
Comparing universal covers in polynomial time

Jǐŕı Fiala1 and Daniël Paulusma2

1 Charles University, Faculty of Mathematics and Physics,
DIMATIA and Institute for Theoretical Computer Science (ITI) ? ? ?,

Malostranské nám. 2/25, 118 00, Prague, Czech Republic.
fiala@kam.mff.cuni.cz

2 Department of Computer Science, Durham University †,
Science Laboratories, South Road,

Durham DH1 3EY, England.
daniel.paulusma@durham.ac.uk

Abstract. The universal cover TG of a connected graph G is the unique (possible infinite)
tree covering G, i.e., that allows a locally bijective homomorphism from TG to G. Universal
covers have major applications in the area of distributed computing. It is well-known that if a
graph G covers a graph H then their universal covers are isomorphic, and that the latter can
be tested in polynomial time by checking if G and H share the same degree refinement matrix.
We extend this result to locally injective and locally surjective homomorphisms by following a
very different approach. Using linear programming techniques we design two polynomial time
algorithms that check if there exists a locally injective or a locally surjective homomorphism,
respectively, from a universal cover TG to a universal cover TH . This way we obtain two
heuristics for testing the corresponding locally constrained graph homomorphisms. As a
consequence, we have obtained a new polynomial time algorithm for testing (subgraph)
isomorphism between universal covers, and for checking if there exists a role assignment
(locally surjective homomorphism) from a given tree to an arbitrary fixed graph H.

1 Introduction

In this paper, we consider simple, undirected, possibly infinite but connected graphs.
See [5] for undefined graph terminology. A (graph) homomorphism f : G → H from
a graph G = (VG, EG) to a graph H = (VH , EH) is a mapping VG → VH such
that (f(u), f(v)) ∈ EH whenever (u, v) ∈ VG. Graph homomorphisms have a great
deal of applications in graph theory, computer science and other fields, see the
monograph [16].

A graph homomorphism f from a graph G to a graph H can be required to
satisfy some local constraint [9]. If, for every u ∈ VG the restriction of f , i.e. the
mapping fu : N(u) → N(f(u)), is bijective, we say that f is locally bijective [1, 18],
and we write G B−→ H. If, for every u ∈ VG, fu is injective, we say that f is locally
injective [10, 11], and we write G I−→ H. If, for every u ∈ VG, fu is surjective, we say
that f is locally surjective [13, 19], and we write G S−→ H.

Locally bijective homomorphisms, also called graph coverings, originally arose in
topological graph theory [21], and have applications in distributed computing [4], in
recognizing graphs by networks of processors [2], and in constructing highly transi-
tive regular graphs [3]. Locally injective homomorphisms, also called partial graph
coverings, have been studied due to their applications in models of telecommunica-
tion [11], in distance constrained labelings of graphs with applications to frequency

? ? ? Supported by the Ministry of Education of the Czech Republic as project 1M0021620808.
† Supported by EPSRC as project EP/D053633/1.



assignment [12], and as indicators of the existence of homomorphisms of derivate
graphs (line graphs) [23]. Locally surjective homomorphisms, also called role assign-
ments, have applications in distributed computing [6] and social science [8, 25].

The main computational question is whether for every graph H the problem of
deciding if an input graph G has a homomorphism of given type ∗ = B, I or S to
the fixed graph H can be classified as either NP-complete or polynomially solvable.
For the locally surjective homomorphisms this classification is known [13], with the
problem for every connected H on at least three vertices being NP-complete. For
the locally bijective and injective cases there are many partial results, see e.g. [11,
18], but even conjecturing a classification for these two cases is problematic. In this
paper, we continue the study started in [14] in order to get more insight in the
structure of these computational issues.

1.1 Problem formulation

The existence of a locally constrained homomorphism imposes a partial order on the
class of connected graphs C for each of the three local constraints B, I, and S [14].
We can relax these three orders in two different ways. This leads to two different
heuristics for testing if G

∗−→ H for two given graphs G and H under each type
∗ = B, I, S.

