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Abstract. A set A of vertices of a graph G is called d-scattered in G if no
two d-neighborhoods of (distinct) vertices of A intersect. In other words,
A is d-scattered if no two distinct vertices of A have distance at most 2d.
This notion was isolated in the context of finite model theory by Gure-
vich and recently it played a prominent role in the study of homomorphism
preservation theorems for special classes of structures (such as minor closed
families). This in turn led to the notions of wide, almost wide and quasi-
wide classes of graphs. It has been proved previously that minor closed
classes and classes of graphs with locally forbidden minors are examples
of such classes and thus (relativized) homomorphism preservation theorem
holds for them. In this paper we show that (more general) classes with
bounded expansion and (newly defined) classes with bounded local expan-
sion and even (very general) nowhere dense classes are quasi wide. This
not only strictly generalizes the previous results but it also provides new
proofs and algorithms for some of the old results. It appears that bounded
expansion and nowhere dense classes are perhaps a proper setting for inves-
tigation of wide-type classes as in several instances we obtain a structural
characterization. This also puts classes of bounded expansion in the new
context. Our motivation stems from finite dualities. As a corollary we ob-
tain that any homomorphism closed first order definable property restricted
to a bounded expansion class is a restricted duality.

1. Introduction

This paper is about special classes of graphs and structures. Typically our
classes are countable and contain only finite structures and our motivation is
database theory, algorithmic complexity and finite model theory, particularly
recently intensively studied homomorphism preservation theorems.

Classical model theory studies properties of abstract mathematical structures
(finite or not) expressible in first-order logic [Hod93]. In this context, three
classical fundamental preservation theorems have been proved, which connect
syntactic and semantic properties of first-order formulas:

• the  Loś-Tarski theorem, which asserts that a first-order formula is pre-
served under extensions on all structures if, and only if, it is logically
equivalent to an existential formula;

• Lyndon’s theorem, which asserts that a first-order formula is preserved
under surjective homomorphisms on all structures if, and only if, it is
logically equivalent to a positive formula [Lyn59];
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• the homomorphism preservation theorem which asserts that a first-
order formula is preserved under homomorphisms on all structures if,
and only if, it is logically equivalent to an existential-positive formula.

The terms “all structures”, which means finite and infinite structures, is crucial
in the statement of these theorems.

Finite model theory is the study of first-order logic (and its various ex-
tensions) on finite structures [EF96], [Lib04]. In this context, it has been
proved that the two first theorems fail when relativized to the finite, that
is: there exists a first-order formula that is preserved under extensions on fi-
nite structures, but is not equivalent in the finite to an existential formula
[Tai59][Gur84][AG97] and there exists a first-order formula that is preserved
under surjective homomorphisms on finite structures, but is not equivalent in
the finite to a positive formula [AG87][Sto95]. However, a bit surprisingly, the
relativized version of the homomorphism preservation theorem to the finite
has been recently proved by B. Rossman [Ros07].

Relativizations of homomorphism preservation theorem to specific classes
of structures have been studied and in this context A. Atserias and A. Dawar
defined classes of graphs called wide, almost wide and quasi-wide (cf. [Daw07a]
for instance). (These classes are defined in the Section 3.2.) For instance, it
has been proved in [ADG05] that the extension preservation theorem holds in
any class C that is wide, hereditary (i.e. closed under taking substructures)
and closed under disjoint unions. Wide classes includes classes with bounded
maximum degree. We prove here that an hereditary class of graphs is actually
wide if and only if it has a bounded degree (Theorem 3.3).

Also, it has been proved in [ADK04] [ADK06] that the homomorphism
preservation theorem holds in any class C that is almost wide, hereditary and
closed under disjoint unions. Almost wide classes of graphs include classes of
graphs which exclude a minor [KS99]. We characterize almost wide hereditary
classes of graphs and prove, in particular, that topologically closed classes of
graphs are almost wide.

Dawar [Daw07b] announced that the homomorphism preservation theorem
holds in any hereditary quasi-wide class that is closed under disjoint unions.
This is a strengthening of the result proved in [ADK04]. Quasi-wide classes of
graphs include classes of graphs locally excluding a minor [DGK07]. In this
paper we prove that any class with bounded expansion is quasi-wide (The-
orem 3.19). Bounded expansion classes and algorithmic applications have
been introduced in [NOdM05a, NOdM05b, NOdM06a, NOdM06b, NOdM07,
NOdM08a, NOdM08b] and have been discussed in Z. Dvořák’s PhD thesis
[Dvo07a] and in X. Zhu paper [Zhu06].

We shall prove more: we actually give a complete characterization of hered-
itary classes of graphs which are quasi-wide. This led us to the definition of
classes of nowhere dense structures. Classes of nowhere dense structures are
defined in this paper (in Section 2.3).

These classes strictly contain all previously studied -in this context- classes
of structures such as classes with bounded local tree width, locally excluded
minors, etc, see [Cou90][KS99][ADK04][ADG05][ADK06] [DGK07]; see Fig 2
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for the inclusion schema of these classes. Yet we can prove for all classes
of nowhere dense structures that the relativized homomorphism preservation
theorem holds even for them. Perhaps this also provides a proper setting for
this type of questions (about wide, semi-wide and quasi-wide classes) and, as
we remarked earlier, we obtain characterization theorems.

If a class K is defined by an existentially positive First Order formula then K
is defined by the existence of a homomorphism from a finite set F of structures.
This in turn means that the complementary class is the class of all structures
A for which there is no homomorphism F −→ A for any F ∈ F . This setting
is close to (homomorphism ) dualities which were studied recently intensively,
[NT00][HN04][NT05].

Combining with the results of [NOdM08c] we prove perhaps surprising fact
that any homomorphism closed First Order property when restricted to a
Bounded Expansion class is a Restricted Finite Duality. This is stated in
Section 4.4 .

This paper is organized as follows: In Section 2 we review all necessary
definitions and, among others, we define notions of shallow minor, classes
with bounded expansion, classes with bounded local expansion and classes of
nowhere dense graphs. We also review some background from finite model
theory, relational structures and mathematical logic. In the most of this paper
we deal with undirected graphs as the difficulty lies there. The relational
structures (and hypergraphs in particular) are treated usually by means of
Gaifman graph or, sometimes more conveniently, by the incidence graph. (See
Sections 2.4 and 4.) However for our purposes this does not suffices and both
incidence graphs and Gaifman graphs are too rough tool. Thus in Section 4.1
we find it convenient to define yet another reduction of relational structures
(and hypergraphs) to graphs by means of Star Selector.

In Section 3 we prove the characterizations of classes which are wide, al-
most wide and quasi-wide. This is nontrivial and we need a detail analysis of
functions ΦC and of its uniform variant ΦC (which is the key notion for our
analysis).

2. Definitions

For graphs and, more generally, relational structures, we use standard no-
tation and terminology. In this Section we give the key definitions of this
paper.

2.1. Distances, Independence and Scattered Sets. The distance in a
graph G between two vertices x and y is the minimum length of a path linking
x and y (or ∞ if x and y do not belong to the same connected component of
G) and is denoted by distG(x, y). Let G = (V,E) be a graph and let d be an
integer. The d-neighborhood NG

d (u) of a vertex u ∈ V is the subset of vertices
of G at distance at most d from u in G: NG

d (u) = {v ∈ V : distG(u, v) ≤ d}.
Let r ≥ 1 be an integer. A subset A of vertices of a graph G is r-independent

if the distance between any two distinct elements of A is strictly greater than
r. We denote by αr(G) the maximum size of an r-independent set of G. Thus
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α1(G) is the usual independence number α(G) of G. A subset A of vertices of
G is d-scattered if NG

d (u)∩NG
d (v) = ∅ for every two distinct vertices u, v ∈ A.

