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Abstract. We introduce a new general polynomial-time construction- the fi-

bre construction- which reduces any constraint satisfaction problem CSP(H)
to the constraint satisfaction problem CSP(P ), where P is any subprojective
relational structure. As a consequence we get a new proof (not using uni-
versal algebra) that CSP(P ) is NP -complete for any subprojective (and so
for any projective) relational structure. The fibre construction allows us to
prove the NP -completeness part of the conjectured Dichotomy Classification
of CSPs, previously obtained by algebraic methods. We show that this con-
jectured Dichotomy Classification is equivalent to the dichotomy of whether
or not the template is subprojective. This approach is flexible enough to
yield NP -completeness of coloring problems with large girth and bounded
degree restrictions thus reducing the Feder-Hell-Huang and Kostočka-Nešeťril-
Smoĺıková problems to the Dichotomy Classification of coloring problems.

1. Introduction

Many combinatorial problems can be expressed as Constraint Satisfaction Prob-
lems (CSPs). This concept originated in the context of Artificial Intelligence (see
e.g. [23]) and is very active in several areas of Computer Science. CSPs includes
standard satisfiability problems and many combinatorial optimization problems,
thus are also a very interesting class of problems from the theoretical point of view.
The whole area was revitalized by Feder and Vardi [9], who reformulated CSPs as
homomorphism problems (or H-coloring problems) for relational structures. Moti-
vated by the results of [29] and [13], they formulated the following.

Conjecture 1.1. (Dichotomy) Every Constraint Satisfaction Problem is either
P or NP -complete.

Schaefer [29] established the dichotomy for CSPs with binary domains, and Hell-
Nešetřil [13] established the dichotomy for undirected graphs; it follows from [9] that
the dichotomy for CSPs can be reduced to the dichotomy problem for H-coloring
for oriented graphs. This setting, and related problems, have motivated intensive
research in descriptive complexity theory. This is surveyed, for example, in [6], [14]
and [11].

Recently the whole area was put into yet another context by Peter Jeavons and
his collaborators, in [15] and [4], when they recast the complexity of CSPs as prop-
erties of algebras and polymorphisms of relational structures. In particular, they
related the complexity of CSPs to a Galois correspondence between polymorphisms
and definable relations (obtained by Bodnarčuk et al. [1] and by Gaiger [10]; see
[27] and [28]). This greatly simplified elaborate and tedious reductions of particular
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problems and led to the solution of the dichotomy problem for ternary CSPs [2]
and other results which are surveyed, for example, in [4] and [12]. This approach
to studying CSPs via certain algebraic objects yields, in particular, that for ev-
ery projective structure H the corresponding CSP(H) is an NP -complete problem
[16], [15]. It also led to Conjecture 5.5, from [4], which strengthens Dichotomy
Conjecture 1.1 by actually conjecturing what the dichotomy is.

The success of these general algebraic methods gave motivation for some older
results to be restated in this new context. For example, [3] treats H-coloring
problems for undirected graphs in such a way that the dichotomy between the
tractable and NP -complete cases of H-coloring problem agrees with Conjecture
5.5.

In this paper we propose a new approach to the dichotomy problem. We define a
general construction- the fibre construction- which allows us to prove in a simple way
that for every projective structure H , CSP(H) is NP -complete. In fact we define a
subprojective structure and prove that for every subprojective relational structure
H , CSP(H) is NP -complete. We then show (Theorem 2.2) that this dichotomy
(to be or not to be a subprojective structure; Conjecture 2.4) coincides with the
dichotomy for CSPs that is conjectured in [4], thus reproving in a combinatorial
way the main result yielded by algebraic methods. This is stated as Corollaries 2.3
and 5.9.

The fibre construction lends easily to restricted versions of CSPs, so allows us
to address open problems from [8] and [17]. In particular, we reduce the Feder-
Hell-Huang conjecture that NP -complete CSPs are NP -complete for instances of
bounded degree, to the Dichotomy Classification Conjecture 2.4.

Our approach is motivated by the Sparse Incomparability Lemma [25] and
Müller’s Extension Theorem [24] (both these results are covered in [14]). Strictly
speaking, we do not need these results for the dichotomy results– Theorem 2.2 and
Corollary 2.3– but they provided an inspiration for early forms of the fibre con-
struction in [30] and [31] and for the general case presented here. However, we do
need a strengthening of these results to address the question of [17]. This is stated
in Section 7.

The fibre construction is simple, and is a refinement of gadgets, or indicator
constructions [13, 14], via familiar extremal combinatorial results [24, 25, 26]).
However, the simplicity becomes obscured by the notation when dealing with gen-
eral relational structures. Thus we find it useful to outline the fibre construction
in Section 3 by presenting a simple case of it, which, nonetheless, contains all the
essential ingredients of the general fibre construction.

In Section 2 we introduce all the definitions and state the main results. In Section
4 we prove Theorem 2.2. In Section 5 we relate this to the Dichotomy Classification
Conjecture. In Section 6.1 we consider colorings of bounded degree graphs and of
graphs with large girth. Section 7 contains some background material which was
both motivation and prerequisite to our paper. It also contains an extension of
some of these motivativing results.

2. Definitions and statement of results

We work with finite relational structures of a given type (or signature). A type
is a vector K = (ki)i∈I of positive integers, called arities. A relational structure
H of type K, consists of a finite vertex set V = V (H), and a ki-ary relation
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Ri = Ri(H) ⊂ V ki on V , for each i ∈ I. An element of Ri is called an ki-tuple.
Thus a (di)graph is just a relational structure of type K = (2). Its edges (arcs) are
2-tuples in the 2-ary relation R.

