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Abstract. A lexicographic ranking function for the set of all permuta-
tions of n ordered symbols translates permutations to their ranks in the
lexicographic order of all permutations. This is frequently used for in-
dexing data structures by permutations. We present algorithms for com-
puting both the ranking function and its inverse using O(n) arithmetic
operations.

1 Introduction

A permutation of order n is a bijection of an n-element set X onto itself. For con-
venience, we will always assume that X = [n] = {1, . . . , n}, so the permutations
become ordered n-tuples containing each number 1, . . . , n exactly once.

Many applications ask for arrays indexed by permutations. Among other uses
documented in [1], this is handy when searching for Hamilton cycles in Cayley
graphs [2, 3] or when exploring state spaces of combinatorial puzzles like the
Loyd’s Fifteen [4]. To accomplish that, a ranking function is usually employed,
which translates a permutation π to a unique number R(π) ∈ {0, . . . , n! − 1}.
The inverse of the ranking function R−1(i) is also frequently used and it is called
the unranking function.

Each ranking function corresponds to a linear order on the set of all per-
mutations (it returns the number of permutations which are strictly less than
the given one). The traditional approach to the ranking problem is to fix lexico-
graphic order and construct the appropriate ranking and unranking functions.
In fact, an arbitrary order suffices in many cases, but the lexicographic ranking
has the additional advantage of a nice structure allowing additional operations
on permutations to be performed directly on their ranks.

Näıve implementations of lexicographic ranking require time Θ(n2) in the
worst case [5, 6]. This can be easily improved to O(n log n) by using either a
binary search tree to calculate inversions, or by a divide-and-conquer technique
or by clever use of modular arithmetic (all three algorithms are described in [7]).
Myrvold and Ruskey [8] mention further improvements to O(n log n/ log log n)
by using the data structures of Dietz [9].
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Linear time complexity was reached also by Myrvold and Ruskey [8] by em-
ploying a different order, which is defined locally by the history of the data
structure — in fact, they introduce a linear-time unranking algorithm first and
then they derive an inverse algorithm without describing the order explicitly.
However, they leave the problem of lexicographic ranking open.

In this paper, we present a linear-time algorithm for the lexicographic order.
It is based on an observation that once we assume that our computation model
is capable of performing basic arithmetics on numbers of the order of magnitude
of the resulting rank, we can use such integers to represent fairly rich data struc-
tures working in constant time. This approach has been pioneered by Fredman
and Willard [10, 11], who presented Fusion trees and Atomic heaps working in
various RAM models. Our structures are built on similar principles, but in a
simpler setting, therefore we even can avoid random access arrays and our algo-
rithms work in almost all models of computation, relying only on the usual set
of arithmetic and logical operations on the appropriately large integers.

We also extend our algorithm to ranking and unranking of k-permutations,
i.e., ordered k-tuples of distinct elements drawn from [n].

2 Ranking Permutations

Permutations have a simple recursive structure: if we fix the first element π(1)
of a permutation π on [n] = {1, . . . , n}, the elements π(2), . . . , π(n) form a
permutation on {1, . . . , π(1) − 1, π(1) + 1, . . . , n}. The lexicographic order of π
and π′ is then determined by π(1) and π′(1) and only if these elements are equal,
it is decided by lexicographic comparison of permutations (π(2), . . . , π(n)) and
(π′(2), . . . , π′(n)). Therefore the rank of π is (π(1) − 1) · (n − 1)! plus the rank
of (π(2), . . . , π(n)).

This gives a reduction of (un)ranking of permutations on [n] to (un)ranking
of permutations on a (n − 1)-element set, which suggests a straightforward al-
gorithm, but unfortunately this set is different from [n− 1] and it even depends
on the value of π(1). We could renumber the elements to get [n − 1], but it
would require linear time per iteration. Instead, we generalize the problem to
permutations on subsets of [n]. Therefore for a permutation π on A ⊆ [n] we
have:

R((π(1), . . . , π(m)), A) = r(π(1), A) · (m− 1)! +

R((π(2), . . . , π(m)), A \ {π(1)}),

where r(x, A) is a ranking function on elements of A.
This recurrence leads to the following algorithms for ranking and unranking.

