = γ(si-1,ai), then ai must be applicable to si for all i = 2, ..., n. The result of the application of
the sequence of actions θ to the state s0 is the state sn. We denote sn = γ(s0,θ). The sequence
sol = (a1, a2, ..., an) is a solution of the planning problem P = (s0, g, A) if and only if the sequence
sol is applicable to the initial state s0 and g is satisfied in the result of the application of the se-
quence sol and ai ∈ A for i = 1, 2, ..., n.

Example 2. The planning task over the planning domain of manufacturing line consists of an initial state,
where the product is unprocessed, of the goal, where product is processed by all the machines in the line and
of a finite set of actions.

Initial state: {processed(product, drilling-machine); processed(product, turning-machine);
 processed(product, packing-machine); loaded(robot, product);
 at(robot, drilling-machine)}
Goal: {processed(product, drilling-machine); processed(product, turning-machine);
 processed(product, packing-machine)}
Actions: {process(product, drilling-machine); process(product, turning-machine);
 process(packing-machine); move(robot, drilling-machine, turning-machine);
 load(robot, product, drilling-machine); unload(robot, product, drilling-machine); ...}
Solution: <unload(robot, product, drilling-machine); process(product, drilling-machine);
 load(robot, product, drilling-machine); move(robot, drilling-machine,
 turning-machine); unload(robot, product, turning-machine), process(product, ...>.

4 GraphPlan Algorithm

The GraphPlan algorithm [7] relies on the idea of state reachability analysis. The standard formula-
tion of the GraphPlan algorithm puts an additional restriction on goals. Negative literals are not al-

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 5

lowed in a goal. The goal has to be a finite set of atoms. Since the preconditions of actions are also
a finite set of atoms (definition 2), the preconditions of actions are goals as well in the standard
GraphPlan formulation.

The state reachability analysis is done by constructing a data structure called planning graph in
the GraphPlan algorithm. The algorithm works in two interleaved phases. In the first phase planning
graph is incrementally expanded. The second phase consists of an extraction of a valid plan from
the extended planning graph. If the second phase is unsuccessful the process continues with the first
phase - the planning graph is extended again.

The planning graph for a planning problem P = (s0, g, A) is defined as follows. It consists of two
alternating structures called proposition layer and action layer. The initial state s0 represents the 0th
proposition layer P0. The layer P0 is just a list of atoms occurring in s0. The rest of the planning
graph is defined inductively. Consider that the planning graph with layers P0, A1, P1, A2, P2,..., Ak,
Pk has been already constructed (Ai denotes the ith action layer, Pi denotes the ith proposition layer).
The next action layer Ak+1 consists of actions whose preconditions are included in the kth proposi-
tion layer Pk and which satisfy the additional condition. This additional condition requires that no
two propositions of the action are mutually excluded (we briefly say that they are mutex). The mu-
tual exclusion relation will be defined inductively using the following definitions.

Definition 7 (Independence). A pair of actions {a, b} is independent if and only if:
(i) effects-(a) ∩ (precond(b) ∪ effects+(b)) = Ø and
(ii) effects-(b) ∩ (precond(a) ∪ effects+(a)) = Ø.
Otherwise {a, b} is a pair of dependent actions. A set of actions π is independent if and only if every
pair of actions {a, b} from π is independent.

Definition 8 (Action mutex / mutex propagation). We call the two actions a and b within the ac-
tion layer Ai a mutex if and only if either the pair {a, b} is dependent or an atom of the precondition
of a is mutex with an atom of the precondition of b (defined in the following definition).

Definition 9 (Proposition mutex / mutex propagation). We call the two atoms p and q within the
proposition layer Pi a mutex if and only if every action a within the layer Ai where p ∈ effects+(a) is
mutex with every action b within the layer Ai for which q ∈ effects+(b) and layer Ai does not contain
any action c for which {p, q} ⊆ effects+(c).

Example 3. The planning problem of the manufacturing contains actions that are dependent.