Throughout the paper, we will use script letters, such as G,H and P, to represent
relational structures except in the case that we are talking specifically of graphs.

Given two relational structures G and H of the same type, an H-coloring of G is
a map φ : V (G) → V (H) such that for all i ∈ I and every ki-tuple (v1, . . . , vki

) ∈
Ri(G), (φ(v1), . . . , φ(vki

)) is in Ri(H). For a fixed relational structure H (sometimes
called template), CSP(H) is the following problem decision problem:

Problem CSP(H)
Instance: A relational structure G;
Question: Does there exists an H-coloring of G?

We write G → H to mean that G has an H-coloring.
A relational structure H is a core if its only H-colorings are automorphisms. It

is well known, (see, for example, [14]) that G → H if and only if G′ → H′, where
G′ and H′ are the cores of G and H respectively. Therefore, in the sequel, we only
consider relational structures that are cores.

All relational structures of a given type form a category with nice properties. In
particular, this category has products and powers which are defined explicitly as
follows:

Given a relational structure H, and a positive integer d, the d-ary power Hd of
H is the relational structure of the same type as H, defined as follows.

• V (Hd) = {(v1, . . . , vd) | v1, . . . , vd ∈ V (H)}.
• For i ∈ I, ((v1,1, v1,2, . . . , v1,d), . . . , (vki,1, . . . , vki,d)) is in Ri(H

d) if and
only if all of (v1,1, v2,1, . . . , vki,1), . . . , (v1,d, . . . , vki,d) are in Ri(H).

An H-coloring of Hd (i.e. a homomorphism Hd → H) is called a d-ary poly-
morphism of H. A d-ary polymorphism φ is called a projection if there exists some
i ∈ 1, . . . , d such that φ((v1, . . . , vd)) = vi for any v1, . . . , vd ∈ V (H). Let Pol(H),
Aut(H) and Proj(H) be the sets of polymorphisms, automorphisms and projections
(of all arities) of H. A relational structure H is projective if for every φ ∈ Pol(H),
φ = σ ◦ π for some σ ∈ Aut(H) and some π ∈ Proj(H). It is shown in [21], that
almost all relational structures are projective.

The following definition of graphs that are, in a sense, locally projective, is our
principal definition.

Definition 2.1. A subset S of V (H) is called projective if for every φ ∈ Pol(H),
φ restricts on Sd, where d is the arity of φ, to the same function as does σ ◦ π
for some σ ∈ Aut(H) and some π ∈ Proj(H). S is called non-trivial if |S| > 1.
A relational structure H is called subprojective if it is a core and it contains a
non-trivial projective subset.

Note that any subset of a projective set is again projective. A structure is
projective if and only if the set of all its vertices is projective. It is easy to find
subprojective structures which fail to be projective.

The main tool of the paper is the following general indicator construction which
we call the fibre construction. This construction extends a construction first used
in a Ramsey theory setting in [30], and then proved in [31] in the present form, for
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H = K3 and P being projective. The construction is outlined in Section 3 and is
described in full in Section 4.

Theorem 2.2. Let H be any relational structure, and let P be any subprojective
relational structure. Then there exists a polynomial time construction, the fibre con-
struction MP

H
, which provides for any instance G of CSP(H), an instance MP

H
(G)

of P such that
G → H ⇐⇒ MP

H(G) → P.

Note that H and P need not be of the same type. Since CSP(K3) is NP -
complete, taking H to be K3 gives the following.

Corollary 2.3. For any subprojective relational structure P, the problem CSP(P)
is NP -complete.

In [15] and [16], algebraic techniques were used to show that CSP(P) is NP -
complete for any projective relational structure P. In [4] and [5], the techniques
of [15] were extended to show that CSP(H) is NP -complete for a certain class of
relational structures whose description requires some algebraic definitions that we
present in Section 5. It is conjectured in [4] (see Conjecture 5.5) that CSP(H) is
polynomial time solvable for any other relational structure H.

In Section 5 we show that any relational structure H for which CSP(H) is shown
to be NP -complete in [4] is subprojective (Proposition 5.4). Thus we give a simple
combinatorial proof of the results of [4], as they relate to CSPs. Further, we use
a reformulation of Conjecture 5.5 by Larose and Zádori [19] to show that it is
equivalent to the following.

Conjecture 2.4. (DichotomyClassificationConjecture)The problem CSP(H)
is NP -complete if and only if H is subprojective.

The fibre construction also has immediate applications to restricted versions of
CSP complexity.

The degree of a vertex v in a relational structure G is the number of tuples it
occurs in in

⋃

Ri, and the maximum degree, over all vertices in H, is denoted by
∆(G). G is called b-bounded if ∆(G) ≤ b.

It is conjectured in [8] that for any relational structure H, if CSP(H) is NP -
complete, then there is some finite b such that CSP(H) is NP -complete when
restricted to b-bounded instances.

In [31], this was shown to be true in the case of graphs and projective rela-
tional structures H. Furthermore, explicit bounds were given on b(H), which is
the minimum b such that CSP(H) is NP -complete when restriced to b-bounded
instances.

In Section 6.1, we observe the following corollary of the proof of Theorem 2.2.
The same was shown for projective relational structures in [31].