Here π[i, . . . , n] denotes the array containing the permutation and A is a data
structure representing the subset of [n] on which is π defined. This structure
supports ranking, unranking and deletion of individual elements.

function rank(π, i, n, A) { return the rank of a permutation on A }
if i ≥ n then return 0



a← r(π[i], A)
A← A \ {π[i]}
b← rank(π, i + 1, n, A)
return a · (n− i)! + b

end

procedure unrank(j, π, i, n, A) { construct the j-th permutation on A }
if i > n then return

π[i]← r−1(bj/(n− i)!c, A)
A← A \ {π[i]}
unrank(j mod (n− i)!, π, i + 1, n, A)

end

If we precalculate the factorials and assume that each operation on the data
structure A takes time at most t(n), both algorithms run in time O(n · t(n)) and
their correctness follows from the discussion above.

A trivial implementation of the data structure by an array yields t(n) = O(n).
Using a binary search tree instead gives t(n) = O(log n). The data structure of
Dietz [9] improves it to t(n) = O(log n/ log log n). In fact, all these variants are
equivalent to the classical algorithms based on inversion vectors, because at the
time of processing π(i), the value of r(π(i), A) is exactly the number of elements
forming inversions with π(i).

If we relax the requirements on the data structure to allow ordering of ele-
ments dependent on the history of the structure (i.e., on the sequence of deletes
performed so far), we can implement all three operations in time O(1). We store
the values in an array and we also keep an inverse permutation. Ranking is
done by direct indexing, unranking by indexing of the inverse permutation and
deleting by swapping the element with the last element. We can observe that
although it no longer gives the lexicographic order, the unranking function is
still the inverse of the ranking function (the sequence of deletes from A is the
same in both functions), so this leads to O(n) time ranking and unranking in a
non-lexicographic order. This order is the same as the one used by Myrvold and
Ruskey in [8].

However, for our purposes we need to keep the same order on A over the
whole course of the algorithm.

3 Word-encoded Sets

We will describe a data structure for the subsets of [n] supporting insertion,
deletion, ranking and unranking in constant time per operation in the worst
case.

First, let us observe that whatever our computation model is, it must allow
operations with integers up to n!−1, because the ranks of permutations can reach
such large numbers. In accordance with common practice, we will assume that
the usual set of arithmetic and logical operations is available and that they work
in constant time on integers of that size, i.e., on dlog2(n!)e = Ω(n log n) bits.



Furthermore, multiple-precision arithmetics on numbers which fit in a constant
number of machine words can be emulated with a constant number of operations
on these words, so we can also assume existence of constant-time operations on
arbitrary O(n log n)-bit numbers. This gives us an opportunity for using the
integers to encode data structures.

Let us denote b = dlog2 ne the number of bits needed to represent a single
element of [n]. We will store the whole subset A ⊆ [n], k = |A|, as a bit vector a

consisting of k fields of size b, each field containing a single element of A. The
fields will be maintained in increasing order of values and an additional zero bit
will be kept between adjacent fields and also after the highest field. The vector
is k(b+1) = O(n log n) bits long, so it fits in O(1) integers. We will describe how
to perform the data structure operations using arithmetic and logical operations
on these integers.

Unranking is just extraction of the r-th field of the vector. It can be accom-
plished by shifting the representation of a by r · (b + 1) bits to the right and
anding it with 2b − 1, which masks out the high-order bits.

Insertion can be reduced to ranking: once we know the position in the vector
the new element should land at, i.e., its rank, we can employ bit shifts, ands
and ors to shift apart the existing fields and put the new element to the right
place.

