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Abstract

The Shortest Cycle Cover Conjecture asserts that the edges of
every bridgeless graph with m edges can be covered by cycles of total
length at most 7m/5 = 1.4m. We show that every cubic bridgeless
graph has a cycle cover of total length at most 34m/21 ≈ 1.619m.

1 Introduction

Cycle covers of graphs form a prominent topic in graph theory closely related
to several deep and open problems. A cycle in a graph is a subgraph with
all degrees even. A cycle cover is a collection of cycles such that each edge
is contained in at least one of the cycles (each edge is covered). The Cycle
Double Cover Conjecture of Seymour [25] and Szekeres [26] asserts that every
bridgeless graph G has a collection of cycles containing each edge of G exactly
twice (cycle double cover). In fact, it was conjectured by Celmins [3] and
Preissmann [23] that every graph has such a cycle cover consisting of five
cycles.
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Cycle Double Cover Conjecture is known to be implied by several other
conjectures, e.g., Berge-Fulkerson Conjecture [9] asserting that every cubic
bridgeless graph G has 6 perfect matchings covering each edge of G twice.
Another conjecture that implies the Cycle Double Cover Conjecture is the
Shortest Cycle Cover Conjecture of Alon and Tarsi [1] which we study in this
paper. The Shortest Cycle Cover Conjecture asserts that every bridgeless
graph with m edges has a cycle cover of total length at most 7m/5 (the
length of a cycle is the number of edges contained in it and the length of
a cycle cover is the sum of the lengths of its cycles). The reduction of the
Cycle Double Cover Conjecture to the Shortest Cycle Cover Conjecture can
be found in the paper Jamshy and Tarsi [14].

The best known general result on short cycle covers is due to Alon and
Tarsi [1] and Bermond, Jackson and Jaeger [2]: every bridgeless graph with
m edges has a cycle cover of total length at most 5m/3 ≈ 1.667m. As it is the
case with most conjectures in this area, it seems that cubic bridgeless graphs
form a class of graphs essential in any approach to prove the Shortest Cycle
Cover Conjecture. There are several improvements of the general bound
for cubic bridgeless graphs: Jackson [12] showed that every cubic bridgeless
graph with m edges has a cycle cover of total length at most 64m/39 ≈
1.641m and Fan [5] later showed that every such graph has a cycle cover of
total length at most 44m/27 ≈ 1.630m. There are several improvements of
these bounds under additional assumptions on the girth, connectivity, etc.
of the considered graph or assumptions on the existence of a nowhere-zero
4-/5-flow, see e.g. [6, 11, 15, 24]. The reader is referred to the monograph of
Zhang [27] for further exposition of such results.

In this paper, we improve the known bound for cubic bridgeless graphs.
In particular, we show that every cubic bridgeless graph with m edges has
a shortest cycle cover of total length at most 34m/21 ≈ 1.619m. As it is
the case in the previous results in [5, 12], the constructed cycle cover also
consists of three cycles (note that there are bridgeless graphs with m edges
with no cycle covers comprised of three cycles of length less than 22m/15 ≈
1.467m [7]). Let us mention that the result of Fan [5] is extended in another
direction in [16] where it is shown that every bridgeless graph with minimum
degree three and m edges has a cycle cover of total length at most 44m/27 ≈
1.630m (the bound matching Fan’s bound, i.e., a bound worse than the one
presented here, but it is established for a larger class of graphs).

The known improvements of the original bound of 5m/3 ≈ 1.667m on
the total length of a shortest cycle cover of a bridgeless graph with m edges
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may seem to be rather minor, however, obtaining a bound below 8m/5 =
1.600m could be quite tricky since this bound is implied by Tutte’s 5-Flow
Conjecture [15].

2 Notation

Let us briefly introduce the notation used throughout this paper. We only
focus on those terms where the confusion could arise and refer the reader
to standard graph theory textbooks, e.g. [4], for exposition of other graph
theory notions.

Graphs considered in this paper can have loops and multiple edges. If E
is a set of edges of a graph G, then G \ E denotes the graph with the same
vertex set and with the edges of E removed. For an edge e of G, G/e is the
graph obtained by contracting the edge e, i.e., G/e is the graph with the end-
vertices of e identified, the edge e removed and all the other edges preserved.
In particular, the edges parallel to e become loops in G/e. Also note that if
e is a loop, then G/e = G\e. Finally, for a set E of edges of a graph G, G/E
denotes the graph obtained by contracting all edges contained in E. If G is a
graph and v a vertex of G of degree two, then the graph obtained from G by
suppressing the vertex v is the graph obtained from G by contracting one of
the edges incident with v, i.e., the graph obtained by replacing the two-edge
path with the inner vertex v by a single edge.