For example actions process(product, drilling-machine) and load(robot, product, drilling-machine) are
dependent since effects-(load(robot, product, drilling-machine)) ∩ (precond(process(product,
drilling-machine)) ∪ effects+(process(product, drilling-machine))) = {in(product, drilling-machine)} ∩
∩ ({in(product, drilling-machine); unprocessed(product, drilling-machine)} ∪ {processed(product, drill-
ing-machine)}) = {in(product, drilling-machine)} ≠Ø.

Action and proposition mutexes are represented in the planning graph as special links between
nodes representing actions and propositions. We have just defined the (k+1)th action layer Ak+1.

6 Pavel Surynek

The (k+1)th proposition layer contains all the propositions that appear as the effect of some action
in the (k+1)th proposition layer.

Theorem 1 (Necessary condition on state reachability). Consider a state s containing atoms p
and q that are mutex in layer Pi. Then the state s cannot be reached from the initial state s0 by any
sequence of actions determined by the action layers A1, A2, ..., Ai.

We omit the proof of the theorem since it is given in details in [7]. The theorem gives the necessary
condition for the existence of a solution of the planning problem. In other words, a valid plan can be
extracted from the planning graph only if atoms of g are contained in some proposition layer Pj and
there is no mutex between any two atoms from g in the layer Pj. The GraphPlan algorithm utilizes
the result of the proposition for reduction of the search space that is necessary to be explored during
the search for a solution.

The key elements of the standard GraphPlan algorithm are shown here as algorithm 1. The pro-
gram consists of functions for extraction of a plan from the planning graph. The program supposes
that the planning graph is built for a certain length (i.e. action and proposition layers are constructed
and action and proposition mutexes are propagated according to the defined rules). Then the plan is
extracted recursively using backtracking search. The algorithm is trying to satisfy a goal by finding
a set of actions which have this goal a their effect. Preconditions of actions from this resolving set
form a new goal which is recursively satisfied in the same way.
Let us describe the process in more details. Suppose we have a goal for which we are trying to find
a plan starting in the initial state. Next suppose that we know how long the planning graph should
be. The process starts by construction of the planning graph of a given length. After the construction
of the planning graph the algorithm starts to satisfy the goal in the last action layer by finding a set
of non-mutex actions that satisfy the goal (we say these actions support the goal). The set of sup-
porting actions have preconditions which also have to be satisfied. Preconditions of supporting ac-
tions form a new goal for the previous layer of the planning graph. The plan extracting procedure is
recursively called at this point with parameters specifying the new goal and the intention to extract
this goal in the previous layer. If the recursive call of the procedure is unsuccessful the algorithm
continues with further attempts to find another set of non-mutex actions supporting the original
goal.

We supposed that we know how long the planning graph should be in this explanation. This is
not true for real implementation. In real implementation some top most procedure is iteratively try-
ing to extract plan for increasing lengths of planning graph (if the attempt is unsuccessful the plan-
ning graph is prolonged).

The very weak point of this version of the GraphPlan algorithm is the search for a set of non-
mutex supporting actions. From the constraint programming point of view the search for supporting
actions is a satisfaction process over the network of mutex constrains. Such interpretation allows us
to use constraint programming techniques to solve the sub-problem of finding a set of supports.

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 7

Algorithm 1. Basic procedures of the GraphPlan algorithm as a pseudo-code. We use a special notation for
the planning graph structure. It is denoted as pG in the code. pg/Propositions[i] denotes a set of propositions
in the ith proposition layer (Pi), pG/Actions[i] denotes a set of action in the ith action layer (Ai),
pG/PMutexes[i] denotes a set of proposition mutexes between propositions in the ith proposition layer,
pG/AMutexes[i] denotes a set of action mutexes between actions in the ith action layer and pG/Nogoods[i]
denotes a set of nogoods for the ith proposition layer. The resulting plan is a sequence of sets of actions. A
concatenation operation is denoted by ‘.’ (dot).
Function ExtractPlan gets parameters pG - planning graph of a certain length, l - layer in which the specified
goal has to be satisfied and g - the goal. The result of the function is plan consisting of actions from action
layers 1 to l of pG (an element of the resulting sequence is a set of actions from a single action layer) satisfy-
ing the specified goal g or failure if no such plan exists. Function ExtractPlanFromLayer gets parameters pG
- planning graph, l - layer in which the specified goal has to be satisfied, g - the goal and p - plan consisting
of action from the specified layer. The main purpose of this function is to find supports for the goal in the
specified layer.

