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Abstract. In this paper we survey results related to homomorphism
dualities for graphs, and more generally, for finite structures. This is
related to some of the classical combinatorial problems, such as color-
ings of graphs and hypergraphs, and also to recently intensively studied
Constraint Satisfaction Problems. On the other side dualities are related
to the descriptive complexity and First Order definability as well as to
universal graphs. And in yet another context they can be expressed as
properties of the homomorphism order of structures. In the contempo-
rary context homomorphism dualities are a complex area and it is our
aim to describe some of the main ideas only. However we introduce the
four conceptually different proofs of the existence of duals thus indicating
the versatility of this notion. Particularly we describe setting of restricted
dualities and the role of bounded expansion classes.

1 Introduction

Think of 3-colorability of a graph G. This is a well known hard (and a
canonical NP-complete) problem. From the combinatorial point of view
there is a standard way how to approach this problem (and monotone
properties in general): we investigate minimal (usually called 4-critical)
graphs without this property (i.e. which are not 3-colorable), we then
denote by F the set (or language) of all such critical graphs and we define
the set Forb(F) of all structures which do not “contain” any F ∈ F . Then
the language Forb(F) coincides with the language of 3-colorable graphs.

Unfortunately, in this case the set F is infinite and this seems to be a
general phenomenon: in most “interesting” cases the set of minimal for-
bidden graphs seems to be infinite (and mostly even not “enough” struc-
tured). Yet in this paper we study exactly those cases which have finitely
many obstructions. Such cases are called finite homomorphism dualities.
And we shall see that nevertheless finitely many obstructions exists for a
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wide range of problems. However this holds not on the very elementary
level. (It has been proved already in [43] that, except in the single triv-
ial case, no coloring problem for undirected graphs admits finitely many
minimal obstructions.) We have to generalize and this may seem to be a
leitmotiv of this paper. We have to generalize not for its own sake but in
order to find a proper setting for concrete problems (like the 3-colorability,
or, more generally, Constraint Satisfaction Problems).

There are three main ingredients in our approach:

1. The use of relational structures and their homomorphisms (i.e. we
deal with the category of graphs and structures).

2. The use of existential statements in the form of lifts and shadows.

3. Restriction of the obstruction characterization to a particular class of
structures (such as planar graphs, or proper minor closed classes, or
classes with bounded expansion as defined by P. Ossona de Mendez
and author, e.g. [48]).

In this paper we survey the development in all 3 directions by giving
concrete examples. Accordingly, the paper has 4 sections. In Section 2
we deal with dualities and their characterizations. In Section 3 we survey
the results related to lifts and shadows, their descriptive complexity in
the context of Constraint Satisfaction Problems (CSP). In Section 4 we
relate dualities to classical model theoretic problems related to universal
objects. In Section 5 we demonstrate the richness of Restricted Dualities
and in the final section we summarize the main results together with some
remarks and open problesm.

In the whole paper we deal not only with graphs but also with rela-
tional structures. This language is essential for questions which will be
considered in this paper. It can be briefly introduced as follows:

A type ∆ is a sequence (δi; i ∈ I) of positive integers. A relational
structure A of type ∆ is a pair (X, (Ri; i ∈ I)) where X is a set and
Ri ∈ Xδi ; thus Ri is a δi-ary relation on X. In this paper we shall always
assume that X is a finite set (thus we consider finite relational structures
only). relational structures (of type ∆) will be denoted by capital letters
A,B,C, ..... A relational structure of type ∆ is also called a ∆-structure
(or just a structure). If A = (X, (Ri : i ∈ I)) we also denote the base set
X as X(A) and the relation Ri by Ri(A). We denote by Rel(∆) the class
of all ∆-type relational structures. The class Rel(∆) will be considered as
category endowed with all homomorphisms, which are just all relations
preserving mappings. To be explicite, for relational structures A,B ∈
Rel(∆) a mapping f : X(A) −→ X(B) is a homomorphismA −→ B if
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for every relational symbol R ∈ ∆ and for every tuple (x1, . . . , xt) ∈ R(A)
holds (f(x1), . . . , f(xt)) ∈ R(B). The existence of such a homomorphism
will be denoted by A −→ B and its non-existence by A 6−→ B.

