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Abstract

An old conjecture of Erdős and Turán states that the represen-
tation function of an additive basis of the positive integers can not
be bounded. We survey some results related to this still wide open
conjecture.

1 Introduction

Let A be a set of positive integers. The representation function rA(n) of A
counts for each n ∈ N the number of pairs a, a′ ∈ A, a ≤ a′ with a + a′ = n.
The set A is an asymptotic additive basis of order two (additive basis for short
in what follows) if rA(n) ≥ 1 for each large enough positive integer. Erdős
and Turán [14] formulated in 1941 the following conjecture:

Conjecture 1.1 (ET Conjecture). The representation function of an addi-

tive basis can not be bounded.

The purpose of this paper is to survey some results on this still wide
open conjecture, some of them suggesting a positive answer and some in the
opposite direction.

The book of Halberstam and Roth [17], the survey on representation
functions of sets of integers by Sárközy and Sós [28] or the extensive account
of the work of Erdős in Number Theory by Ruzsa [27] are excellent references
for the problem. We will mostly concentrate on results not covered by these
references.

A characteristic feature concerning boundedness of the representation
function of an infinite set of integers is the order of magnitude of its counting
function. The ET Conjecture is only meaningful for the so–called thin basis,
the ones whose counting function is O(n1/2). The ET Conjecture can be easily
verified for the known constructions of thin basis. On the other hand, there
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have been efforts to construct dense infinite sets with bounded representation
function. These constructions provide sets whose counting function has an
asymptotic growth comparable in a sense to the one of thin basis. We discuss
these questions in Section 2.

Section 3 deals with averages of the representation function. The cele-
brated Erdős-Fuchs Theorem [11] shows that the value of the representation
function may not be well approximated by its average. More recently Ruzsa
[25] constructed an additive base whose representation function is bounded in
the square mean. These results give a better understanding of the difficulties
involved in the ET Conjecture.

Among the few positive results for the ET Conjecture is its verification
for the class of so–called d–bounded basis which is presented in Section 4.

In trying to get a wider picture of the problem, some semigroups other
than the natural numbers with addition have been considered. There one may
find positive results (for some semigroups) and negative ones (for groups)
which are presented in Section 5. We finally discuss in Section 6 similar
problems for linear functions of the form ax + by with a 6= b, for which the
analogous notion of basis may lead to bounded representation functions. We
conclude with some final remarks and open problems, some of them probably
easier than the original problem.

2 Thin basis and Bh[g] sets

Let A(n) = |A∩ [1, n]| denote the counting function of A. Note that, if rA(n)
is bounded by a constant c, then

(

A(n)
2

)

≤ ∑

x≤n rA(x) ≤ cn which implies

A(n) ≪ n1/2. On the other hand if A is an additive basis for the positive
integers then we certainly have A(n) ≫ n1/2.

Erdős and Rényi [13] proved that, for each ǫ > 0, there is a set A verifying
A(n) ≫ n1/2−ǫ such that the representation function of A is bounded. Thus,
in terms of density, the value α = 1/2 is a threshold for the boundedness
of the representation function of a set A verifying A(n) ≍ nα. This fact
enhances the relevance of the ET Conjecture, and it shows that it is only
relevant for thin basis, namely the ones for which lim supn→∞ n−1/2A(n) <
∞. In fact Erdős and Turán further strengthened the ET Conjecture by
extending it to infinite sets A verifying only the condition A(n) ≫ n1/2. We
will refer to this as the strong Erdős–Turán (s–ET) Conjecture.

Conjecture 2.1 (s-ET Conjecture). The representation function of an in-

finite set of positive integers whose counting function verifies A(n) ≫ n1/2

can not be bounded.
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Constructions of thin additive basis are known since the work of Raikov
[24], Stöhr [29] and Cassels [3], and some progress has been made in im-
proving the value of the constant c = infA basis lim supn→∞ n−1/2A(n). The
constructions are based essentially on two different principles.

The first kind of thin basis is based on d-adic representations. Let J ⊂ N

and denote by AJ the set of elements of the form
∑k

j=1 xj4
j where xi ∈ {0, 1}

if j ∈ J and xi ∈ {0, 2} otherwise. Then A = AJ ∪AN\J is clearly an additive
base. By choosing J to be the set of even numbers Hofmeister [18] gets
c ≤ 2

√
5/3 ≈ 2.581, a bound recently improved by Blomer [1] to a value

arbitrarily close to
√

3/((
√

2 − 1)81/4) ≈ 2.486. On the other hand Stöhr
proved that c ≥

√

8/π ≈ 1.595.
The resulting basis has obviously an unbounded representation function:

choose a subset I ⊂ J (where we may assume that J is infinite) and consider
n =

∑

i∈I 4i; for each partition I1, I2 of I into two nonempty parts we have
xk =

∑

i∈Ik
4i ∈ AJ , k = 1, 2 so that rA(n) ≥ 2|I|−1.