Thus A is d-scattered if and only if it is 2r-independent.

2.2. Shallow minors and Grads. For a graph G = (V,E), we denote by |G|
the order of G (that is: |V |) and by ‖G‖ the size of G (that is: |E|).

≤ r

Figure 1. A shallow minor of depth r of a graph G is a simple
subgraph of a minor ofG obtained by contracting vertex disjoints
subgraphs with radius at most r

For any graphs H and G and any integer d, the graph H is said to be
a shallow minor of G at depth d ([PRS94] attribute this notion, called then
low depth minor to Ch. Leiserson and S. Toledo) if there exists a subset
{x1, . . . , xp} of G and a collection of disjoint subsets V1 ⊆ NG

d (x1), . . . , Vp ⊆
NG

d (xp), each including a connected subgraph of G, such that H is a subgraph
of the graph obtained from G by contracting each Vi into xi and removing
loops and multiple edges (see Fig. 1). The set of all shallow minors of G at
depth d is denoted by GO i. In particular, GO 0 is the set of all subgraphs of
G.

The greatest reduced average density (shortly grad) with rank r of a graph
G [NOdM08a, NOdM06a] is defined by formula

(1) ∇r(G) = max

{
‖H‖
|H|

: H ∈ GO r

}
By extension, for a class of graphs C, we denote by C O i the set of all shallow

minors at depth i of graphs of C, that is:

C O i =
⋃
G∈C

(GO i)

Hence we have

C ⊆ C O 0 ⊆ C O 1 ⊆ · · · ⊆ C O i ⊆ . . .

Also, for a class C of graphs we define the expansion of the class C as:

∇i(C) = sup
G∈C

∇i(G)

Notice that ∇i(C) = ∇0(C O i).
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2.3. Classes of Graphs. Although almost all results of this paper can be
formulated in the “local” form (for a single graph with special properties)
we find it useful to formulate our results by means of properties of classes of
graphs.

A class C of graphs is hereditary if every induced subgraph of a graph in C to
C, and it is monotone of every subgraph of a graph in C belongs to C. Notice
that for every class C, the smallest (inclusion minimal) super-class of C which
is monotone is C O 0.

Class C has bounded expansion [NOdM08a] if each of the classes C O i has
bounded density:

C has bounded expansion ⇐⇒ ∀i ≥ 0 : sup
G∈C O i

‖G‖
|G|

<∞

⇐⇒ ∀i ≥ 0 : ∇i(C) <∞

For an extensive studies of bounded expansion classes we refer the reader to
[NOdM08a] [NOdM08b] [NOdM08c] [Dvo07a] [Dvo07b]. We shall add two
more types of classes: bounded local expansion and class of nowhere dense
graphs.

The class C has bounded local expansion if the balls of bounded radius of graphs
in C have bounded expansion:

C has bounded local expansion ⇐⇒ ∀ρ, i ≥ 0 : sup
v∈G∈C

∇i(G[NG
ρ (v)])<∞

As bounded expansion classes strictly contain proper minor closed classes (as
classes with constant expansion), bounded local expansion classes generalize
classes which locally forbid a minor.

The class C is a class of nowhere dense graphs if no C O i contains all finite
graphs, that is: if each C O i has bounded clique number:

C is a class of nowhere dense graphs ⇐⇒ ∀i ≥ 0 : sup
G∈C O i

ω(G) <∞.

From an intuitive point of view, classes with bounded expansion correspond
to “classes of sparse graphs”, classes with bounded local expansion to “classes
of locally sparse graphs”. For a study of classes of nowhere dense graphs, we
refer the reader to our companion paper [NOdM08d]. The inclusion of these
classes and of several other types of graph classes is depicted Fig. 2.

2.4. Relational Structures and First-Order Logic. Our notation and ter-
minology is standard, see e.g. [EF96]. As we remarked in the introduction most
of our paper can be stated for graphs only. The transition to general relational
structures (and set-systems) will be explained now.
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Figure 2. Inclusion map of some important properties of
classes of graphs.

2.4.1. Relational Structures. A relational vocabulary σ is a finite set of relation
symbols, each with a specified arity. A σ-structure A consists of a universe
A, or domain, and an interpretation which associates to each relation symbol
R ∈ σ of some arity r, a relation RA ⊆ Ar.
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A σ-structure B is a substructure of A if B ⊆ A and RB ⊆ RA for every
R ∈ σ. It is an induced substructure if RB = RA∩Br for every R ∈ σ of arity r.
A substructure B of A is proper if A 6= B. If A is an induced substructure of
B, we say that B is an extension of A. If A is a proper induced substructure,
then B is a proper extension. If B is the disjoint union of A with another
σ-structure, we say that B is a disjoint extension of A. If S ⊆ A is a subset of
the universe of A, then A ∩ S denotes the induced substructure generated by
S; in other words, the universe of A∩ S is S, and the interpretation in A∩ S
of the r-ary relation symbol R is RA ∩ Sr.

(Note that in this paper we shall denote relational structures by boldface
letters such as A, B, and graphs by simple types such as G,H.)

2.4.2. First-Order Logic. Let σ be a relational vocabulary. The atomic formu-
las of σ are those of the form R(x1, . . . , xr), where R ∈ σ is a relation symbol of
arity r, and x1, . . . , xr are first-order variables that are not necessarily distinct.
Formulas of the form x = y are also atomic.

The collection of first-order formulas is obtained by closing the atomic for-
mulas under negation, conjunction, disjunction, universal and existential first-
order quantification. The collection of existential first-order formulas is ob-
tained by closing the atomic formulas and the negated atomic formulas under
conjunction, disjunction, and existential quantification. The semantics of first-
order logic is standard.

The quantifier rank of a first-order formula is the maximum nesting of quan-
tifiers of its sub-formulas.

Let A be a σ-structure, and let a1, . . . , an be points in A. If φ(x1, . . . , xn) is
a formula with free variables x1, . . . , xn, we denote by A |= φ(a1, . . . , an) the
fact that φ is true in A when xi is interpreted by ai. If m is an integer, the
first-order m-type of a1, . . . , an in A is the collection of all first-order formulas
φ(x1, . . . , xn) of quantifier rank at most m, up to logical equivalence, for which
A |= φ(a1, . . . , an). If formulas φ, φ′ have the same m-type then we write
φ ≡n φ′.

2.4.3. Classes of Structures. The Gaifman graph of a σ-structure A, denoted
by G(A), is the (undirected) graph whose set of nodes is the universe of A,
which is denoted by A, and whose set of edges consists of all pairs (a, a′) of
distinct elements of A such that a and a′ appear together in some tuple of
a relation in A. This notion coincides with the combinatorial notion of 2-
section in the sense of Berge, see e.g. [Ber83]. The degree of a structure is
the maximum degree of its Gaifman graph, that is, the maximum number
of neighbors of nodes of the Gaifman graph. Other notions (such as shallow
minor or distance) are defined analogously via Gaifman graphs.