Natural examples of relational structures are abundant: graphs, hy-
pergraphs, graphs with colored edges, ordered graphs, triples modelling
betweeness, etc. A rich source and strong motivation is the theory of
database queries, e.g. [12, 2, 17, 24, 20] and Constraint Satisfaction Prob-
lems [12, 20, 37, 24]. Many of these questions are best formulated in the
categorical language of graphs and their homomorphisms. For data sys-
tems this goes back to [5], for combinatorial and algebraic setting see
e.g.[61, 35, 20]. The notion of homomorphism now plays a role in many
problems in areas as diverse as statistical physics, extremal theory, limit
structure theorems, see e.g. [3, 20, 52].
Acknowledgement: The writing of this paper for Bernard Korte volume
is bringing back some good memories of times at Nassestrasse and then
Lennéstrasse, times when the topics disscussed in this paper were still at
their cradle.

2 Finite Dualities

What can be better than finitely many obstructions? Yes, sure, but is this
a realistic goal which has some interesting instances? In the undirected
graph case the answer is negative [43]. However the properties character-
ized by a finite set F are very interesting if we consider them for more
complicated structures than undirected graphs only. Towards this end we
define the notion of finite (homomorphism) duality.

Definition 1. Let F, D be finite sets of structures (in a fixed class Rel(∆)).
We say that sets F and D establish finite duality if the following holds
for every structure A ∈ Rel(∆):

F 6−→ A for every F ∈ F ⇐⇒ A −→ D for some D ∈ D.

In this case we say that (F ,D) is dual pair, and that D is dual set of F .

The simplest non-trivial instance of dualities is for oriented graphs
(again: for undirected graphs we have trivial examples only; see [43]
where the term homomorphism duality was introduced) and it is usu-
ally expressed in terms of orientations of graphs. The connection between
chromatic number and orientations is not new and goes back to Gallai
and Roy [16, 63]. These pioneering works provided a name (“Gallai-Roy”
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theorem) for this result although both of these papers are anticipated by
M. Hasse [18] and L. M. Vitaver [67] where the same thing is proved (in
the more algebraic language). Note that another influential connection
between orientations and chromatic number is given by Minty [40] but
that goes in a different direction (flows and matroids). For our purposes
Gallai-Hasse-Roy-Vitaver theorem takes the following compact form:

Theorem 1. For any directed graph G the following holds:

Pk 6→ G ⇐⇒ G → Tk

The undefined notions have the following meaning: Pk denotes the
directed path of length k (i.e. with k + 1 vertices) and Tk denotes the
transitive tournament with k vertices.

It may be seen easily that for undirected graph this has the following
consequence.

Corollary 1. For an undirected graph G the following statements are
equivalent:

1. χ(G) ≤ k (which is equivalent to G → Kk);

2. There exists an orientation G of G such that G → Tk;

3. There exists an orientation G of G such that Pk 6→ G.

This particular result was the starting point ([43]) for the following
result which characterizes homomorphisms dualities in general classes of
relational structures [56, 14]. This characterization involves notion of re-
lational tree and relational forest. These intuitive notions can be defined
similarly as for graphs but perhaps the easiest way is to reduce them
to graphs by means of the notion of incidence graph GA of a structure
A = (X, (Ri : i ∈ I)). We include this construction for the sake of com-
pleteness. The vertex set of GA is the set X together with all tuples of
relations Ri : i ∈ I. (GA is a bipartite graph, X is on the one side, tu-
ples are on the other side of bipartition.) The edges will be formed by all
incidencies between an element and a tuple (such as x and (x, y, z); GA

may have multiple edges such as between x and (x, x, y).Now we can say
that a structure A is a relational tree (relational forest, respectively) if
the incidence graph GA is a tree (forest, respectively). First we state the
theorem for singleton sets only.
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Theorem 2 (Singleton Homomorphism Dualities [56]).

1. For every relational tree T there exists a structure DT (called the dual
of T) such that the following holds (for every structure A):

T 6→ A ⇐⇒ A → DT.

2. Up to a homomorphism equivalence there are no other dual pairs (of
singleton structures).

This result was proved for oriented graphs in [25] and in the full
generality (and by different methods) in [56]. The characterization of
singleton dualities is the basis of the characterization of dual pairs of sets
and of finite dualities:

Theorem 3 (Finite Homomorphism Dualities [56, 14]).

1. For every finite set of relational forests T there exists a dual set of
structures DT such that the following holds (for every structure A):

T 6→ A ⇐⇒ A → DT .

2. Up to a homomorphism equivalence there are no other dual pairs (of
finite sets of structures).

(Here we of course write T 6→ A if T 6→ A for every T ∈ T . Similarly,
we write A → DT if A → D for some D ∈ DT .)

Theorems 2, 3 are nontrivial in both directions and the existence of
duals is established by various means. This will be briefly reviewed. Per-
haps the variety of techniques will convince an interested reader that these
are interesting objects.

