
Tractable Classes of a Problem of Finding Supporting Actions
for a Goal in AI Planning

Pavel Surynek

Charles University
Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic
pavel.surynek@mff.cuni.cz

Abstract
We are studying tractable classes of a problem of
finding supporting actions for a goal using pro-
jection global consistency. The projection consis-
tency is a recent technique designed to prune the
search space along the search for supports for a
sub-goal in AI planning context. The problem of
finding supporting actions for a sub-goal (briefly
supports problem) is exactly what the GraphPlan
planning algorithm must solve many times dur-
ing plan extraction from the planning graph. The
supports problem was shown to be NP-complete.
We found that there exist tractable instances of
the problem. We define a special intersection
graph according to the supports problem. We
showed that if the intersection graph is acyclic
then the supports problem can be solved in poly-
nomial time by using projection consistency. On
this basis we propose a heuristic which prefers
tractable cases of the problem and we integrate it
into our experimental planning system written in
C++. The performed experiments showed that
preference of tractable cases bring significant
improvement in the number of backtracks as well
as in the overall solving time.

Introduction
In this paper, we describe a class of a problem of
finding supporting actions for a goal in AI plan-
ning. The class is interesting for practical use
since a polynomial time solving algorithm for the
problems of this class exists.
 Planning as a task of finding a sequence of
actions resulting in achieving some goal is one of
the most challenging problems of artificial intel-

ligence (Allen et al., 1990). The need of solving
planning problems arises almost every time when
a complex autonomous behavior of a certain
agent is required (Ai-Chang et al., 2004; Bernard
et al., 1998). There are many successful ap-
proaches of how to solve planning problems. One
of them is usage of so called planning graphs.
The concept of planning graphs introduced by
Blum and Furst (Blum, Furst, 1997) brought a
substantial break-through in solving of planning
problems. Many of the consequent achievements
in planning are based the idea of planning graphs
(Kambhampati, 2000; Lopez and Bacchus,
2003). In this paper we are studying planning
graphs from the perspective of constraint pro-
gramming (Dechter, 2003). Particularly we use
recently proposed projection global consistency
(Surynek, 2007b) to define a tractable class of a
certain sub-problem which arises during search
for a plan by the GraphPlan algorithm.
 Organization of the paper is following. First we
recall basic definitions from AI planning, con-
straint programming and projection consistency.
Then we introduce stronger version of the projec-
tion consistency and the mentioned tractable
class of the problem. Finally we show some ex-
perimental results and discuss our contribution in
relation to other works.

 Basic Definitions from
Planning and CP

To describe a planning problem we use a finite
set of predicates LP and a finite set of constants

LC .

Definition 1. An atomic formula (atom) is a con-
struct of the form 1 2(, , ,)np c c c… where Lp P∈
and i Lc C∈ for 1,2, ,i n= … . A state is a finite set
of atoms. A goal is also a finite set of atoms. The
goal g is satisfied in the state s if g s⊆ .

Definition 2. An action a is a triple
((), (), ())p a e a e a+ − , where ()p a is a precondi-
tion of the action, ()e a+ is a positive effect of
the action and ()e a− is a negative effect of the
action. All these three action components are
finite sets of atoms. An action a is applicable to
the state s if ()p a s⊆ . The result of the appli-
cation of the action a to the state s is a new state

(,) ()s a s e eγ − += − ∪ .

 For every atom t we also assume a so called
no-op action (, ,)tnoop t t= ∅ . Briefly said a no-
op action preserves an atom into the next state.
For reasoning about complexity we suppose that
the number of preconditions, the number of posi-
tive effects and the number of negative effects
are bounded by a constant. Given a set of actions
and a goal the objective is to transform a given
initial state into a state satisfying the goal.

Definition 3. A planning problem P is a triple

0(, ,)s g A , where 0s is an initial state, g is a goal
and A is a finite set of allowed actions.