Firstly, we can transform the partial orders from the domain of finite graphs to
the domain of matrices. An equitable partition of a connected graph G is a partition
of its vertex set in blocks B1, . . . , Bk such that each vertex in each Bi has the same
number mi,j of neighbors in Bj, and we call the k × k matrix M = (mi,j)1≤i,j≤k a
degree matrix of G. We say that a vertex u is of the i-th sort if u ∈ Bi. Equitable
partitions are well-known in algebraic graph theory, see e.g. [15]. Note that the
degree refinement matrix of G, is the degree matrix corresponding to the coarsest
equitable partition of G (in which the blocks are ordered in a unique way), and an
adjacency matrix of G can be seen as a degree matrix with the maximum number
of rows.

Let M be the set of all degree matrices. We define three relations (M, ∃B−→),
(M, ∃I−→) and (M, ∃S−→) imposed on the set of degree matrices by the existence of
graph homomorphisms of the corresponding local constraint, i.e., M ∃∗−→ N if and
only if G

∗−→ H for two graphs G, H ∈ C that have degree matrix M and N , respec-
tively. All three relations are partial orders [14], and a successful matrix comparison
of each type is a necessary condition for the corresponding graph comparison.

Secondly, we can transform the partial orders from the domain of finite graphs
to the domain of possibly infinite trees. The universal cover TG of a connected graph
G is the only tree that allows a locally bijective homomorphism TG

B−→ G. A generic
construction of the universal cover takes as vertices of TG all finite walks in G that
start from an arbitrary fixed vertex in G and that does not traverse the same edge in
two consecutive steps. Two such vertices are adjacent in TG if the associated walks
differ only in the presence of the last edge. The required homomorphism TG

B−→ G
can be taken as the mapping that assigns every walk its last vertex. One can easily
see that the universal cover is unique upto an isomorphism (in particular, if we take
walks that start in another fixed vertex). As a matter of fact, if two subtrees of
a universal cover rooted at two different vertices are isomorphic to depth n − 1,

2



then they are isomorphic to all depths [24]. Universal covers are also called infinite
unfoldings or views of graphs and have applications in finite automata theory[22],
distributed computing [17, 26] and existential pebble games [7].

Also universal covers can be equipped with a structure that impose a necessary
condition for the existence of a locally constrained homomorphism. There are two
options: either the existence of a locally constrained homomorphism or a simple
inclusion (as a subtree). In the latter case, TG = TH , TG ⊆ TH , and TG ⊇ TH are
necessary conditions for G B−→ H, G I−→ H and G S−→ H, respectively, see [14] for
more details.

Moreover, a result in [14] states that the universal cover TG can be constructed
from any degree matrix M of G in the following way. We take as root a vertex
corresponding to row 1 of M , thus of the 1st sort, and inductively adding a new level
of vertices while maintaining the property that each vertex of the i-th sort has exactly
mi,j neighbors of the j-th sort. Hence, a successful universal cover comparison is a
necessary condition for the corresponding graph comparison as well. More precisely,
we have shown the forward implications in the following theorem.

Theorem 1. Let G and H be connected graphs with degree matrices M and N ,
resp. Then the following holds:

G B−→ H =⇒M ∃B−→ N ⇐⇒ TG
B−→ TH ⇐⇒ TG = TH

G I−→ H =⇒ M ∃I−→ N =⇒ TG
I−→ TH ⇐⇒ TG ⊆ TH

G S−→ H =⇒ M ∃S−→ N =⇒ TG
S−→ TH =⇒ TG ⊇ TH

The backward implications in Theorem 1 for locally bijective homomorphism are
consequences of the theorem of Leighton [20]. The equivalence TG

I−→ TH ⇐⇒ TG ⊆
TH follows form the fact that a locally injective homomorphisms between two trees
is indeed globally injective [14].

Observe that C4 6
∗−→ C3 while both graphs allow the 1×1 degree matrix M = (2).