2.1 Existence of Duals I. - Explicite Construction

We review here the recent simple construction which appeared in [58, 59].
For the notation simplicity we consider oriented graphs only (i.e. our type
is ∆ = (2)).

Let T = (V,E) be an oriented tree. We define its dual DT = (V ′, E′)
as follows: The set V ′ is the set of all mappings f : V −→ V satisfying
that f(v) is adjacent to v for every v ∈ V (such mappings are called
neighbourly). For neighbourly mappings f, g we put (f, g) ∈ E′ if (v, u) 6=
(f(u), g(v)) for every arc (u, v) ∈ E . The later condition simply means
that no arc is jointly “flipped” by the pair (f, g).



6 Nešetřil

Proof (a rough sketch). It is easy to see that in order to show that the
graph DT is indeed the dual of the tree T we have to prove two facts:

(i) T 6−→ DT ,

(ii) T 6−→ G =⇒ G −→ DT .

(i) is proved by a contradiction: The existence of a homomorphism
φ : T −→ DT implies the existence of an infinite walk on T defined as
sequence

v0, φ(v0)(v0) = v1, φ(v1)(v1) = v2, . . .

This walk has to eventually return. Thus there exists i such that
φ(vi)(vi) = vi+1, φ(vi+1)(vi+1) = vi and either (vi, vi+1) or (vi+1, vi) is
an arc of T . Assume e.g. that (vi, vi+1) is an arc. Then (φ(vi), φ(vi+1))
is an arc of DT . However (φ(vi)(vi), φ(vi+1)(vi+1)) = (vi+1, vi), which a
contradiction (a flip).

(ii) is proved constructively and the homomorphism φ : G −→ DT is
given by the formula

φ(x)(u) = v,

where x ∈ V (G), u ∈ V , v is adjacent to u and v determines a branch B
of T at u for which there is no homomorphism (B,u) 6−→ (G,x). (Such a
branch obviously exists by the “freeness” of the tree T.) If there are more
such branches then we take the first one in a depth first order.

Note that this construction of a dual uses 2n log(n) vertices. Up to
logarithmic factor this is optimal as shown in [58, 59]. Indeed, G. Kun
and C. Tardif showed recently [33] that almost all oriented paths have
exponentially large duals.

2.2 Existence of Duals II. - Homomorphism Order

Let us consider the class Rel(∆) of all finite relational structures of type
∆. The existence of the homomorphism (i.e. the simplification of the
corresponding category) is a quasiorder which becomes a partial order if
we factorize by the relation of the homomorphism equivalence. (Structures
A,B are said to be homomorphism equivalent if A −→ B and B −→ A.)
This partial order is called homomorphism order and it is denoted by C∆.
It is important that the homomorphism equivalence may be described
more effectively by the notion of core: A core of structure A is a minimal
retract of A. Core of any finite structure is (up to an isomorphism) unique
and thus we can speak about the core of A. Two structures are then
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homomorphism equivalent if and only if they have isomorphic cores. C∆

is the the set of all non-isomorphic core structures ordered by the existence
of a homomorphism, see [20] for an introduction to this area. The order
of C∆ will be denoted by ≤ and its strict version by <.

The partial order C∆ has spectacular properties. It is not only a lattice,
it is also Heyting poset ([44]) and it has many interesting global and local
properties. For example:

– C∆ is (countably) universal, [61, 20],

– C∆ is dense for undirected graphs, [68].

The later property leads to the following:

Definition 2 (Gaps and Density). Let A,B be structures in C∆ and
let A < B. If there is no C ∈ C∆ such that A < C < B then the pair
(A,B) is called a gap in C∆.

Density problem asks for a characterization of all gaps in C∆.

Density problem is solved for all classes C∆. The characterization,
given in [56] rests on a surprising connection of gaps and dualities.

Theorem 4. Every gap A<B with B connected, yields a duality (B,AB).

Theorem 5. Every (singleton) duality (F,D) yields a gap F × D < F.

This one-to-one correspondence between (singleton) dualities and (con-
nected) gaps was originally used to prove the existence of duals: We con-
struct for every relational tree F its (up to the homomorphism equivalence
unique) predecessor PT such that PT < T is a gap and thus (PT)T is
dual of T. This connection was also used to prove the necessity in both
Theorems 2 and 3, see [56].

