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Abstract. We prove Feasible Disjunction Property for modal propositional
logics K, K4, K4Grz, GL, T, S4, and S4Grz, by a uniform and simple
proof based on modular modal sequent proof systems. We derive Feasible
Interpolation Theorem for all the logics. Our results are weaker than Hrubeš’
obtained in [9].

1. Introduction

In the proof complexity area, a version of the Craig’s interpolation theorem, so
called feasible interpolation, is concerned to derive lower bounds on size of proofs.
Feasible interpolation theorem states that, given a proof of an implication, we are
able to extract from it a boolean interpolation circuit whose size is polynomial in
the size of the proof. Its stronger monotone version states that we are able to
extract an interpolation circuit which is moreover monotone.

It is convenient in proof complexity of classical logic to formulate feasible inter-
polation rather for a proof of a disjunction instead of an implication. This is no
more equivalent in some nonclassical logics as for example intuitionistic logic. Then
it is rather a restricted form of an interpolation theorem. In case of modal logics,
we deal with a special form of disjunctions - a disjunction of boxed formulas.

Our work on feasible disjunction property in case of modal logics was originally
motivated by the fact that it can be used to derive feasible interpolation theorem
and, under an assumption that NP ∩ co − NP * P/poly, the existence of hard
modal tautologies.

However, recently it has been shown by Hrubeš in [9] that Frege calculi for
modal logics K, K4, S4, GL satisfy the stronger interpolation property - monotone
feasible interpolation - and therefore examples of hard modal tautologies can be
obtained without assumptions.

Our complexity results are weaker and therefore our paper is rather a technical
note whose aim is a didactic one - to present uniform and simple proofs of the
two feasible properties in case of modal logics, which makes clear how to extract a
computational (or a constructive) information from modal sequent proofs.

We concentrate on the general (nonmonotone) feasible interpolation theorem. We
prove the theorem for modal propositional logics K, K4, K4Grz, GL, T, S4, and
S4Grz.

Our proof is a simplification and generalization of the proof for logic S4 in [1].
The proof technique comes from [4] and [5] where intuitionistic logic is considered.
It derives feasible interpolation from so called Feasible Disjunction Property (FDP)
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which, for a modal logic, states that whenever a disjunction of the form (2A∨2B) is
provable, one of the disjuncts 2A, 2B has to be provable as well. The method of [5]
is based on sequent calculus and uses SLD resolution to extract required information
from proofs. FDP holds also for a suitable class of formulas as assumptions. We
define such a class and call the formulas, to keep an analogy with intuitionistic
propositional logic, Harrop. It is similar to the class defined in [7] or [1] for S4, but
here it applies to all non-reflexive (reflexive) logics respectively.

We shall show that already FDP without hypotheses entails feasible interpolation
theorem [16], which was overlooked in [7] where it was derived similarly as in [5]
only using Harrop hypotheses and only for logic S4.

Ferrari, Fiorentini, and Fiorino in [7] use method based on so-called extraction
calculi applied to Hilbert calculi or Natural deduction calculi to extract information
from proofs. The method considers itself independent on structural properties of
a particular formulation of a logic, as e.g. cut-elimination or normalization.

We would like to stress that feasible disjunction property is a property of a cal-
culus rather then a property of a logic. So one should be careful about choosing as
general calculus as possible in the sense of polynomial simulation.

We shall work with sequent calculi for modal logics. The motivation of using
natural deduction calculi in some cases in [7] rather then sequent calculi is that
there is no need of cut elimination which is difficult in case of provability logics.
However, we show that we can manage with a simple cut elimination in our proofs -
it eliminates classical cuts only. Moreover, we consider sequent calculi a sufficiently
general tool formalizing logic from the complexity point of view, see also 4.2, as
well as well developed for modal logics.

Our approach yields a simple and transparent proof of feasible disjunction and
interpolation properties in modal logics which we find, in case of normal modal
logics, simpler than the one presented in [7]. However, [7] treats also logics we have
not considered here, as e.g. S4.1 and intuitionistic modal logic K.

FDP for a wide class of modal logics, so called extensible logics, has been proved
recently by Jeřábek [10] using Frege proof systems. Hence feasible interpolation
theorem and its consequences automatically apply to all these logics as well.

It is natural to relate our results to intuitionistic logic using well known trans-
lations from intuitionistic logic to logic S4, S4Grz which can be found e.g. in [6].
From this viewpoint, our results generalize that for intuitionistic logic stated at [5].