This example excludes the implication G
∗−→ H ⇐= M ∃∗−→ N for ∗ = B, I, S. If G

itself is a tree then TG = G. We then find that TG
S−→ TH 6⇐= TG ⊇ TH for the

choice G = P4, H = P3, since P4 ⊇ P3 but P4 6 S−→ P3. This example shows that
the relations TG

S−→ TH and TG ⊇ TH are different. By using linear programming
techniques, the backward implication M ∃I−→ N ⇐= TM

I−→ TN can be excluded [14].
So, the inclusion of universal covers does not imply the relation on matrices for the
locally injective constraint. What about the remaining backward implication?

Question 1. Does there exist a counter example for the backward implication M ∃S−→
N ⇐= TG

S−→ TH in Theorem 1?

The problem of deciding G
∗−→ H is NP-complete for all three local constraints, and

remains NP-hard for many particular fixed targets H, as we mentioned earlier on.
We have shown that M ∃B−→ N can be verified in polynomial time, but so far only
membership to the class NP could be shown for the matrix comparison problem
M ∃∗−→ N for ∗ = I, S [14]. It is not expected that a polynomial algorithm would
solve these two problems. Testing if TG = TH can be done in polynomial time by
checking if G and H share the same the degree refinement matrix [2]. Especially
given the above, it would be useful to have a polynomial heuristic for checking the
other universal problem comparisons as well.

3



Question 2. How hard is it to decide if TG
I−→ TH (or equivalently TG ⊆ TH) holds

and to decide if TG
S−→ TH holds for two given connected graphs G and H?

In this paper we answer Question 1 in Section 2 as well as Question 2 in Section 3.

2 Excluding the remaining implication

We show that the relation TM
S−→ TN lies strictly between M ∃S−→ N and TM ⊇ TN .

Proposition 1. For degree matrices

M =


2 1 0 0
3 0 1 0
0 1 0 2
0 0 1 0

 and N =

(
0 1
2 1

)

it holds that TM
S−→ TN but M 6 ∃S−→ N .

1 1

2

2

1 1

2 2 2 21 1 1 1

1

2

1 1

1

2

2 2

2 1 1

22 12

1

1

TM TN

Fig. 1. Showing TM
S−→ TN . White vertices in TM are of the 1st sort.

Proof. Observe first that N is a matrix of a finite tree TN and no other connected
simple graph allows this degree matrix. The infinite tree TM consist of pairwise dis-
joint paths that are of infinite length and induced by vertices of the first sort (white
vertices). These paths are linked by vertices of the second sort (each is adjacent
to three paths) and every vertex of the second sort is joined to the middle vertex
of a unique P3. The trees TM and TN together with a homomorphism witnessing
TM

S−→ TN are depicted in Fig. 1.
This homomorphism is obtained inductively. We first map one infinite white

path into TN such that the sorts of the images alternate. Every vertex u of the
second sort in TM must be mapped on a vertex of the second sort in TN so that the
homomorphism can be extended to the pending claw.

Then, depending of whether the image of the already processed neighbor of u
was of the first or of the second sort, we extend the mapping to the two infinite
white paths that contains the remaining two neighbors of u. Both cases are depicted
in Fig. 1.

4



Now, in order to obtain a contradiction, assume that a finite graph G with degree
matrix M and a mapping f : G S−→ TN exists (recall that the target graph TN is
unique for this choice of N). Consider the vertices of the first sort of G, call them
red. These red vertices induce a disjoint union of cycles in G.

Denote by a the number of red vertices u such that f(u) is of the first sort in TN

and call them light-red. Analogously, let b be the number of red vertices v such that
f(v) is of the second sort, and call them dark-red. Since N prescribes that both red
neighbors of every light-red u must be dark we have a ≤ b.