Definition 4. We inductively define application
of a sequence of actions 1 2[, , ,]na a aφ = … to a
state 0s in the following way: 1a must be appli-
cable to 0s ; let us inductively denote the result of
application of the action ia to the state 1is − as is
for all 1,2, ,i n= … ; the condition that ia is appli-
cable to the state is for all 1,2, , 1i n= −… must
hold. The result of application of the sequence of
actions φ to the state 0s is the state ns . Sequence

1 2[, ,a aξ = … ,]na is a solution of the planning
problem 0(, ,)P s g A= if the sequence ξ is ap-
plicable to the initial state 0s and the goal g is
satisfied in the result of application of the se-
quence ξ and ia A∈ for all 1,2, ,i n= … .

Definition 5. A constraint satisfaction problem
(CSP) is a triple (, ,)X D C , where X is a finite
set of variables, D is a finite domain of values
for variables from the set X and C is a finite set
of constraints. A constraint is an arbitrary rela-
tion over the domains of its variables.

Definition 6. A solution of a constraint satisfac-
tion problem (, ,)X D C is an assignment of val-
ues to the variables : X Dψ → such that all the
constrains are satisfied for ψ , that is

1 2 1 2()[, , ,] [(), (),k cc C x x x X x xψ ψ∀ ∈ = ⇒… …
, ()]kx Cψ ∈… (cX denotes variables con-

strained by the constraint c).

Planning Graphs and
GraphPlan Algorithm

The GraphPlan algorithm relies on the idea of
state reachability analysis. The state reachability
analysis is done by constructing a special data
structure called planning graph. The algorithm
itself works in two interleaved phases. In the first
phase planning graph is incrementally expanded.
Then in the second phase an attempt to extract a
valid plan from the extended planning graph is
performed. The GraphPlan algorithm uses the
standard backtracking to extract a plan from the
planning graph. If the second phase is unsuccess-
ful the process continues with the first phase.
That is the planning graph is extended again.
 The planning graph for a planning problem

0(, ,)P s g A= is defined as follows. It consists of
two alternating structures called a proposition
layer and an action layer. The initial state 0s
represents the 0th proposition layer 0P . The layer

0P is just a list of atoms occurring in 0s . The rest
of the planning graph is defined inductively.
Consider that the planning graph with layers

0P , 1A , 1P , 2A , 2P , … , kA , kP has been already
constructed (iA denotes the ith action layer, iP
denotes the ith proposition layer). The next ac-
tion layer 1kA + consists of actions whose precon-
ditions are included in the kth proposition layer

kP and which satisfy the additional condition that
no two propositions of the action are mutually

excluded. The next proposition layer 1kP + con-
sists of all the positive effects of actions from

1kA + .

Definition 7. A pair of actions { , }a b is inde-
pendent if () (() ())e a p b e b− +∩ ∪ =∅ and

() (() ())e b p a e a− +∩ ∪ = ∅ . Otherwise { , }a b is
a pair of dependent actions.

Definition 8. We call a pair of actions { , }a b
within the action layer iA a mutex if either the
pair { , }a b is dependent or an atom of the pre-
condition of the action a is mutex with an atom
of the precondition of the action b (defined in
the following definition).

Definition 9. We call a pair of atoms { , }p q
within the proposition layer iP a mutex if every
action a within the layer iA where ()p e a+∈ is
mutex with every action b within the action
layer iA for which ()q e b+∈ and the action layer

iA does not contain any action c for which
{ , } ()p q e c+⊆ .

Projection Consistency
A problem of finding supporting actions for a
goal (Surynek, 2007b) is defined for an action
layer of the planning graph and for an arbitrary
goal. Briefly said, we want to find a set of actions
from the action layer that satisfies the given goal
and that do not conflict with each other. The
formal definition of the problem is following. Let
A be a set of actions of the action layer and let

Aµ be a set of mutexes between actions from
A . Next let us have a goal g . The task is to de-
termine a set of actions Aζ ⊆ where no two
actions from ζ are mutex with respect to Aµ
and ζ satisfies the goal g (that is
(,)a b Aζ ζ µ∀ ∈ ∀ ∈ ∩ {{ , }}a b =∅ and

()ag e aζ
+

∈⊆ ∪). The problem of finding sup-
ports for a sub-goal will be called a supports
problem in short. The effectiveness of a method
for solving supports problem has a major impact
on the performance of the planning algorithm as
a whole. Unfortunately the supports problem is