2. Sequent calculi

We consider L to be one of nonreflexive (i.e. not containing the schema T) modal
logics K, K4, K4Grz, and GL, or one of reflexive modal logics T, S4, and S4Grz.
For basic information on modal logics consult e.g. [6, 2]

First we define modal sequent calculi extending the following classical system G:

Definition 2.1. Sequent calculus G:

A ⇒ A

Γ, A, B ⇒ ∆
∧-l

Γ, A ∧ B ⇒ ∆

Γ ⇒ A, B, ∆
∨-r

Γ ⇒ A ∨ B, ∆

Γ, A ⇒ ∆
¬-r

Γ ⇒ ¬A, ∆

Γ ⇒ A, ∆
¬-l

Γ,¬A ⇒ ∆
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Γ ⇒ A, ∆ Γ ⇒ B, ∆
∧-r

Γ ⇒ A ∧ B, ∆

Γ, A ⇒ ∆ Γ, B ⇒ ∆
∨-l

Γ, A ∨ B ⇒ ∆

Γ ⇒ ∆
weak-r

Γ ⇒ A, ∆
Γ ⇒ ∆

weak-l
Γ, A ⇒ ∆

Γ ⇒ ∆, A A, Π ⇒ Λ
cut

Γ, (Π\A) ⇒ (∆\A), Σ

There are few points to remark. First is that we consider cedents to be sets
of formulas and the comma is to be read as the set union. The reason we have
chosen sets is that we are interested rather in size of proofs than in their structural
properties. However, one should be careful to check all cases in cut-elimination.
Therefore we stress in our notation that, in the cut rule, the cut formula is really
cut away. The other rules are also to be understood this way - in fact we should
write them as e.g.

Γ, A, B ⇒ ∆
∧-l

(Γ\A, B), A ∧ B ⇒ ∆

Second point is that the initial sequents are of the form (A ⇒ A) for arbi-
trary formula A rather then (p ⇒ p) where p is a propositional variable. Note
that the version with initial sequents (A ⇒ A) for arbitrary formula A trivially
polynomially simulates the one with (p ⇒ p). So our results hold for calculi with
the atomic version of initial sequents as well.

A modal sequent calculus GL results from adding, if L extends T, the 2T rule:

Γ, A ⇒ ∆
2T

Γ, 2A ⇒ ∆

and the 2L rule of the form:

Γ?, d(A) ⇒ A
2L

2Γ ⇒ 2A

where Γ? is a modification of Γ and d(A) is a so called diagonal formula.
In the 2L rule, all formulas from 2Γ, 2A are principal.

For K and T, Γ? = Γ and d(A) = > (or is just empty).
For K4 and S4, Γ? = 2Γ, Γ and d(A) = > (or is just empty).
For GL, Γ? = 2Γ, Γ and d(A) = 2A.
For K4Grz, Γ? = 2Γ, Γ and d(A) = 2(A → 2A).
For S4Grz, Γ? = 2Γ and d(A) = 2(A → 2A).
So for example the 2GL rule is the following:

2Γ, Γ, 2A ⇒ A
2GL

2Γ ⇒ 2A

The reason why we have presented the 2L rules uniformly is that proofs that
follow run for all the logics similarly (except S4Grz where we need to change
the definitions and proofs slightly).

Definition 2.2. A critical sequent is a sequent of the form 2Γ ⇒ 2A which is
the conclusion of a 2L inference.
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3. Disjunction property

Disjunction property for a modal logic L states that whenever a disjunction of
the form 2A0∨2A1 is a tautology of L, one of the disjunct 2Ai must be a tautology
as well.

The standard proof-theoretic argument proving DP uses a cut-free sequent proof
system complete for L. We start with a cut-free proof of the sequent (∅ ⇒ 2A0 ∨
2A1) and consider it backwards. An easy observations leads to the conclusion that
a sequent (∅ ⇒ 2Ai) for some i must occur in the same proof. The absence of
the cut rule is substantial here.

Feasible Disjunction property for a modal calculus L states that whenever a dis-
junction of the form 2A0 ∨ 2A1 has a proof π in L, one of the disjunct 2Ai has
a proof in L which can be constructed in time polynomial in the size of π.

Since we are bounded by the size of the original proof, FDP is no more just
a property of a logic but it is a property of a particular proof system. It is important
to keep this in mind.

Trivially FDP holds for cut-free analogues of modal sequent calculi GL defined
above by the standard argument described above. But since cut-elimination is
highly noneffective even in the classical case (the size of a proof can increase ex-
ponentially) this is not so interesting from the complexity point of view, especially
when one is interested in lower bounds on size of proofs. We would like to prove it
for a formulation of sequent calculi with cuts which usually polynomially simulate
usual Frege systems for the same logic.

We present a simple proof of feasible disjunction property for sequent calculi GL

(including the cut rule) defined above. Given a proof of a sequent (∅ ⇒ 2A0∨2A1)
we want to decide for which disjunct (∅ ⇒ 2Ai) is provable. Now it has to be done
in time polynomial in the size of the original proof.

