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Abstract. Denote by ∇1(G) the maximum of
|E(H)|
|V (H)|

over all (simple) minors

of G obtained by contracting a star forest. We prove that there exists a positive
function ε such that every graph G of order n has (at least) two clones (that
is two vertices with the same neighbours) or an induced matching of size at
least ε(∇1(G))n and that this set may be found in linear time.

More generally, we prove that for every integer k there exists a (very slowly
growing) positive function εk such that every graph of order n has an involutive
automorphism or includes a set of size at least kbεk(∇bk/2c(G))nc inducing

bεk(∇bk/2c(G))nc disjoint paths on k vertices.

1. Introduction

A matching of a graph G is a subset of pairwise non-adjacent edges. An induced
matching of a graph G is a matching of G which is an induced subgraph of G, that
is a matching with the property that no endpoint of an edge in the matching is
adjacent to an endpoint of another edge in the matching.

The problem of finding a maximum induced matching (that is: an induced
matching with maximum cardinality) has been introduced by Stockmeyer and
Vazirani [39] as the “risk-free marriage problem” and it was studied extensively
[13, 16, 17, 20, 38]. For a graph G we denote by β*(G) the size of a maximum
induced matching.

It is known that the problem of deciding whether a given graph has an induced
matching of size at least k (for given k) is NP-complete [39], even for bipartite
graphs of maximum degree 4. However, this problem has been shown to be solvable
in polynomial time for several graph classes [3, 4, 5, 6, 7, 19, 20, 24, 25, 26] and
even in linear time for trees [18, 20, 42].

In this paper we consider the approximation version of this problem. Given a
NP-complete optimization problem P , like the computation of the size of a maxi-
mum induced matching, it is usual to look for an approximation algorithm AP such
that the ratio of the cost of a feasible solution computed by AP and the cost of an
optimal solution is bounded by some constant RAP

called the performance ratio of
AP . If P admits an approximation algorithm with performance ratio c, then we
say that P is approximable within c. The class APX is the class of optimization
problems that are approximable within c, for some constant c [2]. The approxi-
mation problem associated to the maximum induced matching problem consists in
looking for an induced matching the size of which is at least within a factor c from
the maximum. We say that P admits a polynomial time approximation scheme
(PTAS) if, given any ε > 0 there exists a polynomial-time approximation algorithm
AP,ε with performance ratio at most 1 + ε [27]. An APX-complete optimization
problem is an optimization problem which belongs to APX and to which any APX
problem has an L-reduction in polynomial time (see [36] and [1] for a formal defi-
nition of an L-reduction). An important property of APX-completeness is that an
APX-complete optimization problem Q does not admit a PTAS unless P = NP [1].
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In particular, there is some constant c such that the problem of approximating Q
within c is NP-hard.

Particularly, it is proved in [12] that in the class of d-regular graphs (d ≥ 3) the
computation of β*(G) is approximable with asymptotic performance ratio (d − 1)
(hence belongs to APX) but is APX-complete. Here we shall extend the approx-
imability result by proving that the problem of computing β*(G) is in APX when
restricted to graphs with bounded ∇1(G) which is defined (more generally) as fol-
lows:

Recall that the greatest reduced average degree (grad) with rank r of a graph

G, denoted ∇r(G), is defined by ∇r(G) = max |E(H)|
|V (H)| , where the maximum is

taken over all the minors H of G obtained by contracting a set of vertex-disjoint
subgraphs with radius at most r and then deleting any number of edges and vertices
[28, 29, 30, 32, 34]. Looking at the usual classes of sparse graphs, we see that minor
closed classes satisfy ∇r(G) < C for some constant C depending on the class, graphs
with no subdivision of a fixed complete graphs (this includes classes of graphs with
bounded degree) satisfy ∇r(G) < f(r) for some function f depending on the class
[32]. Thus these classes are more restrictive that the mere bounding of ∇1(G),
which in turn is more restrictive that a simple degeneracy condition (a graph G is
k-degenerate iff ∇0(G) ≤ k/2).

Our paper presents a further evidence that ∇1(G) is an interesting parameter.
In [31] we showed that graphs with bounded ∇1 have linear Ramsey number and
in [32] we showed a similar result for acyclic chromatic number.

In Section 4 we generalize the induced matchings to induced paths of length 2
and in Section 5 to induced paths of length k.

2. Definitions

The distance d(x, y) between two vertices x and y of a graph is the minimum
length of a path linking x and y, or ∞ if x and y do not belong to the same
connected component. The radius ρ(G) of a connected graph G is the mini-
mum maximum distance of the vertices from a fixed vertex, that is: ρ(G) =
minr∈V (G) maxx∈V (G) d(r, x). A vertex r is a center of G if the maximal distance
of vertices of G to r is equal to ρ(G). The radius ρ(G) of a non-connected graph G
is the maximum of the radii of its components. We say that a graph G is F -free if
G does not contain an induced subgraph isomorphic to F .