NP-complete. The proof can be found in (Sury-
nek, 2007b). Hence it is unlikely that the sup-
ports problem can be solved without search in
general.
 In (Surynek, 2007a) Surynek studied maintain-
ing arc-consistency for solving the supports prob-
lem. Compared to the standard backtracking he
obtained reasonable speedups. In (Surynek,
2007b) he proposed another method which he
called a projection consistency. The projection
consistency and associated projection constraint
propagation algorithm provide a certain type of
global reasoning over the supports problem.
 In order to be able to enforce projection consis-
tency we must construct a clique decomposition
of a mutex graph of a given action layer of the
planning graph first. Let (,)G A Aµ= be a mutex
graph. The task is to find a partitioning of the set
of vertexes 1 2 nA C C C= ∪ ∪ ∪… such that

i jC C∩ =∅ for every , {1,2, , } &i j n i j∈ ≠…
and iC is a clique with respect to Aµ for

{1,2, , }i n= … . Let us denote mA Aµ= −
2 2 2
1 2()nC C C− ∪ ∪ ∪… the set of mutexes outside

the clique decomposition. Our objective is to
minimize n and mA . Unfortunately the problem
of clique decomposition of the defined property
is obviously NP-complete on a graph without any
restriction (Golumbic, 1980). Surynek suggests
using a simple greedy algorithm. We will follow
this suggestion too.
 For the following description assume an action
layer of the planning graph for which a clique
cover 1 2 nA C C C= ∪ ∪ ∪… of the set of actions
A with respect to the set of mutexes Aµ was
computed. Next let mA be se set of mutexes out-
side the clique cover. Projection consistency is
defined over the above decomposition for a goal
p . The goal p is called a projection goal in this

context.

Definition 10. A contribution of a clique

1 2{ , ,C C C∈ … , }nC to the projection goal p is
defined as max(() |)e a p a C+ ∩ ∈ . It is denoted
by (,)c C p .

 The concept of clique contribution is helpful
when we are trying to decide whether it is possi-
ble to satisfy the projection goal using the actions
from the clique cover. If for instance

1 (,)n
i ic C p p=∑ < holds then the projection goal

p cannot be satisfied.

Definition 11. An action ia C∈ for

{1,2, , }i n∈ … is supported with respect to pro-
jection consistency with the projection goal p if

1, (,) ()n
j j i jc C p p e a+
= ≠∑ ≥ − holds.

Definition 12. The preprocessed instance of the
supports problem consisting of actions

1 2 nA C C C= ∪ ∪ ∪… , mutexes Aµ and the goal
g is projection consistent with respect to a pro-
jection goal p g⊆ , p ≠ ∅ if every action ia C∈
for 1,2, ,i n= … is supported.

 If cliques of the clique cover are regarded as
CSP variables and actions from the cliques are
regarded as values for these variables then we
can introduce a projection constraint. To enforce
projection consistency over the supports problem
for some projection goal p we can easily re-
move values from the domains of variables. The
propagation algorithm for the projection consis-
tency is shown in (Surynek, 2007b). It can be
implemented to run in ()O p A steps. The pro-
jection consistency can be enforced with respect
to multiple projection goals. The trouble is that
there are too many projection goals p g⊆ for a
goal g (exactly 2 g). In (Surynek, 2007b) it is
argued that sets of atoms with constant number
of supports should be selected as projection
goals. Such selection proved to be best in empiri-
cal tests. We will select projection goals accord-
ing to this scheme too.

Tractable Class of
the Supports Problem

It is possible to make projection consistency
stronger by a slight reformulation of the defini-
tion of the supported action. The definition of the
consistent problem remains the same. We will

need this modified version of the projection con-
sistency to be able to solve certain instances of
the supports problem in polynomial time.

Definition 13. An action ia C∈ for

{1,2, , }i n∈ … is strongly supported with respect
to the (strong) projection consistency with the
projection goal p if 1, (, ())n

j j i jc C p e a+
= ≠∑ − ≥

()p e a+≥ − holds.

 Let us call the projection consistency that uses
the definition of strongly supported actions a
strong projection consistency.