Proofs of Theorems 4, 5 use categorial algebra (and the proofs can be
generalized to Heyting posets, [44]): If A < B is a gap with B connected
then for arbitrary structure C consider the object A + (B × C). Clearly
A ≤ A+(B×C) ≤ B and thus either B −→ (B×C) (by the connectivity
of B) and thus also B −→ C, or B 6−→ A+(B×C) and thus (B×C) −→
A. But then, (using the definition of the power AB), we have C −→ AB).
This proves Theorem 4.

In Theorem 5 we want to prove that F×D < F is a gap. We proceed
as follows: If C satisfies F × D ≤ C ≤ F then either F −→ C or not. In
the later case C −→ D (by duality) and thus also C −→ F × D.
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It is quite remarkable that the algorithmically motivated concept of
the dualities relates so closely to a concept of partial order theory. But
duals seem to be natural objects. This is also indicated by the fact that
there are two more constructions of duals and they have a different flavour.
One of them will be introduced in the next section.

3 CSP as Duality

Let us return to our example of 3-colorability. Instead of a graph G =
(V,E) we consider the graph G together with three unary relations C1,
C2, C3 which cover the vertex set V ; this structure will be denoted by G′

and called a lift of G (thus G′ has one binary and three unary relations).
There are 3 forbidden substructures: For each i = 1, 2, 3 the single edge
graph K2 together with cover Ci = {1, 2} and Cj = ∅ for j 6= i form struc-
ture F′

i (where the signature of F′
i contains one binary and three unary

relations). The language of all 3-colorable graphs is just the language
Φ(Forb(F′

1,F
′
2,F

′
3)), where Φ is the forgetful functor which transforms

G′ to G. We then call G the shadow of G′.

Clearly this situation can be generalized and one of the main results of
paper [32] states that every problem in NP is polynomially equivalent to
the membership problem for a class Φ(Forb(F ′)). Here F ′ is a finite set of
(vertex or pair)-colored digraphs, Forb(F ′) is the class of all lifted graphs
G′ for which there is no homomorphism F ′ −→ G′ for an F ′ ∈ F ′. Thus
Forb(F ′) is the class of all graphs G′ with forbidden homomorphisms
from F ′. More presisely this can be done as follows:

Let Γ denote a finite set we refer to as colors. A Γ -colored structure
(shortly a colored structure is a structure together with either a coloring
of its vertices or a coloring of all tuples (of arities from the type of the
relational structure) of vertices by colors from Γ . Mostly it suffices to con-
sider the coloring of vertices only. We denote colored relational structures
by A′,B′ etc. We call A′ a lift of A and A is called the shadow of A′.
We also write Φ(A′) = A and we think of Φ as a forgetful functor (which
“forgets” the colors). (Note that both constructions of lifts and shadows
are known in model theory and in this context they are called extension
and reduct, see [21]). Our terminology is motivated by Computer Science
applications of category theory; yet another approach is given in [37, 38].)
Thus (vertex-) colored structures can also be described as monadic lifts
(monadic meaning that only vertices are colored, only unary relations are
added). A homomorphism of relational structures preserves all the edges
(arcs). A homomorphism of colored relational structures preserves the
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color of vertices (and colors of tuples), too. We call a mapping between
two (colored) digraphs a full homomorphism if in addition the preimage
of an edge is an edge. Full homomorphisms have very easy structure, as
every full homomorphism which is onto is a retraction. The other special
homomorphisms we will be interested in are injective homomorphisms.

Let F ′ be a finite set of colored relational structures. By Forb(F ′) we
denote the set of all colored relational structures A′ satisfying F′ 6−→ A′

for every F′ ∈ F ′. (If we use injective or full homomorphisms this will be
denoted by Forbinj(F

′) or Forbfull(F
′), respectively.)

Contrary to our common sense, the left side of dualities (i.e. classes of
form Forb(F)) is more powerfull than the right side. We can prove that
shadows of classes F ′ have computational power of the whole class NP.
More precisely in [31, 32] we proved:

Theorem 6. For every language L ∈ NP there exist a finite set of
colors Γ and a finite set of Γ -colored digraphs F ′, where we color the pairs
of vertices, such that L is computationally equivalent to the membership
problem for the set of all digraphs G for which there exists a Γ coloring
graph G′ of the pairs of vertices in G such that no F ′ ∈ F ′ is homomorphic
to G′.

Symbolically, Φ(Forb(F ′)) is the class whose membership problem is
polynomial equivalent to L.

Similar results hold also for classes Forbinj(F
′) and Forbfull(F

′) (in
these cases even with monadic lifts only!), see [31, 32].