A class C of relational structures has bounded degree (resp. has bounded
expansion, resp. is a class of nowhere dense structures) if the class of graph

Ĉ = {G(A) : A ∈ C} has bounded degree (resp. has bounded expansion, resp.
is a class of nowhere dense graphs). The class C is hereditary if any induced
substructure of a structure in C also belongs to C. Notice that a sufficient (but
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clearly not necessary) condition for C to be a hereditary class of structures is

Ĉ to be a hereditary class of graphs.
Let us remark that alternatively we may convert any relational system and

any hypergraph (X,M) to a graph by means of incidence graph Inc(X,M) which
may be defined as the following graph (V,E) where V = X ∪M, E = {(x, e) :
x ∈ e ∈ M}. While the constructions of Gaifman graph and incidence graph
lead to similar results, sometimes the incidence graph is preferable (for example
in the case of unbounded arities in the hypergraph). The third construction
star selector will be introduced in Section 4.1.

3. How Wide is a Class?

3.1. Further Definitions. We find it useful to study wide, almost wide and
quasi-wide classes by means of the following functions ΦC and ΦC defined for
classes of graphs. It is essential for our approach that we also define the uniform
version of these concepts.

Function ΦC. This function has domain N and range N ∪ {∞} and ΦC(d) is
defined for d ≥ 1 as the minimum s such that the class C satisfies the following
property:

“There exists a function F : N → N such that for every integer
m, every graph G ∈ C with order at least F (m) contains a
subset S of size at most s so that G − S has a d-independent
set of size m.”

We put ΦC(d) = ∞ if C does not satisfy the above property for any value of
s. Moreover, we define ΦC(0) = 0.

Function ΦC. This function has domain N and range N ∪ {∞} and ΦC(d) is
defined for d ≥ 1 as the minimum s such that C satisfies the following property:

“There exists a function F : N → N such that for every integer
m, every graph G ∈ C and every subset A of vertices of G of size
at least F (m), the graph G contains a subset S of size at most
s so that A includes a d-independent set of size m of G− S.”

We put ΦC(d) = ∞ if C does not satisfy the above property for any value of
s. Moreover, we define ΦC(0) = 0.

Notice that obviously ΦC ≥ ΦC for every class C and for every integer d.

Definition 3.1. A class of graphs C is wide (resp. almost wide, resp. quasi-
wide) if ΦC is identically 0 (resp. bounded, resp. finite) [Daw07a]:

C is wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞
Notice that a hereditary class C is wide (resp. almost wide, resp. quasi-wide)

if and only if C O 0 is wide (resp. almost wide, resp. quasi-wide) as deleting
edges cannot make it more difficult to find independent sets.

We introduce the following (uniform) variation of Definition 3.1.
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Definition 3.2. A class of graphs C is uniformly wide (resp. uniformly almost
wide, resp. uniformly quasi-wide) if ΦC is identically 0 (resp. bounded, resp.
finite):

C is uniformly wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is uniformly almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is uniformly quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞

Notice that a class C is uniformly wide (resp. uniformly almost wide, resp.
uniformly quasi-wide) if and only if C O 0 is uniformly wide (resp. uniformly
almost wide, resp. uniformly quasi-wide) as the property is hereditary in
nature and deleting edges cannot make it more difficult to find independent
sets.

Based on a construction of Kreidler and Seese [KS99], Atserias et al. [ADK06]
proved that if a class excludes a graph minor then it is almost wide. Classes
locally excluding a minor have been shown to be quasi-wide by Grohe and
Kreutzer [DGK07]. In this paper (in Section 3.5) we characterize these classes.

3.2. Wide classes. As usual we denote by ∆(G) the maximal degree of a
vertex of graph G. For a class C we denote by ∆(C) the supremum of all
∆(G) for G ∈ C. Thus ∆(C) = ∞ just means that the graphs in C may have
arbitrary large degrees.

Lemma 3.1. Let C be a hereditary class of graphs. If ∆(C) = ∞ then ΦC(2) >
0.

Proof. Assume for contradiction that C satisfies ΦC(2) = 0. Then there exists
a function F : N → N such that every graph G ∈ C with order at least F (2)
has a 2-independent set of size 2. As ∆(C) = ∞, the class C contains a graph
G with maximum degree F (m) hence contains the star graph SF (m) as C is
hereditary. Although this graph has order greater than F (m), it contains no
2-independent set of size 2. �

Lemma 3.2. Let G = (V,E) be a graph and let d,m be integers. If A ⊆ V
has size at least (∆(G)d + 1)m then A includes a d-independent set of size at
least m.

Proof. Notice that Gd has maximum degree at most ∆(G)d (hence chromatic
number at most ∆(G)d + 1) and that any independent set of Gd is a d-
independent set of G. As at least one color class of Gd intersects A on a
subset of size at least |A|/χ(Gd) the lemma follows. �

As a consequence of previous lemmas we deduce our first characterization
theorem:

Theorem 3.3. Let C be a hereditary class of graphs. Then the following are
equivalent:

• ΦC(2) = 0,
• ΦC(2) = 0,
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Figure 3. Example of graphs whose maximal degree is smaller
than their girth

• ∆(C) <∞,
• C is wide,
• C is uniformly wide.

Proof. The theorem follows from the following implications (where the non-
obvious implications follow from the two above Lemmas).

C uniformly wide +3

��

ΦC(2) = 0

��

∆(C) <∞

(Lemma 3.2)
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C wide +3 ΦC(2) = 0

(Lemma 3.1)
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Although the hypothesis that C is hereditary is not necessary to prove that
C is uniformly wide if and only if ∆(C) is finite (because the property of being
uniformly wide is hereditary in nature), this assumption is necessary in order
to prove that a wide class has bounded maximum degree. This is as shown by
the next example:

Example 1. Consider the class C of all 2-connected graphs G satisfying ∆(G) ≤
girth(G) (some examples of this elusive class of graphs are on Fig.3). Then C
is wide although it does not have a bounded average degree:

Assume that a graph G ∈ C has diameter at most D. As G is 2-connected,
it includes a cycle of length girth(G) ≤ 2D. It follows that ∆(G) is at most
2D thus G has at most about (2D)D vertices. Hence for every integer d and
m, every graph in the class with at least (about) (2dm)dm vertices has a d-
independent set of size m.

Now we enter a technical part of this paper: In the next three sections we
first (in 3.3.1–4) develop techniques for finding d-independent sets (for d = 1, 2,
even and odd) and then (in 3.3.5) find obstructions to the existence of such
sets. This will then lead us (in 3.4) to the estimates for our function ΦC.
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Finally, in Section 3.5, this will lead to the characterization of almost wide
and quasi-wide classes (Theorems 3.20 and 3.25).

3.3. Finding d-independent Sets in Graphs. In the following, R(i1, . . . , ik)
denotes the k-colored Ramsey number, which is the minimum order of a com-
plete graph such that in any k-coloration of its edges one finds either a complete
graph of order i1 colored 1, or a complete graph of order i2 colored 2, . . . or a
complete graph of order ik colored k.

3.3.1. Finding 1-independent sets in graphs. The following is a restatement of
the Ramsey theorem for graphs. It implies the existence of 1-independent sets
in graphs:

Lemma 3.4. Let G be a graph and let c, n be integers. Let A be a subset of
at least R(c, n) vertices of G. Then either G contains a Kc or A includes an
independent set of size n. �

3.3.2. Finding a 2-independent set in a 1-independent set.

Lemma 3.5. Let G = (A∪B,E) be a bipartite graph and let p, q, n be integers.
If |A| ≥ F (p, q, n) then at least one of the following properties holds:

• A includes a 2-independent set of size p;
• A includes the principal vertices of a K̇q (the subdivision of Kq with

every its edge subdivided by exactly one vertex);
• B includes a vertex of degree at least n.