A (simple) graph H is a minor of a graph G if it may be obtained from G by
contracting edges, deleting edges and deleting vertices. This is denoted by H < G.
As edge deletions and contractions commute, we may consider contractions first
and deletions next. As we only consider simple loopless graphs, each deletion is
followed (if necessary) by the simplification of the graph. In other words, a minor
H of a graph G is obtained by first contracting some connected subset F of edges,
simplifying and then taking a subgraph. Symbolically we can write H ⊆ G/F
where G/F denotes the result of contracting of the set F of edges. Notice that the
subset F is in general not uniquely determined by G and H . We denote by GF the
subgraph of G induced by the subset F of edges of G and by G[X ] the subgraph
induced by the subset X of vertices of G. The depth of a minor of a graph G is the
minimum radius of the part we have to contract in G to get H . More formally we
can write:

depth(H, G) = min
F

{ρ(GF ) : H ⊆ G/F}

Using this notation the definition of ∇r(G) takes the following form:
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Definition 2.1. ([28]) The greatest reduced average density (grad) of G with rank
r is

∇r(G) = max
H<G

depth(H,G)≤r

|E(H)|
|V (H)|

If ∇0(G) is closely related to the coloring number of G, ∇1(G) is related to the
arrangeability (used in the study of Ramsey numbers in [8]) and the admissibility
(used in the study of game chromatic numbers in [22]), as shown in [31]. Also,
∇(k−1)/2(G) is closely related to the k-coloring number introduced by Kierstead
and Yang in [23], as shown by Zhu in [41]. We now state Zhu’s result and the
required preliminary definitions:

Let <L be a linear ordering of the vertices of a graph G, let k be an integer, and
let x <L y be two vertices of G. The vertex x is weakly k-accessible from y if there
exists an x–y path of length at most k in G, whose internal vertices are greater
than x with respect to <L. Denoting Qk(G, <L, y) the set of the vertices which are
weakly k-accessible from y, the weak k-coloring number wcolk(G) is defined by:

wcolk(G) = 1 + min
<L

max
v∈V (G)

|Qk(G, <L, y)|

where the minimum is taken over all the linear orderings of the vertex set V (G) of
G. The following follows from [41]:

Lemma 2.1. Define f1(x) = 2x and for i ≥ 1, fi+1(x) = f1(x)fi(x)2i2 . Then, for
every graph G and every positive integer k, we have wcolk(G) ≤ fk(∇bk/2c(G))k.

We shall also make use of some results of [33]. We need some definitions. A
rooted forest is a disjoint union of rooted trees. The height of a vertex x in a rooted
forest F is the number of vertices of a path from the root (of the tree to which x
belongs to) to x and is denoted by height(x, F ). The height of F is the maximum
height of the vertices of F . Let x, y be vertices of F . The vertex x is an ancestor
of y in F if x belongs to the path linking y and the root of the tree of F to which
y belongs to. The closure clos(F ) of a rooted forest F is the graph with vertex set
V (F ) and edge set {{x, y} : x is an ancestor of y in F, x 6= y}. A rooted forest F
defines a partial order on its set of vertices: x ≤F y if x is an ancestor of y in F . The
comparability graph of this partial order is obviously clos(F ). The tree-depth td(G)
of a graph G is the minimum height of a rooted forest F such that G ⊆ clos(F ).

A centered coloring of a graph G is a vertex coloring such that, for any (induced)
connected subgraph H , some color c(H) appears exactly once in H . This notion is
similar to the ones of vertex ranking and ordered coloring which have been inves-
tigated in [10],[37]. As proved in [33], tree-depth and centered-coloring are closely
related:

Lemma 2.2. Let G be a graph. Then, td(G) is the minimum number of colors in
a centered coloring of G.

3. Finding an induced matching

A vertex v of a graph G is a clone if G has a vertex u 6= v with the same
neighbourhood as v. In that say we say that v is a clone of u. We denoted by ∼
be the equivalence relation defined by x ∼ y if x and y have the same neighbors
(i.e. are clones). Let G/∼ be the graph obtained by keeping exactly one vertex
per equivalence class of ∼; the vertex kept in a class is identified with the class it
belongs to, so that for a vertex x of G belonging to a class represented by a vertex
ŷ of G/∼ we write x ∈ ŷ. In a degenerated graph, the deletion of clones can only
affect β*(G) by a constant factor:
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Lemma 3.1. Let G be a graph. Then G/∼ has no clones and the sizes of maximum
induced matchings in G and G/∼ are related by

β*(G) = β*(G/∼).