The second kind of construction is originally due to Cassels [3] whose
aim was to construct an additive basis for which the lim n−1/2A(n) do ex-
ists. Again for illustration we consider a special case based on the Fibonacci
numbers f1, f2, . . .. The constructed basis is the union of arithmetic progres-
sions A = ∪j≥1{aj + rfj : 0 ≤ r < fj+3} where aj =

∑

2≤i≤j fi−1fi+2. The
existence of arbitrarily large arithmetic progressions in A, which is common
to this kind of constructions, makes the representation function unbounded.

On the other hand, there have been efforts to construct dense sets with
bounded representation function. The class of infinite sets with represen-
tation function bounded by g is denoted by B2[g]. When g = 1 they
are called Sidon sets. Erdős showed that an infinite Sidon set A verifies
lim infn→∞ A(n)/(

√

n/ log n) < ∞, in particular the s-ET Conjecture is true
if the representation function is bounded by g = 1, although it is open for any
g ≥ 2. In the opposite direction Ruzsa [26] gives a construction of a Sidon

set A with A(n) ≫ n
√

2−1+o(1), a substantial improvement on the previous
known results.

Kolountzakis [19] has shown that already for g = 2 there are infinite sets
B2[2] with lim supn→∞ n−1/2A(n) = 1. Cilleruelo and Trujillo [5] obtained
the best known result up to now for all g by constructing infinite sets in
B2[g] with lim supn→∞ n−1/2A(n) ≥

√

(9/8)(g − 1). Thus there are sets with
bounded representation function which are more dense (in the sense of the
considered limits) than thin bases.
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3 Averaging the representation function

The known constructions of thin basis show that, for A an additive basis,
the average 1

N

∑

x≤N rA(x) can be bounded. Erdős showed that if instead we
choose an analogous function for the differences, dA(x) = {(a, a′) ∈ A : x =
a − a′} then, for every set A verifying A(x) ≫ √

x we have

1

N

∑

x≤N

dA(x) ≫ log N. (1)

In particular (1) shows that the function dA(x) = {(a, a′) ∈ A : , x = a − a′}
of an additive base A (which verifies A(x) ≫ √

x) can not be bounded.
Moreover A can not be a Sidon set, since rA(x) ≤ 1 for all x is equivalent to
dA(x) ≤ 1 for all x, which would contradict (1). However even establishing
that lim supn→∞ rA(n) ≥ c for a fixed constant c ≥ 3 when A is an additive
base, appears to be a nontrivial problem. By analyzing the traces of additive
basis in finite intervals, Grekos et al. [15] showed that we can always take
c ≥ 3. More recently Borwein, Cho and Chu [2] improved it to c ≥ 4.

By extending a classical result of Hardy and Landau for the squares, the
celebrated theorem of Erdős and Fuchs [11] states that the representation
function of any infinite set A can not have an eventually constant average.
More precisely,

∑

x≤N

rA(x) = cN + o(N1/4(log N)−1/2)

can not hold for any constant c. They also proved that, for any infinite set
A with A(n) ≫ n1/2 and for each constant c ≥ 0, we have

lim sup
N→∞

1

N

∑

x≤N

(rA(x) − c)2 > 0.

These two results indicate an irregularity of the representation function which
is compatible with the fact that rA is not bounded.

Note that if there exists an additive basis A whose representation function
is bounded by g then

lim sup
N→∞

1

N

∑

x≤N

r2
A(x) ≤ g lim sup

N→∞

1

N

∑

x≤N

rA(x) < ∞,

where the last inequality follows from the fact that A should be a thin basis.
Thus a proof that the mean of squares of the representation function is
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always unbounded for additive basis would have settled the ET Conjecture.
However Ruzsa [25] gave a construction of an additive basis A for which
lim supN→∞

1
N

∑

x≤N r2
A(x) < ∞. This construction is also relevant for the

existence of basis of abelian groups with representation function bounded by
an absolute constant, which we discuss in Section 5.

