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Abstract

We show that, for all choices of integers k > 2 and m, there are
simple 3-connected k-crossing-critical graphs containing more than m

vertices of each even degree ≤ 2k − 2. This construction answers one
half of a question raised by Bokal, while the other half asking anal-
ogously about vertices of odd degrees at least 5 in crossing-critical
graphs remains open. Furthermore, our constructed graphs have sev-
eral other interesting properties; for instance, they are almost planar
and their average degree can attain any rational value in the interval
[

4, 6 − 8

k+1

)

.
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1 Introduction

We assume that the reader is familiar with basic terms of graph theory. In a
drawing of a graph G in the plane the vertices of G are points and the edges
are simple curves joining their endvertices. Moreover, it is required that no
edge passes through a vertex (except at its ends), and no three edges cross in
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a common point. The crossing number cr(G) of a graph G is the minimum
number of crossing points of edges in a drawing of G in the plane.

For k ≥ 1, we say that a graph G is k-crossing-critical if cr(G) ≥ k but
cr(G − e) < k for each edge e ∈ E(G). It is important to study crossing-
critical graphs in order to understand structural properties of the crossing
number problem. The only 1-crossing-critical graphs are, by the Kuratowski
theorem, the subdivisions of K5 and K3,3. A construction of an infinite family
of 2-crossing-critical simple 3-connected graphs was published by Kochol [4],
improving previous construction by Širáň [8]. Many more crossing-critical
constructions have appeared since. (The known constructions tend to have
similar structure, and moreover all k-crossing-critical graphs are proved [3]
to have path-width bounded in k.)

It has been noted by Bokal [1] that the (typical) known constructions of
infinite families of simple 3-connected k-crossing-critical graphs create only
bounded numbers (wrt. k) of vertices of degrees other than 3, 4, or 6. His
natural question thus was, what about occurence of other vertex degree values
in infinite families of k-crossing-critical graphs? We positively answer one half
of his question (see Theorem 3.1 and Proposition 2.1);

• namely we construct, for each k > 2, an infinite family of sim-
ple 3-connected k-crossing-critical graphs such that members of this
family contain arbitrary numbers of vertices of each even degree

4, 6, 8, . . . , 2k − 2.

The analogous question about occurence of vertices of odd degrees ≥ 5 in
k-crossing-critical graphs remains open, and it appears to be significantly
harder than the even case. Actually one should note that the question about
an existence of simple 5-regular crossing-critical graphs was first raised by
Richter and Thomassen [5].

Usual constructions of crossing-critical graphs use an approach that can
be described as a “Möbius twist”—they create graphs embeddable on a
Möbius band which thus have to be “twisted” for drawing in the plane. We
offer a quite different approach in Section 2, which extends our older con-
struction [2], resulting in graphs that are almost planar, i.e. they can be made
planar by deleting just one edge. As an easy corollary of this new and very
flexible construction, we also produce almost-planar crossing-critical families
of other interesting properties like prescribed average degree, as summarized
in Section 4.
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2 “Belt” construction

An illustrating example of crossing-critical graphs constructed in our old
work [2] is shown in Figure 1. The construction in [2] used vertices of de-
grees 4 or 3, and now we generalize it to allow more flexible structure and,
particularly, vertices of arbitrary even degrees.

Figure 1: An example of a simple 3-connected almost planar 8-crossing-
critical graph. (The “grid-belt” is winded around a cylinder.)

Having a path P in a graph G, we call a reduced length of P the number of
internal vertices of P having degree greater than 2 in G plus one. The reduced

distance in G is defined accordingly. (If δ(G) > 2, then this parameter equals
usual graph distance.) A path P is an ear of a subgraph F in G if both ends
of P belong to F , but all internal vertices of P are disjoint from F . For easier
notation, we (in the coming definitions) consider embeddings in the plane P
with removed open set X . We say that a closed curve (loop) γ is of type-X
if the homotopy type of γ in P \X is to “wind once around X ”. Having two
loops γ, δ of type-X , we write γ � δ if γ separates X from δ \ γ (meaning γ
is “nested” inside δ).