Proof. The fact that ∼ is an equivalence relation is obvious. Moreover, it is straight-
forward that G/∼ has no clones: Assume x̂ and ŷ are vertices of G/∼ corresponding
to the class of the vertices x and y of G. The neighbors of x̂ (resp. ŷ) are the classes
of the neighbors of x (resp. y in G). If x̂ and ŷ have the same neighbors in G then
x and y have the same neighbors in G hence belong to a same equivalence class of
∼. Thus the inequality β*(G) ≥ β*(G/∼) is obvious as G/∼ is isomorphic to an
induced subgraph of G.

For the second inequality, consider any maximum induced matching M of G.
Let F be the set of edges of G/∼ defined by x̂ŷ ∈ F if there exists x ∈ x̂ and
y ∈ ŷ such that xy ∈ M . Assume two edges of F are adjacent, namely x̂ŷ1 and
x̂ŷ2. Then there exists x1, x2 ∈ x̂, y1 ∈ ŷ1, y2 ∈ ŷ2 such that x1y1 and x2y2 belong
to M . But y1 is also a neighbor of x2 (as it is a neighbor of x1) hence M is not an
induced matching, contradiction. It follows that F is an induced matching of G/∼
and β*(G) ≤ β*(G/∼). �

We shall now prove that a graph G of order n with no clones has an induced
matching of size ε(∇1(G))n. To prove this, we will need two lemma which are
inspired from the Lemma 2.1 and 2.2 of [35] (originally expressed in the particular
case of graphs with no Kt minors, with aim of counting the number of graph of
order n in a proper minor closed class) in a more precise form, related on the graph
invariant ∇0(G) (which is equivalent to the degeneracy or the maximum average
degree of the graph up to a factor of 2). Recall that a clique in a graph G is any
complete subgraph of G.

Lemma 3.2. Let G be a graph of order n. Let Kt be the family of cliques of size t
and let K be the family of all cliques of G.

Then:

|Kt| ≤
(

2∇0(G)

t − 1

)

n

|K| ≤ 22∇0(G)n.

The number of coverings of cliques by at most d (non-empty) sets is at most
22∇0(G)dn.

Proof. Consider an acyclic orientation of G with indegree at most 2∇0(G). Then
the vertices of any clique of size t are naturally ordered as x1, x2, . . . , xt (with all
arcs oriented from xi to xj whenever i < j). We have at most n choices for xt.

The vertex xt being given, we have at most
(

d–(xt)
t−1

)

choices for {x1, . . . , xt−1}. It

follows the cardinality of Kt is bounded by
(

∆–(G)
t−1

)

n =
(

2∇0(G)
t−1

)

n and by summing

we get |K| ≤ 22∇0(G)n.
Covering a clique K of size t by at most d sets is equivalent to assigning to

each vertex of K a non-empty subset of [d] (non-empty because the sets have to
cover the clique) and then forgeting about the order of [d]. The result is simply
∑

t

(

2∇0(G)
t−1

)

n(2d − 1)t/d!. �

Lemma 3.3. Let G be a graph of order n and let d = 2∇0(G)(22∇1(G) +∇1(G) +
1)+1. Then G has a subset S of vertices of size at least n/d such that every vertex
in S has degree at most d and every vertex of S is either is a clone or it is adjacent
to a vertex of degree at most d.
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Proof. Let X be the set of all vertices of G that have degree at least d. Since the

sum of the degrees of vertices of G is at most 2∇0(G)n, we get |X | ≤ 2∇0(G)n
d .

Let Y be the set of all vertices of V (G) − X that are adjacent to another vertex
of V (G) − X . If |Y | ≥ n/d, then Y satisfies the conclusion of Lemma 3.3, and so
we may assume that |Y | < n/d. Let Z = V (G) − X − Y ; then every neighbour
of a vertex in Z belongs to X . In particular, no two vertices in Z are adjacent.
Let Z ′ be a maximal subset of Z such that for every vertex z ∈ Z ′ there exists
a pair of distinct non-adjacent neighbours a(z), b(z) of z such that {a(z), b(z)} 6=
{a(z′), b(z′)} whenever z, z′ ∈ Z ′ are distinct. Let H be the graph obtained from
G[X∪Z ′] by deleting, for each z ∈ Z ′ all the edges incident to z but za(z) and zb(z)
and then contracting za(z). As H is obtained from a subgraph of G by contracting
a star forest, we have ∇0(H) ≤ ∇1(G). We notice that H may alternatively be
defined as the graph obtained from G[X ] by adding the edge a(z)b(z) for all z ∈ Z ′.
As there is a one-to-one mapping between the added edges and the vertices in Z ′