An edge-cut in a graph G is a set E of edges such that the vertices of G
can be partitioned into two sets A and B such that E contains precisely the
edges with one end-vertex in A and the other in B. Such an edge-cut is also
denoted by E(A, B) and its size by e(A, B). We abuse this notation a little
bit and also use e(A, B) for the number of edges between any two disjoint
sets A and B which do not necessarily form a partition of the vertex set of
G. An edge forming an edge-cut of size one is called a bridge and graphs
with no edge-cuts of size one are said to be bridgeless. Note that we do not
require edge-cuts to be minimal sets E such that G\E has more components
than G. A graph G with no edge-cuts of odd size less than k is said to be
k-odd-connected. For every set F of edges of G, cuts in G/F correspond to
cuts (of the same size) in G. Therefore, if G has no edge-cuts of size k, then
also G/F has no edge-cuts of size k.

As said before, a cycle of a graph G is a subgraph of G with all vertices
of even degree. A circuit is a connected subgraph with all vertices of degree
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Figure 1: Splitting the vertices v1 and v2 from the vertex v.

two and a 2-factor is a spanning subgraph with all vertices of degree two.

3 Vertex splitting

In the proof of our main result, we will need to construct a nowhere-zero
4-flow of a special type. In order to exclude some “bad” nowhere-zero flows,
we will first modify a considered graph in such a way that some of its edges
must get the same flow value. This goal will be achieved by splitting some
of the vertices of the considered graph. Let G be a graph, v a vertex of G
and v1 and v2 some of the neighbors of v in G. Let G.v1vv2 be the graph
obtained by removing the edges vv1 and vv2 from G and adding the edge
v1v2 (see Figure 1). The graph G.v1vv2 is said to be obtained by splitting the
vertices v1 and v2 from the vertex v.

Classical (and deep) results of Fleischner [8], Mader [21] and Lovász [19]
assert that it is possible to split vertices without creating new small edge-cuts.
Let us now formulate one of the corollaries of their results.

Lemma 1. Let G be a 5-odd-connected graph. For every vertex v of G of
degree four, six or more, there exist two neighbors v1 and v2 of the vertex v
such that the graph G.v1vv2 is also 5-odd-connected.

Zhang [28] proved a version of Lemma 1 where only some pairs of vertices
are allowed to be split off.

Lemma 2. Let G be an `-odd-connected graph for an odd integer `. For every
vertex v of G with neighbors v1, . . . , vk, k 6= 2, `, there exist two neighbors vi

and vi+1 such that the graph G.vivvi+1 is also `-odd-connected (indices are
modulo k).

However, any of these results is not sufficient for our purposes since we
need to specify more precisely which pair of the neighbors of v should be
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Figure 2: The two configurations described in the statement of Lemma 3.

split from v. This is guaranteed by the lemmas we establish in the rest of
this section. Let us remark that Lemma 2 can be obtained as a consequence
of our results. We start with a modification of the well-known fact that
“minimal odd cuts do not cross” for the situation where small even cuts can
exist.

Lemma 3. Let G be an `-odd-connected graph (for some odd integer `) and
let E(A1, A2) and E(B1, B2) be two cuts of G of size `. Further, let Wij =
Ai ∩ Bj for i, j ∈ {1, 2}. If the sets Wij are non-empty for all i, j ∈ {1, 2},
then there exist integers a, b and c such that a + b + c = ` and one of the
following holds:

• e(W11, W12) = e(W12, W22) = a, e(W11, W21) = e(W21, W22) = b,
e(W11, W22) = c and e(W12, W21) = 0, or

• e(W12, W11) = e(W11, W21) = a, e(W12, W22) = e(W22, W21) = b,
e(W12, W21) = c and e(W11, W22) = 0.

See Figure 2 for an illustration of the two possibilities.

Proof. Let wij be the number of edges with exactly one end-vertex in Wij.
Observe that

w11 + w12 = e(A1, A2) + 2e(W11, W12) = ` + 2e(W11, W12) and (1)

w12 + w22 = e(B1, B2) + 2e(W12, W22) = ` + 2e(W12, W22) .
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In particular, one of the numbers w11 and w12 is even and the other is odd.
Assume that w11 is odd. Hence, w22 is also odd. Since G is `-odd-connected,
both w11 and w22 are at least `.

If e(W11, W12) ≤ e(W12, W22), then

w12 = e(W11, W12) + e(W12, W21) + e(W12, W22)

≥ e(W11, W12) + e(W12, W22) ≥ 2e(W11, W12) . (2)

The equation (1), the inequality (2) and the inequality w11 ≥ ` imply that
w11 = `. Hence, the inequality (2) is an equality; in particular, e(W11, W12) =
e(W12, W22) and e(W12, W21) = 0. If e(W11, W12) ≥ e(W12, W22), we obtain
the same conclusion. Since the sizes of the cuts E(A1, A2) and E(B1, B2) are
the same, it follows that e(W11, W21) = e(W21, W22). We conclude that the
graph G and the cuts have the structure as described in the first part of the
lemma.