Deletion can be done in a similar way. The rank gives us the position of the
field we want to delete and we again use bit operations to move the other fields
in parallel.

Ranking of an element x is the only non-trivial operation. We prepare a
vector c, which has all k fields set to x (this can be done in a single multiplication
by an appropriate constant) and the separator bits between them set to ones.
Observe that if we subtract a from c, the separator bits change to zeroes exactly
at the places where a[i] > c[i] = x (and they absorb the carries, so the fields
do not interfere with each other). Therefore the desired rank is the number of
remaining ones in the separator bits minus 1.

Let us observe that if z is an encoding of a vector with separator zeroes, then
z mod (2b+1 − 1) is the sum of all fields of the vector modulo 2b+1 − 1. This
works because z =

∑
i z[i] · 2(b+1)i and 2(b+1)i mod (2b+1 − 1) = 1 for every i.

Hence the separator bits in c can be summed by masking out all non-separator
bits, shifting c to the right to transform the separator bits to field values and
calculating c mod (2b+1 − 1).

All four operations work in constant time. The auxiliary constants for bit pat-
terns we needed can be precalculated in linear time at the start of the algorithm
(we could even calculate them in constant time, as 20 + 2k + 22k + . . . + 2`k =
(2(`+1)k − 1)/(2k − 1), but it is an unnecessary complication). With this data
structure, the ranking and unranking algorithms achieve linear time complexity.



4 Ranking k-permutations

Our (un)ranking algorithms can be used for k-permutations as well if we just
stop earlier and divide everything by (n − k)!. Unfortunately, the ranks of k-
permutations can be much smaller, so we can no longer rely on the data structure
fitting in a constant number of integers.

We do a minor side step by remembering the complement of A instead, that is
the set of elements we have already seen. We will call it G (and the corresponding
vector g), because they form gaps in A. Let us prove that Ω(k log n) bits are
needed to store the result, which is enough space to represent the whole g.

Lemma 1. The number of k-permutations on [n] is 2Ω(k log n).

Proof. There are nk = n(n− 1) . . . (n− k + 1) such k-permutations. If k ≤ n/2,
then every term in the product is at least n/2, so log2 nk ≥ k(log2 n − 1). If
k ≥ n/2, then nk ≥ nn/2 and log2 nk ≥ (n/2)(log2 n−1) ≥ (k/4)(log2 n−1). ut

Deletes in A now become inserts in G. The rank of x in A is just x minus
the rank of the largest element of G which is smaller or equal to x. This is easy
to get, since when we ask our data structure for a rank of an element x outside
the set, we get exactly the number elements of the set smaller than x.

The only operation we cannot translate directly is unranking in A. To achieve
it, we will maintain another vector b such that b[i] = g[i] − i (the number of
elements in A less than g[i]). Now, if we want to find the r-th element of A, we
find the largest i such that b[i] ≤ r (the rank of r in b in the same sense as
above) and we return g[i] + r − b[i]. Also, whenever a new element is inserted
into g, we can shift the fields of b accordingly and decrease all higher fields by
one in parallel by a single subtraction.

We have replaced all operations on A by the corresponding operations on the
modified data structure, each of which works again in constant time. This gives
us a linear-time algorithm for the k-permutations, too.

5 Concluding Remarks

We have shown linear-time algorithms for ranking and unranking of permu-
tations and k-permutations on integers, closing a frequently encountered open
question.

Our algorithms work in linear time in a fairly broad set of computation
models. Even if we take the complexity of operations on numbers in account,
we have proven that the number of arithmetic operations for determining the
inversion vector is bounded by the number of those required to calculate the
rank from the inversion vector, contrary to previous intuition.

The technique we have demonstrated should give efficient algorithms for
ranking of various other classes of combinatorial objects, if the number of such
objects is high enough to ensure word size suitable for our data structures.
A good example would be the set of labelled trees.
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