Proposition 1. If the supports problem is
strongly projection consistent with respect to a
projection goal p then it is projection consistent
with respect to the projection goal p . Moreover
there exists a supports problem which is projec-
tion consistent with respect to a projection goal
p but it is not strongly projection consistent

with respect to the same projection goal p .

Proof. To prove the claim it is sufficient to ob-
serve that 1, (, ()) ()n

j j i jc C p e a p e a+ +
= ≠∑ − ≥ − ⇒

1, (,)n
j j i jc C p= ≠∑ ≥⇒ ()p e a+− for any ia C∈

for {1,2, , }i n= … and for any projection goal p .
Moreover there exists a supports problem and the
projection goal p where for some ia C∈ and

{1,2, , }i n∈ … inequalities 1, (,)n
j j i jc C p= ≠∑ ≥

()p e a+≥ − and 1, (, ())n
j j i jc C p e a+
= ≠∑ − <

()p e a+< − hold.

 The modification of the definition was simple.
Unfortunately this is not true for the propagation
algorithm. Our modification substantially
changed the effect of removal of an unsupported
action on the set of strongly supported actions
with respect to a single projection goal. The set
of supported actions does not change after re-
moval of an unsupported action in projection
consistency. This property of projection consis-
tency is called a monotonicity in (Surynek,
2007b) and represents main argument for the low
complexity of the propagation algorithm. For the
strong projection consistency the monotonicity

does not hold (the set of supported actions may
change). Fortunately this property does not mat-
ter for the (tractable) case we are about to inves-
tigate.

Definition 14. For a clique 1 2{ , , , }nC C C C∈ … of
the action clique decomposition we define a
merged effect as ()a C e a+

∈∪ . It is denoted as
()me C+ .

Definition 15. We define a clique intersection
graph 1 2({ , , , },)I n IG C C C E= … for the action
clique decomposition 1 2 nA C C C= ∪ ∪ ∪… as
an undirected intersection graph of correspond-
ing merged effects. That is {{ , } |I i jE C C=
| & () () }i ji j me C me C+ +≠ ∩ ≠ ∅ .

Lemma 1. Let (,)I I IG V E= be a clique intersec-
tion graph. If the graph IG is acyclic then a
problem of satisfying a goal g by selecting just
one action ia from the clique iC for every

{1,2, , }i n= … can be solved in polynomial time
after enforcing strong projection consistency.

Proof. We need to show that if the defined prob-
lem is strong projection consistent with respect to
the certain projection goals then it is necessary to
do only little to find solution or conclude that
there is no solution. The projection goals are

1,(() ())n
i jj j ig me C me C+ +

= ≠∩ −∪ for every
{1,2, , }i n= … and () ()i jg me C me C+ +∩ ∩ for

every { , }i j IC C E∈ . If 1 ()n
iig me C+

=− ≠ ∅∪
holds then there is obviously no solution. This
condition can be checked in ()O d g A steps
where d is the action size bounding constant. If

1 ()n
iig me C+

=⊆ ∪ holds then arbitrary selection of
just one action ia from the clique iC for every

{1,2, , }i n= … which preserves relation of strong
supports over the edges IE solves the problem.
This selection can be carried out by starting in
the root clique of IG and continuing to the leaves
in breadth first order. It takes ()O d g A steps to
select actions in this way.
 Consider an atom t g∈ . There are at most two
cliques for which the atom t is an element of
their merged effect. This is due to the acyclicity

of the corresponding clique intersection graph

IG . In the case when there is just one such clique

iC an action i ia C∈ that satisfies t must be se-
lected. Let 1,(() ())n

i jj j ip g me C me C+ +
= ≠= ∩ −∪ ,

for such p we have t p∈ and
1, (, ())n

j j i j ic C p e a+
= ≠∑ − ≥ ()ip e a+− since the

problem is strong projection consistent with re-
spect to the projection goal p . We also have

1, (, ()) 0n
j j i j ic C p e a+
= ≠∑ − = since the sum is

empty (no other clique intersects the projection
goal p by its merged effect). Hence

() 0ip e a+− = and ()it e a+∈ . Assume the case
when there are two cliques iC and jC for which