The case that w11 is even (and thus w12 is odd) leads to the other config-
uration described in the statement of the lemma.

Next, we use Lemma 3 to characterize graphs where some splittings of
neighbors of a given vertex decrease the odd-connectivity. In the statement
of Lemma 4, the graph G is assumed to be simple just to avoid unnecessary
technical complications in its proof; the lemma also holds for graphs with
loops and parallel edges (with a suitable definition of vertex splitting).

Lemma 4. Let G be a simple `-odd-connected graph for an odd integer ` ≥ 3,
v a vertex of G and v1, . . . , vk some neighbors of v. If every graph G.vivvi+1,
i = 1, . . . , k − 1, contains an edge-cut of odd size smaller than `, the vertex
set V (G) can be partitioned into two sets V1 and V2 such that v ∈ V1, vi ∈ V2

for i = 1, . . . , k and the size of the edge-cut E(V1, V2) is `.

Proof. The proof proceeds by induction on k. The base case of the induction
is that k = 2. Let E(V1, V2) be an edge-cut of G.v1vv2 of odd size less
than `. By symmetry, we can assume that v ∈ V1. If both v1 ∈ V1 and
v2 ∈ V1, then E(V1, V2) as an edge-cut of G has the same size as in G.v1vv2

which contradicts the assumption that G is `-odd-connected. If v1 ∈ V1 and
v2 ∈ V2, then E(V1, V2) is also an edge-cut of G of the same size as in G.v1vv2

which is again impossible.
Hence, both v1 and v2 must be contained in V2, and the size of the edge-

cut E(V1, V2) in G is larger by two compared to its size in G.v1vv2. Since G
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Figure 3: Notation used in the proof of Lemma 4.

has no edge-cuts of size ` − 2, the size of the edge-cut E(V1, V2) in G.v1vv2

is ` − 2 and its size in G is `. Hence, V1 and V2 form the partition of the
vertices as in the statement of the lemma.

We now consider the case that k > 2. By the induction assumption, G
contains a cut E(V ′

1 , V
′

2) of size ` such that v ∈ V ′

1 and v1, . . . , vk−1 ∈ V ′

2 .
Similarly, there is a cut E(V ′′

1 , V ′′

2 ) of size ` such that v ∈ V ′′

1 and v2, . . . , vk ∈
V ′′

2 . Let Vij = V ′

i ∩V ′′

j for i, j ∈ {1, 2} (see Figure 3). Apply Lemma 3 for the
graph G with Ai = V ′

i and Bi = V ′′

i . Since e(V11, V22) = e(V ′

1∩V ′′

1 , V ′

2∩V ′′

2 ) ≥
k − 2 > 0, the first case described in Lemma 3 applies and the size of the
cut E(V ′

1 ∩ V ′′

1 , V ′

2 ∪ V ′′

2 ) is `. Hence, the cut E(V ′

1 ∩ V ′′

1 , V ′

2 ∪ V ′′

2 ) is a cut of
size `

We finish this section with a series of lemmas that we need in Section 4.
All these lemmas are simple corollaries of Lemma 4.

Lemma 5. Let G be a simple 5-odd-connected graph, and let v be a vertex of
degree four and v1, v2, v3 and v4 its four neighbors. Then, the graph G.v1vv2

or the graph G.v2vv3 is also 5-odd-connected graph.

Proof. Observe that the graph G.v1vv2 is 5-odd-connected if and only if the
graph G.v3vv4 is 5-odd-connected. Lemma 4 applied for ` = 5, the vertex v,
k = 4 and the vertices v1, v2, v3 and v4 yields that the vertices of G can be
partitioned into two sets V1 and V2 such that v ∈ V1, {v1, v2, v3, v4} ⊆ V2 and
e(V1, V2) = 5. Hence,

e(V1 \ {v}, V2 ∪ {v}) = e(V1, V2) − 4 = 5 − 4 = 1 .
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This contradicts our assumption that G has no edge-cuts of size one.

Lemma 6. Let G be a simple 5-odd-connected graph, and let v be a vertex
of degree six and v1, . . . , v6 its neighbors. At least one of the graphs G.v1vv2,
G.v2vv3 and G.v3vv4 is also 5-odd-connected.

Proof. Lemma 4 applied for ` = 5, the vertex v, k = 4 and v1, v2, v3 and v4

yields that the vertices of G can be partitioned into two sets V1 and V2 such
that v ∈ V1, {v1, v2, v3, v4} ⊆ V2 and e(V1, V2) = 5. If V2 contains σ neighbors
of v (note that σ ≥ 4), then

e(V1 \ {v}, V2 ∪ {v}) = e(V1, V2) − σ + (6 − σ) = 11 − 2σ

which is equal to 1 or 3 contradicting the fact that G is 5-odd-connected.