Proof. Assume that B includes no vertex of degree at least n. Let k = |B|
and let b1, b2, . . . , bk be the vertices in B in any arbitrary order. Let Γ be the
complete graph with vertex set A, whose edges are colored using

(
n−1

2

)
+ 1

colors and which is constructed as follows: We start with Γ with vertex set A
and without edges. Then we add the edges in k+1 steps. At step i ≤ k we add
to Γ all the edges (which are not already been added) between the neighbors
of bi, coloring them with integers between 1 and

(
n−1

2

)
in such a way that no

two edges added at this step get the same color. This is possible as the degree
of bi is at most n− 1. At step k + 1, we add all the missing edges and assign
to them the color

(
n−1

2

)
+ 1.

As |A| ≥ F (p, q, n), there exists in Γ a monochromatic clique of size q with
color in {1, . . . ,

(
n−1

2

)
} or a monochromatic clique of size p with color

(
n−1

2

)
+1.

If the edges of the clique have color
(

n−1
2

)
+1, its vertices define a 2-independent

set of G of size p. Otherwise, all the edges of the monochromatic clique of size
q have been added at different

(
q
2

)
steps as they got the same color, hence G

includes a K̇q having its principal (”branching”) vertices in A. �

Lemma 3.6. Let m, a, b, s be integers. Define inductively the number
Θ(m, a, b, s) by:

Θ(m, a, b, s) =

{
F (m, a, b), if s = 0;

F (m, a, b,Θ(m, a, b, s− 1)), otherwise.



12 JAROSLAV NEŠETŘIL∗ AND PATRICE OSSONA DE MENDEZ

Let G = (A ∪B,E) be a bipartite graph such that |A| ≥ Θ(m, a, b, s). Then
at least one of the following properties holds:

• there exists in B a subset of size at most s whose removal leaves in A
a 2-independent set of size m;

• A includes all principal vertices of a K̇a;
• B includes the s+ 1 vertices of the complete bipartite graph Ks+1,b.

Proof. We proceed by induction on s.
Assume s = 0. Let p = m, q = a, n = b. According to Lemma 3.5, either

A includes a 2-independent set of size m of G includes a K̇a with principal
vertices in A or B includes a vertex of degree at least b hence G includes a
star K1,b with the center of the star in B.

Assume that s > 0 and that the result has been proved for s − 1. Let
p = m, q = a, n = Θ(m, a, b, s−1). According to Lemma 3.5, either A includes
a 2-independent set of size m or G includes a K̇a with principal vertices in A
or B includes a vertex of degree at least Θ(m, a, b, s− 1).

In the two first cases we are done thus we may assume that G contains a
vertex v of degree at least Θ(m, a, b, s − 1). Let G′ be the subgraph of G
induced by the neighborhood A′ of v and the set B′ of the vertices in B − v
having at least a neighbor in common with v. Then |A′| ≥ Θ(m, a, b, s − 1).
By induction, either the deletion of a subset C ′ of s− 1 vertices in B′ leaves in
A′ of 2-independent set of size m (hence the deletion of the vertices in C ′∪{v}
leaves in A a 2-independent set of size m) or G′ includes Ks,b with the s vertices
in B′ (thus G includes a Ks+1,b with the s+ 1 vertices in B as v is adjacent to

all the vertices in A′) or G′ (hence G) contains a K̇a with principal vertices in
A′ ⊆ A. �

Lemma 3.7. Let G be a graph and let A be an independent set of G of order
at least Θ(m, a, b, s). Then at least one of the following properties holds:

• there exists in G a subset of size at most s whose removal leaves in A
a 2-independent set of size m;

• G includes a K̇a or a Ks+1,b.

Proof. Consider the bipartite graph G′ = (A∪B,E ′) where B is the set of all
the vertices of G adjacent to a least a vertex in A and E ′ is the subset of the
edges of G linking a vertex in A to a vertex in B. The result is then a direct
consequence of Lemma 3.6. �

3.3.3. Finding a (2r + 1)-independent set in a 2r-independent set.

Lemma 3.8. Let G be a graph and let c, n be integers. Let A be a 2r-
independent subset of G of size at least R(c, n). Then either Kc ∈ GO r
or A includes a (2r + 1)-independent set of size n.

Proof. Consider the graph H ∈ GO r obtained from G by contracting the r-
neighborhoods of the vertices in A into a set A′ identified to A (see Fig. 4).
According to Lemma 3.4, either H contains a Kc (thus Kc ∈ GO r) or A′

includes an independent set of size n of H, which corresponds to a (2r + 1)-
independent set of G included in A. �



FIRST ORDER PROPERTIES ON NOWHERE DENSE STRUCTURES 13

3.3.4. Finding a (2r + 2)-independent set in a (2r + 1)-independent set.

Lemma 3.9. Let G be a graph and let A be a (2r+ 1)-independent set of G of
order at least Θ(m, a, b, s). Then at least one of the following properties holds:

• there exists in G a subset of size at most s whose removal leaves in A
a (2r + 2)-independent set of size m;

• GO r includes a K̇a or a Ks+1,b.

Proof. Consider the graph H ∈ GO r obtained from G by contracting the r-
neighborhoods of the vertices in A into a set A′ identified to A (see Fig. 4).
According to Lemma 3.7, either H contains a K̇a or a Ks+1,b (thus K̇a ∈ GO r
or Ks+1,b ∈ GO r) or A′ includes a 2-independent set of size n of H, which
corresponds to a (2r + 2)-independent set of G included in A. �

3.3.5. Obstructions.

Lemma 3.10. Let s be an integer. Let Y be a tree of diameter at most 2r.
Assume the set L of the leaves of Y is partitioned into two sets A and B, such
that |B| < s. Then the deletion of a subset S of at most s vertices of Y cannot
leave more than 2r(|B|s +

(
s
2

)
) < 3rs2 vertices in the union of the connected

components of Y − S having no vertex in A.

Proof. Let S be a subset of at most s vertices of Y . Root Y at a leaf t ∈ A\S.
We order the elements v1, . . . , vk of this set in such a way that if vi is an
ancestor of vj in the tree then i > j. Let b = |B|. We prove by induction
that after the ith vertex deletion, the connected component of t has at most

G

r

H

Figure 4. The reduced graph H is obtained by contracting the
r-neighborhoods of the vertices in A.



14 JAROSLAV NEŠETŘIL∗ AND PATRICE OSSONA DE MENDEZ

b + i leaves which are not in A, and that the number of in the union Xi of
the vertex sets of the connected components of Y − v1 − · · · − vi having no
vertex in A is at most 2r(bi +

(
i
2

)
). For i = 0 the induction obviously holds.

Assume it holds for 0 ≤ i < s. According to the definition of the order of the
vi’s, the vertex vi+1 belongs to the connected component of Y − v1 − · · · − vi

containing t. The deletion of vi+1 disconnects a collection of sub-trees of this
connected component from t. The number of leaves of Y − v1 − · · · − vi+1

increase at most by one (the father of vi+1 in the tree). Xi+1 is increased by
the order of all the sub-trees disconnected from t by vi+1 which include no
vertex from A. This order is bounded by above by the sum of the orders of
the paths from vi+1 to the leaves of these sub-trees, hence by 2r(b + i). Thus
|Xi+1| ≤ 2r(b+ i) + |Xi| ≤ 2r(b(i+ 1) +

(
i+1
2

)
). �

Lemma 3.11. Let r, s be integers, let G,H be graphs such that H ∈ GO r.
Assume H is (s+ 1)-connected and let D = max|X|≤s Diam(H −X). Then G
has a subgraph G′ such that H ∈ G′ O r and such that the deletion of any s
vertices leaves small connected components of total order at most 2rs2 and a
big connected component containing all the other vertices and having diameter
strictly smaller than (2r + 1)(D + 1).