()it me C+∈ and ()jt me C+∈ . Suppose that an
action ia is selected from the clique iC and an
action ja from the clique jC . Consider the pro-
jection goal p g= ∩ () ()i jme C me C+ +∩ , both
actions are strongly supported with respect to p .
That is 1, (, ())n

k k i k ic C p e a+
= ≠∑ − ≥ ()ip e a+− and

1, (, ()) ()n
k k j k j jc C p e a p e a+ +
= ≠∑ − ≥ − . Suppose

that action ia was selected before ja . Since there
are only two cliques interfering over the projec-
tion goal p , we specially have

(, ()) ()j i ic C p e a p e a+ +− ≥ − after selecting ia .
Hence it is possible to select the action ia such
that () (, ())j j ip e a c C p e a+ +∩ = − . Altogether
we obtained that () ()i jt e a e a+ +∈ ∪ .

 The question arises whether the strong projec-
tion consistency with respect to the projection
goals mentioned in the proof of the lemma 1 can
be enforced over the acyclic problem in polyno-
mial time. The answer is positive and we can
conclude that the problem from the lemma 1 can
be completely solved in polynomial time.
 We use the similar idea as that is commonly
used to enforce arc-consistency in an acyclic
constraint network (Dechter, 2003). It is possible
to enforce arc-consistency in such a network by
enforcing directed arc-consistency in the direc-
tion from the root to the leaves of the network
and then from the leaves to the root. Almost the
same can be done for the strong projection con-
sistency. First we enforce the consistency for the
projection goals 1,(() ())n

i jj j ig me C me C+ +
= ≠∩ −∪

for every {1,2, , }i n= … which is easy because no

interference with other cliques occurs. Then
cliques of the decomposition are ordered accord-
ing to the breadth first search and the strong pro-
jection consistency is enforced over the edges of
the intersection graph. It is done in the direction
from the root to the leaves of the clique intersec-
tion graph first and then from the leaves to the
root. The complete algorithm is shown here as
algorithm 1.

Proposition 2. The algorithm for enforcing
strong projection consistency over a clique de-
composition 1A C= ∪ 2 nC C∪ ∪… and for a
goal g can be implemented to run in polynomial
time with respect to g and A .

Proof. The function propagateProjection takes

()O d p steps for the projection goal
(()ip g me C+= ∩ − 1, ())n

jj j i me C+
= ≠∪ for

{1,2, , }i n∈ … (line 4), where d is the action size
bounding constant. For all such goals the line 4
takes ()O d g steps in total. The function propa-
gateProjection takes 2()O d p steps for the pro-
jection goal () ()() ()i jp g me C me Cπ π

+ += ∩ ∩ for
{ , }i j IC C E∈ (lines 9 and 13). The time for all
such goals is bounded by 2()O d g (however this
upper bound may be wasting). The breadth first
search performed over the clique intersection
graph (line 5) takes 2()O n steps which is

()O g .

Definition 16. A mutex network for the action
clique decomposition 1 2 nA C C C= ∪ ∪ ∪… and
for the set of mutexes outside the decomposition
mA is a graph 1 2({ , , , },)m n mG C C C E= … , where

{{ , } |m i jE C C i j= ≠ & (,)i i j ja C a C∃ ∈ ∃ ∈
{ , } }i ja a mA∈ .

Lemma 2. Let (,)m m mG V E= be a mutex net-
work. If the graph mG is acyclic then a problem
of selecting just one action ia from the clique iC
for every {1,2, , }i n= … such that no two selected
actions are mutex with respect to mA can be
solved in polynomial time.

Proof. This is a well known result from con-
straint programming in fact. If each clique of the
clique decomposition 1 2 nA C C C= ∪ ∪ ∪… is
regarded as a CSP variable and mutexes of the
set mA are regarded as constraints then the de-
fined problem of selecting non-mutex actions is
an acyclic constraint satisfaction problem. It is
sufficient to enforce arc-consistency and label the
variables in breadth first order to obtain a solu-
tion. More details about this result can be found
in (Dechter, 2003). This solving algorithm runs
in polynomial time with respect to A and mA .