we deduce |Z ′| ≤ |E(H)| ≤ ∇0(H)|X | ≤ ∇1(G)|X |. The choice of Z ′ implies that
the neighbourhood of every vertex of Z −Z ′ induces a clique of H . By Lemma 3.2
there are at most 22∇0(H)|X | ≤ 22∇1(G)|X | of such cliques. In turn this implies
that so all but possibly 22∇1(G)|X | vertices of Z − Z ′ have degree at most d and
are clones. But then we have

|Z| − |Z ′| − 22∇1(G)|X | ≥ n − |X ∪ Y | − ∇1(G)|X | − 22∇1(G)|X |
≥ (1 − 2∇0(G)(1 + ∇1(G) + 22∇1(G))/d)n = n/d

by the choice of d, as desired. �

Theorem 3.4. Every connected graph G of order n has either a clone or an induced
matching of size at least εn, where

ε =
1

4∇0(G)(22∇1(G) + ∇1(G) + 1)
(

2∇0(G)(22∇1(G) + ∇1(G) + 1) + 1
)2

Proof. Put d = 2∇0(G)(22∇1(G) + ∇1(G) + 1) + 1 (as in Lemma 3.3). Assume
G has no clones. According to Lemma 3.3 there exists a subset S of vertices of
size at least n/d such that every vertex in S has degree at most d and is adjacent
to a vertex of degree at most d. For x ∈ S, let φ(x) be such an adjacent vertex
of degree at most d. For x ∈ S define A(x) = N(x) ∪ {φ(x)} ∪ N(φ(x)) and
define B(x) as the union of the neighbourhoods of all the vertices in A(x) having
degree at most d. Then |A(x)| ≤ 2d and |B(x)| ≤ 2d(d − 1). Let p = n

2d2(d−1) .

Define iteratively x1, x2, . . . , xi, . . . , xp by xi ∈ S \
⋃

j<i B(xj). For 1 ≤ i < j ≤ p

none of xj , φ(xj ) may be adjacent to xi or φ(xi) by construction. Hence the set
{x1, . . . , xp, φ(x1), . . . , φ(xp)} forms an induced matching of size p = εn. �

This result implies the desired c-approximation algorithm for β*(G):

Theorem 3.5. Let G be a connected graph. Then

∇0(G)|V (G/∼)|
f(∇0(G),∇1(G))

≤ β*(G) ≤ ∇0(G)|V (G/∼)|

where

f(x, y) = 4x2(22y + y + 1)
(

2x(22y + y + 1) + 1
)2

Proof. The graph G/∼ has no induced matching of size greater than |V (G/∼)|/2
but, by Theorem 3.4, it has an induced matching of size at least ε(∇0(G),∇1(G))n.
Choose f(x, y) = x/ε(x, y). Now the result follows from Lemma 3.3. �
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Figure 1. The subdivision graph S(Kn) of Kn. Every edge of
the maximum induced matching is incident to a principal vertex
hence β*(S(Kn)) = n.

Corollary 3.6. For every constant C, there exists a constant c > 0 such that an
approximation of β* in the class of graphs G with ∇1(G) < C within a factor c
may be computed in polynomial time, that is: MIM belongs to APX for bounded ∇1

graphs.

On the one side, this results extends the proof by Zito [42] that MIM belongs to
APX for d-regular graphs. On the other side, it is proved in [12] that the problem
MIM is actually APX-complete in d-regular graphs for each d ≥ 3. Thus there
is some constant c such that the problem of c-approximating MIM for d-regular
graphs is NP-hard unless P=NP.

Remark 3.7. Let S(G) denotes the subdivision graph of G (that is: the graph
obtained from G by subdividing each edge exactly once). The graph S(Kn) has no
clones thus S(Kn/∼) = S(Kn). Moreover it is straightforward that β*(S(Kn)) = n

(exactly one edge is incident to each principal vertex). Hence |V (S(Kn)/∼)|
β*(S(Kn))

= n+1
2

although ∇0(S(Kn)) < 2. It follows that |V (G/∼)|
β*(G)

may not be bounded by a

function of ∇0(G) only. This shows that Theorem 3.5 is in this sense best possible.

4. Finding induced P3’s

In this section we modify the results of Section 3 and obtain a similar result
about εn copies of P3. We shall later see that this case shows the limitations of
our method. But here we proceede similarly as in Section 3 and as in Lemma 3.3
we will now request for two small non-adjacent neighbors instead of a single small
neighbor.

A non-identical automorphism α of a graph G is said to be involutive if α2 is
the identity. Clearly for every involutive automorphism α there exists a partition
V (G) = V1 ∪ V2 ∪ V3 such that α(x) = x for every x ∈ V1 while α(x) ∈ V3 for every
x ∈ V2 and α(x) ∈ V2 for every x ∈ V3. We say that α exchanges sets V2 and V3.
Note that by our assumption sets V2 and V3 are non-empty.