The proof of FDP for GL goes as follows:

• consider a GL proof π of (∅ ⇒ 2A0 ∨ 2A1)
• extract from π information sufficient for deciding the disjunction so that

it can be treated in polynomial time (the information is the closure of
the critical sequents of π under the cut rule)

• prove that there is an GL almost-cut-free-proof π′ of (∅ ⇒ 2A0 ∨ 2A1)
such that its closure does not extend the closure of π (we need this since
π′ can be of exponential size and so we cannot construct it and we have to
do only with the closure of π)

• consider π′ backwards to conclude that (∅ ⇒ 2Ai), for some i, is in the clo-
sure of π′, and hence in the closure of π. This means that (∅ ⇒ 2Ai) is
provable in GL.

3.1. The closure. To extract, from a proof of a disjunction, information that is
relevant for deciding which disjunct is provable, we concentrate on critical sequents
which constitute modal information contained in the proof (since there a modality
is introduced to the succedent).

In contrast to the case of intuitionistic logic treated in [5] where the closure of
a proof contains all sequents from the proof, we keep in the closure only information
which is relevant in the modal sense, which means, only the critical sequents.

First we define the closure of a proof for all logics except S4Grz where we need
to capture slightly more than the critical sequents:
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Definition 3.1. The closure of a proof π, denoted Cl(π), is the smallest set con-
taining the critical sequents from π and closed under cuts.

The size of the set of all the critical sequents from π is obviously polynomial
in the size of π. Since the closure contains sequents with just one formula in
the succedent we can test presence of a sequent in the closure in polynomial time
using SLD resolution (simulating the closure under cut).

Also a proof of any sequent from the closure Cl(π) can be obtained in polynomial
time. We only need to consider the critical sequents of π together with their proofs
(i.e., subproofs of π) for this argument: First we construct a proof of the considered
sequent from some critical sequents of π using the closure. Then we add the proofs
(taken from π) of those critical sequents which were used.

For S4Grz, the closure is defined as follows:

Definition 3.2. The closure of a GS4Grz proof π, denoted Cl(π), is the smallest
set containing the critical sequents from π, and for each critical sequent (2Γ ⇒ 2A)
also the sequent (2Γ ⇒ 2(A → 2A)), and closed under cuts.

As before, we can test presence of a sequent in the closure in polynomial time
using SLD resolution.

Note that the added sequents can be proved polynomially from the appropriate
critical sequents:

2Γ ⇒ 2A
weak

2Γ ⇒ ¬A, 2A
∨-r

2Γ ⇒ ¬A ∨ 2A
weak

2Γ, 2D ⇒ ¬A ∨ 2A
2S4Grz

2Γ ⇒ 2(¬A ∨ 2A)

and so we can always construct a proof of a sequent from the closure in polynomial
time.

3.2. Cut elimination. The next step is to eliminate cuts. We need to consider
a certain ’almost-cut-free’ proof backwards to show that feasible disjunction prop-
erty holds, but all we have in hands is just the closure of the original proof. There-
fore we prove the following form of cut elimination which does not extend the clo-
sure of the original proof. This means that all relevant information obtained in
the almost-cut-free proof is already present in the original proof with cuts.

In the case of modal logics, in contrast to [5], we do not need to eliminate all
cuts. In fact, the cuts with the cut formula boxed and principal in both premisses of
a 2L inference, which are usually most difficult to eliminate (in the case of GL and
Grz), need not be eliminated. This makes our argument simpler. Notice that cuts
left in a proof are cuts on two critical sequents, which means that both premisses
as well as the conclusion of such a cut inference are in the closure of the proof.

First we consider L to be one of nonreflexive logics K, K4, GL, K4Grz, or one
of T and S4. The case of S4Grz needs some minor changes.

Definition 3.3. An almost-cut-free proof is a proof in which all cuts are with
the cut formula boxed and principal of a 2L inference in both premisses.

Theorem 3.4. Cut elimination for L either nonreflexive or one of T or S4: Let π
be a GmL proof of the sequent Γ ⇒ ∆. Then there is an almost-cut-free GL proof
π′ of the sequent Γ ⇒ ∆ such that Cl(π′) ⊆ Cl(π).
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Proof of Theorem 3.4. For a cut elimination proof for classical logic based on
sets see e.g. [19]. A proof for modal logics can be found in [18].

The main point which makes our argument simple is that eliminating cuts (using
a pretty standard argument) we do not use any new 2L inference and therefore we
do not add any new critical sequent and do not extend the closure.

The rank of a cut inference is an ordered pair 〈w, h〉, where w is the weight of
the cut formula, and h is the sum of the heights of the proofs of the premisses of
a cut.

We consider the pairs lexicographically ordered.
The rank of a proof is the maximal rank of a cut occurring in the proof. There

can be more then one such cut in a proof.

The proof is by induction on the rank of the proof. The induction step is to
eliminate all the cuts of the maximal rank.

We start with a cut of the maximal rank. The main step is the following: Given
proofs of the premisses of the cut where all cuts are of lower rank, we have to show
that there is a proof of the conclusion using only cuts where the sum of the heights
of the proofs of the premisses is lower or cuts with the rank lower than the rank of
the cut we consider, which is, the rank of the proof.