Proof. Let h be the order of H. As H ∈ GO r, there are in G h vertices
x1, . . . , xh and h vertex disjoint subgraphs B1, . . . , Bh with centers x1, . . . , xh

and radius at most r such that H is a subgraph of the graph obtained from
G by deleting all the vertices of out

⋃
iBi and contracting all the Bi’s. We

denote by yi the vertex of H corresponding to the ball Bi.
We construct the subgraph G′ of G as follows: first we delete all the vertices

which are not in
⋃

iBi. For every adjacent yi and yj in H we keep exactly one
edge in G′ linking a vertex in Bi and a vertex in Bj (chosen arbitrarily), while
for every non-adjacent yi and yj in H we delete all the edges between Bi and
Bj. In each Bi, we keep only the edges of a shortest path tree (i.e. a BFS-tree)
from xi. Then we iteratively delete any vertex in Bi which has degree 1 in G′.

The so-obtained G′ is a subgraph of G which is so that H ∈ G′ O r. Assume
we delete in G′ a subset X of s vertices, s1 in Bi1 , s2 in Bi2 ,. . . , sk in Bik (thus
s1 + s2 + · · · + sk = s and k ≤ s). According to Lemma 3.10 and as H is
(s + 1)-connected, the order of the connected components of G′ disconnected
from the Bi’s (for i /∈ {i1, . . . , ik} by the deletion of the vertices in S is at most
2r

∑
i s

2
i ≤ 2rs2 (in the application of Lemma 3.10 to Bij , the set B is the set

of the leaves linked to some other Bij′
).

The upper bound on the diameter of the big connected components presents
no particular difficulties. �

3.4. Computing ΦC.

Lemma 3.12. Let C be a monotone class of graphs and let r ≥ 0 be an integer.
Assume C O r contains every Kc (c ∈ N). Then ΦC(2r + 1) = ∞.

Proof. Assume for contradiction that C O r contains every Kc (c ∈ N) but
ΦC(2r + 1) = s < ∞. Let m = 2rs2 + 2 and let N be any big integer. As
KN ∈ C O r, according to Lemma 3.11 there exists in C a graph G′ such that
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the deletion of s vertices cannot leave a (2r+ 1)-independent set of size bigger
than 2rs2 + 1 < m. �

Lemma 3.13. Let C be a monotone class of graphs and let r ≥ 0 be an integer.
If C O r contains every K̇a (a ∈ N). Then ΦC(2r + 2) = ∞.

Proof. Assume for contradiction that C O r contains every K̇a (a ∈ N) but
ΦC(2r + 2) = s <∞.

Let m = and let N be any big integer. As K̇N ∈ C O r, there exists in
C a graph G having K̇N has a depth r minor. According to the proof of
Lemma 3.11, this graphs may be chosen with the following structure: the
graph G is covered by vertex disjoint induced sub-trees Yi (1 ≤ i ≤ N) rooted
at xi and having height at most r, every leaf of Yi is adjacent to some leaf
of Yj (with j 6= i) and for every i 6= j there exists exactly one edge between
Yi and Yj. Let A = {x1, . . . , xN}. By deleting at most s vertices, one leaves
at least unmodified a subgraph induced by at least N − s of the Yi’s. As
two xi’s in this subgraph have distance at most 2r + 2, the set A includes no
(2r + 2)-independent set of size greater than s+ 1. �

Lemma 3.14. Let C be a monotone class of graphs and let r ≥ 0 be an integer.
If C O r contains every Ks,b (b ∈ N). Then ΦC(2r + 2) ≥ s.

Proof. The proof is similar to the one of Lemma 3.13: assume for contradiction
that C O r contains every Ks, b (b ∈ N) but ΦC(2r + 2) = s− 1.

Let m = and let N be any big integer. As K̇N ∈ C O r, there exists in
C a graph G having Ks,N has a depth r minor. According to the proof of
Lemma 3.11, this graphs may be chosen with the following structure: the
graph G is covered by vertex disjoint induced sub-trees Yi (1 ≤ i ≤ s) and
Yj (1 ≤ j ≤ N), respectively rooted at xi and x′j, having height at most r,
every leaf of Yi is adjacent to some leaf of some Y ′

j and for every 1 ≤ i ≤ s
and 1 ≤ j ≤ N there exists exactly one edge between Yi and Y ′

j s. Let A =
{x′1, . . . , x′N}. By deleting at most s−1 vertices, one leaves at least unmodified
a subgraph induced by at least N − s of the Y ′

i s and one of Yi. As two vertices
x′i and x′j in this subgraph have distance at most 2r+ 2, the set A includes no
(2r + 2)-independent set of size greater than s+ 1. �

Lemma 3.15. Let C be a hereditary class of graphs and let r ≥ 0 be an integer.

• If ω(C O r) = ∞ then ΦC(2r + 1) = ΦC(2r + 1) = ∞;
• otherwise, ΦC(2r + 1) = ΦC(2r) and ΦC(2r + 1) = ΦC(2r).

Proof. The case where r = 0 is settle by Lemma 3.4: If ω(C O 0) = ∞ then
ΦC(1) = ΦC(1) = ∞; otherwise, ΦC(1) = ΦC(1) = 0 = ΦC(0) = ΦC(0). So we
shall assume r ≥ 1.

Assume every Kc (c ∈ N) belong to C O r (i.e. ω(C O r) = ∞). According to
Lemma 3.12, ΦC(2r + 1) = ∞ = ΦC(2r + 1). Otherwise, let c = ω(C O r) + 1.

As ΦC and ΦC are non decreasing, if ΦC(2r) = ∞ (resp. ΦC(2r) = ∞) then
ΦC(2r + 1) = ΦC(2r) (resp. ΦC(2r + 1) = ∞).

Let s = ΦC(2r) and let m be an integer. Then every graph G ∈ C of
order at least F (R(c,m)) contains a subset S of at most s vertices such that
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α2r(G − S) ≥ R(c,m). According to Lemma 3.8, we have α2r+1(G − S) ≥ m
as c > ω(C O r). Hence ΦC(2r + 1) ≤ s. As ΦC is non decreasing, we deduce
ΦC(2r + 1) = ΦC(2r).

Let s = ΦC(2r) and let m be an integer. Then for every graph G ∈ C
and every subset A of size at least F (R(c,m)), G contains a subset S of at
most s vertices such that A includes a subset A′ of size R(c,m) which is 2r-
independent in G − S. According to Lemma 3.8, A′ includes a subset A′′

of size m which is (2r + 1)-independent in G − S as c > ω(C O r). Hence
ΦC(2r+ 1) ≤ s. As ΦC is non decreasing, we deduce ΦC(2r+ 1) = ΦC(2r). �

Lemma 3.16. Let G = (V,E) be a graph, let d ≥ 1,m, s be integers and let
A be a subset of V .

Assume there is S ⊆ V and A′ ⊆ A such that A′ is 2d-independent in G−S
and |A′| ≥ m2s.

Then there exists C ⊆ S and A′′ ⊆ A′ such that A′′ is 2d-independent in
G− C, |A′′| = m and K|C|,m ∈ GO (d− 1).