function ExtractPlan(pG,l,g):sequence
1 if l = 0 then
2 if g ⊆ pG/Proposition[0] then return (<>)
3 else return (<failure>)
4 if g ∈ pG/Nogoods[l] then return (<failure>)
5 p ← ExtractPlanFromLayer(pG,l,g,Ø)
6 if p = <failure> then
7 pG/Nogoods[l] ← pG/Nogoods[l]∪{g}
8 return (<failure>)
9 else return (p)

function ExtractPlanFromLayer(pG,l,g,p):sequence
1 if g = Ø then
2 g1 ← {precond(a)| a∈p}
3 P ← ExtractPlan(g1,PG,l-1)
4 if P = <failure> return (<failure>)
5 return (P.p)
6 else
7 select q ∈ g
8 supports ← {a| a∈pG/Actions[l] & q∈effects+(a)}
9 if supports = Ø then return (<failure>)
10 for each s∈supports do
11 if CheckSupport(pG,s,p,l) then
12 g2 ← g-effects+(s)
13 p2 ← p∪{s}
14 return ExtractPlanFromLayer(pG,l,g2,p2)
15 return (<failure>)

function CheckSupport(pG,s,p,l):boolean
1 for each r∈p do
2 if (r,s) ∈ pG/AMutexes[l] then return (False)
3 return (True)

8 Pavel Surynek

5 Planning with State Variables

It is possible to use another approach for representation of a planning domain which is more suit-
able with respect to constraint programming. Such approach is for example a so called state vari-
able representation. Instead of saying that some proposition holds in a certain situation we say that
a certain property takes a certain value in that situation. The planning domain in state variable rep-
resentation consists of a finite set of state variable functions f1, f2, ..., fm, where fi: S → D(fi) for
i ∈ {1, 2, ..., m}. S denotes the set of possible states of the planning domain and D(fi) is the domain
of the state variable function fi. An individual state variable function represents a single property of
the object residing in the planning domain (for example we can have a state variable function repre-
senting the location of a robot, the domain of such function would be all the possible locations
where the robot can go). A state variable Fi is associated with every state variable function fi for
i ∈ {1, 2, ..., m}.

Definition 10 (State in state variable representation). A state s in state variable representation is
a finite set of assignments of the form Fj = dk, where dk ∈ D(fj).

Definition 11 (Action in state variable representation). An action a in state variable representa-
tion is a pair (precond(a), effects(a)), where precond(a) and effects(a) are finite set of assignments
of the form Fj = dk, where dk ∈ D(fj).

Definition 12 (Goal in state variable representation). A goal g in state variable representation is
a finite set of propositions of the form Fj R dk, where dk ∈ D(fj) and R ∈ {=, ≠}.

Example 5. Consider the planning domain of the manufacturing line again. This example shows state vari-
able representation of this planning domain. The planning domain is described by state variable functions.
States, actions and goals are modified slightly modified in this representation.

State variables: in(product)∈{drilling-machine, turning-machine, packing-machine, robot},
 at(robot)∈{drilling-machine, turning-machine, packing-machine},...
States: {in(product)=robot; at(robot)=drilling-machine);
 processed(product, drilling-machine)=true},...
Actions: process(product, drilling-machine) = ({in(product)=drilling-machine;

 processed(product, drilling-machine)=false}; {processed(product,
 drilling-machine)=true})
 load(robot, product, drilling-machine) = ({in(product)=drilling-machine;

 at(robot)=drilling-machine}, {in(product)=robot}),...
Goal: {processed(product, drilling-machine)=true; processed(product, turning-machine)=true;

 processed(product, packing-machine)=true}

We omit the translation of applicability, planning problem and solution into the state variable repre-
sentation since it is almost obvious. The planning graphs can be easily defined over the state vari-
able representation.

