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Abstract 
We are studying tractable classes of a problem of 
finding supporting actions for a goal using pro-
jection global consistency. The projection consis-
tency is a recent technique designed to prune the 
search space along the search for supports for a 
sub-goal in AI planning context. The problem of 
finding supporting actions for a sub-goal (briefly 
supports problem) is exactly what the GraphPlan 
planning algorithm must solve many times dur-
ing plan extraction from the planning graph. The 
supports problem was shown to be NP-complete. 
We found that there exist tractable instances of 
the problem. We define a special intersection 
graph according to the supports problem. We 
showed that if the intersection graph is acyclic 
then the supports problem can be solved in poly-
nomial time by using projection consistency. On 
this basis we propose a heuristic which prefers 
tractable cases of the problem and we integrate it 
into our experimental planning system written in 
C++. The performed experiments showed that 
preference of tractable cases bring significant 
improvement in the number of backtracks as well 
as in the overall solving time. 
 

Introduction 
In this paper, we describe a class of a problem of 
finding supporting actions for a goal in AI plan-
ning. The class is interesting for practical use 
since a polynomial time solving algorithm for the 
problems of this class exists. 
 Planning as a task of finding a sequence of 
actions resulting in achieving some goal is one of 
the most challenging problems of artificial intel-

ligence (Allen et al., 1990). The need of solving 
planning problems arises almost every time when 
a complex autonomous behavior of a certain 
agent is required (Ai-Chang et al., 2004; Bernard 
et al., 1998). There are many successful ap-
proaches of how to solve planning problems. One 
of them is usage of so called planning graphs. 
The concept of planning graphs introduced by 
Blum and Furst (Blum, Furst, 1997) brought a 
substantial break-through in solving of planning 
problems. Many of the consequent achievements 
in planning are based the idea of planning graphs 
(Kambhampati, 2000; Lopez and Bacchus, 
2003). In this paper we are studying planning 
graphs from the perspective of constraint pro-
gramming (Dechter, 2003). Particularly we use 
recently proposed projection global consistency 
(Surynek, 2007b) to define a tractable class of a 
certain sub-problem which arises during search 
for a plan by the GraphPlan algorithm. 
 Organization of the paper is following. First we 
recall basic definitions from AI planning, con-
straint programming and projection consistency. 
Then we introduce stronger version of the projec-
tion consistency and the mentioned tractable 
class of the problem. Finally we show some ex-
perimental results and discuss our contribution in 
relation to other works. 

 Basic Definitions from 
Planning and CP 

To describe a planning problem we use a finite 
set of predicates LP  and a finite set of constants 

LC .  



Definition 1. An atomic formula (atom) is a con-
struct of the form 1 2( , , , )np c c c…  where Lp P∈  
and i Lc C∈  for 1,2, ,i n= … . A state is a finite set 
of atoms. A goal is also a finite set of atoms. The 
goal g  is satisfied in the state s  if g s⊆ .  
 
Definition 2. An action a  is a triple 
( ( ), ( ), ( ))p a e a e a+ − , where ( )p a  is a precondi-
tion of the action,  ( )e a+  is a positive effect of 
the action and ( )e a−  is a negative effect of the 
action. All these three action components are 
finite sets of atoms. An action a  is applicable to 
the state s  if ( )p a s⊆ . The result of the appli-
cation of the action a  to the state s  is a new state 

( , ) ( )s a s e eγ − += − ∪ .  
 
 For every atom t  we also assume a so called 
no-op action ( , , )tnoop t t= ∅ . Briefly said a no-
op action preserves an atom into the next state. 
For reasoning about complexity we suppose that 
the number of preconditions, the number of posi-
tive effects and the number of negative effects 
are bounded by a constant. Given a set of actions 
and a goal the objective is to transform a given 
initial state into a state satisfying the goal. 
 
Definition 3. A planning problem P  is a triple 

0( , , )s g A , where 0s  is an initial state, g  is a goal 
and A  is a finite set of allowed actions.  
 