Lemma 4.1. Let G be a connected graph of order n with no involutive automor-
phism exchanging two cliques. Put

d = (1 + (2∇0(G) + 1)∇1(G) + 22∇1(G)(2∇0(G)+1)+1)(2∇0(G) + 1) + 1.



INDUCED MATCHINGS AND INDUCED PATHS IN GRAPHS 7

Figure 2. The subdivision graph S(Sn) of the star Sn. An in-
duced matching of size n is easily found but these graphs, although
having no clones and bounded ∇i for all i ≥ 0, have no two disjoint
induced P3.

Then G has a subset S of vertices of size at least n/d such that every vertex x in
S has degree at most d and x has at least two non-adjacent neighbors which have
degree at most d.

Proof. Let X be the set of all vertices of G that have degree at least d. Since the

sum of the degrees of vertices of G is at most 2∇0(G)n, we get |X | ≤ 2∇0(G)n
d .

Let Y be the set of all vertices of V (G) − X which have at least two non-adjacent
neighbors in V (G)−X . If |Y | ≥ n/d, then Y satisfies the conclusion of the lemma,
and so we may assume that |Y | < n/d. Let Z = V (G) − X − Y ; then G[Z] is a
disjoint union of cliques (of size at most 2∇0(G) + 1). Let Z ′ be a maximal subset
of Z such that for every maximal clique ω ∈ G[Z ′] there exists a pair of distinct
non-adjacent vertices a(ω), b(ω) 6∈ Z each adjacent to some vertex of ω such that
{a(ω), b(ω)} 6= {a(ω′), b(ω′)} whenever ω, ω′ are distinct maximal cliques of G[Z ′].
Let H be the graph obtained from G[X∪Y ∪Z ′] by first contracting all the maximal
cliques of G[Z ′] (we denote by Z ′ the obtained vertex set and identify its elements
with the maximal cliques of G[Z]; moreover we remove multiple edges), deleting,
for each ω ∈ Z ′ all the incident edges but ωa(ω) and ωb(ω) and then contracting
ωa(ω). As H is obtained from a subgraph of G by contracting a star forest (consider
the star formed by the neighborhood of a neighbor of a(ω) in the clique ω), we have
∇0(H) ≤ ∇1(G). We may notice that H may alternatively be defined as the graph
obtained from G[X ∪ Y ] by adding the edge a(ω)b(ω) for all ω ∈ Z ′. As there is
a one-to-one mapping between the added edges and the elements of Z ′ we deduce
|Z ′| ≤ |E(H)| ≤ ∇0(H)|X ∪ Y | ≤ ∇1(G)|X ∪ Y | hence |Z ′| ≤ (2∇0(G) + 1)|Z ′| ≤
(2∇0(G) + 1)∇1(G)|X ∪ Y |. The choice of Z ′ implies that the neighbourhood of
every clique of G[Z −Z ′] is a complete subgraph of H . By Lemma 3.2 there are at
most 22∇0(H)(2∇0(G)+1)+1|X∪Y | ≤ 22∇1(G)(2∇0(G)+1)+1|X∪Y | possible cliques and
ways to connect their vertices to the vertices of a clique of size most 2∇0(G) + 1 in
G[Z], and so if |Z|− |Z ′| > 22∇1(G)(2∇0(G)+1)+1|X ∪Y | two cliques of the same size
are linked the same way to the same vertices of X ∪ Y , contradicting the abscence
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of such an automorphism of G. As

|Z| − |Z ′|−22∇1(G)(2∇0(G)+1)+1|X ∪ Y |
≥ n − |X ∪ Y | − (2∇0(G) + 1)∇1(G)|X ∪ Y | − 22∇1(G)(2∇0(G)+1)+1|X ∪ Y |
≥ (1 − (1 + (2∇0(G) + 1)∇1(G) + 22∇1(G)(2∇0(G)+1)+1)(2∇0(G) + 1)/d)n

and the contradiction follows from the choice of d. �

Theorem 4.2. For every C > 0 there exists ε > 0 such that every connected graph
G of order n with no involutive automorphism exchanging two cliques and such that
∇1(G) < C has a subset of 3εn vertices inducing εn disjoint paths of length 2.