The relation of independence of the actions as well as the relation of mutual exclusion and its
propagation can be defined within the state variable formulation of the planning problem. The im-

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 9

portant property of the state variable representation is that it allows strengthening the independence
relation. Stronger relation of independence results into higher number of mutexes in the planning
graph. More mutexes means more pruning of the search space.

Definition 13 (Independence in state variable representation). A pair of actions {a, b} is inde-
pendent in state variable representation if and only if:
(i) effects(a) and (precond(b) ∪ effects(b)) does not compete and
(ii) effects(b) and (precond(a) ∪ effects(a)) does not compete.
Otherwise {a, b} is a pair of dependent actions in state variable representation. A set of actions π is
independent in state variable representation if and only if every pair of actions {a, b} from π is in-
dependent. Two sets of propositions A and B compete if and only if A∪B contains propositions F=a
and F=b, for some state variable F and a≠b.

The stronger independence relation (it is less probable that two actions are independent) is due to
the fact that we preserve more information in the formalism about the original planning domain.
Our experiments confirmed this conjecture.

Notice that, as in the standard GraphPlan algorithm we restrict the definition of goals. A goal is a
finite set of assignments (negative assignments are not allowed in the goal). Thus the goal is a state
within our GraphPlan formulation as well.

6 Goal Resolution Constraint Model

We designed a simple constraint model for finding supports for goals arising during the search by
the GraphPlan algorithm (let us call these goals sub-goals to distinguish them from the major goal).
This formulation of the sub-goal sub-problem allows us to use constraint programming techniques
to improve the solving process. Namely we are using arc-consistency [18] and singleton arc-
consistency [4,6] for pruning the search space during the search for supporting actions.

The constraint model is built whenever a sub-goal arises in some layer of the planning graph.
Suppose that the sub-goal g appeared in the ith level of the planning graph. We use two types of
variables to model the problem of finding supports.
• Activity variables: A Boolean variable active(a) is included into the model for every action a

from the ith action layer of the planning graph which supports some proposition in the sub-goal g.
• Support variables: A variable support(p) is included into the model for every proposition p∈g.

The domain of the variable support(p) are all the actions from the ith action layer of the planning
graph which support proposition p (i.e. the action in the domain of support(p) have p as one of its
effects).

Constraints in the model are accumulated in two clusters. The first cluster is formed by constraints
between Boolean activity variables and the second cluster is represented by constraints between
support variables. There is one special channeling constraint between these two clusters.
− Activity mutex constraint: A binary constraint forbidding assignment of value true to the pair of

Boolean activity variables active(a) and active(b) (active(a)=true & active(b)=true is forbidden)
is included into the model if and only if actions a and b are mutex in the ith layer of the planning
graph.

10 Pavel Surynek

− Support mutex constraint: A binary constraint between variables support(p) and support(q) is
refined by adding a new forbidden assignment support(p)=a & support(q) = b if and only if ac-
tions s a and b are mutex in the ith layer of the planning graph.

Having this model the sub-goal resolution process on line 7 to 14 of the function ExtractPlanFrom-
Layer of the algorithm 1 can be replaced by solving of the proposed constraint model. Labeling is
done by selecting a proposition with fewest supports from the current sub-goal (some kind of sim-
ple variable ordering heuristic) and by selecting a support for this proposition. The support selection
for the proposition is done over the support variables.

The propagation in the model is ensured by several ways. Whenever the algorithm gets to know
that an action must be performed to provide the sub-goal with supports, the sub-goal is refined by
deleting all the propositions which are effects of the action. This situation corresponds to activity
variable with singleton set {true} as its actual domain or to the support variable with the singleton
set {a} as its actual domain. The latter case means that a is the only supporting action for some
proposition. The model is also refined in this case. All the propositions satisfied by the selected ac-
tion are removed from the model (i.e. corresponding support variables are removed from the model
and constraint graph is appropriately modified).