First we consider the cut formula not starting with the 2 modality. There are
the following cases to distinguish:
(i) The cut formula not principal in one premiss : we permute the cut inference
upwards.
(ii) The cut formula introduced by weakening in one premiss: then the cut inference
is replaced by weakening inferences.
(iii) One premiss is an initial sequent: then this cut inference does nothing and can
be just removed from the proof.
(iv) The cut formula principal in both premisses: then we use by induction hypoth-
esis a cut(s) with the cut formula(s) of lower weight.
All these classical steps are standard, for a reference see e.g. [19].

Eliminating cuts with a not boxed cut formula doesn’t change the closure of the proof.
Since neither of these steps adds a 2L inference it cannot add any new critical se-
quent.

Now we consider the cut formula starting with the 2 modality. We distinguish
the following cases:

Elimination of a cut with the cut formula boxed and not principal of a 2L inference
in one premiss: there are following cases to distinguish:

(i) The cut formula boxed and not principal in one premiss (of any inference other
then 2L - this cannot occur with a nonprincipal boxed formula): we permute the cut
inference upwards. This step doesn’t add any new critical sequent.

(ii) The cut formula boxed and introduced by weakening in one premiss: then
the cut inference is replaced by weakening inferences.

(iii) The cut formula boxed and one premiss is an initial sequent: then this cut
inference does nothing and can be just removed from the proof.

(iv) The cut formula boxed and principal of a 2T inference in one premiss and
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principal of a 2L inference in the other (only for T and S4).

In the case of T, i.e. a 2K inference:

Γ ⇒ A
2K

2Γ ⇒ 2A

A, Γ′ ⇒ ∆
2T

2A, (Γ′\A) ⇒ ∆
cut

2Γ, (Γ′\2A, A) ⇒ ∆

we transform it as follows: (note that Γ′ can possibly contain 2A).

Γ ⇒ A
2K

2Γ ⇒ 2A A, Γ′ ⇒ ∆
cut

2Γ, A, (Γ′\2A) ⇒ ∆ Γ ⇒ A
cut

Γ, (2Γ\A), (Γ′\2A, A) ⇒ ∆
weak

Γ, 2Γ, (Γ′\2A, A) ⇒ ∆
2T inferences

2Γ, (Γ′\2A, A) ⇒ ∆

In the case of S4, i.e. a 2S4 inference:

2Γ ⇒ A
2S4

2Γ ⇒ 2A

A, Γ′ ⇒ ∆
2T

2A, (Γ′\A) ⇒ ∆
cut

2Γ, (Γ′\2A, A) ⇒ ∆

we transform it as follows: (again Γ′ can possibly contain 2A).

2Γ ⇒ A
2S4

2Γ ⇒ 2A A, Γ′ ⇒ ∆
cut

2Γ, A, (Γ′\2A) ⇒ ∆ 2Γ ⇒ A
cut

(2Γ\A), Γ′\(2A, A) ⇒ ∆
weak

2Γ, (Γ′\2A, A) ⇒ ∆

Neither of transformations above adds any new critical sequent and therefore it
does not extend the closure of the proof.

Cuts with the cut formula boxed and principal of 2L inferences in both premisses
are not eliminated. qed

Note that only cuts on sequents from the closure of the original proof π can
occur in an almost-cut-free proof π′.

To obtain a similar cut elimination in the case of S4Grz, we change the concept
of an almost-cut-free proof as follows:

An almost-cut-free proof in GS4Grz may, besides the cuts on critical sequents,
contain also cuts on sequents (2Γ ⇒ 2(A → 2A)) treated as added axioms.

Theorem 3.5. Cut elimination for S4Grz: Let π be a GS4Grz proof of the sequent
Γ ⇒ ∆. Then there is an almost-cut-free GS4Grz proof π′ of the sequent: Γ ⇒ ∆
such that Cl(π′) ⊆ Cl(π).

Proof of Theorem 3.5. The argument runs precisely as before. The only change
is the following step:

Elimination of a cut with the cut formula boxed and principal of a 2T infer-
ence in one premiss and principal of a 2S4Grz inference in the other (D denotes
2(A → 2A)):
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2Γ, 2D ⇒ A
2S4Grz

2Γ ⇒ 2A

A, Γ′ ⇒ ∆
2T

2A, (Γ′\A) ⇒ ∆
cut

2Γ, (Γ′\2A, A) ⇒ ∆

we transform it as follows: (again Γ′ can possibly contain 2A).