Let us consider the right side of dualities: The Constraint Satisfaction
Problem corresponding to the relational structure D is the membership
problem for the class of all structures defined by {B : B −→ D}. Similarly,
for a finite set of colored relational structures D′ we denote by CSP (D′)
the class of all colored structures A′ satisfying A′ −→ D′ for some D′ ∈
D′. (CSP (D′) is a finite union of CSP (D′) for D′ ∈ D′. This is sometimes
denoted by → D′.) If the classes Forb(F ′) and CSP (D′) are equal then
we get a finite homomorphism duality (for the lifted category) which we
introduced earlier. Explicitly, in this notation, a finite duality means that
the following equivalence holds for every (colored) relational structure A′:

∀F′ ∈ F ′ F′ 6−→ A′ ⇐⇒ ∃D′ ∈ D′ A′ −→ D′.

By Φ we denote the forgetful functor which associates to a Γ -colored
relational structure the uncolored one, i.e. it forgets about the coloring.
We will investigate classes of the form Φ(Forb(F ′)). We call the pair
(F ′,D) shadow duality if Φ(Forb(F ′)) = CSP (D). An example of shadow
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duality is the language of 3-colorable graphs discussed in the introduction
(or, as we shall see, any CSP problem in general).

We should add one remark. We of course do not only claim that ev-
ery problem in NP can be polynomially reduced to a problem in any of
these classes. This would only mean that each of these classes contains an
NP-complete problem. What we claim is that these classes have the com-
putational power of the whole NP class. More precisely, to each language
L in NP there exists a language M in any of these three classes such that
M is polynomially equivalent to L, i.e. there exist polynomial reductions
of L to M and M to L. E.g. assuming P 6= NP there is a language of form
Φ(Forb(F ′)) that is neither in P nor NP-complete, since there is such a
language in NP by Ladner’s celebrated result [34].

The expressive power of classes Φ(Forb(F ′)) corresponds to many
combinatorially studied problems and presents a combinatorial counter-
part to the celebrated result of Fagin [11] who expressed every NP problem
in logical terms by means of an Existential Second Order formula. The
proof of Theorem 6 uses refinements of Fagin’s theorem due to Feder and
Vardi [12].

The fact that the membership problem for classes Φ(Forb(F ′)) (and
also their injective and full variants Φ(Forbinj(F

′)) and Φ(Forbfull(F
′)),

see [32]) have full computational power is pleasing from the combinatorial
point of view as these classes cover well known examples of hard com-
binatorial problems: Ramsey type problems (where as in Theorem 6 we
consider edge colored graphs), colorings of bounded degree graphs (de-
fined by an injectivity condition) and structural partitions (studied e.g. in
[13]). It follows that, in the full generality, one cannot expect dichotomies
here. On the other side of the spectrum, Feder and Vardi have formulated
the celebrated Dichotomy conjecture for all coloring problems (CSP).

The shadow dualities are related to the decision problems for classes
CSP (D).

The main result of [32, 31] presents an easy characterization of those
languages Φ(Forb(F ′)) which are coloring problems (CSP):

Theorem 7. Consider the finite set of colors Γ and the language
Φ(Forb(F ′)) for a finite set F ′ of vertex Γ -colored relational structures.

If no F′ ∈ F ′ contains a cycle then there is a finite set of relational
structures D such that Φ(Forb(F ′)) = CSP (D).

If one of the lifts F′ in a minimal subfamily of F ′ contains a cycle
in its core then the language Φ(Forb(F ′)) is not a finite union of CSP
languages.
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This can be viewed as an extension of the duality characterization
theorem for structures [14]. However the proof given in [32] uses the The-
orem 2,3 together with the homomorphism properties of structures not
containing short cycles (i.e. with a large girth). This is a combinatorial
problem studied intensively since times of P. Erdős. The following re-
sult has proved to be repeatedly useful in various applications. It is often
called the Sparse Incomparability Lemma:

Theorem 8. Let k, ℓ be positive integers and let A be a structure. Then
there exists a structure B with the following properties:

1. There exists a homomorphism f : B −→ A;

2. For every structure C with at most k points the following holds: there
exists a homomorphism A −→ C if and only if there exists a homo-
morphism B −→ C;

3. B has girth ≥ ℓ.

This result was proved by probabilistic method in [55, 60], see also
[20]. The polynomial time construction of B is possible, too: in the case
of binary relations (digraphs) this was done in [39] and for relational
structures in [30].