The most important propagation is done through the special channeling constraint which connects
the cluster of activity variables and the cluster of support variables. We proposed three variants of
propagation through both clusters. The method of propagation through the channeling constraint
strongly relate the way how consistency is enforced in the model. We maintain consistency (arc-
consistency or singleton arc-consistency) along the whole solving process. Every time when the
labeling step is performed the consistency is enforced in the model (or more precisely, consistency
is enforced in a selected part of the model). As we mentioned, arc-consistency and singleton arc-
consistency is used in the model. Let us recall the definitions.

Definition 14 (Arc-consistency and singleton arc-consistency). The value d of the variable x is
arc-consistent if and only if for every variable y connected to x by the constraint c there exists a
value e in the domain of y such that the assignment x = d & y = e is allowed by the constraint c. The
constraint satisfaction problem (X, C, D) is arc consistent if and only if every value of every vari-
able is arc-consistent.

The value d of the variable x is singleton arc-consistent if and only if the constraint satisfaction
problem restricted to x = d is arc-consistent. The constraint satisfaction problem (X, C, D) is sin-
gleton arc-consistent if and only if every value of every variable is singleton arc-consistent.

• Propagation of variant A: When a supporting action is selected to satisfy a proposition in the

sub-goal the corresponding activity variable is set to be true. Then consistency is enforced in the
cluster of activity variables. And the last step consists of propagation of the changes in the cluster
of activity variables into the cluster of support variables through the channeling constraint. The
channeling constraint is defined as follows in this variant. If an activity variable is definitely
false, then the corresponding action is removed from actual domains of all the supporting vari-
ables. If an activity variable is definitely true, then the current sub-goal is updated and corre-
sponding support variables are removed from the model.

• Propagation of variant B: We proceed similarly as in the variant A. When a supporting action is
selected to satisfy some proposition the corresponding activity variable is set to be true. Then
consistency is enforced in the cluster of activity variables and changes are propagated into the

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 11

cluster of support variables. This propagation is done in the same way as in the variant A. In addi-
tion to the variant A, changes in the cluster of support variables are propagated back to the cluster
of activity variables. It is done in the following way. When a support variable has a singleton set
as its actual domain (the proposition has the only support) the corresponding activity variable is
set to be true and consistency is enforced again in the cluster of activity variables. The process is
repeated until changes are made.

• Propagation of variant C: This variant further evolves the previous variant. Now consistency is
enforced in both clusters. After selecting the action to support the given proposition a correspond-
ing activity variable is set to be true and consistency is enforced in the cluster of activity vari-
ables. Then changes are propagated into the cluster of support variables where same type of con-
sistency is enforced too. The last step of the iteration consists of propagation of changes from the
cluster of support variables into the cluster of activity variables. Propagation in both direction be-
tween variable clusters through channeling constraint is done in the same way as in previous
variants. The whole process is again repeated until the model in changing.

It is expectable that the constraint model with maintained consistency would provide better search
space pruning than the approach used within the standard Graphplan. The question is which variant
performs best and what type of consistency is better. Experiments showed that variant C is not al-
ways the best choice.

The arc-consistency was chosen for its simplicity and performance. The motivation for choosing
singleton arc-consistency for our framework is that it provides strong consistency. This type of con-
sistency can discover forbidden situations for which the standard version of the GraphPlan requires
search. The following observation formalizes this idea.

Observation 1 (Constraint model provides stronger propagation). Singleton arc-consistency
can discover that some action cannot be preformed within a certain planning graph layer and the
same fact cannot be discovered by the standard Graphplan without search.