Proof. For v ∈ A′, let Lv be a minimal subset of S such that NG−Lv
d (v) ∩ (S \

Lv) = ∅. Such a set obviously exists (it can be S). As S has only 2s distinct
subsets, there exists a subset A′′ ⊂ A′ of size m such that Lx = Ly for every
x, y ∈ A′′ (call this set C). Let x, y be any two distinct elements of A′′. We have
NG−C

d (x)∩NG−C
d (y) = ∅ for otherwise there would exist an x–y path of length

at most 2d avoiding C but not S because A′′ is 2d-independent in G− S thus
some element of S \ C would belong to Lx or Ly. Thus A′′ is 2d-independent
in G − C. Moreover, by the minimality of Lx, every vertex v ∈ Lx is such

that N
G−(C−v)
d (x) ∩ (S \ (C − v)) 6= ∅ and more precisely v ∈ N

G−(C−v)
d (x).

It follows that for every x ∈ A′′ there exists a tree Yx of depth at most d,
which leaves are exactly the vertices in C and such that the Yx’s are pairwise
internally vertex disjoint. �

Define β(C) to be supremum of the integers s such that {Ks,n, n ∈ N} ⊆ C.:

Lemma 3.17. Let C be a class of graphs and let r ≥ 0 be an integer.

• If β(C O r) = ∞ or C O r includes all the K̇a (a ∈ N) then ΦC(2r+2) =
∞;

• otherwise, ΦC(2r + 2) = β(C O r).

Proof. If β(C O r) = ∞ or C O r includes all the K̇a (a ∈ N) then ΦC(2r+ 2) =
∞, according to Lemmas 3.13 and 3.14.

Otherwise, as β(C O r) < ∞ we have ω(C O r) < ∞. It follows (using
Lemma 3.15 and induction) that ΦC(2r + 1) < ∞. According to Lemma 3.9,
we get ΦC(2r+ 2) <∞. According to Lemma 3.16 we have then ΦC(2r+ 2) ≤
β(C O r). According to Lemma 3.14 we have ΦC(2r + 2) ≥ β(C O r). �

Theorem 3.18. Let C be a class of graphs and let r ≥ 0 be an integer. Then

• If ω(C O r) = ∞ then ΦC(2r + 1) = ∞; otherwise, ΦC(2r + 1) =
ΦC(2r) = β(C O (r − 1)).

• If β(C O r) = ∞ or C O r includes all the K̇a (a ∈ N) then ΦC(2r+2) =
∞; otherwise, ΦC(2r + 2) = β(C O r).
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Proof. The second item is a direct consequence of Lemma 3.17. The first item
is a consequence of both Lemma 3.15 (to prove finiteness) and Lemma 3.17
(to get the value, as the obstructions for 2r-case would induce big complete
minors in C O r). �

Problem 3.1. Is there a similar characterization for ΦC (where C is a heredi-
tary class of graphs)?

3.5. Almost Wide Classes and Quasi-Wide Classes. The following three
characterizations follow from Theorem 3.25 which is presented next. We chose
this order to conform to the natural progression of the results.

Theorem 3.19. Let C be a class with bounded expansion. Then Φd(C) ≤
∇bd/2c−1(C).

Proof. According to Theorem 3.25, C is uniformly quasi-wide, hence ΦC(d) <
∞ for every d. According to Theorem 3.18, ΦC(d) = β(C O (bd/2c − 1)). As
∇bd/2c−1(C) = ∇0(C O (bd/2c − 1)) ≥ supn∈N∇0(Kβ(C O (bd/2c−1)),n) =
= β(C O (bd/2c − 1)) we conclude. �

We have the following characterization of hereditary almost wide classes of
graphs:

Theorem 3.20. Let C be a hereditary class of graphs. Then the following are
equivalent:

• C is almost wide;
• C is uniformly almost wide;
• There are s ∈ N and t : N → N such that Ks,t(r) /∈ C O r (for all r ∈ N).

Proof. If C is almost wide then the two next items follow from Theorem 3.18.
If C is such that each C O r excludes some Ks,t(r), then it is uniformly quasi-

wide according to Theorem 3.25 and the bounding of ΦC(d) then follows from
Theorem 3.18. �

To prove that topological closed classes are almost wide, we need the fol-
lowing technical lemma:

Lemma 3.21. Let G be a graph, let p, r be integers and let t(r) =
(
p
(

p
2

))r+2
.

If K(p+1
2 ),t(r) ∈ GO r then G includes a ≤ (8r + 4)-subdivision of Kp.

Proof. Let q = p
(

p
2

)
and t(r) = qr+1, assume K(p+1

2 ),t(r) ∈ GO r and con-

sider a minimal subgraph H of G such that K(p+1
2 ),t(r) ∈ H O r. The first

part of K(p+1
2 ),t(r) we label as follows: x1, . . . , xp (for the first p vertices) and

z{1,2}, . . . , z{i,j}, . . . , z{p−1,p} for the
(

p
2

)
next ones. The second part of K(p+1

2 ),t(r)

we label y1, . . . , yt(r). Then, in H, each of these vertices will correspond to
rooted trees of height at most r:

• x1, . . . , xp will correspond to rooted trees X1, . . . , Xp;
• z{1,2}, . . . , z{i,j}, . . . , z{p−1,p} will correspond to rooted trees Z{1,2}, . . . ,
. . . , Z{i,j}, . . . , Z{p−1,p};
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• y1, . . . , yt(r) will correspond to rooted trees Y1, . . . , Yt(r).

Moreover, by minimality of H, there exists exactly one edge between one vertex
of a Xi or a Z{a,b} and one vertex of a Yj, and each leaf of a Xi or a Y{a,b} is
adjacent to a vertex of some Yj.

Each Xi either include a vertex of degree at least q or Xi has order at most
qr+1 hence at least one vertex of Xi is adjacent to at least t(r)/qr+1 = q trees
Yj. For each i, we can select

(
p
2

)
trees Yki,j

(for j 6= i). By construction, we
get p spiders (i.e. subdivision of stars) with centers in X1, . . . , Xp, the spider
with center in Xi having its leaves in Yki,j

for j 6= i. By assumption, there
exists a path from Yki,j

to Ykj,i
going through Z{i,j}. Altogether, we get a

≤ (8r + 4)-subdivision of Kp in H hence in G. �

We deduce that excluding a topological minor is sufficient to ensure that a
class is almost wide:

Theorem 3.22. Let C be a proper topologically closed class of graphs (i.e. a
class of graphs without subdivisions of some fixed graph). Then C is almost
wide.

Proof. Let C be a proper topologically closed class of graphs. Without loss of
generality, we may assume that C excludes some KN as a topological minor.
Assume for contradiction that for every s ∈ N there exists r(s) such that for
every t ∈ N, Ks,t ∈ C O r(s). Then K

(N+1
2 ),(N(N

2 ))
r(N)+2 ∈ GO r(N) for some

G ∈ C. According to Lemma 3.21 the graph G includes a subdivision of KN ,
a contradiction. �

Remark 3.23. Uniformly almost wide classes do not need to be topologically
closed and not even have bounded local expansion: Consider the class C of
all graphs G satisfying ∆(G) ≤ girth(G). Then C is uniformly almost wide
although it does not have a bounded average degree: As the class is hereditary,
it is sufficient to prove that C is almost wide. Let d and m be integers. If a
graph G ∈ C has diameter at least D = dm then G includes a d-independent
set of size m. Otherwise, if G includes a cycle, then this cycle has length
girth(G) ≤ 2D, hence ∆(G) ≤ 2D and G has at most about (2D)D vertices.
Otherwise, if G is acyclic, it is a forest, and the deletion of one vertex is
sufficient to get a big d-independent set. Hence C is almost wide. Also, let
D = {G + K1 : G ∈ C}. Obviously, D is also uniformly almost wide but does
not have a bounded local expansion.