4 Basis with the ET property

An important problem in additive number theory is to investigate sets of
integers containing Hilbert cubes which are sets of the form

Hk = {h0 +

k
∑

i=1

ǫihi, ǫi ∈ {0, 1}}, (2)

where h0, h1, . . . , hk are integers and k is the dimension of the cube. It
is clear that if a set A of positive integers contains arbitrary large Hilbert
cubes then its representation function can not be bounded. Indeed, for any
subset J ⊂ [1, k], we can write

n = 2h0 +
k
∑

i=1

hi =

(

h0 +
∑

i∈J

hi

)

+



h0 +
∑

i∈[1,k]\J
hi



 . (3)

Hence rA(n) ≥ |Hk|/2.
We next give a sufficient condition for a base to contain arbitrarily large

Hilbert cubes. In particular the resulting basis verify the ET Conjecture.
For a positive integer n let us denote by S(n) the binary support of n, so
that n =

∑

i∈S(n) 2i.

Definition: An additive basis A is 2–bounded if there is a function f : N → N

such that, for each n, there are x, y ∈ A verifying

n = x + y and |S(x) ∪ S(y)| ≤ f(|S(n)|). (4)

Theorem 4.1. Any 2–bounded base contains arbitrarily large Hilbert cubes.

Proof. For any given positive integer k we shall construct a Hilbert cube in
A of cardinality at least 2k/2.

Since A is 2–bounded there is f : N → N for which (4) holds. Let
l = f(k) and let r = r(k, 2k, k2l+1) be the Ramsey number for the partition
of k–subsets into k2l+1 classes having an homogeneous set of cardinality 2k.
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Choose an arithmetic progression P starting at l of length r and difference
l. Color its k–subsets as follows.

Given a k–subset U ⊂ P , let n =
∑

i∈U 2i. Since the basis is bounded,
there are elements x, y ∈ A with n = x + y and |S(x) ∪ S(y)| ≤ l. Therefore
S(x) ∪ S(y) is contained in the union of intervals

S(x) ∪ S(y) ⊂ ∪u∈U [u − l + 1, u].

Let u1 < u2 < · · · < uk be the elements of U and denote by xi = (xi1, . . . , xil)
the binary vector with xij = 1 if ui − l + j ∈ S(x) and xij = 0 otherwise.
Let xU = (x1, x2, . . . , xk). Likewise define yU . Since the elements of P are
at mutual distance l, at least half of the l–tuples in one of xU or yU , say xU ,
are different from the all–zero vector. Then U is colored by xU .

This way we color all k–subsets of P with at most k2l+1 colors. By
Ramsey theorem there is a subset Z ⊂ P of cardinality 2k with all its k–
subsets colored by the same color

α = ((α1,1, . . . , α1,l), . . . , (αk,1, . . . , αk,l)).

Let z1 < z2 < · · · < z2k−1 < z2k be the elements of the homogeneous set
Z. Denote by

ai =
l
∑

j=1

αi′,j2
zi−l+j, i′ = ⌈i/2⌉, 1 ≤ i ≤ 2k, .

Note that, since the elements of Z are at mutual distance at least l, the
supports S(a1), . . . , S(a2k) are pairwise disjoint. Let

A′ = {a1, a2} + {a3, a4} + · · · + {a2k−1, a2k}.

Observe that, for each element a = ai1 + · · ·+aik in A′, the set {zi1 , . . . , zi2k
}

is colored α, which means that for the integer n with support S(n) =
{zi1 , . . . , zi2k

} the element a was chosen from the base. Therefore A′ ⊂
A. Moreover, by the definition of the coloring, there are at least k/2 sets
{a2i−1, a2i} different from {0}. Therefore A′ is a Hilbert cube (with h0 =
a1 + a3 + · · ·+ a2k−1 and hi = a2i − a2i−1, i > 0) with cardinality |A′| = 2k/2.
This completes the proof.

Corollary 4.2 ([22]). A 2–bounded additive basis verifies the ET conjecture.

In [22] a more general form of Corollary 4.2 is proved by essentially the
same arguments. The formulation given here through Theorem 4.1 highlights

6



the fact that a 2–bounded base contains arbitrarily large symmetric sets with
some additional structure: they are Hilbert cubes.

The proof of Theorem 4.1 easily extends to d–adic expansions with d ≥ 2.
In this case the support Sd(x) of an element x =

∑

i≥0 xid
i is the set of

indices for which xi is nonzero, and the ET conjecture holds d–bounded
basis (verifying (4) with Sd in the place of S).

Even if the property of being d–bounded is a particular one, there are
relatively large subsets of integers which only contain such basis.

Corollary 4.3. For every ǫ > 0 there is a set X ⊂ N with X(n) > n1−ǫ

such that every additive base A ⊂ X is 2–bounded. In particular A verifies

the ET–Conjecture.