Definition 4. We inductively define application 
of a sequence of actions 1 2[ , , , ]na a aφ = …  to a 
state 0s  in the following way: 1a  must be appli-
cable to 0s ; let us inductively denote the result of 
application of the action ia  to the state 1is −  as is  
for all 1,2, ,i n= … ; the condition that ia  is appli-
cable to the state is  for all 1,2, , 1i n= −…  must 
hold. The result of application of the sequence of 
actions φ  to the state 0s  is the state ns . Sequence 

1 2[ , ,a aξ = … , ]na  is a solution of the planning 
problem 0( , , )P s g A=  if the sequence ξ  is ap-
plicable to the initial state 0s  and the goal g  is 
satisfied in the result of application of the se-
quence ξ  and ia A∈  for all 1,2, ,i n= … .  
 

Definition 5. A constraint satisfaction problem 
(CSP) is a triple ( , , )X D C , where X  is a finite 
set of variables, D  is a finite domain of values 
for variables from the set X  and C  is a finite set 
of constraints. A constraint is an arbitrary rela-
tion over the domains of its variables.  
 
Definition 6. A solution of a constraint satisfac-
tion problem ( , , )X D C  is an assignment of val-
ues to the variables : X Dψ →  such that all the 
constrains are satisfied for ψ , that is 

1 2 1 2( )[ , , , ] [ ( ), ( ),k cc C x x x X x xψ ψ∀ ∈ = ⇒… …   
, ( )]kx Cψ ∈…  ( cX  denotes variables con-

strained by the constraint c ).  

Planning Graphs and  
GraphPlan Algorithm 

The GraphPlan algorithm relies on the idea of 
state reachability analysis. The state reachability 
analysis is done by constructing a special data 
structure called planning graph. The algorithm 
itself works in two interleaved phases. In the first 
phase planning graph is incrementally expanded. 
Then in the second phase an attempt to extract a 
valid plan from the extended planning graph is 
performed. The GraphPlan algorithm uses the 
standard backtracking to extract a plan from the 
planning graph. If the second phase is unsuccess-
ful the process continues with the first phase. 
That is the planning graph is extended again. 
 The planning graph for a planning problem 

0( , , )P s g A=  is defined as follows. It consists of 
two alternating structures called a proposition 
layer and an action layer. The initial state 0s  
represents the 0th proposition layer 0P . The layer 

0P  is just a list of atoms occurring in 0s . The rest 
of the planning graph is defined inductively. 
Consider that the planning graph with layers 

0P , 1A , 1P , 2A , 2P , … , kA , kP  has been already 
constructed ( iA  denotes the ith action layer, iP  
denotes the ith proposition layer). The next ac-
tion layer 1kA +  consists of actions whose precon-
ditions are included in the kth proposition layer 

kP  and which satisfy the additional condition that 
no two propositions of the action are mutually 



excluded.  The next proposition layer 1kP +  con-
sists of all the positive effects of actions from 

1kA + . 
 
Definition 7. A pair of actions { , }a b  is inde-
pendent if ( ) ( ( ) ( ))e a p b e b− +∩ ∪ =∅  and 

( ) ( ( ) ( ))e b p a e a− +∩ ∪ = ∅ . Otherwise { , }a b  is 
a pair of dependent actions.  
 
Definition 8. We call a pair of actions { , }a b  
within the action layer iA  a mutex if either the 
pair { , }a b  is dependent or an atom of the pre-
condition of the action a  is mutex with an atom 
of the precondition of the action b  (defined in 
the following definition).  
 
Definition 9. We call a pair of atoms { , }p q  
within the proposition layer iP  a mutex if every 
action a  within the layer iA  where ( )p e a+∈  is 
mutex with every action b  within the action 
layer iA  for which ( )q e b+∈  and the action layer 

iA  does not contain any action c  for which 
{ , } ( )p q e c+⊆ .  