Corollary 2.5. For any subprojective relational structure P,

b(P) < (4 · ∆(P)6).

This greatly improves the bound on b(H) from [31] in the case of graphs H .
More importantly, this shows that if the Dichotomy Classification Conjecture 2.4
(and, equivalently, Conjecture 5.5 of [4]) is true, then so is the conjecture from [8].

Degrees and short cycles are classical restrictions for coloring problems. Recall
that the girth g(G) of a graph G is the length of the shortest cycle in G. In Section
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6.1 we use an extenstion (from Section 7) of the Sparse Incomparability Lemma [25]
to prove the following about sparse graphs.

Theorem 2.6. Let H be a subprojective graph, and ` a positive integer. Then the
problem CSP(H) is NP -complete when restricted to graphs with girth ≥ `.

This solves a problem of [17] where the question of CSPs restricted to instances
with large girth was studied. This result can be generalized further to relational
structures but we decided to stop here.

3. Outline of the Fibre Construction - Undirected Graph Case

Indicator constructions are various graph constructions that are often used to
reduce H-coloring for some structure H to H ′-coloring, for some other graph H ′.
Such constructions were used to great effect in, for example, [13].

One of the difficulties with indicator constructions is that one uses many ad hoc
tricks to find a constrution for particular graphs H ′ or H .

The fibre construction, provided by Theorem 2.2, is an indicator construction
that will suffice for all reductions.

We outline the proof Theorem 2.2 by describing the fibre construction for the
simple case where H is C5 and P isK3. Thus we give a polynomial time construction
that gives, for any instance G of CSP(C5), an instance M(G) of CSP(K3) such that

G→ C5 ⇐⇒ M(G) → K3.

Ours is not the most elegant known reduction of C5-coloring to K3-coloring, but
it has one advantage: it can be generalized to cover all CSP(H).

3.1. Notation. Throughout the paper, we will often define indexed sets of vertices
such as W ∗ = [w∗

1 , . . . , w
∗
d]. A copy W a of the set W ∗ will mean the indexed set

W a = [wa
1 , . . . , w

a
d ]. Given two copies W a and W b of the same set W ∗ we say that

we identify W a and W b index-wise to mean we identify the vertices wa
i and wb

i for
i = 1, . . . , d. When we define a function f on W ∗, we will assume it to be defined
on any copy W a of W ∗ by f(wa

α) = f(w∗
α) for all α = 1, . . . , d. We will often refer

to a function f on an indexed set W ∗ as a pattern of W ∗. In the case that the image
of f is contained in the vertex set of some graph H we speak about H-pattern of
W ∗.

3.2. The Fibre Gadget - a special case. Our construction consists of two parts.
In the first part we build a fibre gadget M which depends only on C5 and K3. The
important features of this gadget is that it will contain two copies W a and W b of
an indexed set W ∗, and that the following are true for a chosen set F = {fx | x ∈
V (C5)} of distinct K3-patterns of W ∗.

(i) Any K3-coloring of M , restricted to W a, (or to W b) is a pattern in F .
(ii) For any K3-coloring φ of M , φ restricts on W a to fx and on W b to fy for

some edge xy of C5.
(iii) For any edge xy (or yx) of C5, there is a K3-coloring φ of M that restricts

on W a to fx and on W b to fy.

We do not construct M here as it is a special case of the fibre gadget provided
by Lemma 4.1.
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M(G)

G

W b

W a

M

Figure 1. Fibre Construction

The name ‘fibre gadget’ comes from the relation of the vertices of W ∗ to the set
of K3-patterns F . We view w ∈ W ∗ as a fibre in V (K3)

|F |, whose ith postition
corresponds to its image under the ith pattern fxi

in F .

3.3. The Fibre Construction - a special case. In the second part of the con-
struction, we take an instance G of CSP(C5) and construct M(G), from |E(G)|
copies of M , as follows. (See Figure 1.)

(i) For each vertex v of G let W v be a copy of W ∗.
(ii) For each edge uv of G let Muv be a copy of the fibre gadgetM . Index-wise,

identify Wu with the copy of W a in Muv and W v with the copy of W b.

Given a K3-coloring φ of M(G), φ will restrict on W v for each vertex v of G
to a pattern in F . Thus φ′ : V (G) → V (C5) is well defined by φ′(v) = x where φ
restricts on W v to the pattern fx. Moreover, by property (ii) of the fibre gadget
M , φ′ is a C5-coloring of G.

On the other hand, given a C5-coloring φ′ of G we define a K3-coloring φ of
M(G) as follows. For all vertices v of G, let φ be fφ′(v) on the set W v. For every
edge uv of G, the sets Wu and W v are already colored by φ, and we must extend
this coloring to Muv. Now φ restricts on Wu to fφ′(u) and on W v to fφ′(v), and
φ′(u)φ′(v) is an edge of C5, so by property (iii) of M , φ can be extended to Muv.
Thus φ can be extended to a K3-coloring of M(G).

3.4. Remark. This outline gives only the idea of the general proof. There are
several obstacles. For example, in the general case of relational structures, we will
need a different fibre gadget for each relation. And, of course, our relations need
not be symmetric. In the general case, the set F in the Fibre Gadget will be S-
patterns, instead of K3-patterns, and we will generally only be able to define them
up to a permutation of S. To make sure that the permutation of S is constant over
all copies of M (or at least all copies of M in a component of M(G)) we will ensure
that for any pattern fi in F , σ ◦ fi is not in F for any non-identity permutation σ
of S.