Proof. Let l be a positive integer and consider the set X of integers x whose
binary expansion x =

∑

i≥0 xi2
i verifies xlm = 0 for each m ≥ 1. For every

pair x, x′ ∈ X and each interval Im = [lm+1, l(m+1)], if (S(x)∩S(y))∩ Im

is nonempty then S(x + y) ∩ Im is nonempty as well. Therefore,

|S(x) ∪ S(x′)| ≤ l|S(x + x′)|,

an every base A ⊂ X is d-bounded. By choosing l > ⌈1
ǫ
⌉ we have X(n) ≥

2x−x/l > 2x(1−ǫ) = n1−ǫ where x = log2 n.

5 The ET property in semigroups

The difficulty involved in the ET Conjecture motivated the study of analo-
gous problems in semigroups other than the additive positive integers. Erdős
himself proved [9] that the set of positive integers with multiplication verifies
the ET Conjecture.

Theorem 5.1 (Erdős [9], Nešetřil and Rödl [21]). If every positive integer

can be written as a product of two elements in a set A then, for every k ∈ N

there is an integer which can be written in more than k different ways as a

product of two elements in A.

Nešetřil and Rödl [21] gave a simple proof of the above result by using
Ramsey theorem. Their argument inspired the analogous proof of Theo-
rem 4.1 and similar positive results for other classes of semigroups described
below.

Let (G, ∗) be a commutative semigroup and X ⊂ G. A subset A ⊂ X
is a basis for X if A ∗ A ⊃ X. We say that X has the ET (k) property if
the representation function of any basis of X is not bounded by k. If X has
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the ET (k) property for each k ∈ N then we simply say that X has the ET
property. We say that an infinite class G of semigroups has the ET property
if for every k ∈ N, all but a finite number of members of G have the ET (k)
property.

The next Theorem provides a wide class of examples of semigroups which
verify the ET property as defined above. We say that a finite subset R in
a semigroup G with a distinguished idempotent element e is antisymmetric

if e ∈ R and the equation x ∗ y = e holds in R if and only if x = y = e.
We denote by GN the direct product of N copies of G. We proved [23] the
following

Theorem 5.2. Let (G, ∗) be a commutative semigroup and let e ∈ G be

an idempotent element. Let R be a finite antisymmetric set with |R| > 1
containing e. For each k ∈ N there is N = N(k) such that RN has the

ET (k) property.

Theorem 5.2 allows us to identify several examples of semigroups with the
ET–property. In particular it is shown in [23] that if (P,∨) is a finite semilat-
tice with maximum and minimum elements then the class {(P N ,∨), N ∈ N}
and (P N,∨) have the ET property. In particular this applies to the fam-
ily of finite (or cofinite) subsets of a countable set X with respect to union
or intersection. A more interesting example in our present setting is the
following.

Corollary 5.3. The family {(NN , +), N ∈ N}, where the sum is componen-

twise, has the ET–property. Similarly, the semigroup of infinite sequences of

positive integers with finite support has the ET–property.

When we move from semigroups to groups the situation is very different.
It is not difficult to show that there is A ⊂ Z with rA(x) = 1 for every x ∈ Z.
A greedy construction of such an A produces a very sparse set. The contrast
with the case of positive integers is illustrated by a construction of Cilleruelo
and Nathanson [4] giving a dense set of integers whose representation function
matches an arbitrary function. More precisely, these authors prove that,
given ǫ > 0 there is a constant c = c(ǫ) such that, for every function f : Z →
N verifying lim inf |n|→∞ f(n) > c(ǫ), there is a set A with A(x) ≫ x1/2−ǫ

and rA(x) = f(x) for all x (here A(x) denotes the number of elements in
A ∩ [−x, x].)

For finite groups a similar situation arises. Let P be the set of primes
p for which 2 is not a quadratic residue modulo p. Ruzsa [25] constructs,
for every prime p ∈ P, a base A ⊂ Zp × Zp with representation function rA

bounded from above by 18. This shows that the class {Zp ×Zp, p ∈ P} does

8



not have the ET–property. The construction has been extended by Haddad
and Helou [16] to groups of the form G × G and direct sums GN where G
is the additive group of a finite field, or an infinite algebraically closed field,
of characteristic 6= 2. The same ideas have been used by Min and Cheng
[30] to show that the class of cyclic groups has not the ET property. This
is in contrast with the next Corollary to Theorem 5.2 which states that the
ET (k) property holds in direct products of groups if we restrict ourselves to
an antisymmetric set.

Corollary 5.4. Let G be a finite abelian group and let R ⊂ G with R ∩
(−R) = {0}. For each k ∈ N there is N = N(k) such that RN has the

ET (k) property. In particular, the group of infinite sequences of elements of

R with finite support has the ET property.