2Γ, 2D ⇒ A
2S4Grz

2Γ ⇒ 2A A, Γ′ ⇒ ∆
cut

2Γ, A, (Γ′\2A) ⇒ ∆ 2Γ, 2D ⇒ A
cut

(2Γ\A), 2D, (Γ′\2A, A) ⇒ ∆
weak

2Γ, 2D, (Γ′\2A, A) ⇒ ∆ 2Γ ⇒ 2D
cut

(2Γ\2D), (Γ′\2A, A, 2D) ⇒ ∆
weak

2Γ, (Γ′\2A, A) ⇒ ∆

Here (2Γ ⇒ 2D) is added as a new axiom. The transformation does not add any
new critical sequents and therefore it does not extend the closure of the proof. qed

Again, all cuts in the almost-cut-free proof π′ are cuts on sequents form the clo-
sure of the proof π.

3.3. Feasible Disjunction Property.

Theorem 3.6.Feasible disjunction property: Let π be a GL proof of (∅⇒2A0∨2A1).
Then we can construct in polynomial time a GL proof σ of (∅ ⇒ 2Ai) for some
i ∈ {0, 1}.

Proof of Theorem 3.6. By Theorem 3.4 or Theorem 3.5, there is an GL almost-
cut-free-proof π′ of the same sequent. We consider π′ backwards using the fact that
cuts that can occur in π′ are of the restricted form (both premisses of a cut are of
the form (2Λ ⇒ 2C)).

Consider the last step of the proof π′.

• It cannot be a cut, since then the succedent 2A0∨ 2A1 would be the succe-
dent of one of the premisses of the cut, but it is not a single boxed formula.
Neither it can be a cut (in case of S4Grz) of the other form, the same
reason applies here.

• It cannot be a weakening inference since the empty sequent has no proof.

• So it can be only a ∨ inference and the sequent (∅ ⇒ 2A0, 2A1) is in π′.

Now consider the sequent (∅ ⇒ 2A0, 2A1) and the step above it.

• If it is a weakening inference, we have a sequent (∅ ⇒ 2A1) for some i in π′.

• If it is a cut then the cut formula must be one of 2Ai. Otherwise the succe-
dent (2A0, 2A1) would be the succedent of one of the premisses of the cut,
but it is not a single boxed formula. It cannot be the case that 2A0 is in
the succedent of one premiss of the cut while 2A1 is in the other, unless
one of them is the cut formula. But then we have a sequent (∅ ⇒ 2A1) in
π′ (it is a premiss of the cut).
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Consider the sequent (∅ ⇒ 2Ai). Again, consider the step above it.
The step above can either be a 2L inference and hence (∅ ⇒ 2Ai) is a critical

sequent and therefore it is in the closure Cl(π′) and hence in the closure Cl(π) and
we are done. Or the step above can be a cut. But both premisses of such a cut are
critical sequents from the closure Cl(π′) and hence in the closure Cl(π). Then so
is (∅ ⇒ 2Ai) by the closure on the cut rule.

We have shown that (∅ ⇒ 2Ai) is in Cl(π) for some i. Now we can construct
its proof in time polynomial in the size of π.

qed

3.4. Harrop hypotheses. Feasible disjunction property also holds for a suitable
class of formulas as assumptions. In an analogy with Harrop-Rasiowa formulas for
intuitionistic logic [8], we define the following class of modal formulas and call them
Harrop. We do not claim that they are the only formulas with this property. As
in intuitionistic logic, this is an open problem to describe the class of all formulas
under which disjunction property holds.

Although we do not need the FDP with Harrop hypotheses1 to prove the feasible
interpolation theorem, we include the proof here. It is going to be more complicated
then the previous one.

Definition 3.7. L-Harrop formulas for a logic L are defined as follows: for a logic
L extending T:

H := p|⊥|2H |2A → H |H ∧ H

for a logic L non-extending T:

H := p|⊥|2A|2A → H |H ∧ H

where A is an arbitrary formula and p is any propositional variable.

Stated in our language, Harrop formulas read as follows:
for a logic L extending T:

H := p|2H |¬2A|¬2A ∨ H |H ∧ H

for a logic L non-extending T:

H := p|2A|¬2A|¬2A ∨ H |H ∧ H

The proof of FDP proceeds as in the previous case without hypotheses, we only
extend our notion of the closure as follows:

Definition 3.8. The extended closure of a proof π in GL, denoted Cl+(π), is
the smallest set containing

• the critical sequents from π,
• the initial sequents of the form (2A ⇒ 2A),

1The disjunction property for modal logics as stated in this paper also holds for a class of
formulas defined as below where we allow, instead of any propositional variable, any propositional
non-modal formula. In that case we are not able to prove that it is feasible. Consider we have
an almost cut-free proof of (Γ ⇒ 2A0∨ 2A1), Γ a set of formulas as defined below. It can be the

case that propositional non-modal part of Γ is inconsistent and the disjunction was, in the original
proof, introduced by weakening. We are not able to recognize this case inspecting the closure of
the original proof which captures the modal information contained in the proof. Neither we are
able to check in polynomial time whether a set of formulas is classically inconsistent.
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• the sequents (2H ⇒ H) for all Harrop subformulas occurring in π, if L
extends T,