These are just technicalities which can be handled with care.

4. Proof of Theorem 2.2

We follow the same strategy outlined in Section 3. In particular, we use patterns
as introduced in 3.1.
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4.1. The Fibre Gadget. The following lemma generalises the fibre gadget that
was introduced in 3.2.

Lemma 4.1. Let H be any relational structure, and P be any subprojective rela-
tional structure. Let S be a non-trivial projective subset of P. Then there exists
an indexed set W ∗ of independent vertices, and a set F = {fx | x ∈ V (H)} of
S-patterns of W ∗ such that for every relation R of H there is an instance MR of
P satisfying the following conditions, where d is the arity of R.

(i) V (MR) contains copies W 1, . . . ,W d of W ∗.
(ii) For every fx in F , σ ◦ fx is not in F for any non-identity σ ∈ Aut(P).
(iii) For any P-coloring φ of MR, there is some σ ∈ Aut(P) and some

(x1, . . . , xd) ∈ R, such that for i = 1, . . . , d, φ restricts to σ ◦ fxi
on W i.

(iv) For any d-tuple (x1, . . . , xd) ∈ R there is a P-coloring φ of MR that re-
stricts on W i to fxi

for i = 1, . . . , d.

The proof depends on the following simple lemma which is motivated by a result
of Müller, which will be stated as Theorem 7.1.

Lemma 4.2. Let P be a subprojective relational structure, and S be a non-trivial
projective subset of P. Let W be an indexed set, and let Γ = {γ1, . . . , γd} be a set
of S patterns of W . Then there exists a relational structure M, with W ⊂ V (M),
such that the set of P-colorings of M, when restricted to W , is exactly

{α ◦ γ | α ∈ Aut(P), γ ∈ Γ}.
Moreover, assume that the set Γ satisfies the following condition (*).

For any pair w 6= w′ ∈ W , there exists some γ ∈ Γ for which
γ(w) 6= γ(w′).

Then we can put M ∼= Pd.

Proof of Lemma 4.2. First assume that Γ satisfies (*). Put M = Pd and for each
w ∈ W , identify w with the vertex (γ1(w), . . . , γd(w)) of M. By condition (*), these
are distinct elements of V (M).

Since S is a projective subset of P, the only P-colorings of M = Pd restrict on Sd,
which contains W , to α ◦π where α is an automorphism of P and π is a projection.
But the projections restrict on W to exactly the maps of Γ, so the lemma follows.

Now consider the case that Γ does not satisfy (*). Let W ′ be the maximum
subset of W for which (*) holds on the restriction of Γ to W ′. Apply this Lemma
to W ′ and to the restrictions of patterns in Γ to W ′. We get the structure M′,
M′ ∼= Pd, containing the vertices W ′ with all above properties. For every vertex
w ∈ W \W ′ that has the same images under all γ ∈ Γ as some w′ in W ′, add a
new vertex w to M′ with all the same neighbours as w′. Call this new relational
structure M.

To complete the proof of the lemma, we show:

Claim 4.3. φ(w) = φ(w′) for every w ∈ W \W ′, and every P-coloring φ of M.
Thus φ restricts on W to some α ◦ γ.

This claim is obvious for d = 1 as in this case it suffices to use the fact that P

is a core. So assume d > 1. The function ψ : V (M) → V (M) that exchanges w
and w′, and fixes all other vertices, is clearly an automorphism. If φ(w) 6= φ(w′),
then φ ◦ ψ is P-coloring of M that when restricted to Sd differs from φ only on w′.
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We show that this is impossible by showing that for a P coloring φ of M, φ(w′) is
uniquely determined by the definition of φ on the rest of Sd.

Let w′ = (s1, . . . , sd), where s1, . . . , sd ∈ S, and assume that not all si are the
same. Let T be the subset of Sd consisting of w′ and (s1, . . . , s1) and all d-tuples
that can be created from these two d-tuples by permuting the set {s1, . . . , sd}. Let
d′ = |{s1, . . . , sd}|. Since φ = α ◦ π, φ takes (d′ − 1)! elements of T to each of d′

images. Thus the image of w′ is determined by counting the images of the other
elements of T .

If w′ = (s, . . . , s) for some s ∈ S, then the same argument works using any other
non-constant d-tuple that has s in some slot.

This finishes the proof of the claim and of Lemma 4.2.
�

Proof of Lemma 4.1. Let H be a relational structure, and P be a subprojective
relational structure with the non-trivial projective subset S. As S is non-trivial,
it contains a two element subset S′ = {0, 1}. Let W ∗ = [w∗

x | x ∈ V (H)] be an
indexed set of vertices. Let F = {fx | x ∈ V (H)} where fx is the {0, 1}-pattern of
W ∗ defined by

fx(w∗
y) =

{

1 if x = y
0 otherwise.

Now let R be any d-ary relation of H. Let W =
⋃d

i=1W
i, where W i is a copy

of W ∗, and let Γ = {γr | r = (x1, . . . , xd) ∈ R} where γr is the {0, 1}-pattern of W
defined by

For i = 1, . . . , d, γr restricted to W i is equal to fxi
.