Lemma 7. Let G be a simple 5-odd-connected graph, and let v be a vertex of
degree eight and v1, . . . , v8 its neighbors. At least one of the graphs G.vivvi+1,
i = 1, . . . , 7, is also 5-odd-connected.

Proof. Since there is no partition of the vertices of G into two parts V1 and
V2 such that v ∈ V1, vi ∈ V2 for i = 1, . . . , 8, and e(V1, V2) = 5, Lemma 4
applied for ` = 5, the vertex v, k = 8 and the vertices vi, i = 1, . . . , 8 yields
the statement of the lemma.

Finally, we will also need in Section 4 the following corollary of Lemma 4.

Lemma 8. Let G be a simple 5-odd-connected graph, and let v be a ver-
tex of degree eight and v1, . . . , v8 its neighbors. Suppose that G.v1vv2 is 5-
odd-connected. At least one of the following graphs is also 5-odd-connected:
G.v1vv2.v3vv4, G.v1vv2.v7vv8, G.v1vv2.v8vv3.v4vv5 and G.v1vv2.v8vv3.v4vv6.

Proof. The degree of the vertex v in G.v1vv2 is six. By Lemma 6, at least
one of the graphs G.v1vv2.v3vv4, G.v1vv2.v3vv8 and G.v1vv2.v7vv8 is 5-odd-
connected.

If G.v1vv2.v3vv8 is 5-odd-connected, we apply Lemma 5 for the vertex
v and its neighbors v5, v4, v6 and v7 (in this order). Hence, the graph
G.v1vv2.v8vv3.v4vv5 (which is homeomorphic to G.v1vv2.v8vv3.v6vv7) or the
graph G.v1vv2.v8vv3.v4vv6 is 5-odd-connected.
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4 Rainbow lemma

In this section, we present a generalization of an auxiliary lemma referred to
as the Rainbow Lemma.

Lemma 9 (Rainbow Lemma). Every cubic bridgeless graph G contains a
2-factor F such that the edges of G not contained in F can be colored with
three colors, red, green and blue in the following way:

• every even circuit of F contains an even number of vertices incident
with red edges, an even number of vertices incident with green edges
and an even number number of vertices incident with blue edges, and

• every odd circuit of F contains an odd number of vertices incident with
red edges, an odd number of vertices incident with green edges and an
odd number number of vertices incident with blue edges.

In the rest, a 2-factor F with an edge-coloring satisfying the constraints given
in Lemma 9 will be called a rainbow 2-factor. Rainbow 2-factors implicitly
appear in, e.g., [5, 18, 20], and are related to the notion of parity 3-edge-
colorings from the Ph.D. thesis of Goddyn [10].

A key ingredient in the proof of Lemma 9 is the following classical result
of Jaeger:

Theorem 10 (Jaeger [13]). If G is a 5-odd-connected graph, then G has a
nowhere-zero 4-flow.

A classical result of Petersen [22] asserts that every cubic bridgeless graph
has a perfect matching. The following strengthening of this result, which
appears, e.g., in [17, 27], is another ingredient for the proof of Rainbow
Lemma.

Theorem 11. Every cubic bridgeless graph G has a 2-factor such that the
graph G/F is 5-odd-connected.

We are now ready to provide a modification of the Rainbow Lemma that
is used in the proof of our main theorem. In addition to the constraints on
the edge-coloring of a perfect matching given in Lemma 9, we exclude certain
color patterns from appearing on the edges incident with cycles of specific
lengths. Let us be more precise. The pattern of a circuit C = v1 . . . vk of
a rainbow 2-factor F is X1 . . .Xk where Xi is the color of the edge incident
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with the vertex vi; we use R to represent the red color, G the green color and
B the blue color. Two patterns are said to be symmetric if one of them can
be obtained from the other by a rotation, a reflection and/or a permutation
of the red, green and blue colors. For example, the patterns RRGBGB and
RBRBGG are symmetric but the patterns RRGBBG and RRGBGB are not.

Let us now state and prove a generalization of the Rainbow Lemma.

Lemma 12. Every cubic bridgeless graph G contains a rainbow 2-factor F
such that

• no circuit of the 2-factor F has length three,

• every circuit of length four has a pattern symmetric to RRRR or RRGG,
and

• every circuit of length eight has a pattern symmetric to one of the fol-
lowing 16 patterns:
RRRRRRRR, RRRRRRGG, RRRRGGGG, RRRRGGBB,
RRGGRRGG, RRGGRRBB, RRRRGRRG, RRRRGBBG,
RRGGRGGR, RRGGRBBR, RRGGBRRB, RRRRGRGR,
RRRGBGBR, RRGRGRGG, RRGRBRBG and RRGGBGBG.