• the sequents (H1 ∧ H2 ⇒ Hi) for i = 1, 2 and for Hi a Harrop subformula
occurring in π

• the sequents (¬2B ∨ H, 2A ⇒ H) for (¬2B ∨ H) a subformula occurring
in π

• (2H,¬2H ⇒ ∅) for H a Harrop subformula occurring in π if L extends T,
or (2A,¬2A ⇒ ∅) for 2A a Harrop subformula occurring in π if L does
not.

and closed under cuts, left weakenings (of course only by subformulas occurring in
π to keep the closure finite), and right weakenings such that the conclusion have
just one formula in the succedent.

Inspecting previous proofs of cut-elimination one can observe that eliminating
cuts we do not extend the extended closure of a proof.

Lemma 3.9. Feasible disjunction property with hypotheses: Let π be a GL proof
of (Γ ⇒ 2A0 ∨ 2A1) where Γ is a set of Harrop formulas. Then we can construct
in polynomial time a GL proof σ of (Γ ⇒ 2Ai) for some i ∈ {0, 1}.

Proof of Lemma 3.9. To construct a proof in polynomial time our strategy is
to find the appropriate sequent in the closure of the proof π. By Theorem 3.4 or
3.5 there is an almost-cut-free proof π′ of the same sequent.

Consider the proof π′ backwards. We claim that either of (Γ ⇒ 2Ai) is in
the closure of π′, and hence in the closure of π.

Any inference we reach before we reach a 2L inference, a cut, or an initial sequent
without passing a 2L inference or a cut (let us call this part of π′ the lower part
of π′) has the property that its premiss(es) has (have) in antecedent again only
Harrop formulas. So we can always continue considering a premiss.

At the top of the lower part of π′, we finally reach at each branch on the level
before a 2L inference or a cut, or on the level of an initial sequent, either of following
situations:

• (2Γ′ ⇒ 2Ai) where 2Γ′ are Harrop subformulas of Γ.
Then by a similar argument as used in Theorem 3.6 we conclude that
(2Γ′ ⇒ 2Ai) ∈ Cl+(π′).

• (2Γ′ ⇒ 2B), where 2Γ′ are Harrop subformulas of Γ and 2B a subformula
of a Harrop disjunction (¬2B ∨ H) or of ¬2B occurring as a subformula
in Γ. Then by a similar argument as used in Theorem 3.6 we conclude that
(2Γ′ ⇒ 2B) ∈ Cl+(π′).

• (2B ⇒ 2B) where 2B is a Harrop subformula of Γ. It is an initial sequent
and it cannot have other form because of restriction to Harrop formulas.
(2B ⇒ 2B) ∈ Cl+(π′).

We have shown that all sequents from the top of the lower part of π′ are in Cl+(π′).
Now we use the extended closure to conclude that (Γ ⇒ 2Ai) is in the closure

of π′ (to ”restore” Γ in the antecedent using sequents from the top of the lower part
of π′, the left inferences of the lower part of π′, and the closure of π′).

We reason by induction on number of left inferences in the lower part of π′.

• First step is there is no left inference in the lower part of π′. In this case
there must be at least ∨-r inference introducing 2A0 ∨ 2A1 followed by
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a weakening inference introducing say 2A0 and we have (Γ ⇒ 2A1) at
the top of the lower part of π′ and hence in the closure of π′ (or other way
round); or a weakening inference introducing 2A0 ∨2A1 and we have both
(Γ ⇒ 2Ai) at the top of the lower part of π′ and hence in the closure of
π′.

• Consider there are some left inferences in the lower part of π′.
Observe that one-premiss inferences of the lower part of π′ have the fol-

lowing property: if its premiss is in Cl+(π′) then the conclusion is in
Cl+(π′) as well.

– For weakening it is obvious from definition of the extended closure.
– For a 2T inference with 2C principal we use a cut on its premiss and

a sequent (2C ⇒ C) from Cl+(π′) to conclude that its conclusion is
in Cl+(π′) as well.

– For a ∧-l inference with C∧D principal we use two cuts on its premiss
and sequents (C∧D ⇒ C) and (C∧D ⇒ D) from Cl+(π′) to conclude
that its conclusion is in Cl+(π′) as well.

– For a ¬-l inference with ¬2C principal we use a cut on its premiss and
a sequent (2C,¬2C ⇒ ∅) from Cl+(π′) to conclude that its conclusion
is in Cl+(π′) as well.

So if the last inference of π′ is one of these, we apply the induction hy-
potheses to its premiss and the result applies to its conclusion as well.