On the other hand, due to the pending claws (which also exist in G), every vertex
of the third sort in G is mapped to a vertex of the second sort in TN , and every
vertex of the fourth sort in G is mapped to a vertex of the first sort in TN . Then
every vertex u′ of the second sort in G is mapped to a vertex of the second sort in
TN . Since already its neighbor of the third sort is mapped to a vertex of the second
sort in TN , u′ must have at least two light-red neighbors and, consequently, at most
one dark-red neighbor. Hence, a ≥ 2b which is in contradiction with a ≤ b. We
conclude that M 6 ∃S−→ N . ut

3 Testing locally injective and surjective homomorphisms
between universal covers

In this section we focus on the decision problems whether TM
∗−→ TN holds for local

constraints ∗ = I, S. As the algorithms are almost the same for both constraints, we
treat both cases simultaneously, pointing only at the differences where the particular
local constraint plays different role. We first need some new terminology. For an
integer k ≥ 1 we define [k] := {1, 2, . . . , k} and abbreviate [k]× [l] by [k × l].

Definition 1. Let M and N be two degree matrices of order k and l, resp. We say
that a vector pr,s consisting of kl nonnegative integers is a distribution row for in-
dices (r, s) ∈ [k× l] if the condition 1 holds. A distribution row pr,s is called injective
if in addition condition 2 holds. It is called surjective if in addition conditions 3 and
4 hold.

l∑
j=1

pr,s
i,j = mr,i for all i ∈ [k], (1)

k∑
i=1

pr,s
i,j ≤ ns,j for all j ∈ [l], (2)

ns,j ≥ 1 =⇒
k∑

i=1

pr,s
i,j ≥ ns,j for all j ∈ [l], (3)

ns,j = 0 =⇒
k∑

i=1

pr,s
i,j = 0 for all j ∈ [l]. (4)

As an example, consider the matrices M and N from Proposition 1. The locally
surjective homomorphism from TM and TN depicted in Figure 1 defines exactly the

5



following surjective distribution rows:

p1,1 = (0, 2, 0, 1, 0, 0, 0, 0)
p1,2 = (2, 0, 0, 1, 0, 0, 0, 0)
p2,2 = (2, 1, 0, 0, 0, 1, 0, 0)
p3,2 = (0, 0, 0, 1, 0, 0, 2, 0)
p4,1 = (0, 0, 0, 0, 0, 1, 0, 0)

Distribution rows play a central role in the NP algorithms for the degree matrix
comparison problems M ∃I−→ N and M S−→ N [14]. Suppose G

∗−→ H via f is indeed a
witness for M ∃∗−→ N for ∗ ∈ {I, S}. Let f map u ∈ VG of the i-th sort to v ∈ VH of
the j-th sort, and denote the number of neighbors of the i-th sort in NG(u) that are
mapped to neighbors of the j-th sort in NH(v) by pr,s

i,j . Then the vector pr,s defined
by entries pr,s

i,j is a (surjective or injective) distribution row that we call suitable. Our
NP algorithms try to identify suitable distribution rows. The difficulty is that there
may be exponentially many distribution rows. Therefore, these algorithms could
only use the nondeterministic choice of suitable distribution rows to verify whether
M ∃∗−→ N holds for ∗ = I, S, respectively, see [14] for more details. However, for the
decision problem on the existence of a locally constrained homomorphism between
universal covers we prove that we may reduce the number of suitable distribution
rows to only a polynomial number. For showing this we need some more terminology.
For a degree matrix M we say that matrix rows r and i are adjacent if mr,i > 0.

Definition 2. We say that a distribution row pr,s is a witness of type (s, j) for
(adjacent) matrix rows r and i if pr,s

i,j ≥ 1.

Definition 3. We say that a distribution row pr,s respects the allowed set X ⊆
[k × l] if pr,s

i′,j′ ≥ 1 implies (i′, j′) ∈ X for all (i′, j′) ∈ [k × l].

Note that if pr,s is a witness of type (s, j) for matrix rows r and i that respects an
allowed set X then (i, j) ∈ X. We need the following lemma for our algorithms.