Projection Consistency 
A problem of finding supporting actions for a 
goal (Surynek, 2007b) is defined for an action 
layer of the planning graph and for an arbitrary 
goal. Briefly said, we want to find a set of actions 
from the action layer that satisfies the given goal 
and that do not conflict with each other. The 
formal definition of the problem is following. Let 
A  be a set of actions of the action layer and let 

Aµ  be a set of mutexes between actions from 
A . Next let us have a goal g . The task is to de-
termine a set of actions Aζ ⊆  where no two 
actions from ζ  are mutex with respect to Aµ  
and ζ  satisfies the goal g  (that is 
( , )a b Aζ ζ µ∀ ∈ ∀ ∈ ∩ {{ , }}a b =∅  and 

( )ag e aζ
+

∈⊆ ∪ ). The problem of finding sup-
ports for a sub-goal will be called a supports 
problem in short. The effectiveness of a method 
for solving supports problem has a major impact 
on the performance of the planning algorithm as 
a whole. Unfortunately the supports problem is 

NP-complete. The proof can be found in (Sury-
nek, 2007b). Hence it is unlikely that the sup-
ports problem can be solved without search in 
general. 
 In (Surynek, 2007a) Surynek studied maintain-
ing arc-consistency for solving the supports prob-
lem. Compared to the standard backtracking he 
obtained reasonable speedups. In (Surynek, 
2007b) he proposed another method which he 
called a projection consistency. The projection 
consistency and associated projection constraint 
propagation algorithm provide a certain type of 
global reasoning over the supports problem.  
 In order to be able to enforce projection consis-
tency we must construct a clique decomposition 
of a mutex graph of a given action layer of the 
planning graph first. Let ( , )G A Aµ=  be a mutex 
graph. The task is to find a partitioning of the set 
of vertexes 1 2 nA C C C= ∪ ∪ ∪…  such that 

i jC C∩ =∅  for every , {1,2, , } &i j n i j∈ ≠…  
and iC  is a clique with respect to Aµ  for 

{1,2, , }i n= … . Let us denote mA Aµ= −   
2 2 2
1 2( )nC C C− ∪ ∪ ∪…  the set of mutexes outside 

the clique decomposition. Our objective is to 
minimize n  and mA . Unfortunately the problem 
of clique decomposition of the defined property 
is obviously NP-complete on a graph without any 
restriction (Golumbic, 1980). Surynek suggests 
using a simple greedy algorithm. We will follow 
this suggestion too. 
 For the following description assume an action 
layer of the planning graph for which a clique 
cover 1 2 nA C C C= ∪ ∪ ∪…  of the set of actions 
A  with respect to the set of mutexes Aµ  was 
computed. Next let mA  be se set of mutexes out-
side the clique cover. Projection consistency is 
defined over the above decomposition for a goal 
p . The goal p  is called a projection goal in this 

context. 
 
Definition 10. A contribution of a clique 

1 2{ , ,C C C∈ … , }nC  to the projection goal p  is 
defined as max( ( ) | )e a p a C+ ∩ ∈ . It is denoted 
by ( , )c C p .  
 



 The concept of clique contribution is helpful 
when we are trying to decide whether it is possi-
ble to satisfy the projection goal using the actions 
from the clique cover. If for instance 

1 ( , )n
i ic C p p=∑ <  holds then the projection goal 

p  cannot be satisfied. 
 
Definition 11. An action ia C∈  for 

{1,2, , }i n∈ …  is supported with respect to pro-
jection consistency with the projection goal p  if 

1, ( , ) ( )n
j j i jc C p p e a+
= ≠∑ ≥ −  holds.  

 
Definition 12. The preprocessed instance of the 
supports problem consisting of actions 

1 2 nA C C C= ∪ ∪ ∪… , mutexes Aµ  and the goal 
g  is projection consistent with respect to a pro-
jection goal p g⊆ , p ≠ ∅  if every action ia C∈  
for 1,2, ,i n= …  is supported.  
 