Proof. Let d be defined as in Lemma 4.1. According to Lemma 4.1 there exists
a subset S of vertices of size at least n/d such that every vertex in S has degree
at most d and has at least two non-adjacent neighbors which have degree at most
d. For x ∈ S, let φ1(x), φ2(x) denote these two neighbors of x. For x ∈ S de-
fine A(x) = N(x) ∪ {φ1(x), φ2(x)} ∪ N(φ1(x)) ∪ N(φ2(x)) and define B(x) as the
union of the neighbourhoods of all the vertices in A(x) having degree at most d.
Then |A(x)| ≤ 3d − 1 and |B(x)| ≤ 3d(d − 1). Let p = n

9d2(d−1) . Define itera-

tively x1, x2, . . . , xi, . . . , xp by xi ∈ S \ ⋃

j<i B(xj). For 1 ≤ i < j ≤ p none of

xj , φ1(xj), φ2(xj) may be adjacent to xi or φ1(xi), φ2(xi) by construction. Hence
{x1, . . . , xp, φ1(x1), . . . , φ1(xp), φ2(x1), . . . , φ2(xp)} induces p = εn disjoints paths
of length 2. �

5. General case: Finding induced Pk’s

Finding induced Pk ’s seems to be much more complicated than indicated by the
cases k = 1, 2. Intuitively, the problem in generalizing the proof of Lemma 4.1
is that the connected components of G[Z], now having the weaker property to be
induced Pk-free, cannot have their order bounded by a function of ∇0(G). Of
course, it would be easy to bound these orders by a function of d, but it would be
of no help as it would eventually lead us to an implicite inequality which could be
fullfilled by no choice of d. We have to proceede otherwise and invoke some more
structure theory.

Lemma 5.1. Define f1(x) = 2x and for i ≥ 1, fi+1(x) = f1(x)fi(x)2i2 . Let k be
an integer and let G be a graph not containing Pk as an induced subgraph. Then
td(G) ≤ wcolk−2(G) ≤ fk−2(∇bk/2c−1(G))k−2.

Proof. Consider a linear order L of the vertex set of G achieving wcolk−2(G). Start-
ing from the largest element of L, color successively the vertices of G such that any
vertex x gets a color different from those vertices which are (k − 2)-accessible from
x. Obviously wcolk−2(G) colors suffice.

Let H be any induced subgraph of G and let r be the smallest vertex of L. For
each other vertex x of H , the shortest path in H from x to r has length at most
k−2 and has r as its minimum. It follows that r is weakly (k−2)-accessible from x.
Hence r has a color which is not present on another vertex of H . Thus the coloring
is a centered coloring of G and, according to Lemma 2.2 td(G) ≤ wcolk−2(G).

The bounding of wcolk−2(G) by fk−2(∇bk/2c−1(G))k−2 follows from Lemma 2.1.
�

We recall the following finitness theorem from [33]:

Theorem 5.2. There exists a function z : N×N → N with the following property:
For any integer N , any graph G of order n > z(N, td(G)) and any mapping g :
V (G) → {1, . . . , N}, there exists a non trivial involuting g-preserving automorphism
µ : G → G with the fixed point property.
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∼ H

∼ H

∼ H

∼ H

∼ H

∼ H

∼ H

Figure 3. From a connected graph H with diameter k − 1, one
can build a class with bounded expansion so that each graph in
the class contains an induced Pk but not two disjoint ones.

Lemma 5.3. Let G be a graph having no non-trivial involuting automorphism.
Let A ⊆ V (G) be a subset of vertices and let H1, . . . , Hp be some of the connected
components of G − A. Then

∑

1≤i≤p

|V (Hi)| ≤ z(|A| + 1, |A| + max
1≤i≤p

td(Hi)).

Proof. Consider the coloring g of the subgraph G′ of G induced by A∪⋃

1≤i≤p V (Hi)

such that all the vertices in A get a different color from the set {1, . . . , |A|} and
all the other vertices get the color |A| + 1. It is obvious that any non-trivial
involutive g-preserving automorphism of G defines a non-trivial involutive auto-
morphism of G. According to Theorem 5.2, the graph G′ has order at most
z(|A| + 1, td(G′)). By considering a vertex elimination order beginning by the
deletion of the vertices in A we get td(G′) ≤ |A| + max1≤i≤p td(Hi). Now the
inequality |V (G′)| ≥

∑

1≤i≤p |V (Hi)| finishes the proof. �

The necessity to consider the involutive automorphisms is indicated on Fig. 3.

Lemma 5.4. Let G be a connected graph of order n with no involutive automor-
phism ϕ exchanging two connected Pk-free subgraphs (this is schematically indicated

on Fig. 4). Let k be an integer and put d = (2∇0(G) + 1)

(

1 + (k − 1)∇b k

2
c(G) +

2
2∇

b k

2
c
(G)

z
(

2∇b k

2
c(G)+1+(k−1)

(2∇
b k

2
c
(G)+1

2

)

, 2∇b k

2
c(G)+1+(k−1)

(2∇
b k

2
c
(G)+1

2

)

+

wcolk−2(G)
)

)

. Then G has a subset S of vertices of size at least n/d such that ev-

ery vertex in S has degree at most d and belongs to an induced path of order k
whose vertices all have degree at most d.