We may be more precise when C is actually minor closed:

Theorem 3.24. Let C be a minor closed class of graphs and let s be an integer.
Then the following are equivalent:

• C is almost wide and ΦC(d) < s for every integer d ≥ 2;
• C is uniformly almost wide and ΦC(d) < s for every integer d ≥ 2;
• C excludes some graph Ks,t.

Proof. If Ks,N belongs to C for every N ∈ N then ΦC(d) ≥ ΦC(d) ≥ ΦC(2) ≥ s.
Otherwise, according to Theorem 3.18 we have s > ΦC(d) ≥ ΦC(d). �
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Finally, we have the following characterization of quasi-wide classes:

Theorem 3.25. Let C be a hereditary class of graphs. The following conditions
are equivalent:

• C is quasi-wide;
• C is uniformly quasi-wide;
• for every integer d there is an integer N such that KN /∈ C O d;
• C is a class of nowhere dense graphs.

Proof. Assume C is a class of nowhere dense graphs. According to Lemmas 3.4,
3.7, 3.8 and 3.9 then C is uniformly quasi-wide hence quasi-wide. Conversely,
if C is not a class of nowhere dense graphs, then it is not quasi-wide according
to Lemma 3.12 hence also not uniformly quasi-wide. �

Example 2. For a surface Σ, let CΣ be the class of the graphs which embed on
Σ. It has been proved in [ADK06] that CΣ is almost wide for every surface Σ
and that ΦCΣ

(d) is at most equal to the order of the smallest clique which does
not embed on Σ. Again, according to Theorem 3.25, the class CΣ is uniformly
quasi wide. Hence by Theorem 3.18, we deduce that ΦCΣ

(d) = ΦCΣ
(d) = 2 for

every integer d, as every K2,n embed on any surface but not every K3,n does.

Remark 3.26. The classes of nowhere dense graphs are very interesting classes
in themselves from both algorithmic and structural point of view. They admit
a characterization which combine virtually all concepts which were developed
for the study of bounded expansion classes and expose them in the new light.
It also appears that classes of nowhere dense graphs are a quantitative gen-
eralization of bounded expansion classes developed in [NOdM05a, NOdM05b,
NOdM06a, NOdM06b, NOdM07, NOdM08a, NOdM08b, Dvo07a] and that
there is an evidence these classes reach the limit for structural properties. We
postpone this to our companion paper [NOdM08d]

4. Applications

4.1. Structures. Using incidence (or Gaifman) graph construction the char-
acterization theorems translate almost verbatim to general finite relational
structures. Thus for example we have (as an analogy to Theorem 3.3):

Theorem 4.1. Let C be a hereditary class of structures. Then the class C is
wide iff C is uniformly wide iff there is a uniform bound to any degree of a
vertex of a structure in C.

For a class C of structures, recall that Ĉ denotes the class of the Gaifman
graphs of the structures in C. From Theorem 3.25 and Theorem 3.24 we get:

Theorem 4.2. Let C be a hereditary class of structures.

• If Ĉ is a class of nowhere dense graphs then C is uniformly quasi-wide;

• Moreover, if there are s ∈ N and t : N → N such that Ks,t(r) /∈ Ĉ O r
(for all r ∈ N), then C is uniformly almost wide.
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However the situation is not so simple and we should aim for more. The

fact that the condition that Ĉ should be a class of nowhere dense graphs is not
necessary is displayed by the next example:

Example 3. Let An be the triple system on {1, . . . , n} with triples (1, i, j) where
1 < i < j and let C = {An : n ∈ N}. It is obvious that C is almost wide (as

deleting point 1 disconnects all the structure An) although Ĉ = {Kn : n ∈ N}
is not a class of nowhere dense graphs.

This example actually shows that Gaifman graphs do not constitute a good
approach to determining whether a class of structures is almost wide (resp.
quasi-wide) or not. (And that may be one of the first instances of such phe-
nomenon.) Another approach may be used, which will allow to handle class of
structures like the one given in Example 3.

Let A be a structure and let StarSel(A) denotes the set of all graphs obtained
from the incidence graph of A by contracting exactly one edge at each vertex
representing a relation (hence each relation tuple appears as a star in the
graph). The graphs in StarSel(A) we call the star selectors of A. Let C be a
class of structures. A function σ mapping each A ∈ C to σ(A) ∈ StarSel(A)
is called a star selector choice on C. We denote by S(C) the set of all the star
selector choices on C and, for σ ∈ S(C), we denote by σ(C) the class of graphs
{σ(A) : A ∈ C}.

Theorem 4.3. Let C be an infinite class of structures. Then:

• Let s be an integer. Then C is almost wide (for s) if and only if there
exists σ ∈ S(C), such that σ(C) is almost wide (for s);

• C is quasi-wide if and only if there exists σ ∈ S(C), such that σ(C) is
quasi-wide.

Proof. Assume C is almost wide. Then, there exists s ∈ N such that for every
d ∈ N there exists N(d) such that every structure A ∈ C of order at least N(d)
has a set S of at most s points whose deletion leaves in A a d-independent set
of size at least d. Let ψ : C → N be defined as follows: for A ∈ C, ψ(A) is the
maximum d ∈ N such that A has a subset of at most s points whose deletion
leaves in A a d-independent set of size at least d. By assumption we have:
∀A ∈ C, if A has order at least N(d) then ψ(A) ≥ d. For A ∈ C, there exists a
subset S at most s points of A whose deletion leaves in A a ψ(A)-independent
set of size at most ψ(A). Let GA ∈ StarSel(A) be a star selector of A such
that for any relation R, if R meets S then the star representing R has its center
in S. (For other tuples we select stars arbitrarily.) Obviously, the deletion in
GA of the vertices corresponding to S leaves in GA a ψ(d)-independent set of
size at least ψ(d). Let σ ∈ S(C) be such that σ(A) = GA (for every A ∈ C).
Then the class of graphs σ(C) is almost wide and Φσ(C)(d) ≤ s for every d ∈ N.

Conversely, if the deletion of s elements in σ(A) leaves a 2d-independent set
of size m (for some integers s, d,m), then the deletions of the corresponding s
elements in A leaves a d-independent set of size m hence ΦC(2d) ≤ Φσ(C)(d).

Thus, combining both cases, we see that σ(C) is almost wide (for s) if and
only if C is almost wide (for s). Moreover, the inequality ΦC(2d) ≤ Φσ(C)(d)
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also shows that C is quasi-wide if σ(C) is quasi-wide. To prove the equivalence
for quasi-wide we have to prove the opposite direction.