 If cliques of the clique cover are regarded as 
CSP variables and actions from the cliques are 
regarded as values for these variables then we 
can introduce a projection constraint. To enforce 
projection consistency over the supports problem 
for some projection goal p  we can easily re-
move values from the domains of variables. The 
propagation algorithm for the projection consis-
tency is shown in (Surynek, 2007b). It can be 
implemented to run in ( )O p A  steps. The pro-
jection consistency can be enforced with respect 
to multiple projection goals. The trouble is that 
there are too many projection goals p g⊆  for a 
goal g  (exactly 2 g ). In (Surynek, 2007b) it is 
argued that sets of atoms with constant number 
of supports should be selected as projection 
goals. Such selection proved to be best in empiri-
cal tests. We will select projection goals accord-
ing to this scheme too. 

Tractable Class of 
the Supports Problem 

It is possible to make projection consistency 
stronger by a slight reformulation of the defini-
tion of the supported action. The definition of the 
consistent problem remains the same. We will 

need this modified version of the projection con-
sistency to be able to solve certain instances of 
the supports problem in polynomial time. 
 
Definition 13. An action ia C∈  for 

{1,2, , }i n∈ …  is strongly supported with respect 
to the (strong) projection consistency with the 
projection goal p  if 1, ( , ( ))n

j j i jc C p e a+
= ≠∑ − ≥  

( )p e a+≥ −  holds.  
 
 Let us call the projection consistency that uses 
the definition of strongly supported actions a 
strong projection consistency. 
 
Proposition 1. If the supports problem is 
strongly projection consistent with respect to a 
projection goal p  then it is projection consistent 
with respect to the projection goal p . Moreover 
there exists a supports problem which is projec-
tion consistent with respect to a projection goal 
p  but it is not strongly projection consistent 

with respect to the same projection goal p .  
 
Proof. To prove the claim it is sufficient to ob-
serve that 1, ( , ( )) ( )n

j j i jc C p e a p e a+ +
= ≠∑ − ≥ − ⇒  

1, ( , )n
j j i jc C p= ≠∑ ≥⇒ ( )p e a+−  for any ia C∈  

for {1,2, , }i n= …  and for any projection goal p . 
Moreover there exists a supports problem and the 
projection goal p  where for some ia C∈  and 

{1,2, , }i n∈ …  inequalities 1, ( , )n
j j i jc C p= ≠∑ ≥  

( )p e a+≥ −  and 1, ( , ( ))n
j j i jc C p e a+
= ≠∑ − <  

( )p e a+< −  hold.  
 
 The modification of the definition was simple. 
Unfortunately this is not true for the propagation 
algorithm. Our modification substantially 
changed the effect of removal of an unsupported 
action on the set of strongly supported actions 
with respect to a single projection goal. The set 
of supported actions does not change after re-
moval of an unsupported action in projection 
consistency. This property of projection consis-
tency is called a monotonicity in (Surynek, 
2007b) and represents main argument for the low 
complexity of the propagation algorithm. For the 
strong projection consistency the monotonicity 



does not hold (the set of supported actions may 
change). Fortunately this property does not mat-
ter for the (tractable) case we are about to inves-
tigate. 
 
Definition 14. For a clique 1 2{ , , , }nC C C C∈ …  of 
the action clique decomposition we define a 
merged effect as ( )a C e a+

∈∪ . It is denoted as 
( )me C+ .  

 
Definition 15. We define a clique intersection 
graph 1 2({ , , , }, )I n IG C C C E= …  for the action 
clique decomposition 1 2 nA C C C= ∪ ∪ ∪…  as 
an undirected intersection graph of correspond-
ing merged effects. That is {{ , } |I i jE C C=  
| & ( ) ( ) }i ji j me C me C+ +≠ ∩ ≠ ∅  .  
 