Proof. By Theorem 11, there exists a 2-factor F such that the graph G/F
is 5-odd-connected. Since G is cubic and G/F 5-odd-connected, the 2-factor
F contains no circuits of length three. Let H0 be the graph obtained from
the graph G/F by subdividing each edge three times. Clearly, H0 is also
5-odd-connected. This modification of G/F to H0 is needed only to simplify
our arguments later in the proof since it guarantees that the graph is simple
and thus we can easily apply Lemmas 5–7 and 8.

In a series of steps, we iteratively modify the graph H0 to graphs H1, H2,
etc. During this process, the degree of each vertex of Hi is the same as in H0

though some vertices may be removed (and thus not present in Hi). All the
graphs H1, H2, . . . will be simple and 5-odd-connected.

If the graph Hi contains a vertex v of degree four, then the vertex v
corresponds to a circuit C of length four in F . Let v1, v2, v3 and v4 be the
neighbors of v in the order in which the edges vv1, vv2, vv3 and vv4 correspond
to edges incident with the circuit C. To obtain Hi+1, we consider among the
graphs Hi.v1vv2 and Hi.v2vv3 one that is 5-odd-connected (by Lemma 5 at
least one of them is). The graph Hi+1 is then obtained by suppressing the

10



v

v3

v4v1

v2 v3

v4v1

v2 v3

v4v1

v2

or

Figure 4: Reduction of a vertex of degree four in a graph Hi in the proof of
Lemma 12.

v

v4

v5

v6

v7v8

v1

v2

v3 v4

v5

v6

v7v8

v1

v2

v3 v4

v5

v6

v7v8

v1

v2

v3 v4

v5

v6

v7v8

v1

v2

v3 v4

v5

v6

v7v8

v1

v2

v3

or or or

Figure 5: Reduction of a vertex of degree eight in a graph Hi in the proof of
Lemma 12.

vertex v in this graph; see Figure 4. Clearly, Hi+1 is 5-odd-connected and all
the vertices of Hi+1 have the same degree as in Hi.

If the graph Hi contains a vertex v of degree eight, we proceed as follows.
The vertex v corresponds to a circuit C of F of length eight; let v1, . . . , v8

be the neighbors of v in Hi in the order in that they correspond to the edges
incident with the circuit C. By Lemma 7, we can assume that the graph
Hi.v1vv2 is 5-odd-connected (for a suitable choice of the cyclic rotation of
the neighbors of v).

By Lemma 8, at least one of the following graphs is 5-odd-connected:
Hi.v1vv2.v3vv4, Hi.v1vv2.v7vv8, Hi.v1vv2.v8vv3.v4vv5 and Hi.v1vv2.v8vv3.v4vv6.
If the graph Hi.v1vv2.v3vv4 is 5-odd-connected, we then apply Lemma 5 to
the graph Hi.v1vv2.v3vv4 and conclude that the graph Hi.v1vv2.v3vv4.v5vv6

or the graph Hi.v1vv2.v3vv4.v6vv7 is 5-odd-connected. Since the case that
the graph Hi.v1vv2.v7vv8 is 5-odd-connected is symmetric to the case of the
graph Hi.v1vv2.v3vv4, it can be assumed that (at least) one of the following
four graphs is 5-odd-connected: Hi.v1vv2.v3vv4.v5vv6, Hi.v1vv2.v3vv4.v6vv7,
Hi.v1vv2.v8vv3.v4vv5 and Hi.v1vv2.v8vv3.v4vv6. Let Hi+1 be the graph ob-
tained by suppressing the vertex v in a 5-odd-connected graph in this list
(see Figure 5).

We eventually reach a 5-odd-connected graph Hk with no vertices of de-
gree four or eight. By Theorem 10, the graph Hk has a nowhere-zero 4-flow
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and, equivalenty, it has a nowhere-zero Z
2
2-flow. This flow yields a nowhere-

zero Z
2
2-flow in Hk−1, . . . , H0 and eventually in G/F : in each step, we sub-

divide some edges (and give them the flow-value of the original edge), and
identify some vertices. In particular, the pairs of edges split away from a
vertex are assigned the same flow value.

The nowhere-zero Z
2
2-flow of G/F gives the coloring of the edges: the

edges with the flow value (0, 1) are colored red, those with the flow value
(1, 0) green and those with the value (1, 1) blue. Since the colors of the edges
of G/F correspond to a nowhere-zero 4-flow of G/F , F is a rainbow 2-factor
with respect to this edge-coloring.

We now verify that the edge-coloring of G/F also satisfies the additional
two constraints given in the statement. Let us start with the first constraint,
and let C be a circuit of F of length four, v the vertex of G/F corresponding
to C and e1, e2, e3 and e4 the four (not necesserily distinct) edges leaving C
in G. In H0, the edge ei corresponds to an edge vvi for a neighbor vi of v.
During the construction of Hk, either the vertices v1 and v2 or the vertices
v2 and v3 are split away from v. In the former case, the colors of the edges
e1 and e2 are the same and the colors of the edges e3 and e4 are the same; in
the latter case, the colors of the edges e1 and e4 and the colors of the edges e2

and e3 are the same. In both cases, the pattern of C is symmetric to RRRR
or RRGG.