Corollary 5.4 shows that there are abelian groups which admit basis with
representation function bounded by an absolute constant (for instance the
p–elementary group Z

N
p which admits a basis whose representation function

is bounded by 18) while containing antisymmetric sets with the ET property.
The ET Conjecture says that this is the case for the group of integers.

6 Other linear equations

When moving from A + A to a · A + b · A, where t · A = {ta : a ∈ A}
the analogous problem of the resulting representation function may change
drastically. Let us denote by rA;a,b(n) the number of representations of the
form n = ax+by with x, y ∈ A. We may assume without loss generality that
gcd(a, b) = 1.

Moser [20] showed that when a = 1 and b > 1 there exists a (unique) set
A such that every positive integer can be uniquely written as x + by with
x, y ∈ A. For instance, the set A = {∑i≥0 ǫi2

2i, ǫ = 0 or 1} verifies this
property when b = 2.

By solving a problem in [28, Problem 7.1] for the case of two–fold sums,
Cilleruelo and Rué [6] recently proved that, when a > b > 1, the represen-
tation function rA;a,b can not be eventually constant. This extends an old
result of Dirac and Newman who had proved the analogous result for the
case a = b = 1, and shows that Moser’s result is a quite particular one.

On the other hand, a set A such that rA;a,b(n) ≤ 1 for each n and S = a ·
A+b ·A has positive density is constructed in [7]. In particular, A(n) ≫ n1/2.
This indicates that, if true, the strengthened version of the ET Conjecture
which just requires A(x) ≫ x1/2, may only hold in the case a = b = 1.
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7 Final remarks and problems

The validity of the s–ET Conjecture would imply that in any finite partition
of an additive base there is a part which has unbounded representation func-
tion. This has been proved to be the case [22] for the class of d–bounded
basis, and it is probably an easier problem to solve than the s–ET Conjecture
itself. The following problem was already proposed in [22]:

Problem 7.1. Let A be an additive basis of the positive integers. Assume

that the representation function of A is not bounded. Is it true that in any

finite partition A = A1 ∪ · · ·∪At there is a part Ai with unbounded represen-

tation function?

The answer is strongly negative if we replace N by the set of all integers.
It was shown in [22] that, for an arbitrary function f : Z → N there is a basis
A with representation function f which can be split into two B2 sets.

One can formulate a Ramsey version of the s–ET Conjecture. According
to our discussion in Section 2, if a monochromatic set in a coloring of the
positive integers has cardinality Ω(n1/2ω(n)) for some increasing function
ω : N → N, then the representation function of this set can not be bounded.
This suggests the following problem.

Problem 7.2. Is it true that, for every coloring χ : N → N of the positive

integers verifying |χ−1([1, n])| ∼ n1/2, there is a monochromatic set with

unbounded representation function?

One can formulate a finite version of the above problem. Let f(k, n) be
the minimum number of colors t such that every t–coloring of the interval
[1, n] contains a monochromatic set B such that max rB(x) ≥ k.

Problem 7.3. Is there a function ω : N → N with lim supn→∞ ω(n) = ∞
such that lim supn→∞ n−1/2f(ω(n), n) > 0?

The analogous problem for abelian groups, where a symmetric set verifies
(B − x) = −(B − x) for some element x of the group, may have a negative
answer in a strong sense. For instance, one can partition Gp = Zp × Zp into
the p Sidon sets Ai = {(x, x2 + i) : x ∈ Zp}, 0 ≤ i ≤ p − 1 so that, for the
class {Gp, p prime}, we have limp→∞ |Gp|−1/2f(k, |Gp|) = 0 for each k > 2.

The notion of 2–bounded basis discussed in Section 4 can be extended to
general sets. Say that a set A of integers is 2–bounded if there is a function
f such that |S(x) ∪ S(y)| ≤ f(|S(x + y)|) for every pair x, y ∈ A. One may
consider the s–ET Conjecture restricted to 2–bounded sets.
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Problem 7.4. Let A be a 2–bounded infinite set such that A(x) ≫ x1/2. Is

it true that the representation function of A can not be bounded?

As a final remark let us mention that we have only considered the ET
Conjecture with basis of order 2. A set A ⊂ N is a basis of order h ≥ 2
if every positive integer can be expressed as a sum of h elements in A and
the ET Conjecture can be extended to these basis as well. When h = 2k
is an even number, then a basis A of order h gives rise to the basis kA of
order two, and if the latter has unbounded representation function so does
A. However, when h is odd there is no obvious way to reduce the problem
to basis of order 2. Nevertheless, the positive results in sections 4 and 5 can
be extended to basis of arbitrary order h, see [22, 23].
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