Consider the last inference of π′ is a left disjunction inference with (¬2B ∨
H) principal:

Γ′,¬2B ⇒ 2A0 ∨ 2A1 Γ′, H ⇒ 2A0 ∨ 2A1

Γ′,¬2B ∨ H ⇒ 2A0 ∨ 2A1

We first briefly show that if (∆,¬2B ⇒ 2C) ∈ Cl+(π′) then either
(∆ ⇒ 2C) ∈ Cl+(π′) or (∆ ⇒ 2B) ∈ Cl+(π′):

Obviously, thanks the occurrence of ¬2B, (∆,¬2B ⇒ 2C) is not a criti-
cal sequent. Consider possibilities how ¬2B can have appeared: if closing
under weakening, we have that (∆ ⇒ 2C) ∈ Cl+(π′). If closing under
cut, the other premiss cannot be a critical sequent for the same reason -
the occurrence of ¬2B. So it must be one of added sequents and the only
possibility is (2B,¬2B ⇒ ∅). In that case 2C must have been introduced
by weakening and we have (∆ ⇒ 2B) ∈ Cl+(π′).

Now we apply the induction hypothesis to the premisses of the left disjunc-
tion inference to obtain (Γ′,¬2B ⇒ 2Ai) ∈ Cl+(π′) and (Γ′, H ⇒ 2Aj) ∈
Cl+(π′). As we have shown, there are two possibilities:

– If (Γ′ ⇒ 2Ai) ∈ Cl+(π′) we obtain by the closure under weakening
(Γ′,¬2B ∨ H ⇒ 2Ai) ∈ Cl+(π′) and we are done.

– If (Γ′ ⇒ 2B) ∈ Cl+(π′), we use a sequent (¬2B ∨ H, 2B ⇒ H) from
the extended closure and obtain, by a cut,

(Γ′,¬2B ∨ H ⇒ H) ∈ Cl+(π′).

By another cut with (Γ′, H ⇒ 2Aj) ∈ Cl+(π′) we obtain

(Γ′,¬2B ∨ H,⇒ 2Aj) ∈ Cl+(π′). qed
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4. Feasible interpolation

Theorem 4.1. Feasible interpolation theorem for modal logic L: Let π be a GL

proof of

2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2A0 ∨ 2A1

Then it is possible to construct a circuit C(x) whose size is polynomial in the size of
π such that for every input a ∈ {0, 1}n, if C(a) = i, then 2Ai where we substitute
for variables xj ⊥, if aj = 0, and >, if aj = 1, is a L tautology.

Proof of Theorem 4.1. For given input a consider a proof resulting from π
by substituting for variables xj ⊥, if aj = 0, and >, if aj = 1. The new proof
ends with the sequent (2>∨2⊥ ⇒ 2A0[x̄/a]∨2A1[x̄/a]). (2>∨2⊥) is provable
by a proof of constant size and thus by a cut we easily obtain a proof of (∅ ⇒
2A0[x̄/a] ∨ 2A1[x̄/a]) of size polynomial in the size of the original proof. Now
the corollary follows from the theorem 3.6 - we can decide in polynomial time
which disjunct is true and hence it can be computed by a circuit of polynomial size.

qed

The intuitive meaning of our version of the interpolation theorem is: if we fix
truth values of common variables of A0 and A1 by 2 (this means in all the accesible
worlds) and we know the values, than, having a proof of

(2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2A0 ∨ 2A1),

we can check which of the disjuncts is true.
The variables xi are not required to be the only common variables of A0 and A1,

but the other cases do not seem to be applicable.
Moreover, if xi are the only common variables and A0(~x, ~y)∨A1(~x, ~z) is a classical

tautology with ~x, ~y and ~z disjoint sets of variables, then

(2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2A0 ∨ 2A1)

is a L tautology:

Lemma 4.2. Let the sequent (∅ ⇒ A0(~x, ~y) ∨ A1(~x, ~z)) be provable in the calculus
G (with ~y and ~z disjoint sets of variables). Then the sequent

2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2A0(~x, ~y) ∨ 2A1(~x, ~z)

is provable in the calculus GL.

Proof of Lemma 4.2. It follows from the Craig’s interpolation theorem that
there is an interpolant I(~x) such that sequents (¬I(~x) ⇒ A0(~x, ~y)) and (I(~x) ⇒
A1(~x, ~z)) have G proofs. Then both (2¬I(~x)⇒2A0(~x, ~y)) and (2I(~x)⇒2A1(~x, ~z))
are GL provable and so is (2I(~x) ∨ 2¬I(~x) ⇒ 2A0(~x, ~y) ∨ 2A1(~x, ~z)).

Because

2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2I(~x) ∨ 2¬I(~x)

is GL provable (it can be easily proved by induction on the weight of I), we have
by a cut

2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2A0(~x, ~y) ∨ 2A1(~x, ~z)

provable in the calculus GL. qed



FEASIBLE DISJUNCTION PROPERTY AND FEASIBLE INTERPOLATION IN MODAL LOGIC 13

4.1. Complexity consequences. It has been shown in much recent work of Hrubeš
[9] using a different method that modal logics K, K4, S4, GL satisfy monotone
feasible interpolation theorem, and concrete examples of hard tautologies has been
presented that require Frege proofs with exponential number of proof lines.