Lemma 1. Let ( , )I I IG V E=  be a clique intersec-
tion graph. If the graph IG  is acyclic then a 
problem of satisfying a goal g  by selecting just 
one action ia  from the clique iC  for every 

{1,2, , }i n= …  can be solved in polynomial time 
after enforcing strong projection consistency.  
 
Proof. We need to show that if the defined prob-
lem is strong projection consistent with respect to 
the certain projection goals then it is necessary to 
do only little to find solution or conclude that 
there is no solution. The projection goals are 

1,( ( ) ( ))n
i jj j ig me C me C+ +

= ≠∩ −∪  for every 
{1,2, , }i n= …  and ( ) ( )i jg me C me C+ +∩ ∩  for 

every  { , }i j IC C E∈ . If 1 ( )n
iig me C+

=− ≠ ∅∪  
holds then there is obviously no solution. This 
condition can be checked in ( )O d g A  steps 
where d  is the action size bounding constant. If 

1 ( )n
iig me C+

=⊆ ∪  holds then arbitrary selection of 
just one action ia  from the clique iC  for every 

{1,2, , }i n= …  which preserves relation of strong 
supports over the edges IE  solves the problem. 
This selection can be carried out by starting in 
the root clique of IG  and continuing to the leaves 
in breadth first order. It takes ( )O d g A  steps to 
select actions in this way. 
 Consider an atom t g∈ . There are at most two 
cliques for which the atom t  is an element of 
their merged effect. This is due to the acyclicity 

of the corresponding clique intersection graph 

IG . In the case when there is just one such clique 

iC  an action i ia C∈  that satisfies t  must be se-
lected. Let 1,( ( ) ( ))n

i jj j ip g me C me C+ +
= ≠= ∩ −∪ , 

for such p  we have t p∈  and 
1, ( , ( ))n

j j i j ic C p e a+
= ≠∑ − ≥ ( )ip e a+−  since the 

problem is strong projection consistent with re-
spect to the projection goal p . We also have 

1, ( , ( )) 0n
j j i j ic C p e a+
= ≠∑ − =  since the sum is 

empty (no other clique intersects the projection 
goal p  by its merged effect). Hence 

( ) 0ip e a+− =  and  ( )it e a+∈ . Assume the case 
when there are two cliques iC  and jC  for which 

( )it me C+∈  and ( )jt me C+∈ . Suppose that an 
action ia  is selected from the clique iC  and an 
action ja  from the clique jC . Consider the pro-
jection goal p g= ∩ ( ) ( )i jme C me C+ +∩ , both 
actions are strongly supported with respect to p . 
That is 1, ( , ( ))n

k k i k ic C p e a+
= ≠∑ − ≥  ( )ip e a+−  and 

1, ( , ( )) ( )n
k k j k j jc C p e a p e a+ +
= ≠∑ − ≥ − . Suppose 

that action ia  was selected before ja . Since there 
are only two cliques interfering over the projec-
tion goal p , we specially have 

( , ( )) ( )j i ic C p e a p e a+ +− ≥ −  after selecting ia . 
Hence it is possible to select the action ia  such 
that ( ) ( , ( ))j j ip e a c C p e a+ +∩ = − . Altogether 
we obtained that ( ) ( )i jt e a e a+ +∈ ∪ .  
 
 The question arises whether the strong projec-
tion consistency with respect to the projection 
goals mentioned in the proof of the lemma 1 can 
be enforced over the acyclic problem in polyno-
mial time. The answer is positive and we can 
conclude that the problem from the lemma 1 can 
be completely solved in polynomial time. 
 We use the similar idea as that is commonly 
used to enforce arc-consistency in an acyclic 
constraint network (Dechter, 2003). It is possible 
to enforce arc-consistency in such a network by 
enforcing directed arc-consistency in the direc-
tion from the root to the leaves of the network 
and then from the leaves to the root. Almost the 
same can be done for the strong projection con-
sistency. First we enforce the consistency for the 
projection goals 1,( ( ) ( ))n

i jj j ig me C me C+ +
= ≠∩ −∪  

for every {1,2, , }i n= …  which is easy because no 



interference with other cliques occurs. Then 
cliques of the decomposition are ordered accord-
ing to the breadth first search and the strong pro-
jection consistency is enforced over the edges of 
the intersection graph. It is done in the direction 
from the root to the leaves of the clique intersec-
tion graph first and then from the leaves to the 
root. The complete algorithm is shown here as 
algorithm 1. 
 