Assume now C is quasi-wide. Then there exists functions f : N → N and
N : N2 → N such that for every d ∈ N and every m ∈ N, every A ∈ C of order
at least N(d,m) has a subset of size at most f(d) whose deletions leaves in A a
d-independent set of size m. For A ∈ C and d ∈ N, let ζd(A) be the maximum
size of a d-independent set we can get in A by deleting at most f(d) points.
Then the assumption that C is quasi-wide rewrites as

∀d ∈ N : lim inf
A∈C

ζd(A) = ∞

Let A ∈ C. Then there exists a sequence S1, S2, . . . , Sd, . . . of subsets of points
of A such that |Sd| ≤ f(d) and the deletions of Sd leaves in A a d-independent
set of size ζd(A). Define the graph GA as follows: for a relation R of A, if there
exists i such that R meets Si choose the minimum such i and represent R by
a star with center in Si; otherwise, represent R by any star. Let d ∈ N. Delete
in GA the points in

⋃d
i=1 Si. Then, all the stars corresponding to relations

meeting Sd have their center removed (because this center has to belong to
some Si for i ≤ d) hence this deletion leaves in GA a d-independent set of size

at least ζd(A)−
∑d−1

i=1 f(i). Define σ(A) = GA for every A ∈ C. Then σ(C) is

quasi wide (with function f+(d) =
∑d

i=1 f(i). �

Combining this with Theorems 3.20 and 3.25 we obtain the following charac-
terization of classes of almost wide and quasi-wide structures. Advancing this
let us call class C of structures strongly monotone if C is closed on substructures
(i.e. if it is monotone) and in addition if it is closed on taking contractions: For
a structure A and x ∈ X(A) contraction of vertex x is the structure A′ with
vertices X(A′) = X(A)\{x} with signature σ′∪σ where the relational system
R′ (corresponding to the k-nary, k > 1, relational symbol R) is k − 1-ary and
consists from all k− 1-tuples which we obtain from k-tuples of R by removing
x. Contraction is defined by iterating this construction.

Corollary 4.4. Let C be a strongly monotone class of structures. Then the
following are equivalent:

• C is almost wide;
• C is uniformly almost wide;
• There exists σ ∈ S(C) and there are s ∈ N and t : N → N such that
Ks,t(r) /∈ (σ(C)) O r (for all r ∈ N).

Proof. If C is almost wide then the two next items follow from Theorem 3.18.
If C is such that each C O r excludes some Ks,t(r), then it is uniformly quasi-

wide according to Theorem 3.25 and the bounding of ΦC(d) then follows from
Theorem 3.18. �

Corollary 4.5. Let C be a strongly monotone class of graphs. The following
conditions are equivalent:

• C is quasi-wide;
• C is uniformly quasi-wide;
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• There exists σ ∈ S(C) such that for every integer d there is an integer
N such that KN /∈ σ(C) O d;

• There exists σ ∈ S(C) such that σ(C) is a class of nowhere dense
graphs.

One could aim for a more explicit characterization of almost wide and quasi-
wide classes of structures (with no reference to existence of a special star-
selector). This is leading to an interesting combinatorial problems and it will
appear elsewhere.

Finally, let us remark that for hypergraphs (i.e. set systems of unrestricted
edge sizes) we have analogous results.

4.2. Algorithmic Consequences. Low tree depth colorations (i.e. color-
ations such that any i ≤ r colors induce a subgraph with tree-depth at most
i) may be computed efficiently:

Theorem 4.6 ([NOdM08b]). For every graph G and every integer r, a col-
oration of G using Pr(∇rr(G)) colors such that any i ≤ r colors induce a
subgraph with tree-depth at most i may be computed in O(Pr(∇rr(G)) · |G|)-
time.

It follows that for input graphs in a class C, counting the isomorphs of a
fixed graph, testing whether a graph contains a fixed graph has a subgraph,
etc. may be computed in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense graphs,

where n is the order of the graph (see [NOdM08b]).

4.3. Caricatures of Structures. It has been proved in [Ros07] (Corollary
6.14) that there exists a function r such that for every integer n and every
finite relational structures A and B such that A �r(n) B there exists finite
relational structures Ã and B̃ such that A � Ã ≡n B̃ � B. (Here we write
A � B if A,B are homomorphic equivalent. We write A �r(n) B if all
substructures in A and B with homomorphisms equivalent (as sets). Finally
we write A ≡n B if A |= φ iff B |= φ holds for every first-order formula φ with
quantifier rank n. See [Ros07] for details and context of these definitions.)

In particular, for every m there exists a function f such that for every
structure A there exists a caricature structure Ap such that Ap has size at

most f(p) and A � Ã ≡n Ap.

Theorem 4.7. For every class of structures C and for every integer p, there
is an algorithm which computes for A ∈ C, |A| = n, its caricature Ap in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense structures,

where n is the size of A.
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Corollary 4.8. Let C be a class of structure and let φ be a first-order property
which is preserved in C under homomorphism equivalence (i.e. A |= φ and
A � B imply B |= φ). Then there is an algorithm that checks whether an
input structure A ∈ C satisfies φ or not in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense structures,

where n is the size of A.

4.4. Homomorphism Preservation Theorem and Restricted Duali-
ties. According to the result announced by Dawar [Daw07b] and to Theo-
rem 3.25, a first-order formula is preserved under homomorphisms on a class
C of nowhere dense structures if, and only if, it is logically equivalent on C to
an existential-positive formula.

Particularly, for every first-order formula φ preserved under homomorphisms
on a class C with bounded expansion there exists a finite set Fφ of finite
structures such that for every structure A ∈ C holds F 2 φ if and only if
F 9 A for every F ∈ Fφ. Moreover, according to the results of [NOdM08c],
there exists a finite set Dφ of finite structures such that F 9 A for every
F ∈ Fφ if and only if A → D for some D ∈ Dφ. Moreover, Dφ may be chosen
in such a way that no F ∈ Fφ has a homomorphism to any D ∈ Dφ, that is:

∀A ∈ C : F |= φ ⇐⇒ (∃F ∈ Fφ : F → A) ⇐⇒ (∀D ∈ Dφ : A 9 D)

∀(F,D) ∈ Fφ ×Dφ : F 9 D

This can be put more symbolically as

∀A ∈ C : F |= φ ⇐⇒ (Fφ → A) ⇐⇒ (A 9 Dφ)

Fφ 9 Dφ

Such statements are called restricted finite dualities and the above state-
ment is then rephrased as “every bounded expansion class has all restricted
dualities”, see [NOdM06c][NOdM06a][NOdM08c].

As a combination of the above we obtain (perhaps suprising) characteri-
zation of relativized first order definable subclasses of a class with bounded
expansion:

Corollary 4.9. Let C be a class with bounded expansion. For a homomorphism
closed subclass K of C are the following statements equivalent:

• K is the restriction of a first order definable class to C;
• K = {A : F 9 A for every F ∈ F} for a finite subset F of K;
• K is defined by a restricted duality.

This is an analogy of a result for unrestricted dualities on structures, we
refer the reader to [NT00, ADK04, Ros07]. The smaller difference is that we
do not assume that the class K is (relativized) CSP class, there are much more
dualities, in fact all of them!
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Problem 4.1. Can we require that no Dφ ∈ Dφ satisfies φ? It is easy to
see that this is the case when φ is an existential-positive formula. However,
as the structures in Dφ don’t have to belong to C, the fact that φ is logically
equivalent on C to an existential-positive formula is not so helpful.

Example 4. It should be noticed that these duality properties fail to be true in
general for classes of nowhere dense structures and even for classes of graphs
with bounded local tree-width: consider the class C of the graphs whose girth
is strictly bigger than their maximum degree. Then every subgraph of bounded
diameter r has either maximum degree at most r (there are finitely many such
graphs) or is a tree, hence has bounded tree-width. However, the triangle free
graphs in the class do not have bounded chromatic number hence the class C
fails to have all restricted dualities.
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