Crossed belt graphs. A plane graph F0 is a plane k-belt graph if it
can be constructed as an edge-disjoint union of k embedded “belt” cycles
C1 ∪ C2 ∪ · · · ∪ Ck = F0, where all C1, . . . , Ck are of type-X nested as C1 �
C2 � · · · � Ck. Moreover, the following must be true:

(B1) F0 contains 4k pairwise disjoint “radial” paths R1, R2, . . . , R4k, each
one connecting a vertex of V (C1) to a vertex of V (Ck). Their ends on
C1 have this cyclic order: R1, R2, . . . , R4k.

(B2) We call a vertex of F0 accumulation if its degree is at least 6 in F0, i.e.
if it is contained in at least three of the cycles C1, . . . , Ck. There is no
accumulation vertex on the cycle Ck.
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(B3) Denote by s1, t1 the ends of Rk and R3k, respectively, on C1. Anal-
ogously denote by s2, t2 the ends of R2k and R4k on Ck. Then
s1, t1 ∈ V (C1)\V (C2), s2, t2 ∈ V (Ck)\V (Ck−1), and each of s1, t1, s2, t2
must have reduced distance at least k from every accumulation vertex
in F0.

A graph F is a crossed k-belt if it is F = F0 ∪ S0 ∪ S1 ∪ S2, where

– F0 is a planar k-belt graph as above;

– S1, S2 are disjoint ears of F0 with ends s1, t1 for S1 and s2, t2 for S2;

– and path S0, disjoint from F0, connects a vertex of S1 to a vertex of S2.

t1
s1

C1

Ck

s2t2

Rk

R3k

R2k

R4k

Figure 2: An illustration of the definition of a crossed k-belt graph.

This definition is illustrated in Figure 2. Notice that a crossed 1-belt
graph is always a subdivision of K3,3, and that removing an edge of S0 from
a crossed k-belt graph leaves it planar. Particularly, the graph in Figure 1
is a crossed 8-belt graph without accumulation vertices, and we call this
special case a “square-grid” 8-belt graph. We aim to show that crossed k-belt
graphs are k-crossing-critical with the exception of k = 2. (This exception
is remarkable in view of successful research progress into the structure of
2-crossing-critical graphs.)

The cruical property which motivated our construction is stated here:

Proposition 2.1 Let k be fixed. For every integer m there is a crossed k-belt

graph which is simple 3-connected and which contains more than m vertices

of each of degrees ℓ = 4, 6, 8, . . . , 2k − 2.

Proof. In this case a picture is worth more than thousand words. Figure 3
shows a local modification of a “square-grid” 8-belt graph which produces
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Figure 3:

accumulation vertices of degrees 14 and 12 while preserving its simplicity and
connectivity. It is straightforward to generalize this picture to any k > 3 and
all degrees ℓ = 6, 8, . . . , 2k − 2. Starting from a sufficiently large “square-
grid” k-belt graph F , we can produce in this way F ′ with arbitrarily many
accumulation vertices of each degree ℓ = 6, 8, . . . , 2k − 2, all of which are
sufficiently far from the vertices s1, t1, s2, t2 as in the condition (B3). 2

3 Crossing-criticality

We continue to use the notation from the definition of k-belt graphs also in
this section. Now we come to the main result of our paper.

Theorem 3.1 For k ≥ 3, every crossed k-belt graph is k-crossing-critical.

Proof. Let F be our k-belt graph, considered with notation as in the
definition above. In one direction, by a straightforward induction we argue
that any crossed k-belt graph, k ≥ 1, can be drawn such that the only
crossings occur between the path S0 and each of the belt cycles C1, . . . , Ck

once. This is trivial for k = 1. For k > 1, we draw a (k − 1)-belt subgraph
F ′ from Lemma 3.2 with k − 1 crossings between S0 and each of the belt
cycles C2, . . . , Ck, in a way that one end of S0 is inside the set X (see the
definition of type-X in Section 2) and the other end of S0 is in the face of Ck

not with X . By definition the remaining cycle C1 is nested inside each cycle
Ci, i > 1, and so to obtain an analogous drawing of (whole) F it is enough to
add one more crossing of S0 with C1 since C1 is also of type-X . Furthermore,
using analogous arguments, it is easy to verify that deleting any edge e of F
allows us to draw F − e with fewer than k crossings.

In the other direction, we assume an arbitrary drawing F of F , and we
prove that F has at least k edge crossings. There are two possibilities—either
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C1 is drawn uncrossed in F , or some edge of C1 is crossed in F . In the first
case we will argue that cr(F) ≥ 2(k − 1).