Proposition 2. The algorithm for enforcing 
strong projection consistency over a clique de-
composition 1A C= ∪ 2 nC C∪ ∪…  and for a 
goal g  can be implemented to run in polynomial 
time with respect to g  and A .  
 
Proof. The function propagateProjection takes 

( )O d p  steps for the projection goal 
( ( )ip g me C+= ∩ − 1, ( ))n

jj j i me C+
= ≠∪  for 

{1,2, , }i n∈ …  (line 4), where d  is the action size 
bounding constant. For all such goals the line 4 
takes ( )O d g  steps in total. The function propa-
gateProjection takes 2( )O d p  steps for the pro-
jection goal ( ) ( )( ) ( )i jp g me C me Cπ π

+ += ∩ ∩  for 
{ , }i j IC C E∈  (lines 9 and 13). The time for all 
such goals is bounded by 2( )O d g  (however this 
upper bound may be wasting). The breadth first 
search performed over the clique intersection 
graph (line 5) takes 2( )O n  steps which is 

( )O g .  
 
Definition 16. A mutex network for the action 
clique decomposition 1 2 nA C C C= ∪ ∪ ∪…  and 
for the set of mutexes outside the decomposition 
mA  is a graph 1 2({ , , , }, )m n mG C C C E= … , where  

{{ , } |m i jE C C i j= ≠  &  ( , )i i j ja C a C∃ ∈ ∃ ∈  
{ , } }i ja a mA∈ . 
 
Lemma 2. Let ( , )m m mG V E=  be a mutex net-
work. If the graph mG  is acyclic then a problem 
of selecting just one action ia  from the clique iC  
for every {1,2, , }i n= …  such that no two selected 
actions are mutex with respect to mA  can be 
solved in polynomial time.  
 

Proof. This is a well known result from con-
straint programming in fact. If each clique of the 
clique decomposition 1 2 nA C C C= ∪ ∪ ∪…  is 
regarded as a CSP variable and mutexes of the 
set mA  are regarded as constraints then the de-
fined problem of selecting non-mutex actions is 
an acyclic constraint satisfaction problem. It is 
sufficient to enforce arc-consistency and label the 
variables in breadth first order to obtain a solu-
tion. More details about this result can be found 
in (Dechter, 2003). This solving algorithm runs 
in polynomial time with respect to A  and mA . 

 
 

Algorithm 1: Strong projection consistency propa-
gation algorithm for acyclic clique intersection 
graph 

function 
enforceProjectionConsistency 1 2( ,{ , , , })ng C C C… : set 
1: let 1 2({ , , , }, )I n IG C C C E= …  be the clique 
  intersection graph 
2: for 1,2, ,i n= …  do 
3:  1,( ( ) ( ))n

i jj j ip g me C me C+ +
= ≠← ∩ −∪  

4:   1 2{ , , , }nC C C ←…  
   ← propagateProjection 1 2( ,{ , , , })np C C C…  
5: π ← breadthFirstSearch ( )IG  
6: for 1,2, ,i n= …  do 
7:  for each ( ) ( ){ , }i j IC C Eπ π ∈  
    such that ( ) ( )i jπ π<  do 
8:   ( ) ( )( ) ( )i jp g me C me Cπ π

+ +← ∩ ∩  
9:    1 2{ , , , }nC C C ←…  
    ← propagateProjection 1 2( ,{ , , , })np C C C…   
10: for , 1, ,1i n n= − …  do 
11:  for each ( ) ( ){ , }i j IC C Eπ π ∈  
    such that ( ) ( )i jπ π>  do 
12:   ( ) ( )( ) ( )i jp g me C me Cπ π