Let C be a circuit of F of length eight, v the vertex of G/F corresponding
to C and e1, . . . , e8 the eight edges leaving C in G (note that some of the
edges e1, . . . , e8 can be the same). Let ci be the color of the edge ei. Based
on the splitting, one of the following four cases (up to symmetry) applies:

1. c1 = c2, c3 = c4, c5 = c6 and c7 = c8,

2. c1 = c2, c3 = c4, c5 = c8 and c6 = c7,

3. c1 = c2, c3 = c8, c4 = c5 and c6 = c7, and

4. c1 = c2, c3 = c8, c4 = c6 and c5 = c7.

In the first case, the pattern of the circuit C is symmetric to RRRRRRRR,
RRRRRRGG, RRRRGGGG, RRRRGGBB, RRGGRRGG or RRGGRRBB.
In the second case, the pattern of the circuit C is symmetric to RRRRRRRR,
RRRRRRGG, RRRRGGGG, RRRRGGBB, RRRRGRRG, RRRRGBBG,
RRGGRGGR, RRGGRBBR or RRGGBRRB. The third case is symmet-
ric to the second one (see Figure 5). In the last case, the pattern of C
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is symmetric to RRRRRRRR, RRRRRRGG, RRRRGRGR, RRRRGRRG,
RRRRGGGG, RRGRGRGG, RRRGBGBR, RRGRBRBG, RRGGBGBG or
RRRRGBBG. In all the four cases, the pattern of C is one of the patterns
listed in statement of the lemma.

5 Intermezzo

In order to help the reader to follow the arguments presented in the next
section, we reprove a restricted version of the classical result of Alon and
Tarsi [1] and Bermond, Jackson and Jaeger [2]: every cubic bridgeless graph
with m edges has a cycle cover of length at most 5m/3. We restrict our
attention to cubic graphs only and use a technique similar to that used by
Fan in [5]. In the next section, we refine the presented proof to improve the
bound.

Let us now introduce additional notation used in the proof of Theorem 13.
Let G be a cubic grapha and F a 2-factor of G. For a circuit C contained
in F and for a set of edges of E such that C ∩ E = ∅, we define C(E) to
be the set of vertices of C incident with the edges of E. Our goal in the
proof will be to extend a certain set E of edges of G to a cycle by adding
edges of F . This is impossible if |C(E)| is odd for any circuit C of F . If
|C(E)| is even, we partition the edges of C into two sets C(E)A and C(E)B

such that each of them induces paths with end-vertices being the vertices of
C(E). If C(E) = ∅, then C(E)A contains no edges of C and C(E)B contains
all the edges of C (or vice versa). Observe that for every set E of edges not
contained in F , adding one of the sets C(E)A and C(E)B for each circuit C
of F yields a cycle of G. In the rest, we will always assume that the number
of edges of C(E)A does not exceed the number of edges of C(E)B.

Theorem 13. Every cubic bridgeless graph G with m edges has a cycle cover
of length at most 5m/3.

Proof. We first apply Lemma 9 to G and obtain a rainbow 2-factor F . Let
R, G and B be the sets of red, green and blue edges and r, g and b their
numbers. By symmetry, we can assume that r ≤ g ≤ b. Also observe that
r + g + b = m/3.

The desired cycle cover of G, which is comprised of three cycles, is defined
as follows. The first cycle C1 contains all the red and green edges and the
edges of C(R ∪ G)A for all circuits C of the 2-factor F . The second cycle
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C2 contains all the red and green edges and the edges of C(R ∪ G)B for all
circuits C of F . Finally, the third cycle C3 contains all the red and blue edges
and the edges of C(R ∪ B)A for all circuits C of F .

It remains to verify that the cycles C1, C2 and C3 cover all edges and to
estimate their total length. Each edge of F is covered once by either the
cycle C1 or C2; since |C(E)A| ≤ |C(E)B| for every circuit C of F , at most
half of the edges of F is also covered by the cycle C3. Since each red edge
is covered three times, each green edge twice and each blue edge once, the
total length of the constructed cycle cover is at most:

3r + 2g + b + |F | + |F |/2 ≤ 2(r + g + b) + 3|F |/2 = 2m/3 + m = 5m/3 .

The proof of the theorem is now finished.

6 Main result

We are now ready to prove the main result of this paper.

Theorem 14. Every cubic bridgeless graph G with m edges has a cycle cover
comprised of three cycles of total length at most 34m/21.