10 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

ϕ

Figure 4. ϕ is an involutive automorphism exchanging two con-
nected Pk-free subgraphs.

Proof. Let X be the set of all vertices of G that have degree at least d. Since the

sum of the degrees of vertices of G is at most 2∇0(G)n, we get |X | ≤ 2∇0(G)n
d . Let

Y be the set of all vertices of V (G) − X which belong to an induced path of order
k no vertices of which belong to X . If |Y | ≥ n/d, then Y satisfies the conclusion of
Lemma 5.4, and so we may assume that |Y | < n/d. Let Z = V (G) − X − Y ; then
G[Z] is a disjoint union of Pk-free graphs. Let P be a maximal set internaly vertex
sets disjoints induced paths of G of length at least 2, with endpoints in X ∪ Y and
internal vertices in Z, such that {a(P ), b(P )} 6= {a(P ′), b(P ′)} for any two distinct
P, P ′ ∈ P . Notice that every path in P has length at most k. Let Z ′ be the union
of the intersections of Z with the vertex sets of the paths in P . Let H be the graph
obtained from G[X ∪Y ∪Z ′] by contracting all the paths in P into single edges. As
H is obtained from a subgraph of G by contracting disjoint balls of radius at most
dk−1

2 e = bk
2 c, we have ∇0(H) ≤ ∇b k

2
c(G). We may notice that alternatively H

may be defined as the graph obtained from G[X ∪Y ] by adding the edge a(P )b(P )
for all P ∈ P . As there is a one-to-one mapping between the added edges and the
elements of P we deduce |P| ≤ |E(H)| ≤ ∇0(H)|X ∪ Y | ≤ ∇b k

2
c(G)|X ∪ Y |. Thus

|Z ′| ≤ (k − 1)∇b k

2
c(G)|X ∪ Y |.

The choice of P implies that the neighbourhood of every connected compo-
nent of G[Z − Z ′] is a complete subgraph of H . By Lemma 3.2 there are at

most 22∇0(H)|X ∪ Y | ≤ 2
2∇

b k

2
c
(G)|X ∪ Y | possible cliques, each of size at most

2∇b k

2
c(G) + 1. Each of these cliques correspond in G to a subgraph of order at

most 2∇b k

2
c(G) + 1 + (k − 1)

(2∇
b k

2
c
(G)+1

2

)

. According to Lemma 5.3, we deduce

that |Z−Z ′| ≤ 2
2∇

b k

2
c
(G)

z
(

2∇b k

2
c(G)+1+(k−1)

(2∇
b k

2
c
(G)+1

2

)

, 2∇b k

2
c(G)+1+(k−

1)
(2∇

b k

2
c
(G)+1

2

)

+ wcolk−2(G)
)

|X ∪ Y |. Summarizing, we get that the order of G is

n = |X ∪Y |+ |Z ′|+ |Z −Z ′| ≤
(

1+(k−1)∇b k

2
c(G)+2

2∇
b k

2
c
(G)

z
(

2∇b k

2
c(G)+1+

(k− 1)
(2∇

b k

2
c
(G)+1

2

)

, 2∇b k

2
c(G)+1+(k− 1)

(2∇
b k

2
c
(G)+1

2

)

+wcolk−2(G)
)

)

|X ∪Y | <
(

1+(k−1)∇bk

2
c(G)+2

2∇
b k

2
c
(G)

z
(

2∇b k

2
c(G)+1+(k−1)

(2∇
b k

2
c
(G)+1

2

)

, 2∇b k

2
c(G)+

1+(k−1)
(2∇

b k

2
c
(G)+1

2

)

+wcolk−2(G)
)

)

(2∇0(G)+1)n
d , which contradicts our choice

of d. It follows that Y has order at least n/d. �

Theorem 5.5. For every integer k > 2 and every C > 0 there exists ε > 0 such that
every connected graph G of order n with no involutive automorphism ϕ exchanging
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two connected Pk-free subgraphs and such that ∇bk/2c(G) < C has a subset of kεn
vertices inducing εn disjoint paths of order k.

6. Applications

6.1. Strong Star Chromatic Number. Dujmović and Wood introduced in [14]
the following concept: a vertex coloring is a strong star coloring if between every
pair of color classes, all edges (if any) are incident to a single vertex. That is, each
bichromatic subgraph consists of a star and possibly some isolated vertices. The
strong star chromatic numver of a graph G, denoted by χsst(G), is the minimum
number of colors in a strong star coloring of G. The following result is proved in
[14]:

Lemma 6.1. Every graph G with m edges and maximum degree ∆ ≥ 1 has strong
chromatic number χsst(G) ≤ 14

√
∆m.