+ +← ∩ ∩  
13:   1 2{ , , , }nC C C ←…  
    ← propagateProjection 1 2( ,{ , , , })np C C C…  
14: return 1 2{ , , , }nC C C…  

 
function 
propagateProjection 1 2( ,{ , , , })np C C C… : set 
15: for 1,2, ,i n= …  do 
16:  for each ia C∈  do 
17:   if 1, ( , ( )) ( )n

j j i jc C p e a p e a+ +
= ≠ − < −∑  then 

18:    { }i iC C a← −  
19: return 1 2{ , , , }nC C C…  

 
function 
breadthFirstSearch 1 2(({ , , , }, ))mv v v E… : permutation 
20: π ← numbering of vertexes by breadth first search 
21: return π  

 
 



Theorem 1.  Let ( , )I I IG V E=  be a clique inter-
section graph and let ( , )m m mG V E=  be a mutex 
network. If the graph 1 2({ , , , },nG C C C= …  

)I mE E∪  is acyclic then the corresponding sup-
ports problem can be solved in polynomial 
time.  
 
Proof. To prove the theorem we use a combina-
tion of results from lemma 1, lemma 2 and 
proposition 2. The first step consists of enforcing 
strong projection consistency and arc-consistency 
in the supports problem. Since it is quite easy 
using the above results we describe the process 
briefly. If the interference of cliques is through 
an edge from IE  then strong projection consis-
tency is enforced over the intersection of corre-
sponding merged effects. If the interference of 
cliques is through an edge from mE  then arc-
consistency with respect to mA  is enforced. 
Again this combined consistency can be enforced 
in polynomial time by proceeding from the root 
to the leaves of the graph G  and conversely. The 
extraction of a solution from the consistent prob-
lem can be also done in polynomial time. The 
extraction procedure starts by selecting action 
from the root clique and proceeds to the leaves of 
the graph G  while strong projection consistency 
and arc-consistency relations are preserved over 
the edges of G .  
 
 We described the tractable class of the supports 
problem in order to utilize the theoretical results 
in solving real problems. The obstacle is that not 
every instance of the supports problem belongs 
to the described class. The figure 1 show a real 
example of the clique decomposition of the ac-
tion layer of the planning graph of an instance of 
the Dock Worker Robots planning domain (for 
simplicity we do not depict mutexes outside the 
decomposition). 
 The problem obviously does not belong to our 
class. However it is very close to the class. The 
corresponding clique intersection graph (figure 
2) can be made acyclic by removing a single ver-
tex (vertex removal corresponds to the selection 
of an action from the clique). Unfortunately de-

termining the smallest set of vertexes (cycle-cut-
set) which removal makes the graph acyclic is 
NP-complete (Dechter, 2003). For our purposes 
we do not need optimal cycle-cut-set. Neverthe-
less the better the cycle-cut-set is the larger por-
tion of the problem remains tractable. For select-
ing actions we suggest to use highest degree heu-
ristics. That is an action from the clique of the 
highest degree in the clique intersection graph 
(merged with corresponding mutex network) is 
selected first. Our experiments showed that this 
heuristics sufficiently prefers the tractable case. 
  

 
 

Figure 1: A diagram of merged positive effects of 
cliques of an action layer clique decomposition. Each 
line of the diagram represents a clique. The scope of 
the merged positive effect of the clique is depicted as 
one or more horizontal bars. The width of bars is 
proportional to the number of actions in the individ-
ual action cliques. The diagram was constructed ac-
cording to an action layer of the planning graph for an 
instance of the Dock Worker Robots domain. 
 

 
Figure 2: An intersection graph of merged positive 
effects of cliques of the action layer clique decompo-
sition form figure 1. The effect of removal of the 
cycle cut-set consisting of the only one vertex C6  is 
denoted by doted edges. 
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Figure 3: Experimental results over several planning 
problems of various difficulties. Total problem solv-
ing time, plan extraction time and number of back-
tracks are shown. Value ranges use logarithmic scale. 
 