Proof. We present two bounds on the length of a cycle cover of G and the
bound claimed in the statement of the theorem is eventually obtained by
combining the two presented bounds. In both bounds, the constructed cycle
cover will consist of three cycles. Fix a rainbow 2-factor F and an edge-
coloring of the edges not contained in F with the red, green and blue colors
as described in Lemma 12. Let R, G and B be the sets of the red, green and
blue edges, respectively, and let r, g and b be their numbers. Finally, let d`

be the number of circuits of lengths ` contained in F . By Lemma 12, d3 = 0.
The first cycle cover. Before we proceed with constructing the first

cycle cover, recall the notation of C(E)A and C(E)B introduced before The-
orem 13. The cycle cover is comprised of three cycles C1, C2 and C3. The
cycle C1 contains all red and green edges, the cycle C2 contains all red and
blue edges and the cycles C3 contains all green and blue edges. In addition,
the cycles C1, C2 and C3 contain some edges of the 2-factor F as described
further.

Let C be a circuit of the 2-factor F . Lemma 12 allows us to assume that
if the length of C is four, then the pattern of C is either BBBB or GGBB
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(otherwise, we can—for the purpose of extending the cycles C1, C2 and C3

to C—switch the roles of the red, green and blue colors and the roles of the
cycles C1, C2 and C3 in the remaining analysis; note that we are not recoloring
the edges, just apply the arguments presented in the next paragraphs with
respect to a different permutation of colors). Similarly, we can assume that
the pattern of the circuit C of length eight is one of the following 16 patterns:

BBBBBBBB, BBBBBBRR, BBBBRRRR, BBBBRRGG,
BBRRBBRR, BBRRBBGG, BBBBRBBR, BBBBRGGR,
BBRRBRRB, BBRRBGGB, RRGGBRRB, BBBBRBRB,

BBBRGRGB, RRBRBRBB, BBRBGBGR and BBRRGRGR.

Let us now choose edges of the circuit C that are included in the cycles
C1, C2 and C3. The cycle C1 contains the edges of C1 = C(R∪G)A. The cycle
C2 contains the edges C2 of either C(R∪B)A or C(R∪B)B—we choose the
set with smaller intersection with C(R ∪ G)A. Finally, the edges included
to C3 are chosen so that every edge of C is covered odd number of times;
explicitly, the edges C3 = C1 4 C2 4 C are included to C3. Note that C3 is
either C(G ∪ B)A or C(G ∪ B)B. In particular, the sets C1, C2 and C3 form
cycles.

We now estimate the number of the edges of C contained in C1, C2 and
C3. The sum of the numbers edges contained in each of the cycles is:

|C1| + |C2| + |C1 4 C2 4 C|

= |C1 ∪ C2| + |C1 ∩ C2| + |C \ (C1 ∪ C2)| + |C1 ∩ C2|

= |C| + 2|C1 ∩ C2|

Since |C1| = |C(R ∪ G)A| ≤ |C(R ∪ G)B|, the number of edges of C1 is at
most `/2. By the choice of C2, |C1 ∩ C2| ≤ |C1|/2 ≤ `/4. Hence, the sets
C1, C2 and C3 contain at most ` + 2b`/4c edges of the circuit C.

The estimate on the number of edges of C contained in the cycles C1, C2

and C3 can further be improved if the length of the circuit C is four: if the
pattern of C is BBBB, then C1 = C(R ∪ G)A = ∅ and thus C1 ∩ C2 = ∅. If
the pattern is GGBB, then C1 ∩C2 = C(R∪G)A ∩C(R∪B)A = ∅. In both
the cases, the cycles C1, C2 and C3 contain (at most) |C|+2|C1 ∩C2| = ` = 4
edges of C.

Similarly, the estimate on the number of edges of C contained in the
cycles can be improved if the length of C is eight. As indicated in Figure 6,
it holds that |C1| = |C(R ∪ G)A| ≤ 3. Hence, |C1 ∩ C2| ≤ |C1|/2 ≤ 3/2.
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Figure 6: The sets C1 = C(R ∪ G)A for circuits C with length eight; the
edges contained in the set are drawn bold.
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Consequently, |C1 ∩ C2| ≤ 1 and the number of edges of C included in the
cycles C1, C2 and C3 is at most |C| + 2|C1 ∩ C2| ≤ 8 + 2 = 10.