Algorithm 1: Strong projection consistency propa-
gation algorithm for acyclic clique intersection
graph

function
enforceProjectionConsistency 1 2(,{ , , , })ng C C C… : set
1: let 1 2({ , , , },)I n IG C C C E= … be the clique
 intersection graph
2: for 1,2, ,i n= … do
3: 1,(() ())n

i jj j ip g me C me C+ +
= ≠← ∩ −∪

4: 1 2{ , , , }nC C C ←…
 ← propagateProjection 1 2(,{ , , , })np C C C…
5: π ← breadthFirstSearch ()IG
6: for 1,2, ,i n= … do
7: for each () (){ , }i j IC C Eπ π ∈
 such that () ()i jπ π< do
8: () ()() ()i jp g me C me Cπ π

+ +← ∩ ∩
9: 1 2{ , , , }nC C C ←…
 ← propagateProjection 1 2(,{ , , , })np C C C…
10: for , 1, ,1i n n= − … do
11: for each () (){ , }i j IC C Eπ π ∈
 such that () ()i jπ π> do
12: () ()() ()i jp g me C me Cπ π

+ +← ∩ ∩
13: 1 2{ , , , }nC C C ←…
 ← propagateProjection 1 2(,{ , , , })np C C C…
14: return 1 2{ , , , }nC C C…

function
propagateProjection 1 2(,{ , , , })np C C C… : set
15: for 1,2, ,i n= … do
16: for each ia C∈ do
17: if 1, (, ()) ()n

j j i jc C p e a p e a+ +
= ≠ − < −∑ then

18: { }i iC C a← −
19: return 1 2{ , , , }nC C C…

function
breadthFirstSearch 1 2(({ , , , },))mv v v E… : permutation
20: π ← numbering of vertexes by breadth first search
21: return π

Theorem 1. Let (,)I I IG V E= be a clique inter-
section graph and let (,)m m mG V E= be a mutex
network. If the graph 1 2({ , , , },nG C C C= …

)I mE E∪ is acyclic then the corresponding sup-
ports problem can be solved in polynomial
time.

Proof. To prove the theorem we use a combina-
tion of results from lemma 1, lemma 2 and
proposition 2. The first step consists of enforcing
strong projection consistency and arc-consistency
in the supports problem. Since it is quite easy
using the above results we describe the process
briefly. If the interference of cliques is through
an edge from IE then strong projection consis-
tency is enforced over the intersection of corre-
sponding merged effects. If the interference of
cliques is through an edge from mE then arc-
consistency with respect to mA is enforced.
Again this combined consistency can be enforced
in polynomial time by proceeding from the root
to the leaves of the graph G and conversely. The
extraction of a solution from the consistent prob-
lem can be also done in polynomial time. The
extraction procedure starts by selecting action
from the root clique and proceeds to the leaves of
the graph G while strong projection consistency
and arc-consistency relations are preserved over
the edges of G .

 We described the tractable class of the supports
problem in order to utilize the theoretical results
in solving real problems. The obstacle is that not
every instance of the supports problem belongs
to the described class. The figure 1 show a real
example of the clique decomposition of the ac-
tion layer of the planning graph of an instance of
the Dock Worker Robots planning domain (for
simplicity we do not depict mutexes outside the
decomposition).
 The problem obviously does not belong to our
class. However it is very close to the class. The
corresponding clique intersection graph (figure
2) can be made acyclic by removing a single ver-
tex (vertex removal corresponds to the selection
of an action from the clique). Unfortunately de-

termining the smallest set of vertexes (cycle-cut-
set) which removal makes the graph acyclic is
NP-complete (Dechter, 2003). For our purposes
we do not need optimal cycle-cut-set. Neverthe-
less the better the cycle-cut-set is the larger por-
tion of the problem remains tractable. For select-
ing actions we suggest to use highest degree heu-
ristics. That is an action from the clique of the
highest degree in the clique intersection graph
(merged with corresponding mutex network) is
selected first. Our experiments showed that this
heuristics sufficiently prefers the tractable case.

Figure 1: A diagram of merged positive effects of
cliques of an action layer clique decomposition. Each
line of the diagram represents a clique. The scope of
the merged positive effect of the clique is depicted as
one or more horizontal bars. The width of bars is
proportional to the number of actions in the individ-
ual action cliques. The diagram was constructed ac-
cording to an action layer of the planning graph for an
instance of the Dock Worker Robots domain.