On a higher level Theorem 7 may be interpreted as stability of du-
alities for finite structures. While shadows of the classes Forb(F ′) are
computationally equivalent to the whole NP, the shadow dualities are
not bringing anything new: these are just shadows of dualities. This is
interesting also from the point of view of descriptive complexity as one
can show that the coloring problems in the class MMSNP (see [12]) are
just shadow finite dualities. This holds for graphs as well for relational
structures, see [31, 32] for details of these aspects of dualities.

3.1 Existence of Duals III. - Deletion Method

Inspired by the previous connection of lifts and shadows and CSP we
can construct the dual structures by monadic lifts. We only sketch the
construction which in its spirit goes back to Komárek [25] and it is implicit
also in [12] (I thank to V. Dalmau and J. Foniok who informed me about
this). Allow me here to mention a bit of history: Pavel Komárek was my
student in 80ies and I directed his attention to dualities in the broad
setting. I have been convinced that this is a good and elegant approach
to good characterizations (in the sense of Edmonds) and from this point
of view I also wrote Czech graph theory book [41]. With A. Pultr we also
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wrote [43] where we coined the term duality. We originaly [43] conjectured
that Gallai-Hasse-Roy-Vitaver theorem is the only instance of duality
for oriented graphs. Nearly 10 years later Komárek quickly found a new
example and then infinitely many new examples which were reported in
[26]. This revolutionized the scene and we conjectured a converse: that
any oriented tree leads to a duality. This has been proved by Komárek in
his thesis [25]. The proof has never been published and (unfortunately)
Komárek himself did not pursue an academic career. In a different and
general setting (and by different techniques) the theorem was proved in
[56]. This was the start of the theory covered here.

The deletion method essentially uses monadic lifts. Let us sketch it
at least briefly now again on the case of oriented trees (type ∆ = (2)).
Let F be a fixed (forbidden) tree. Let (Bi, xi) : i = 1, ..., t be the set
consisting of all possible branches which appear in F . Thus every branch
is determined by a vertex xi and an edge ei containg xi. Let X consists
from all subsets I of {1, 2, . . . , t} for which there is no homomorphism
F −→ BI where BI denotes the disjoint union of all (Bi, xi), i ∈ I, with
all roots xi identified. X will be the vertex set of our dual graph DF .

The edges of DF will be defined in two steps: First, we consider all
pairs (I, J). And then we delete a pair (I, J) if there exists i ∈ I and
j ∈ J with an edge e = (xi, xj) ∈ E(F ) such that both branches (Bi, xi)
and (Bj , xj) contain edge e.

Of course the language of both [25] and [12] is different and proofs
and constructions more complicated So this is a good example of the use
of lifts and shadows.

4 Universality and Existence of Duals

Homomorphism duality may be rephrased in yet another context. Con-
sider a finite set of connected structures F and the class Forb(F). Then
the dual object DF is the maximum (or greatest) element of the class
Forb(F) in the homomorphism order C∆. Consequently Theorem 2 char-
acterizes all the classes Forb(F ) which have maximum and Theorem 3
characterizes all classes of form Forb(F) which are bounded by a finitely
many maximal elements.

We can also say that DF is hom-universal object ([55]) for the class
Forb(F). Hom-universal objects should be distinguished from embedding
universality: Given a class K of countable structures, an object U ∈ K is
called (embedding) universal for K if for every object A ∈ K there exists
an embedding A −→ U).
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The characterization of those classes K which have an universal ob-
ject is a well known open problem in model theory which was studied
intensively, see e.g. [27, 28, 7, 4]. The whole area was inspired by the neg-
ative results (see [19, 9]): for example the class of graphs not containing
Cl (=cycle of length l) fails to be universal for any l > 3. Until [6] in fact
there were not many classes known with universal objects. The strongest
results in the positive direction were obtained by Cherlin, Shelah and Shi
in [6]. Particularly, they proved the following

Theorem 9. For every finite set F of finite connected graphs the class
Forb(F) has an embedding universal object.

This result was extended to relational structures in [8]. The proof of
Theorem 9 given in [6] is based on techniques of model theory and it
is possible to say that no explicit universal object is constructed. Using
lifts and shadows with J. Hubička we recently gave an alternative and
more explicit combinatorial proof of Theorem 9 for structures [22]. Along
the lines above we can get universal structure for the classes Forb(F) in
particularly easy way as the shadow U of the direct (Fräıssé) limit U
of an explicitely defined lifted class Forb(F ′) (which is an amalgamation
class), see [22] for details.