Apply Lemma 4.2 to W and Γ and let MR be the instance of P that it returns.
We must show that MR satisfies the conditions (i - iv) of the lemma. Since

the graph MR provided by Lemma 4.2 contains W =
⋃d

i=1W
i, condition (i) is

satisfied. Any fx ∈ F maps one vertex of W ∗ 1 and the rest to 0. This property is
not preserved under any non-identity permutation of V (P) so condition (ii) is met.
Conditions (iii) and (iv) come directly from our definition of Γ and the conclusion
of Lemma 4.2. �

4.2. The Fibre Construction. The fibre gadgets are put together with the fol-
lowing construction, which formalises the process outlined in 3.3.

Construction 4.4. Let H be a relational structure, and P be a subprojective rela-
tional structure. Let W ∗, F , and MR for every relation R of H, be as in Lemma
4.1.

Let G be an instance of CSP(H), and construct MP

H
(G) as follows.

(i) For each vertex v of G let W v be a copy of W ∗.
(ii) For each tuple r = (v1, . . . , vd) in each relation R of G (where the relation

R has arity d) let Mr
R be a copy of MR. For i = 1, . . . d identify W vi with

W i in Mr
R index-wise.

So MP

H
(G) consists of |V (G)| copies of W ∗ and |R| copies of MR for each relation

R of G. All vertices are distinct unless identified above.



A New Combinatorial Approach to the CSP Dichotomy Classification 9

4.3. Proof of Theorem 2.2.

Proof. Let H be a relational structure and P be a subprojective relational structure
with nontrivial projective subset S. For any instance G of CSP(H) let M = MP

H
(G)

be the structure defined by the Fibre Construction (4.4).
We show that

G → H ⇐⇒ M → P.

Since Construction 4.4 is polynomial in |V (G)| this will prove the theorem. Discon-
nected components of G correspond to disconnected components of M, it is thus
enough to prove the theorem for connected structures G.

Let φ be a P-coloring of M. By property (iii) of Lemma 4.1 there is some
σr ∈ Aut(P) for each tuple r in each relation R, such that for each copy of W ∗ in
Mr

R, φ restricts on W ∗ to σr ◦ fi for some fi in F . By the connectedness of G, and
property (ii) of Lemma 4.1, all of these σr are the same permutation. We assume,
wlog, that they are all the identity. Thus φ restricts on the copy W v of W ∗ in M

for each v ∈ V (G), to some pattern in F .
Define φ′ : V (G) → V (H) by φ′(v) = x where φ restricts on W v to fx. For any

tuple r = (v1, . . . , vd) in any relation R of G, this implies that (φ′(v1), . . . , φ
′(vd)) =

(x1, . . . , xd) where φ restricts on W vi to xi. But for i = 1, . . . , d, W vi is identified
with the copy of W i in Mr

R, and so by property (iii) of Lemma 4.1, (x1, . . . , xd) is
in the relation R of H. Thus φ′ is an H-coloring of G.

On the other hand, let φ′ be an H-coloring of G, and define φ : V (M) → V (P)
as follows. For all v ∈ V (G), set φ equal to fφ′(v) on W v. Now we must show
that for each tuple r = (v1, . . . , vd) or each relation R of G, φ can be extended to a
P-coloring of Mr

R.
The copiesW 1, . . . ,W d of W ∗ in Mr

R are identified with the copiesW v1 , . . . ,W vd

respectively. Thus φ restricts on them to the patterns fφ′(v1), . . . , fφ′(vd) respec-
tively.

�

5. CSP Dichotomy Conjecture - algebraic approach

In [4], the universal algebra approach of [15] is extended to show that CSP(H)
is NP -complete for a large class of CSPs. A conjecture is made that CSP(H) is
polynomial time solvable for all other CSPs H. In [19], this conjecture is then
transported to the language of posets. In this section, we recall the necessary
definitions of [4] and [19] to show that all H for which they show CSP(H) to be
NP -complete, are subprojective.

We present only those definitions that we must, so this is by no means a good
introduction to the powerful techniques used in [4] and [19].

5.1. Universal Algebra. An algebra A = (A,F ) consists of a non-empty set A,
and a set F of finitary operations on A. It is finite if A is finite. Given a relational
structure H, recall that Pol(H) is the set of polymorphisms of H. This defines an
algebra AH = (V (H),Pol(H)). We say that AH is NP -complete if CSP(H) is.

The following two definitions are directly from [4].

Definition 5.1. Let A = (A,F ) be an algebra and B a subset of A such that,
for any f ∈ F and for any b1, . . . , bd ∈ B, where d is the arity of f , we have
f(b1, . . . , bd) ∈ B. Then the algbera B = (B,F |B) is called a subalgebra of A,
where F |B consists of the restrictions of all operations in F to B.
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Definition 5.2. Let B = (B,F1) and C = (C,F2) be such that F1 = {f1
i | i ∈ I}

and F2 = {f2
i | i ∈ I}, where both f1

i and f2
i are di-ary, for all i ∈ I. Then C is

a homomorphic image of B if there exists a surjection ψ : B → C such that the
following holds for all i ∈ I, and all b1, . . . , bdi

∈ B.

ψ ◦ f1
i (b1, . . . , bdi

) = f2
i (ψ(b1), . . . , ψ(bdi

)).

Given an algebra C = (C,F ), the term operators of C refer to the set of finitary
operators of C that preserve the same relations on C as F does. Thus all operators
in F are term operators. A d-ary operator f of F is essentially unary if f = f ′◦π for
some projection π : Cd → C and some non-constant function f ′ : C → C. Because
this f ′ is non-constant, if F has any essentially unary operators, then |C| ≥ 2.

The following is Corollary 7.3 in [4].