Lemma 1. For given r and i the existence of an injective or surjective witness pr,s

of type (s, j) respecting an allowed set X can be tested in a polynomial time.

Proof. We can do this by translating the problem to the integer flow problem. It
is well-known that this problem can be solved in polynomial time on flow net-
works with integer edge capacities (if such a network has a flow, then this flow
may be assumed to be integer). We first define our auxiliary flow network F and
then explain it afterwards. We let VF = {p, ui′ , vj′ , q | (i′, j′) ∈ [k × l]} and EF =
{(p, ui′), (ui′ , vj′), (vj′ , q) | (i′, j′) ∈ [k × l]}. The sought flow g goes from p to q and
must satisfy the following edge constraints:

g(p, ui′) = mr,i′

g(ui′ , vj′)


≥ 1 if (i′, j′) = (i, j)

= 0 if (i′, j′) /∈ X

≥ 0 otherwise

for ∗ = I : g(vj′ , q) ≤ ns,j′

for ∗ = S : g(vj′ , q)

{
≥ ns,j′ if ns,j′ ≥ 1

= 0 if ns,j′ = 0

We claim that F has an integer flow g if and only if there exists an injective, or re-
spectively, surjective witness pr,s of type (s, j) for r and i respecting X. First suppose

6



F allows an integer flow g. Choose pr,s = g. Because
∑l

j′=1 pr,s
i′,j′ =

∑l
j′=1 g(ui′ , vj′) =

g(p, ui′) = mr,i′ for all i′ ∈ [k], pr,s is a distribution row. For all j′ ∈ [l],
∑k

i′=1 pr,s
i′,j′ =∑k

i′=1 g(ui′ , vj′) = g(v′j, q), which is at most ns,j′ if ∗ = I, at least ns,j′ if ∗ = S
and ns,j′ ≥ 1, and 0 otherwise, pr,s is injective or surjective, respectively. Since
pr,s

i,j = g(ui, vj) ≥ 1, pr,s is a witness. Finally, since pr,s
i′,j′ = g(ui′ , vj′) = 0 for all

(i′, j′) /∈ X, pr,s respects X.
Now suppose there exists an injective, or respectively, surjective witness pr,s of

type (s, j) for r and i respecting X. By Definition 2, pr,s
i,j ≥ 1. It is easy to verify that

pr,s satisfies the other edge constraints in F as well. Hence F allows pr,s as integer
flow. ut

Our two algorithms can now be presented as one generic iterative algorithm.

Algorithm 1: The test whether TM
∗−→ TN holds for ∗ = I or S

Input: Degree matrices M and N
Parameter: Local constraint ∗ ∈ {I, S}
initialize Xr,s = {(i, j) |mr,i > 0 and ns,j > 0} for all (r, s) ∈ [k × l];
repeat

foreach (r, s) ∈ [k × l] and (i, j) ∈ Xr,s do
if (r, i) has no witness of type (s, j) respecting Xr,s then

remove (i, j) from Xr,s and remove (r, s) from X i,j;
end

end
until no removal happens during the whole foreach loop ;
if there exists an r ∈ [k] with Xr,s empty for all s ∈ [l] then

return TM 6 ∗−→ TN

else

return TM
∗−→ TN

end

Theorem 2. Algorithm 1 is correct and runs in polynomial time.

Proof. For each Xr,s, one iteration of Algorithm 1 takes polynomial time due to
Lemma 1. Since the number of different allowed sets Xr,s is kl, a complete iteration,
i.e., an iteration over all Xr,s, then takes polynomial time as well. At the start of the
algorithm each Xr,s contains at most kl elements, and after each complete iteration
the size of each Xr,s has never increased. Since the algorithm finishes as soon as
all Xr,s have stable size, the number of iterations is at most kl. We conclude that
Algorithm 1 runs in polynomial time.

We now show that Algorithm 1 is correct. Suppose TM
∗−→ TN via f . Then f

induces witnesses of type (s, j) for all adjacent matrix rows r, i such that (r, i) has a
witness of type (s, j) if and only if (i, r) has a witness of type (j, s). Hence f defines
nonempty sets Xr,s for all matrix rows r.