Figure 2: An intersection graph of merged positive
effects of cliques of the action layer clique decompo-
sition form figure 1. The effect of removal of the
cycle cut-set consisting of the only one vertex C6 is
denoted by doted edges.

C1

C2

C3

C4

 C5

C6

C7

C8

C3

C4

C10

C11

Atoms in positive effects

C9

C5

C3

C6

C5

C7

C4

C2

C12 C8

C1

C10 C11 C9

Ac
tio

n
cl

iq
ue

s

C12

Experimental Results

Total Problem Solving Time

0.10

1.00

10.00

100.00

1000.00

10000.00

ha
n0

1

dw
r0

3

dw
r0

4

ha
n0

2

pl
n0

4

dw
r0

2

dw
r0

1

ha
n0

4

ha
n0

3

pl
n0

1

pl
n1

0

ha
n0

7

pl
n0

5

dw
r0

5

pl
n0

6

pl
n1

1

dw
r0

7

pl
n1

3

ha
n0

8

dw
r1

6

dw
r1

7

Ti
m

e
(s

ec
on

ds
)

Standard

Arc-consistency

Projection-consistency

Tractable case

Plan Extraction Time

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

ha
n0

1

dw
r0

3

dw
r0

4

ha
n0

2

pl
n0

4

dw
r0

2

dw
r0

1

ha
n0

4

ha
n0

3

pl
n0

1

pl
n1

0

ha
n0

7

pl
n0

5

dw
r0

5

pl
n0

6

pl
n1

1

dw
r0

7

pl
n1

3

ha
n0

8

dw
r1

6

dw
r1

7

Ti
m

e
(s

ec
on

ds
)

Standard

Arc-consistency

Projection consistency

Tractable case

Number of Backtracks

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

10000000.00

dw
r0

3

dw
r0

4

ha
n0

1

dw
r0

2

pl
n0

4

pl
n0

1

dw
r0

1

ha
n0

2

ha
n0

4

dw
r0

5

ha
n0

3

pl
n1

0

ha
n0

7

pl
n0

5

pl
n0

6

pl
n1

1

dw
r0

7

pl
n1

3

dw
r1

6

ha
n0

8

dw
r1

7

Standard

Arc-consistency

Projection consistency

Tractable case

Figure 3: Experimental results over several planning
problems of various difficulties. Total problem solv-
ing time, plan extraction time and number of back-
tracks are shown. Value ranges use logarithmic scale.

 We evaluated the proposed approach in our
experimental planning system written in C++.
Our planning algorithm follows the standard
GraphPlan algorithm except the part for solving
the supports problem. For this we use maintain-
ing (weak) projection consistency with the heu-
ristic for preferring tractable case (action from a
clique of the highest degree is preferably se-
lected) and when the tractable case is reached we
switch to the strong projection consistency as it is
described in above paragraphs. Specifically, the

tractable case preferring heuristic is used for
value selection ordering. For variable ordering
we use the standard first fail (smallest domain)
heuristic. We also use an unrestricted nogood
recording to improve the search.
 For experimental tests we used the same set of
planning problems as it was used in (Surynek,
2007b). The set of planning problems consists of
several instances of various difficulties of Dock
Worker Robots, Towers of Hanoi and Refueling
Planes planning domain. We compared the pro-
posed method with the standard GraphPlan, with
the version which maintains arc-consistency
when solving the supports problem (Surynek,
2007a) and with the version which maintains
projection consistency (Surynek, 2007b). Results
are shown in figure 3. The tests were run on a
machine with two Opteron 242 processors (1600
MHz), with 1GB of memory under Mandriva
Linux 10.2. The code was compiled by the gcc
compiler 3.4.3 with maximum optimization for
the machine (-O9 -mtune=opteron). The whole
set of testing problems can be found at
http://ktiml.mff.cuni.cz/~surynek/research/aaai20
07.
 The improvement in overall problem solving
time (planning graph building time + clique de-
composition time + plan extraction time) is up to
200% compared to the version which uses pure
projection consistency. The improvement in plan
extraction time is up to 1000% . The improvement
in number of backtracks is also substantive. Even
some problems were solved without backtrack-
ing. The improvements are better for problems
with more interacting objects and higher action
parallelism (for example dwr05 and pln13). On
the other hand there is almost no improvement on
problems with no action parallelism (for example
han03), which is expectable.