Theorem 5.3. A finite algebra A is NP -complete if it has a subalgebra B with a
homomorphic image C, all of whose term operators are essentially unary.

Using our main theorem, the following reproves Theorem 5.3 in the case that
A = AH for some core relational structure H.

Proposition 5.4. Let H be a relational structure such that AH has a subalgebra
B = A(B,F1 = Pol(H)|B) with a homomorphic image C = A(C,F2), all of whose
term operators are essenially unary. Then H is subprojective.

Proof. Let ψ be the surjective homomorphism of B to C. Since all the elements of
FC are essentially unary, |C| ≥ 2, so there exist b and b′ in B such that ψ(b) 6= ψ(b′).
We show that {b, b′} is a projective subset of H.

Let φ be a d-ary polymorphism in Pol(H). Then because B is a subalgebra
of AH, φ restricts on B to some member f1 of F1. We now consider f1 further
restricted to {b, b′}, we must show that it restricts to the same function as σ ◦π for
some σ ∈ Aut(H) and π ∈ Proj(H).

Let b1, . . . , bd ∈ {b, b′}. Then because C is the homomorphic image of B via the
homomorphism ψ, we have that

ψ ◦ f1(b1, . . . , bd) = f2(ψ(b1), . . . , ψ(bd))

for some f2 ∈ F2. By assumption, f2 is essentially unary, so f2 = g ◦ π for some
projection π and some non-constant function g. Thus ψ ◦ f1 = g ◦ π ◦ (ψ × · · · ×
ψ) = g ◦ ψ ◦ π. Since ψ(b) 6= ψ(b′), ψ is invertible when restricted to {b, b′}, thus
f1 = ψ−1 ◦ g ◦ ψ ◦ π. Letting σ = ψ−1 ◦ g ◦ ψ we have shown that f1, so φ restricts
on {b, b′}d to the same function as σ ◦ π. This was for any φ ∈ Pol(H), and so
{b, b′} is a projective subset of H. �

Conjecture 5.5. ([4]) For a relational structure H, CSP(H) is NP -complete if
and only if AH has a subalgebra B = A(B,F1 = Pol(H)|B) with a homomorphic
image C = A(C,F2), all of whose term operators are essenially unary.

5.2. Taylor Operations. An idempotent d-ary operation φ on an algebra A =
(A,F ) is called a Taylor operation if for every a 6= b ∈ A and every i ∈ 1, . . . , d,
there is some way to fill in the slots in the following equation, with some choice of
a and b, such that it is true. (Here, the shown a and b are both in the ith slot of
φ.)

φ(−,−, . . . ,−, a,−, . . . ,−,−) = φ(−,−, . . . ,−, b,−, . . . ,−,−)
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The following result immediately follows from a result of Taylor [32] that charac-
terises all algebras without any Taylor operations (see Theorem 4 and Proposition
5 of [19]).

Theorem 5.6 ([19]). For a relational structure H, AH has a subalgebra with a
homomorphic image all of whose term operators are essentially unary, if and only
if there are no Taylor operations among the term operators of AH.

With this theorem, Larose and Zádori get that the following statement is equiv-
alent to Conjecture 5.5.

Conjecture 5.7. The problem CSP(H) is NP -complete if and only if there are no
Taylor operations among the term operators of AH.

We can now prove the following.

Proposition 5.8. Let H be a subprojective relational structure. Then there are no
Taylor operations among the term operations of the algebra AH.

Proof. Since H is subprojective, it has some 2 element projective subset {a, b}.
Let φ be any d-ary term operation, i.e., polymorphism, of H. Then φ restriced to
{a, b}d is equal to α ◦ π for some projection π and some automorphism α. Assume
wlog that π = π1. Then

φ(a,−,−, . . . ,−) = α(a) 6= α(b) = φ(b,−,−, . . . ,−)

for any choice of a and b in the empty slots. Thus φ is not a Taylor operation. �

By Propositions 5.4 and 5.8, and Theorem 5.6 we get the following.

Corollary 5.9. The Conjectures 2.4, 5.5, and 5.7 are equivalent.

6. Restricted CSPs

6.1. Degree Bounded CSPs. We mentioned in the introduction, that because
CSP(K3) is NP -complete, taking H = K3, Corollary 2.3 follows from Theorem
2.2. In fact, CSP(K3) is NP -complete for 4-bounded instances G. Using this we
now prove Corollary 2.5.

Proof. When H = K3, the set Γ in the proof of Lemma 4.1 contains six pattens,
and satisfies condition (*) of Lemma 4.2. Thus the one fibre gadget MR used in
the construction G → MP

H
(G) is P6, and so has maximum degree ∆(P)6. Since

any 4-bounded instance G yields a (4 ·∆(P)6)-bounded structure MP

H
(G), CSP(P)

is NP -complete for (4 · ∆(P)6)-bounded instances. �

With some work we could reduce the 4 in the above proof to a 3 and could reduce
the exponent 6 to the minimum number of tuples in all relations of a relational
structure H for which CSP(H) is NP -complete. We will not include this though,
as even it is probably not tight. In fact, we conjecture that b(H) ≤ ∆(H)+o(∆(H)).
The highest known value of b(H), in terms of ∆(H), is for the complete graphs. It

follows from [7] and [22] that b(Kk) is about k +
√
k for large enough k.



12 JAROSLAV NEŠETŘIL AND MARK H. SIGGERS

6.2. Girth. The results in this subsection are for graphs. The following lemma is
proved in [24] in the case that P is a complete graph, and is proved in [26] without
item (iii) in the case that P is projective. In both of these cases, S = V (P ).