It remains to show that if Algorithm 1 terminates in the affirmative state, then
a locally constrained homomorphism f : TM

∗−→ TN can be constructed. Pick an
arbitrary vertex u ∈ TM . Let u be of the r-th sort. By definition of the algorithm,
there exists a (final) allowed set Xr,s 6= ∅. Define f(u) = v for any v ∈ TN that is of

7



the s-th sort. Choose an arbitrary (i, j) ∈ Xr,s. By definition of Xr,s, we can find a
witness pr,s for (r, i) of type (s, j) respecting Xr,s.

We use pr,s to extend f . By definition of pr,s, for every pr,s
i′,j′ ≥ 1, we can let f

map pr,s
i′,j′ different neighbors of u that all are of the i′-th sort onto neighbors of v

that all are of the j′-the sort in such a way that, from N(u) to N(v), f is injective
when ∗ = I, and surjective when ∗ = S. Whenever the mapping f is defined along
an edge (u, u′), we iteratively extend f to the whole neighborhood N(u′) of u′ by the
same procedure as above in case N(u′) ) {u}. We only have to make sure to choose
a witness pi′,j′ for (i′, r) of type (j′, s), where u, u′, f(u) and f(u′) are of the r, i′, s-
and j′-th sort respectively. Then pi′,j′

r,s ≥ 1 by definition of a witness, and indeed we

can use pi′,j′ to extend our mapping f that already maps u ∈ N(u′) of the r-th sort
to v ∈ N(f(u′)) of the s-th sort. The reason why such a witness pi′,j′ exists follows
from the reciprocal removal of pairs (i′, j′) from Xr,s and (r, s) from X i′,j′ . When
the condition of the repeat loop is satisfied, it holds that

(r, i′) has a witness of type (s, j′) respecting Xr,s

if and only if
(i′, r) has a witness of type (j′, s) respecting X i′,j′.

ut
We are even able to construct in polynomial time a locally constrained homomor-
phism f : TM

∗−→ TN if Algorithm 1 approves that TM
∗−→ TN . This can be seen as

follows. We use the method described in the proof of Theorem 2 to construct f .
Finding witnesses respecting certain allowed sets can be done in polynomial time
using the flow network of the proof of Lemma 1. If f is defined along edge (u, u′)
then we always choose for the same extension of f on N(u′), i.e., how we extend f
only depends on the sort of u and the sort of u′. As it is sufficient to keep only at
most kl possibilities, the claim follows.

4 Conclusions

We have answered questions 1 and 2 of Section 1.1 in Proposition 1 and Theorem 2,
respectively. We conclude with some other applications.

The H-Role Assignment problem asks whether G S−→ H for a graph G and a
fixed target graph H. This problem is NP-complete for all connected graphs H on
at least three vertices [13]. It becomes polynomially solvable for every fixed target
H when restricted to the class of trees. This follows from Theorem 2, and the fact
that T 6 S−→ G if T is a tree and G contains a cycle, together with the fact that
TG = T for every tree T . Since TG

I−→ TH if and only if TG ⊆ TH , Algorithm 1
tests for infinite subtree isomorphism as well. Since TG = T for every tree T , it can
also be used for (sub-)tree isomorphism for finite trees, especially if these trees can
be encoded in terms of degree (refinement) matrices independent of their original
size (as otherwise much faster algorithms exist). Finally, we note that there exist
matrices that are not the degree matrix of a finite graph. If such a matrix M has
the property that mi,j > 0 whenever mj,i > 0 then it still possible to construct a
universal cover TM of M (or disjoint submatrices of M) in the same way as before.
Algorithm 1 can then be used for universal cover comparison of those matrices as
well.

8



Acknowledgments

We thank Jan Arne Telle for fruitful discussions on this topic.