If the maximum degree is not bounded, the following upper bound is also proved
in [14]:

Lemma 6.2. Every graph G with m edges has strong star chromatic number
χsst(G) ≤ 15m2/3.

An asymptoticaly stronger result was known for graphs with bounded maximum
degree in another context: a harmonious coloring of a simple graph G is a proper
vertex coloring such that each pair of colors appears together on at most one edge.
The harmonious chromatic number harm(G) is the least number of colors in such a
coloring. Obviously, χsst(G) ≤ harm(G). The following bounds are proved in [15]:

Theorem 6.3. Let ∆ be a fixed integer, and ε > 0. There is a natural number M
such that if G is any graph with m ≥ M edges and maximum degree at most ∆,
then the harmonious chromatic number harm(G) satisfies

√
2m ≤ harm(G) ≤ (1 + ε)

√
2m

The upper bound also applies to χsst(G), but the derived lower bound for χsst(G)

is
√

2m
∆ . Notice that in the most general case, we cannot expect any good lower

bound for χsst(G) as the strong chromatic number of a star graph is 2. However, if
we forbid clones we are able to prove a Θ(

√
n) lower bound for graphs with bounded

∇1:

Theorem 6.4. Let G be a connected clone-free graph of order n and let

C(G) = 2∇0(G)(22∇1(G) + ∇1(G)).

Then the strong star chromatic number of G is bounded by

χsst(G) ≥ 1
√

C(G)(C(G) + 1)

√
n.

Proof. According to Theorem 3.4, the graph G has an induced matching of size
1

2C(G)(C(G)+1)2 n. No two edges of the matching may have its endpoints colored by

the same pair of colors. The result follows. �

Remark 6.5. The condition that two color classes induce at most a star may be
weakened to the condition that any two color classes induce a 2K2-free bipartite
graph. These graphs got alternative names and definitions like:

• bipartite chain graphs [40]: A graph is a bipartite chain graph if and only
if it is bipartite and for each color class the neighbourhoods of the nodes
in that color class can be ordered linearly with respect to inclusion (subset
or equal);
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• difference graphs [21]: A graph is a difference graph if every vertex vi can
be assigned a real number ai and there exists a positive real number T such
that (a) |ai| < T for all i and (b) (vi, vj) ∈ E ⇐⇒ |ai − aj | ≥ T ;

• non-separable bipartite graph [11]: A bipartite graph is non-separable if each
pair of edges either share an end vertex or are connected by an edge.

Also, these graphs may be defined by the property that they are bipartite with at
most one non-trivial connected component which is P5-free.

6.2. Extremal H-free graphs. It is known since [9] that the maximum number
ex∗(∆; H) of edges in a connected graph with maximum degree ∆ and no induced
subgraph H is finite if and only if H is a disjoint union of paths. It is also obvious
that if the condition on the maximum degree is relaxed, no maximum exists. How-
ever we deduce the following from Theorem 5.5 (pPk denotes the graph formed by
p disjoint paths of length k):

Theorem 6.6. For every integer k ≥ 2 and every real number D > 0, there exists
a real number N(k, D) such that the maximum order of a Pk-free connected graph G
with ∇bk/2c(G) < D and no involutive automorphism ϕ exchanging two connected
pPk-free subgraphs is at most pN(k, D).

Notice that we could not relax the absence of involutive automorphism exchang-
ing two connected Pk-free subgraphs (consider the graphs of Fig 3). Also the the
boundedness of a density parameter is needed as shown by the complement of any
asymetric triangle-free graph. This graph has no induced P5.

Corollary 6.7. For every class C with bounded expansion there exists a function
NC : N → N, such that for every integers k ≥ 2 and p ≥ 1, the maximum number
of edges in a connected pPk-free graph G ∈ C having no involutive automorphism is
bounded by pNC(k).

7. Conclusion

In this paper we have seen that the introduction of the invariant ∇1(G) may
be relevant to classical graph theoretical problems (see also [31] in the context of
Ramsey numbers). We hope this will encourage the study of the classes of graphs
with bounded ∇r.
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[28] J. Nešetřil and P. Ossona de Mendez, Grad and classes with bounded expansion I. decompo-

sitions, European Journal of Combinatorics (2005), (submitted).
[29] , Grad and classes with bounded expansion I. decompositions, Tech. Report 2005-739,

KAM-DIMATIA Series, 2005.
[30] , The grad of a graph and classes with bounded expansion, 7th International Col-
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E-mail address: nesetril@kam.ms.mff.cuni.cz
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