Based on the analysis above, we can conclude that the cycles C1, C2 and
C3 contain at most the following number of edges of the 2-factor F in total:

2d2 + 4d4 + 7d5 + 8d6 + 9d7 + 10d8 + 13d9 + 14d10 + 15d11 +
∞

∑

`=12

3`

2
d`

=
3

2

∞
∑

`=2

`d` − d2 − 2d4 −
1

2
d5 − d6 −

3

2
d7 − 2d8 −

1

2
d9 − d10 −

3

2
d11 . (3)

Since the 2-factor F contains 2m/3 edges, the estimate (3) translates to:

m − d2 − 2d4 −
1

2
d5 − d6 −

3

2
d7 − 2d8 −

1

2
d9 − d10 −

3

2
d11 . (4)

Since each red, green or blue edge is contained in exactly two of the cycles
C1, C2 and C3 and there are m/3 such edges, the total length of the cycle
cover of G formed by C1, C2 and C3 does not exceed:

5m

3
− d2 − 2d4 −

1

2
d5 − d6 −

3

2
d7 − 2d8 −

1

2
d9 − d10 −

3

2
d11 . (5)

This finishes the construction and the analysis of the first cycle cover of G.
The second cycle cover. We keep the 2-factor F and the coloring

of the edges of G by red, green and blue colors fixed. As long as the graph
H = G/F contains a red circuit, choose a red circuit of H = G/F and recolor
its edges with blue. Similarly, recolor edges of green circuits with blue. The
modified edge-coloring still gives a rainbow 2-factor but the two additional
constraints given in Lemma 12 need not be met anymore. Let R′, G ′ and
B′ be the sets of red, green and blue in the modified edge-coloring and r′, g′

and b′ their cardinalities.
The construction of the cycle cover now follows the lines of the proof of

Theorem 13. The first cycle C1 is formed by the red and green edges and the
edges of C(R′∪G ′)A for every circuit C of the 2-factor F . The cycle C2 is also
formed by the red and green edges and it contains the edges of C(R′ ∪ G ′)B

for every circuit C of F . Finally, the cycle C3 is formed by the red and blue
edges and the edges of C(R′∪B′)A for every circuit C of F . Clearly, the sets
C1, C2 and C3 are cycles of G and they cover all the edges of G.

Let us now estimate the lengths of the cycles C1, C2 and C3. Each red edge
is contained in all the three cycles, each green edge in two cycles and each

17



blue edge in one cycle. Each edge of a circuit C of length ` of the 2-factor F
is contained either in C1 or in C2 and at most half of the edges of C is also
contained in the cycle C3. Hence, the total length of the cycles C1, C2 and C3

is at most:

3r′ + 2g′ + b′ +
∞

∑

`=2

⌊

3`

2

⌋

d` . (6)

Since the red edges form an acyclic subgraph of G/F , the number of red edges
is at most the number of the cycles of F , i.e., d2 +d3 +d4 +d5 + . . . Similarly,
the number of green edges does not exceed the number of the cycles of F .
Since r′ + g′ + b′ = m/3, the expression (6) can be estimated from above by

m

3
+2r′+g′+

∞
∑

`=2

⌊

3`

2

⌋

d` ≤
m

3
+

∞
∑

`=2

3d`+
∞

∑

`=2

⌊

3`

2

⌋

d` =
m

3
+

∞
∑

`=2

⌊

3`

2
+ 3

⌋

d` .

(7)
Since the 2-factor F contains 2m/3 = 2d2 + 3d3 + 4d4 + . . . edges, the bound
(7) on the number of edges contained in the constructed cycle cover can be
rewritten to

m

3
+

7 · 2 · m

4 · 3
+

∞
∑

`=2

(⌊

3`

2
+ 3

⌋

−
7`

4

)

d` ≤
3m

2
+

10
∑

`=2

(⌊

3`

2
+ 3

⌋

−
7`

4

)

d` .

(8)
Note that the last inequality follows from the fact that

⌊

3`
2

+ 3
⌋

− 7`
4

≤
3`
2
− 7`

4
+ 3 = 3 − `

4
≤ 0 for ` ≥ 12 and the expression

⌊

3`
2

+ 3
⌋

− 7`
4

= −1/4
is also non-positive for ` = 11. The estimate (8) can be expanded to the
following form (recall that d3 = 0):

3m

2
+

5

2
d2 + 2d4 +

5

4
d5 +

3

2
d6 +

3

4
d7 + d8 +

1

4
d9 +

1

2
d10 . (9)

The length of the shortest cycle cover of G with three cycles exceeds
neither the bound given in (5) nor the bound given in (9). Hence, the length
of such cycle cover of G is bounded by any convex combination of the two
bounds, in particular, by the following:

5

7
·

(

5m

3
− d2 − 2d4 −

1

2
d5 − d6 −

3

2
d7 − 2d8 −

1

2
d9 − d10 −

3

2
d11

)

+

2

7
·

(

3m

2
+

5

2
d2 + 2d4 +

5

4
d5 +

3

2
d6 +

3

4
d7 + d8 +

1

4
d9 +

1

2
d10

)

=
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34m

21
−

6

7
d4 −

2

7
d6 −

6

7
d7 −

8

7
d8 −

2

7
d9 −

4

7
d10 −

15

14
d11 ≤

34m

21
.

The proof of Theorem 14 is now completed.
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