Demonstration. Consider the following situation. Let us have state variable functions x,y and z and
corresponding state variables X∈{x1,...,xnx}; Y∈{y1,...,yny} and Z∈{z1,...,znz}. Next we have several
actions. Since the particular preconditions of these actions are not interesting in this demonstration
we omit them. The actions are a11=(_,X=x1); a12=(_,Y=y2); a13=(_,Z=z3); a21=(_,X=x1);
a22=(_,Y=y2); a23=(_,Z=z3). Consider now that actions a11, a12 and a13 are pair wise mutex. And the
same holds for actions a21, a22 and a23. A part of the constraint model of the described situation is
depicted in figure 1. Now consider an action b that requires the assignment [X=x1, Y=y2, Z=z3] as
its precondition. The action b is supported by actions a11, a12, a13, a21, a22 and a23. It it obvious that
the version of the Graphplan algorithm shown here as algorithm 1 requires some search to discover
that action b cannot be performed. By contrast the action b is not supported with respect to our
model since the part of the constraint model represented by the variables a(X,x1); a(Y,y2) and a(Z,z3)
is not singleton arc-consistent. Hence the action b cannot be performed.

12 Pavel Surynek

7 Experimental Results and Concluding Remarks

We made several experiments with simple planning domain1. The planning domain we have used
consists of traffic network. Within this traffic network transporters of various capacities can move.
There are ordinary places within the traffic network called locations and special places where pack-
ages can be loaded and unloaded. These special places are called sites. Each site has certain number
of cranes and certain number of piles of packages (packages in pile behave like a stack - LIFO).
Each crane can load and unload a package to and from a transporter. Typically not all piles within a
site are reachable by a single crane.

Table 1. Plan lengths (planning graph length / plan length)

Problem no. 01 02 03 05 07 08 09 10 11
Plan length 6/9 6/8 2/4 14/24 16/36 8/8 8/16 8/24 8/32

Table 2. Number of backtracks. The type of consistency is denoted by SAC (singleton arc-consistency) of by
AC (arc-consistency). Variant of propagation is denoted by the letter in parenthesis.

Problem Standard SAC(A) SAC(B) SAC(C) AC(A) AC(B) AC(C)
problem_01 18238 229 91 91 575 281 110
problem_02 2920 145 49 49 178 95 72
problem_03 32 32 3 3 32 5 3
problem_05 590245 1125 592 592 7180 5840 549
problem_07 N/A N/A N/A N/A 145976 109708 4322
problem_08 251 248 53 53 248 76 55
problem_09 246 240 43 43 240 67 45
problem_10 241 232 33 33 232 58 35
problem_11 236 224 23 23 224 50 25

Table 3. Number of actions considered.

Problem Standard SAC(A) SAC(B) SAC(C) AC(A) AC(B) AC(C)
problem_01 1717 229 229 229 446 394 266
problem_02 389 131 131 131 138 130 141
problem_03 32 32 32 32 32 32 32
problem_05 61695 1029 1029 1029 3157 3151 943
problem_07 N/A N/A N/A N/A 73997 73659 7997
problem_08 248 248 248 248 248 248 248
problem_09 240 240 240 240 240 240 240
problem_10 232 232 232 232 232 232 232
problem_11 224 224 224 224 224 224 224

1 http://ktiml.mff.cuni.cz/~surynek/research/csclp2006/

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 13

Table 4. Number of mutex checks.

Problem Standard SAC(A) SAC(B) SAC(C) AC(A) AC(B) AC(C)
problem_01 133324 160633 128450 151014 20015 19774 38134
problem_02 23458 177562 153606 162683 9208 9208 31553
problem_03 240 9377 2785 3532 690 690 785
problem_05 5879590 4109180 3834881 3867564 733457 733457 939520
problem_07 N/A N/A N/A N/A 12824724 12824376 4263763
problem_08 3745 417062 209018 239667 13759 13759 33938
problem_09 3537 376862 183012 205265 12657 12657 32227
problem_10 3344 340571 161501 179091 11788 11788 30865
problem_11 3166 307809 143791 158023 11345 11345 29389

Table 5. Time in seconds (planning graph building time/plan extraction time)