References

1. Abello, J., Fellows, M. R., and Stillwell, J. C. On the complexity and combinatorics of covering
finite complexes. Australian Journal of Combinatorics 4 (1991), 103–112.

2. Angluin, D. Local and global properties in networks of processors. In Proceedings of the 12th ACM
Symposium on Theory of Computing (1980), 82–93.

3. Biggs, N. Constructing 5-arc transitive cubic graphs. Journal of London Mathematical Society II. 26
(1982), 193–200.

4. Bodlaender, H. L. The classification of coverings of processor networks. Journal of Parallel Dis-
tributed Computing 6 (1989), 166–182.

5. Bondy, J.A., and Murty, U.S.R. Graph Theory with Applications. Macmillan, London and Elsevier,
New York, 1976.

6. Chalopin, J., Métivier, Y., and Zielonka W., Local computations in graphs: the case of cellular
edge local computations. Fundamenta Informaticae 74 (2006), 85–114.

7. Dantchev, S., Martin, B.D., and Stewart, I.A., On non-definability of unsatisfiability,
manuscript.

8. Everett, M. G., and Borgatti, S. Role coloring a graph. Mathematical Social Sciences 21 (1991),
183–188.

9. Fiala, J., Heggernes, P., Kristiansen, P., and Telle, J. A. Generalized H-coloring and H-
covering of trees. Nordic Journal of Computing 10 (2003), 206–224

10. Fiala, J., and Kratochv́ıl, J. Complexity of partial covers of graphs. In Algorithms and Compu-
tation, 12th ISAAC ’01, LNCS 2223, 537–549.

11. Fiala, J., and Kratochv́ıl, J. Partial covers of graphs. Discussiones Mathematicae Graph Theory
22 (2002), 89–99.

12. Fiala, J., Kratochv́ıl, J., and Kloks, T. Fixed-parameter complexity of λ-labelings. Discrete
Applied Mathematics 113 (2001), 59–72.

13. Fiala, J., and Paulusma, D. A complete complexity classification of the role assignment problem.
Theoretical Computer Science 349 (2005), 67-81.

14. Fiala, J., Paulusma, D., and Telle, J.A. Locally constrained graph homomor-
phisms and equitable partitions, to appear in European Journal of Combinatorics. see
http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/locallycon.pdf

15. Godsil, C. Algebraic Combinatorics. Chapman and Hall, 1993.
16. Hell, P., and Nešetřil, J. Graphs and Homomorphisms. Oxford University Press, 2004.
17. Kranakis, E., Krizanc, D., and Van den Berg, J. Computing boolean functions on anonymous

networks. Information and Computation 114 (1994), 214–236.
18. Kratochv́ıl, J., Proskurowski, A., and Telle, J. A. Covering regular graphs. Journal of Com-

binatorial Theory B 71 (1997), 1–16.
19. Kristiansen, P., and Telle, J. A. Generalized H-coloring of graphs. In Algorithms and Computa-

tion, 11th ISAAC ’01, LNCS 1969, 456–466.
20. Leighton, F. T. Finite common coverings of graphs. Journal of Combinatorial Theory B 33 (1982),

231–238.
21. Massey, W. S. Algebraic Topology: An Introduction. Harcourt, 1967.
22. Moore, E.F. Gedanken-experiments on sequential machines. Ann. Math. Studies 34 (1956), 129–153.
23. Nešetřil, J. Homomorphisms of derivative graphs. Discrete Mathematics 1 (1971), 257–268.
24. Norris, N. Universal covers of graphs: isomorphism to depth n−1 implies isomorphism to all depths.

Discrete Applied Mathematics 56 (1995), 61–74.
25. Roberts, F. S., and Sheng, L. How hard is it to determine if a graph has a 2-role assignment?

Networks 37, (2001), 67–73.
26. Yamashita, M., and Kameda, T., Computing on anonymous networks: Part I - Characterizing the

solvable cases. IEEE Transactions on parallel and distributed systems 7 (1996), 69–89.

9