Lemma 6.1. Let P be a subprojective graph with projective subset S, and let ` ≥ 3
be an integer. Let W be an indexed set, and let Γ = {γ1, . . . , γd} be a set of S
patterns of W . Then there exists a relational structure M with W ⊂ V (M), such
that the following are true:

(i) The set of P -colorings of M , when restricted to W , is exactly

{α ◦ γ | α ∈ Aut(P ), γ ∈ Γ}.

(ii) M has girth at least `.
(iii) The distance, in M , between any two vertices of W is at least `.

Proof. This lemma follows from Lemma 4.2, and Theorem 7.5 which is a local form
of the main result of [26]. The result will be stated in Section 7. �

Using this in place of Lemma 4.2 in our construction, we now prove Theorem
2.6.

Proof. Let P be a graph with projective subset S, and let G be an instance of
CSP(P ). Let ` ≥ 3 be an integer. Assume that Lemma 6.1 is used in place of 4.2
in the proof of Lemma 4.1, and then use this version of Lemma 4.1 in Construction
4.4. The effect of this is that our one fibre gadget MR has the added property
that it has girth `, and distance ` between vertices of W . We verify that the graph
MP

K3
(G) provided by Construction 4.4 has girth `. This will imply that CSP(P ) is

NP -complete for graphs of girth `.
Assume that MP

K3
(G) contains a cycle C of length less than `. Since the fibre

gadget MR has girth `, C must contain edges of more than one copy of MR. Thus
C has to contain at least two vertices of W in some copy of MR. However, these
vertices are distance at least d apart, so this is a contradiction, and MP

K3
(G) contains

no cycles of length less than `. �

7. Coloring Theoreoms - Combinatorial Background

There are two results which underlie our construction, these results go back to
[24] and [25]. In a response to a problem of Erdős, Müller proved [24] the following.

Theorem 7.1. Let A be a set, k, l positive integers, k ≥ 3, and let π1, . . . , πt be
distinct partitions of A each into at most k nonempty classes. Then there exists a
graph M ′ with the following properties.

(i) g(M ′) > `;
(ii) χ(M ′) = k;
(iii) up to a permutation of colors, every coloring of M ′ by k colors is the unique

extension of one of the partitions πi for an 1 ≤ i ≤ t.

This theorem has been generalized in [26] as follows. We need a definition: A
graph H is said to be pointed for graph M (or M -pointed) if the following is true.
For any two homomorphisms g, g′ : M → H , if g(x) = g′(x) for all x 6= x0 (for
some fixed vertex x0 ∈ V (M)), then g(x0) = g′(x0).
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M ′

g

HM
f

c

Figure 2.

Theorem 7.2. For every graph M and every choice of positive integers k and l
there exists a graph M ′ together with a surjective homomorphism c : M ′ → M with
the following properties:

(i) g(M ′) > `;
(ii) For every graph H with at most k vertices and there exists a homomor-

phism g : M ′ → H if and only if there exists a homomorphism f : M → H.
(iii) For every M -pointed graph H with at most k vertices and for every homo-

morphism g : M ′ → H there exists a unique homomorphism f : M → H
such that g = f ◦ c.

The conditions (ii) and (iii) may be expressed saying that for any choice of
g : M ′ → H or f : M → H , there is a unique way to complete the commuting
diagram in Figure 2.

This result generalizes the following result known as the Sparse Incomparability
Lemma, proved in [25].

Theorem 7.3. For every pair M,H of graphs such that H is M -colorable and M
fails to be H-colorable there exists a graph M ′ with the following properties:

(i) g(M ′) > `
(ii) M ′ is M -colorable and M ′ fails to be H-colorable.

For the proof of Theorem 2.6, we needed a generalization of Theorem 7.2. We
now provide this, as Theorem 7.5, via the following localization of the notion of
M -pointed.

Definition 7.4. Let M,H be graphs. Subsets SM of V (M) and SH of V (H) are
said to be (M,H)-pointed subsets if the following is true. For any two homomor-
phisms g, g′ : M → H , if g(x) = g′(x) ∈ SH whenever x 6= x0 and x ∈ SM (for
some fixed vertex x0 ∈ SM ), then g(x0) = g′(x0) ∈ SH .

Theorem 7.5. For every graph M and every choice of positive integers k and `
there exists a graph M ′ with the following properties.

(i) g(M ′) > `;
(ii) For every graph H with at most k vertices and there exists a homomor-

phism g : M ′ → H if and only if there exists a homomorphism f : M → H.

Furthermore, there exists a surjective homomorphism c : M ′ → M such that for
every (M,H)-pointed subsets SM ⊂ V (M), SH ⊂ V (H), where H has at most k
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vertices, and for every homomorphism g : M ′ → M , the following properties also
hold.

(iii) There exists an H-coloring f of M such that g and f ◦ c restricts to the
same function on c−1(SM ). Moreover, if there are two such H-colorings
f1 and f2, then f1(x) = f2(x) for every x ∈ SM .

(iv) There exists a set {s′ ∈ c−1(s) | s ∈ SM} of represetatives of the sets
c−1(s) that are pairwise distance at least ` apart.

Proof. We follow the proof of Theorem 7.2 from [26] very closely, and we refer to
this paper for many of the details.