Let pi and qi, for i = 1, 2, . . . , k−1, denote some vertices in the intersection
of the belt cycle Ci+1 with the radial paths Rk−i and Rk+i, respectively; and
let a path Qi be formed as a union of the subpath of Rk−i from its end on C1

to pi, the subpath of Ci+1 between pi and qi intersecting Rk, and the subpath
of Rk+i from qi to its end on C1. A path Qk+i−1, for i = 1, 2, . . . , k − 1, is
defined analogously from the radial paths R3k−i and R3k+i and the cycle Ci+1.
Notice that all the defined paths Q1, . . . , Q2k−2 are pairwise edge-disjoint by
the construction of a plane k-belt and (B1), and since each Qi of them is
disjoint from s1, t1 on C1 (B3), Qi separates the vertices s1 and t1 from each
other.

By (B2) the cycle Ck is disjoint from C1 if k ≥ 3. Hence by Jordan’s
curve theorem, if the cycle C1 is not crossed in our drawing F , then the
whole component of F − V (C1) containing Ck must be drawn in one region
of the drawing of C1. This includes the path S1 connected with Ck via S2∪S0,
and all the paths Q1, . . . , Q2k−2 connected with Ck via the radial path Rk.
Thus, by Jordan’s curve theorem again, the drawing of S1 must cross the
drawings of each of Q1, . . . , Q2k−2, witnessing cr(F) ≥ 2k − 2 > k if k ≥ 3.

In the second possibility there is an edge f of C1 which is crossed in F . We
apply Lemma 3.2 to F and f , so obtaining a crossed (k−1)-belt subgraph F ′

of F −f , and conclude by induction that cr(F) ≥ 1+cr(F ′) = 1+(k−1) = k
if the claim holds true in the base case k = 3. Hence it remains to consider
(k = 3) a crossed 3-belt graph F with an optimal drawing F such that both
C1, C3 contain crossed edges f and f ′, respectively. (Since in the case k = 3
there can be no accumulation vertex in F , there is a symmetry between C1

and C3, and the case when C1 is uncrossed has already been solved above.)
We may easily choose f and f ′ with distinct crossings in F , since even if C1

crossed C3, they would have to cross twice as disjoint cycles. Hence we can
apply Lemma 3.2, with f and then with f ′, to obtain a 1-belt graph F ′′ (a
subdivision of K3,3), concluding that cr(F) ≥ 1 + 1 + cr(F ′′) = 1 + 1 + 1 =
3 = k. 2

Lemma 3.2 Let F be a crossed k-belt graph as above, and choose f ∈ E(C1).
Then F − f contains a crossed (k − 1)-belt subgraph F ′ having C2, . . . , Ck as

its collection of belt cycles.
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Proof. We refer to the notation in the definition of belt graphs. Let s′1, t
′

1

denote vertices of C1 ∩ C2 closest in C1 − f to s1, t1, respectively. So the
reduced distance between s1 and s′1 in F −f is 1, and s′1 6∈ V (C3) since (B3).
The same holds for t′1. Let S ′

1 ⊆ S1 ∪ C1 − f denote the ear of C2 with ends
s′1, t

′

1, and F ′

0 denote the subgraph of F induced on V (C2)∪ · · · ∪V (Ck). We
claim that F ′ = F ′

0 ∪ S ′

1 ∪ S2 ∪ S0 is a crossed (k − 1)-belt graph:
Concerning condition (B1), we restrict all the radial paths of F to

F ′

0, and we “drop” Rk−1, Rk+1, R3k−1, R3k+1 of them. Then we form R′

k

as an extension of Rk on C2 with the end s′1. (R′

k stays disjoint from
both Rk−2, Rk+2.) Analogously we get R′

3k with the end t′1 on C2. So
R1, . . . , Rk−2, R

′

k, Rk+2, . . . , R3k−2, R
′

3k, R3k+2, . . . , R4k are desired 4(k−1) ra-
dial paths in F ′. Condition (B2) is immediately inherited by F ′, and (B3)
also follows for F ′ with parameter k−1 since the reduced distance of s′1 from
s1 is 1 and s′1 ∈ V (C2) \ V (C3). 2

4 Additional remarks

Although the main motivation for our k-belt construction of crossing-critical
graphs was to answer a part of Bokal’s [1, Section 6] question, the critical
graph classes we obtain are so rich and flexible that they deserve further
consideration and applications.