However, we include some complexity remarks involving our weaker version of
interpolation here.

The main aim of proving feasible interpolation theorems for a proof system is
that it can be applied to prove lower bounds on size of proofs for the proof system.
Sometimes lower bounds are obtained under plausible complexity assumptions like
that factoring is hard to compute. Since we have proved a general feasible inter-
polation theorem and not a monotone interpolation theorem, we cannot omit some
complexity assumptions to obtain lower bounds for proof systems we consider.

Since all modal logics we consider here are known to be PSPACE-complete
([12],[6]), we could use an assumption PSPACE*NP/poly to derive the existence of
modal tautologies that have not polynomial size proofs. The point of using feasible
interpolation instead, however together with some complexity assumptions, is that
it enables to construct concrete examples of hard modal tautologies.

We can use either Razborov’s [17] method and obtain lower bounds under as-
sumption that there exist pseudorandom generators, or the method from [3] and
obtain lower bounds under assumption that factoring is hard to compute.

We present here a simple argument based on ideas of Mundici [13, 14], Kraj́ıček
[11] and taken from Pudlák [15]. It uses a cryptographical assumption that there are
two disjoint NP sets which cannot be separated by a set in P/poly (this assumption
follow e.g. from the one that factoring is not in P). Mundici used his argument
to conclude that not all Craig interpolants in classical propositional logic are of
polynomial size. Modifying his argument using Kraj́ıček’s idea we may use it to
conclude that not all tautologies have polynomial size proofs.

Corollary 4.3. Let L be one of modal logics K, T, K4, S4, GL, K4Grz, S4Grz.
Suppose NP ∩ co − NP * P/poly. Then there are tautologies which do not have
proofs in GL of size polynomial in the size of the proved formula.

Proof of Corollary 4.3. Suppose there are two NP disjoint sets X and Y
which cannot be separated by a set in P/poly. Let n be a natural number.
Now define the disjoint sets X ∩ {0, 1}n and y ∩ {0, 1}n by {ā|∃b̄¬A0(ā, b̄)} and
{ā|∃c̄¬A1(ā, c̄)} where A0, A1 are propositional formulas of size polynomial in n.
Since the sets are disjoint, A0 ∨ A1 is a classical tautology and the sequent (∅ ⇒
A0(x̄, ȳ) ∨ A1(x̄, z̄)) is provable in G. By Lemma 4.2, the sequent

2x1 ∨ 2¬x1, . . . , 2xn ∨ 2¬xn ⇒ 2A0(x̄, ȳ) ∨ 2A1(x̄, z̄)

is provable in GL. If it had a polynomial size proof, we would have by Theo-
rem 4.1 a polynomial size circuit separating X ∩ {0, 1}n and Y ∩ {0, 1}n, which is
a contradiction. qed

Another consequence of feasible interpolation theorem is a speed-up between
classical propositional calculus and modal calculi. Such a speed up would follow al-
ready from the assumption that PSPACE*NP/poly but without concrete examples
of tautologies that separate the two systems in this sense.

Corollary 4.4. Let L be one of modal logics K, T, K4, S4, GL, K4Grz, S4Grz.
Then, assuming that factoring is not computable in polynomial time, there is more
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then polynomial speed-up between proofs in propositional classical calculus and proofs
in L.

Proof of Corollary 4.4. In [3], concrete examples of propositional tautologies
are constructed that have polynomial size proofs in classical propositional logic and
cannot have polynomial size proofs in any system admitting feasible interpolation
theorem. qed

4.2. Concluding remarks. Since feasible disjunction property for a wide class of
modal logics, so called extensible logics, has been proved by Jeřábek [10] using Frege
proof systems, feasible interpolation theorem and its consequences automatically
apply to all these logics as well.

Our results also relate to intuitionistic logic using well known translations from
intuitionistic logic to logics S4, S4Grz which can be found e.g. in [6]. We only use
the following form of the translation:

• p2 ≡ 2p;⊥2 ≡ ⊥
• (A ∧ B)2 ≡ (A2 ∧ B2)
• (A ∨ B)2 ≡ (2A2 ∨ 2B2)
• (A → B)2 ≡ 2(A2 → B2)

The sequent calculi we have chosen are, from the complexity point of view,
as general as possible. In particular, they polynomially simulate various other
structural formulations of sequent calculi (e.g. versions with atomic axioms, with
multisets instead of sets, cut free versions), as well as appropriate standard Frege
systems. It has been shown by Jeřábek [10] that all Frege systems for a wide class
of modal logics, called extensible logics, are polynomially equivalent. So our results
apply to most of proof systems for modal logics that are used.
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