Problem Standard SAC(A) SAC(B) SAC(C) AC(A) AC(B) AC(C)
problem_01 7.4/5.7 7.2/7.0 7.5/6.2 7.1/6.6 7.1/0.9 7.4/0.9 7.4/1.5
problem_02 7.3/1.1 7.5/8.4 7.3/7.7 7.5/8.1 7.6/0.4 7.5/0.4 7.2/1.1
problem_03 0.3/0.0 0.3/0.2 0.3/0.1 0.3/0.1 0.3/0.0 0.3/0.0 0.3/0.0
problem_05 86.5/

/252.5
86.5/

/241.0
86.8/

/234.3
87.3/
233.7

87.0/
/38.4

87.3/
/38.5

88.3/
/35.4

problem_07 > 2
hours

> 2
hours

> 2
hours

> 2
hours

145.2/
/726.4

145.6/
/689.1

143.4/
/157.4

problem_08 24.5/0.9 25.2/15.1 24.8/10.0 24.8/10.8 25.3/0.5 25.1/0.5 25.1/1.1
problem_09 24.4/0.8 24.9/14.2 24.5/9.2 24.7/10.1 25.5/0.5 24.2/0.5 25.1/1.0
problem_10 24.7/0.8 25.0/13.7 24.5/8.9 24.8/9.6 25.1/0.5 25.4/0.5 24.9/1.0
problem_11 24.5/0.8 24.3/12.7 24.6/8.6 24.8/8.9 25.3/0.5 24.7/0.5 24.7/0.9

The experiments showed that maintaining arc-consistency is better choice than singleton arc-
consistency. However the number of backtracks is significantly lower for singleton arc-consistency
with variant B or C. This result showed that it worth doing further research on singleton arc-
consistency in this context. Arc-consistency as well as singleton arc-consistency in these experi-
ments was based on simple AC-3 algorithm. This may be an important handicap for performance of
the algorithm using singleton arc-consistency. Both types of consistencies bring significant im-
provements in number of backtracks, number of considered actions in comparison with standard
GraphPlan. Arc-consistency is better in overall time and in number of mutex checks.

Experiments also showed that the dual view of the problem is useful. Constraint propagation in
both clusters of variables gives different results. If these results are combined together by a channel-
ing constraint the obtained information is stronger than the information from individual cluster it-
self. Namely the variant C of propagation between clusters is most successful on hardest problems
from our set of planning problems. We have also performed some tests with classical representation
of our planning domain (according to definitions 1 to 6). Although we do not present exact result
about this experimentation let us say that our experiments showed that standard version of the
GraphPlan algorithm with classical representation was about twice slower than the same algorithm
base on state variable representation.

14 Pavel Surynek

To summarize our contribution, we proposed a constraint model for solving sub-goal resolution
sub-problem which arises in the GraphPlan style solving process of planning problems. We experi-
mented with maintaining of arc-consistency and singleton arc-consistency in the model. The modi-
fied GraphPlan algorithm enhanced with the proposed model and arc-consistency is better in terms
of number of backtracks as well as in terms of overall time. When singleton arc-consistency is used
the results are not so good. It is caused mainly by the choice of inefficient algorithm for enforcing
the consistency. We plan to evaluate better algorithms [4] in context of our framework. The inter-
esting result about the model and singleton arc-consistency is that this type of consistency reduces
the number of backtracks very much. Therefore it seems that the structure of the sub-goal resolution
sub-problem does not require extensive search and can be solved by alternative type of reasoning
(with little search).

References

[1] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J. Hsu, A. Jónson, B. Kanefsky, P. Morris, K.
Rajan, J. Yglesias, B. Chafin, W. Dias and P. Maldague. MAPGEN: Mixed-Initiative Planning
and Scheduling for the Mars Exploration Rover Mission. IEEE Intelligent Systems 19(1), 8-12,
IEEE Press, 2004.

[2] J. Allen, J. Hendler and A. Tate (editors). Readings in Planning. Morgan Kaufmann Publishers,

1990.