4.1 Existence of duals IV - Generic Duals

Clearly every universal object is also hom-universal. This however does
not hold conversely (as shown by examples of classes with bounded chro-
matic numbers: K4 is hom-universal for the class of planar graphs by
virtue of the 4-color theorem). As we already know, of special interests
are classes Forb(F) which have finite hom-universal graph: these are just
duals. The proof of Theorem 9 given in [22] gives more: In the case that
F is a finite set of relational trees then the theorem is proved just by
monadic lifts (similarly as in the above Construction III) and the result-
ing universal object UF has a finite retract DF which is consequently
hom-universal. This implies yet another proof of the existence of duals.

Moreover, as the universal lifted structure UF may be chosen to be
generic (meaning ultrahomogeneous and universal) then we see that we
may think of duals as a retract of a generic object - duals are generic; see
[22].

5 Restricted dualities

Finite dualities became much more abundant when we demand the va-
lidity of the duality formula just for all graphs from a given class K. In
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such cases we speak about K-restricted duality. It has been proved in
[51] that so called Bounded Expansion classes (which include both proper
minor closed classes and classes of graphs with bounded degree) have a
restricted duality for every choice of F . As a consequence of this we can
show that the shadow Φ(Forb(F)) of a vertex colored class of structures
Forb(F) is always the restriction of a CSP language when restricted to
a bounded expansion class (this notion generalizes bounded degree and
proper minor closed classes) [48].

More explicitely, the following definition is the central definition of
this section:

Definition 3. A class of structures K admits all restricted dualities if,
for any finite set of connected structures F = {F1, F2, . . . , Ft}, there exists
a finite structure DK

F such that Fi 6−→ DK
F for i = 1, . . . , t and for all

G ∈ K,

(Fi 6−→ G), i = 1, 2, . . . , t, ⇐⇒ (G −→ DK
F ). (1)

Any instance of (1) is called a restricted duality (for the class K).

To motivate this definition let us consider the following example.

The Grötzsch’s celebrated theorem (see e.g. [65]) says that every
triangle-free planar graph is 3-colorable. In the language of homomor-
phisms this says that for every triangle-free planar graph G there is
a homomorphism of G into K3. Using the partial order terminology,
Grötzsch’s theorem says that K3 is an upper bound (in the homomor-
phism order) for the class P3 of all planar triangle-free graphs. The fact
that K3 6∈ P3 suggests a natural question (first formulated in [42]): Is there
yet a smaller bound? The answer, which may be viewed as a strengthening
of Grötzsch’s theorem, is positive: there exists a triangle free 3-colorable
graph H such that G −→ H for every graph G ∈ P3. This has been
proved in [45, 46] in a stronger version for minor-closed classes.

One can view these results as restricted dualities (which hold in the
class of planar graphs). Restricted duality results have since been gener-
alized not only to proper minor closed classes of graphs and but also to
other forbidden subgraphs, in fact to any finite set of connected graphs
thus yielding all restricted dualities for the class of planar graphs. This
then implies that Grötzsch’s theorem can be strengthened by a sequence
of even stronger bounds and that the supremum (in the homomorphism
order) of the class of all triangle free planar graphs does not exist, [47].

What is the proper setting for the restricted dualities? This is presently
an open problem but the strongest result in this direction is the notion of
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a class with bounded expansion. Such a class may be defined in several
(very) different ways, see [48, 51, 52].

It is important that this seemingly elusive global property (having an
upper bound) has a localized version by means of the densities of shallow
minors. We can proceed as follows ([49]):

The maximum average degree mad(G) of a graph G is the maximum
over all subgraphs H of G of the average degree of H, that is mad(G) =

maxH⊆G
2|E(H)|
|V (H)| . The distance d(x, y) between two vertices x and y of a

graph is the minimum length of a path linking x and y, or ∞ if x and
y do not belong to same connected component. Also we denote by G[A]
the subgraph of G induced by a subset A of its vertices.

We introduce several notations:

– The radius ρ(G) of a connected graph G is:

ρ(G) = min
r∈V (G)

max
x∈V (G)

d(r, x)

– A center of G is a vertex r such that maxx∈V (G) d(r, x) = ρ(G).

Definition 4. Let G be a graph. A ball of G is a subset of vertices induc-
ing a connected subgraph. The set of all the families of pairwise disjoint
balls of G is noted B(G).

Let P = {V1, . . . , Vp} be a family of pairwise disjoint balls of G.

– The radius ρ(P) of P is ρ(P) = maxX∈P ρ(G[X]).
– The quotient G/P of G by P is a graph with vertex set {1, . . . , p} and

edge set E(G/P) = {{i, j} : (Vi × Vj) ∩ E(G) 6= ∅ or Vi ∩ Vj = ∅}.
– If ρ(P) ≤ r then graph G/P is called shallow minor at depth r of

graph G.