Where M has a vertices {1, . . . , a} and q edges, let V1, . . . , Va be disjoint sets of
n vertices each. Let M0 be the graph with vertex set V1 ∪ V2 ∪ · · · ∪ Va, and edge
set

{xy | x ∈ Vi, y ∈ Vj , ij ∈ E(M)}.
Thus M0, which is often referred to as the n-blowup of M , has qn2 edges. Let M

be the set of all subgraphs of M0 with m = bqn1+εc edges, where 0 < ε < 1/`. Let
δ = min{ε`, 1/k}.

Asymptotically, almost all graphs G of M satisty the following properties.

(a) G has at most nδ cycles of length ≤ `, moreover, these cycles are vertex
disjoint.

(b) For any two non-empty sets A ⊂ Vi and B ⊂ Vj of V (G) (with ij in M)
such that |A| + |B| ≥ δn, the subgraph of G induced by A ∪ B is not a
matching (set of mutually disjoint edges,) with fewer than nδ edges.

(c) There is a choice of vertices {v1, . . . , va}, such that vi ∈ Vi, and for any
1 ≤ i 6= j ≤ a, the distance in G between vi and vj is at least `.

It was shown in [26], using standard calculations, that asymptotically, almost all
graphs G of M satisfy properties (a) and (b), thus we prove that almost all graphs
of M satisfy properties (a) - (c), by proving the following claim.

Claim 7.6. Almost all graphs G of M satisfy property (c) above.

Proof. For a graph G chosen uniformly at random from M, the probability that a
given vertex u is distance ` or less from a vertex v is less than n`ε−1. Thus the
probability that a given set of a vertices {v1, . . . , va}, with vi ∈ Vi for all i, fail to
satisfy property (c) is less than a2n`ε−1. As ε < 1/`, this goes to zero as n goes
to infinity, so not only do almost all graphs G of M satisfy property (c), almost all
choices of the set {v1, . . . , va} in almost all G satisfy (c). �

We now continue with the proof of Theorem 7.5. Let G be any graph of M

that satisfies the properties (a), (b) and (c). It is clear that we can remove a
matching of size at most nδ from G and end up with a graph M ′ having the
following corresponding properties.

(a’) g(M ′) > `
(b’) For any two non-empty sets A ⊂ Vi and B ⊂ Vj of V (M ′) (with ij in

M) such that |A| + |B| ≥ δn, there is at least one edge of M ′ with both
endpoints in A ∪B.

(c’) Same as (c).

We now verify that M ′ satisfies properties (i) - (iv) of the theorem. Property (i)
is given by property (a’).
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Letting c : M ′ →M be the M -coloring defined by

c(v) = i where v ∈ Vi,

it is clear that for every graph H , and every H-coloring f of M , g = f ◦ c is an
H-coloring of M ′. To finish the proof that M ′ satisfies property (ii), it suffices to
show that for any graph H with at most k vertices, and any H-coloring g of M ′

there is an H-coloring f of M .
Let such an H-coloring g of M ′ be given, and define f : M → H as follows.

For each vertex i of M , there exists, by the pigeonhole principle, a vertex h of H
such that |Vi ∩ g−1(h)| ≥ n/k > δn. Let f(i) = h for any such h. We now show
that f is an H-coloring of M . Let ij be an edge of M . There is an edge of M ′

whose endpoints map to f(i) and f(j) (under g), and so f maps ij to an edge of
H . Indeed, the sets A = Vi ∩ g−1(f(i)) and B = Vj ∩ g−1(f(j)) both have size at
least nδ and so by property (b’), there is an edge of M ′ with one endpoint in A and
one in B. This edge clearly maps to f(i)f(j), and so property (ii) is proved.

To show property (iii) of the theorem, assume that SM ⊂ V (M) and SH ⊂ V (H)
are (M,H)-pointed subsets, where H has at most k vertices, and assume that g is
an H-coloring of M ′.

The main point is that for any vertex s in SM , g is constant on the set Vs. Indeed
let v be any vertex of Vs and define fv : V (M) → V (H) by letting fv(s) = v, and
otherwise letting fv be defined as f in the proof of property (ii). That is, for i 6= s,
set fv(i) = h for some vertex h of H such that |Vi∩g−1(h)| ≥ n/k > δn. By almost
the same argument as before, we get that fv is an H-coloring of M . Thus if g is
not constant on Vj we get different H-colorings of M that differ only on j ∈ SM .
This contradicts the fact that SM and SH are (M,H)-pointed.

The statement that g and f ◦ c restrict on SM to the same function, uniquely
determines the function f on SM , so we just have to show that there exists such an
f . Because g is constant on Vs for all s ∈ SM , the function f defined as in the proof
of property (ii) is such that g and f ◦ c restrict on c−1(SM ) to the same function.
Thus M ′ has property (iii).

Property (iv) of the theorem follows directly from property (c’), so the theorem
is proved.

�

8. Summary and Concluding Remarks

We introduced a new Dichotomy Classification Conjecture and showed that this
combinatorial conjecture is equivalent to other conjectured dichotomies derived by
algebraic methods. It turns out that this approach to the complexity of CSPs is
flexible enough to yield a solution to problems about CSPs restricted to structures
with bounded degrees or with large girth. As our reduction (yes, one reduction is
enough) is explicit (and easy) we expect that our results will have other applications
and will inspire a new approach to the Dichotomy Conjecture itself. In particular,
as we want to demonstrate in a forthcomming paper this also yields a new approach
to the (undirected) graph H-coloring problem.
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