 We evaluated the proposed approach in our 
experimental planning system written in C++. 
Our planning algorithm follows the standard 
GraphPlan algorithm except the part for solving 
the supports problem. For this we use maintain-
ing (weak) projection consistency with the heu-
ristic for preferring tractable case (action from a 
clique of the highest degree is preferably se-
lected) and when the tractable case is reached we 
switch to the strong projection consistency as it is 
described in above paragraphs. Specifically, the 

tractable case preferring heuristic is used for 
value selection ordering. For variable ordering 
we use the standard first fail (smallest domain) 
heuristic. We also use an unrestricted nogood 
recording to improve the search. 
 For experimental tests we used the same set of 
planning problems as it was used in (Surynek, 
2007b). The set of planning problems consists of 
several instances of various difficulties of Dock 
Worker Robots, Towers of Hanoi and Refueling 
Planes planning domain. We compared the pro-
posed method with the standard GraphPlan, with 
the version which maintains arc-consistency 
when solving the supports problem (Surynek, 
2007a) and with the version which maintains 
projection consistency (Surynek, 2007b). Results 
are shown in figure 3. The tests were run on a 
machine with two Opteron 242 processors (1600 
MHz), with 1GB of memory under Mandriva 
Linux 10.2. The code was compiled by the gcc 
compiler 3.4.3 with maximum optimization for 
the machine (-O9 -mtune=opteron). The whole 
set of testing problems can be found at 
http://ktiml.mff.cuni.cz/~surynek/research/aaai20
07. 
 The improvement in overall problem solving 
time (planning graph building time + clique de-
composition time + plan extraction time) is up to 
200%  compared to the version which uses pure 
projection consistency. The improvement in plan 
extraction time is up to 1000% . The improvement 
in number of backtracks is also substantive. Even 
some problems were solved without backtrack-
ing. The improvements are better for problems 
with more interacting objects and higher action 
parallelism (for example dwr05 and pln13). On 
the other hand there is almost no improvement on 
problems with no action parallelism (for example 
han03), which is expectable. 

Related Works and Conclusion 
The main difference of our approach from other 
approaches exploiting another formalism (CSP, 
SAT) for solving planning problems (Kambham-
pati, 2000; Lopez and Bacchus, 2003) is that we 



do not formulate the planning problem in another 
formalism as a whole. We use constraint pro-
gramming approach only to solve a sub-problem 
arising during search. 
 Kambhampati’s idea to formulate plan extrac-
tion from planning graph as CSP is presented in 
(Kambhampati, 2000). He evaluates the use of 
various constraint programming techniques and 
its impact on the effectiveness of plan extraction. 
Another approach is presented in (Lopez and 
Bacchus, 2003) by Lopez and Bacchus. Again 
they model the planning problem in planning 
graph representation as CSP. The originality of 
their technique consists in making transforma-
tions of the obtained CSP which uncovers addi-
tional structural information about the problem.  
 Our contribution can be summarized as fol-
lows. We described the tractable class of the 
supports problem using the recently proposed 
projection global consistency. Our experiments 
showed that this class is also useful for practical 
solving of planning problems since problems of 
this class arise (with some help) frequently. 
 However there is a lot of work for future. Us-
ing the projection consistency the time spent by 
solving the supports problem is no more a limit-
ing factor of the planning algorithm. The limiting 
factor is rather the time spent by building plan-
ning graphs and by search across the layers of the 
planning graph. We account this to the size of the 
planning graph and namely to the high numbers 
of no operation actions in the planning graph. We 
consider that it would be interesting to reformu-
late planning graphs in order to be friendlier to 
the backward search. The expectable question is 
also how to extend the presented ideas for plan-
ning graphs with time and resources (Smith and 
Weld, 1999). 
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