We look here at one particular question studied in a series of papers [7, 6,
1]: Salazar has constructed infinite families of k-crossing-critical graphs with
average degree equal to any rational in the interval [4, 6). Then Pinontoan
and Richter [6] extended this to the interval (3.5, 4), and finally Bokal [1]
has found k-crossing-critical families for any rational average degree in the
interval (3, 6). (Average degrees ≤ 3 or > 6 cannot occur for infinite families,
and the average degree 6 remains an open case.)

Using our construction and Theorem 3.1, we can essentially duplicate
Salazar’s result in Proposition 4.1. Although this brings nothing new for
general crossing-critical graphs, we consider our addition worthy for two
reasons—our construction is very simple and explicit, and it extends the
result to the restricted subclass of almost-planar crossing-critical graphs.

Proposition 4.1 For every odd k > 3 there are infinitely many simple 3-
connected crossed k-belt graphs with the average degree equal to any given

rational value in the interval
[

4, 6 − 8

k+1

)

.
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Figure 4: An approach to a plane 13-belt graph with accumulation vertices
of degree 6.

Proof. Figure 4 illustrates a construction of a plane graph F1 that fulfills
all conditions of the definition of a plane 13-belt graph except (B3). Splitting

of a vertex is a simple-graph inverse (not necessarily unique) of the edge-
contraction operation. Figure 5 shows details of two “splitting” operations
which can be applied to any accumulation vertex of F1, and which preserve
simplicity and 3-connectivity of F1. Hence if we apply such splittings to all
(at least) accumulation vertices of F1 at reduced distance <k from s1, t1, s2,
or t2, we satisfy also (B3), and so construct a proper plane 13-belt graph F0

and subsequently a crossed 13-belt graph F .

ր

ց

Figure 5: Details of single-split (top) and double-split (bottom) operations in
the graph from Figure 4.

The construction F1 from Figure 4 can easily be generalized for any odd
k > 3. Let ℓ be the length of the C1-cycle in F1, and let the number of
accumulation vertices from F1 that are single-split during the construction
of F0 be m and the number of double-split accumulation vertices be m′.
Admissible values of m and m′ in our construction are at most the total
number of accumulation vertices m + m′ ≤ ℓ(k − 3)/2, and at least m ≥ 4k2

since it is enough to split k2 accumulation vertices from F1 near each of
s1, t1, s2, t2 to get a proper k-belt graph.
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An easy calculation shows that F0 has ℓ(k +1)/2+m+2m′ vertices, and
so F has ℓ(k + 1)/2 + m + 2m′ + 6 vertices. The average degree of F is

davg(F ) =
6kℓ − 2ℓ + 4m + 12m′ + 36

kℓ + ℓ + 2m + 4m′ + 12
= 6 −

8ℓ + 8m + 12m′ + 36

kℓ + ℓ + 2m + 4m′ + 12
. (1)

Now choose any rational davg ∈
[

4, 6− 8

k+1

)

. Then setting davg = 6−p

q
= 6− cp

cq

in (1) gives a system of two linear equations in two unknowns ℓ, m and
parameters k, c, m′, which is nonsingular for each k 6= 1. Its solution is

ℓ =
c

4k − 4
(4q − p) −

m′ + 3

k − 1
, m =

cp

8
−

12(m′ + 3)

8
− ℓ .

The expressions show that choosing our parameters as m′ +3 = 2(k−1) and
c = c′ · 8(k − 1) leads always to integer values of ℓ and m as

ℓ = c′(8q − 2p) − 2 , m = c′
(

(k + 1)p − 8q
)

− 3k + 5 . (2)

By the choice 6 − p

q
∈

[

4, 6 − 8

k+1

)

it is easy to show in (2) that always

m + m′ ≤ ℓ(k − 3)/2 − 3, and since (k + 1)p − 8q > 0 it follows that for
sufficiently large choices of c′ we get also m ≥ 4k2. Thus we get from (2)
an infinite sequence of admissible pairs ℓ, m (note fixed k and m′ = 2k − 5),
defining each one a crossed k-belt graph F with average degree exactly 6− p

q

as needed. This holds for any fixed odd k > 3. 2

In connection with the above construction it appears interesting to ask:

Question 4.2 Is there an infinite family of almost-planar simple 3-connec-

ted k-crossing-critical graphs with average degree equal to some d ∈ (3, 4)?
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