The following invariants generalize maximum average degree:

Definition 5. The greatest reduced average density (grad) of a graph G
with rank r is

∇r(G) = max
|E(G/P)|

|P|
,

where maximum is taken over all P ∈ B(G) satisfying ρ(P) ≤ r.

The following is our key definition:

Definition 6. A class of graphs C has bounded expansion if there exists
a function f : IN → IN such that for every graph G ∈ C and every r,

∇r(G) ≤ f(r). (2)

f is called the expansion function.
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The definition of bounded expansion can be carried over to general
structures by means of incidence graphs. Thus we may speak about classes
of structures with bounded expansion.

The definition of bounded expansion is very robust: it may be al-
ternatively defined by means of forbidden shallow subdivisions [10], by
means of special colorings of vertices [69, 52]. The definition is preserved
by most local operations (for example by doubling of vertices). Proper mi-
nor closed classes have bounded expansion with the constant expanding
function. Graphs with all vertices bounded by d have exponential ex-
pansion function. Several geometrically defined graphs have polynomial
expansion function. See [48–52] for many more examples. Despite of this
generality we have the following [51]:

Theorem 10. Any class of structures with bounded expansion has all
restricted dualities.

6 Remarks

1. The existence of a homomorphism from an oriented path P to a graph
G may be sometimes conveniently tested by means of matrix multiplica-
tion: Let G = (V,E), V = {v1, . . . , vn} and let A = (aij) be the adjacency
matrix (we put aij = 1 iff (vi, vj) ∈ E. For a path P with k + 1 vertices
(and thus of k arcs) we consider the product B of matrices B1, B2, . . . , Bk

where Bi = A if the k-th arc of P is forward and Bi = AT if the k-th arc
of P leads backwards. Then bij = 1 if and only if there exists a homo-
morphism from P to G mapping the first vertex of P to vi and the last
vertex to vj. Thus P −→ G if and only if the matrix B 6= 0.

This connection (which is already made in [67]) can be used for an
effective testing of large (recursiveky defined) paths, see [57]. In this con-
text it is fitting to note that the fastest algorithm for testing the existence
of a homomorphism G −→ H for a fixed G is based on the fast matrix
multiplication, [54].

2. We proved that shadow dualities and lifted monadic dualities are in
1 − 1 correspondence. This abstract result has several consequences and
streamlines some earlier results in descriptive complexity theory (related
to MMSNP and CSP classes) [37, 38]. The simplicity of this approach
suggests some other problems. It is tempting to try to relate Ladner’s
diagonalization method [34] in this setting (as it was pioneered by Lovász
and Gács [15] for NP∩coNP in a similar context). The characterization
of Lifted Dualities is beyond reach but particular cases are interesting as
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they generalize results of [56, 14] and as the corresponding duals present
polynomial instances of CSP.

But perhaps more importantly, our approach to the complexity sub-
classes of NP is based on lifts and shadows as a combination of algebra,
combinatorics and logic. We believe that it has further applications and
that it forms a useful paradigm.

3. Let us finish this paper by listing the characterization theorem for
finite dualities. (We say that a class of structures K is homomorphism
closed if A ∈ K,A −→ B implies B ∈ K. We also denote by F −→ the
class of all structures A for which there exists F ∈ F such that F −→ A.
The class F −→ is the complementary class of Forb(F). By a combination
of results [1, 62, 56, 14] we obtain

Theorem 11. Let K be a class of structures closed under homomor-
phisms. For K are the following statements equivalent:

– K is first order definable class;
– K = F −→ for a finite set F of structures.

It follows that any first order definable class K = CSP (D) is defined by a
finite duality (and thus the corresponding set F is a set of finite relational
trees].

By a combination of [2, 51, 52] we have a surprisingly strong relativized
version of this result:

Theorem 12. Let K be a bounded expansion class. For a homomorphism
closed subclass L of K are the following statements equivalent:

– L is first order definable in K;
– L = (F) −→ for a finite set F of structures;
– L is defined by a restricted finite duality.

In [52] and [53] we developed further the connections of classes of
sparse graphs to logic and descriptive complexity.
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27. P. Komjáth: Some remarks on universal graphs, Discrete math. 199 (1999), 259–
265.
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52. J. Nešetřil, P. Ossona de Mendez: Structural properties of sparse graphs. In: Lovász
volume, Bolyai Society ans Springer (2008).



20 Nešetřil
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