[3] M. Baioletti, S. Marcugini and A. Milani: An Extension of SATPLAN for Planning with Con-

straints. In Proceedings of 8th International Conference AIMSA (AIMSA-98), 39-49, LNCS
1480, Springer-Verlag, 1998.

[4] R. Barták and R. Erben. A New Algorithm for Singleton Arc Consistency. In Proceedings of the

17th Florida Artificial Intelligence Research Society Conference (FLAIRS-2004), AAAI Press,
2004.

[5] D. Bernard, E. Gamble, N. Rouquette, B. Smith, Y. Tung, N. Muscettola, G. Dorias, B. Kanef-

sky, J. Kurien, W. Millar, P. Nayak and K. Rajan. Remote Agent Experiment. Deep Space 1 ech-
nology Validation Report. NASA Ames and JPL report, 1998.

[6] C. Bessière and R. Debruyne. Optimal and Suboptimal Singleton Arc Consistency Algorithms.

In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-2005),
54-59, Professional Book Center, 2005.

[7] A. Blum and M. L. Furst. Fast Planning through Planning Graph Analysis. Artificial Intelli-

gence 90(1-2), 281-300, AAAI Press, 1997.

[8] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

Constraint Based Reasoning over Mutex Relations in Planning Graphs during Search 15

[9] M. B. Do and S. Kambhampati. Solving Planning-graph by Compiling it into CSP. In Proceed-
ings of the 5th International Conference on Artificial Intelligence Planning Systems (AIPS-2000),
82-91, AAAI Press, 2000.

[10] M. Ghallab, D. S. Nau and P. Traverso. Automated Planning: theory and practice. Morgan

Kaufmann Publishers, 2004.

[11] S. Kambhampati. Planning Graph as a (Dynamic) CSP: Exploiting EBL, DDB and other CSP

Search Techniques in Graphplan. Journal of Artificial Intelligence Research 12 (JAIR 12), 1-34,
AAAI Press, 2000.

[12] S. Kambhampati, E. Parker and E. Lambrecht. Understanding and Extending Graphplan. In

Proceedings of 4th European Conference on Planning (ECP-97), 260-272, LNCS 1348, Springer-
Verlag, 1997.

[13] H. A. Kautz, D. A. McAllester and B. Selman. Encoding Plans in Propositional Logic. In Pro-

ceedings of the 5th Conference on Principles of Knowledge Representation and Reasoning (KR-
96), 374-384, Morgan Kaufmann Publishers, 1996.

[14] H. A. Kautz and B. Selman. Unifying SAT-based and Graph-based Planning. In Proceedings

of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99), 318-325, Morgan
Kaufmann Publishers, 1999.

[15] H. A. Kautz and B. Selman. Planning as Satisfiability. In Proceeding of 10th European Con-

ference on Artificial Intelligence (ECAI-92), 359-363, John Wiley and Sons, 1992.

[16] H. A. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic, and Sto-

chastic Search. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-
96), 1194-1201, AAAI Press, 1996.

[17] A. Lopez and F. Bacchus. Generalizing Graphplan by Formulating Planning as a CSP. In Pro-

ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-2003), 954-
960, Morgan Kaufmann Publishers, 2003.

[18] A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence 8, 99-118,

AAAI Press, 1977.

[19] A. Nareyek, E. C. Freuder, R. Fourer, E. Giunchiglia, R. P. Goldman, H. A. Kautz, J. Rintanen

and A. Tate. Constraints and AI Planning. IEEE Intelligent Systems 20(2), 62-72, IEEE Press,
2005.

[20] D. S. Nau , W. C. Regli and K. S. Gupta. AI Planning versus Manufacturing Operation Plan-

ning: A Case Study. In Proceedings of the 14th International Joint Conference on Artificial Intel-
ligence (IJCAI-95), 1670-1676, Morgan Kaufmann Publishers, 1995.

16 Pavel Surynek

[21] P. Van Beek, X. Chen. CPlan: A Constraint Programming Approach to Planning. In Proceed-
ings of the 16th National Conference on Artificial Intelligence (AAAI-99), 585-590, AAAI Press,
1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