Related Works and Conclusion
The main difference of our approach from other
approaches exploiting another formalism (CSP,
SAT) for solving planning problems (Kambham-
pati, 2000; Lopez and Bacchus, 2003) is that we

do not formulate the planning problem in another
formalism as a whole. We use constraint pro-
gramming approach only to solve a sub-problem
arising during search.
 Kambhampati’s idea to formulate plan extrac-
tion from planning graph as CSP is presented in
(Kambhampati, 2000). He evaluates the use of
various constraint programming techniques and
its impact on the effectiveness of plan extraction.
Another approach is presented in (Lopez and
Bacchus, 2003) by Lopez and Bacchus. Again
they model the planning problem in planning
graph representation as CSP. The originality of
their technique consists in making transforma-
tions of the obtained CSP which uncovers addi-
tional structural information about the problem.
 Our contribution can be summarized as fol-
lows. We described the tractable class of the
supports problem using the recently proposed
projection global consistency. Our experiments
showed that this class is also useful for practical
solving of planning problems since problems of
this class arise (with some help) frequently.
 However there is a lot of work for future. Us-
ing the projection consistency the time spent by
solving the supports problem is no more a limit-
ing factor of the planning algorithm. The limiting
factor is rather the time spent by building plan-
ning graphs and by search across the layers of the
planning graph. We account this to the size of the
planning graph and namely to the high numbers
of no operation actions in the planning graph. We
consider that it would be interesting to reformu-
late planning graphs in order to be friendlier to
the backward search. The expectable question is
also how to extend the presented ideas for plan-
ning graphs with time and resources (Smith and
Weld, 1999).

References
Ai-Chang, M., et al., 2004. MAPGEN: Mixed-
Initiative Planning and Scheduling for the Mars
Exploration Rover Mission. IEEE Intelligent Sys-
tems 19(1), 8-12, IEEE Press.

Allen, J., Hendler, J., Tate, A. (editors), 1990.
Readings in Planning. Morgan Kaufmann.

Bernard, D. et al., 1998. Remote Agent Experi-
ment. Deep Space 1 Technology Validation Re-
port. NASA Ames and JPL report.

Blum, A. L., Furst, M. L., 1997. Fast Planning
through planning graph analysis. Artificial Intel-
ligence 90, 281-300, AAAI Press.

Dechter, R., 2003. Constraint Processing. Mor-
gan Kaufmann.

Ghallab, M., Nau, D. S., Traverso, P., 2004.
Automated Planning: theory and practice. Mor-
gan Kaufmann.

Golumbic, M. C., 1980. Algorithmic Graph The-
ory and Perfect Graphs. Academic Press.

Kambhampati, S., 2000. Planning Graph as a
(Dynamic) CSP: Exploiting EBL, DDB and other
CSP Search Techniques in GraphPlan. JAIR 12,
1-34, AAAI Press.

Lopez, A., Bacchus, F., 2003. Generalizing
GraphPlan by Formulating Planning as a CSP.
In Proceedings of IJCAI 2003, 954-960, Morgan
Kaufmann.

Smith, D. E., Weld, D. S., 1999. Temporal Plan-
ning with Mutual Exclusion Reasoning. In Pro-
ceedings IJCAI 99, 326-337, Morgan Kaufmann.

Surynek, P., 2007a. Maintaining Arc-consistency
over Mutex Relations in Planning Graphs during
Search. Accepted to FLAIRS 2007, USA. Tech-
nical report available in ITI Series, 2007-328,
http://iti.mff.cuni.cz/series, Charles University,
Czech Republic.

Surynek, P., 2007b. Projection Global Consis-
tency: An Application in AI Planning. Technical
report, ITI Series, 2007-333,
http://iti.mff.cuni.cz/series, Charles University,
Czech Republic.

