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Abstract

In this note we consider three questions which can be traced to our
early collaboration with Jan “Honza” Pelant. We present them from
the contemporary perspective, in some cases extending our earlier
work. The questions relate to Ramsey Theory, uniform spaces and
tournaments.

1 Introduction

Jan’s mathematical interactions with the authors date back to early 70’s.
Jan Pelant was a remarkable man whose influence on his contemporaries
transcended Prague’s mathematical life. He was an excellent mathematician
with a gift for understanding and solving problems. Moreover, Jan Pelant
was not just an expert in his own field. His interests and talents were broad
and he could have been successful in other areas. His passing is a great loss
to all of us.

Here we deal with his work related to 3 problems: Ramsey topological
spaces, characters of uniformities and tournament algebras.

2 Ramsey topological spaces

Ramsey theory was developing very rapidly during the 70’s. One of the most
significant changes was the fact that the original set theory (and graph the-
ory) setting of Ramsey theory was generalized to other structures. These
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developments are, for example, nicely described in the first monograph de-
voted to Ramsey theory [7]. The following is an example of an extension to
topology.

Definition 2.1 A topological space Y is said to be point Ramsey for the
space X if for every (set) partition Y = Y1∪Y2 one of the classes Yi contains
a subspace which is homeomorphic to X.

In the classical Erdős-Rado notation this is denoted by Y → (X)1
2. If α parts

are allowed we write Y → (X)1
α. We say that a class T of topological spaces

is point Ramsey if for every X ∈ T and every cardinal α there exists Y ∈ T
such that

Y → (X)1
α.

In [26] we proved the following statements:

Theorem 2.2

1. The class T0 of all T0-topological spaces is point Ramsey.

2. The class T1 of all T1-topological spaces is point Ramsey.

This is an easy result which is obtained by the lexicographic (nested)
product.

It is not known if the class T2 of Hausdorf topological spaces is point
Ramsey. Particularly, the following problem concerning the unit interval I
popularized the study of Ramsey topological spaces.

Problem 2.3 Is it true that for every α there exists β such that Iβ → (I)1
α?

Problem 2.3 is related to the question of whether the class of completely
regular spaces is point Ramsey. The above is contained in the conference
volume of TOPOSYM’76 [26].

We were pleased to learn that this note was quickly followed by research
by W. Weiss, V. I. Malyhin, S. Todorčević and others [14, 39, 40]. A sur-
vey article by W. Weiss about this research appeared in [41]. In fact the
TOPOSYM paper [26] contains only a sketch of the proof of Theorem 2.2
and, in hindsight, it proves more, namely an analogous result for topological
spaces with a given linear ordering of points and for monotonne homeo-
morphism. These are denoted by (X,≤X), (Y,≤Y ), monotonne homeomor-
phism as (X,≤X) −→ (Y,≤Y ) and the corresponding partition arrow by
(Y,≤Y ) → (X,≤X)1

α. Thus after 30 years we take the liberty to include here
the following mild strengthening of [26]:
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Theorem 2.4 For every T1-topological space X, every linear ordering ≤X

of its points and every cardinal α there exists a T1-topological space Y with
a linear ordering ≤Y such that (Y,≤Y ) → (X,≤X)1

α.

Proof For α < ∞ the result was proved in [26], so we may assume that α
is an infinite cardinal.

We define the underlying set Y as Xα. Let ≤Y be the lexicographic
ordering of sequences (xι : ι < α). The topology of Y will be defined by the
set τ of all closed subsets of Y . For A ⊂ Y we say that A ∈ τ if and only if
it satisfies the following condition:

if uι ∈ X (ι < α), β < α, and (v(λ))λ∈Λ ⊂ A is a net satisfying v
(λ)
ι =

uι (ι < β, λ ∈ Λ), v
(λ)
β → uβ, v

(λ)
β 6= uβ (λ ∈ Λ), then (uι)ι<α ∈ A.

It is easy to verify that τ is closed under taking finite unions and arbitrary
intersections, so it defines a topology on Y . Moreover, the points of Y are
closed, so Y is a T1-topological space.

We prove (Y,≤) → (X,≤)1
α. Suppose for contrary that (Y,≤) 6→ (X,≤)1

α.
Let c : Y → α be a coloring of points of Y . We construct by transfinite
induction points xλ ∈ X such that c(u) 6= λ whenever u ∈ Y such that
uγ = xγ , for each γ ≤ λ. Suppose that λ < α and xγ ∈ X(γ < λ) have
already been constructed. Suppose on the contrary that there is no xλ with
the required property. This means that for each v ∈ X there exists yv ∈ Y
satisfying yv

γ = xγ (γ < λ), yv
λ = v and c(yv) = λ. Then, the set {yv : v ∈

X} induces an ordered subspace of Y monotone homeomorphic to (X,≤).
Clearly the set is homogeneous for the coloring c, a contradiction with the
choice of xλ. Hence, we can construct the elements xλ(λ < α) with the
required property. Then, the sequence x = (xλ)λ<α ∈ Y satisfies c(x) 6= λ
for each λ < α, a contradiction.

Remark 2.5 Recall that Theorem 2.4 deals with partitions of points only.
Perhaps it makes sense to ask if a similar Ramsey type statement holds when
pairs or, more generally, discrete n-tuples are partitioned. Since κ 6→ (ω)ω

2 for
any infinite cardinal κ [4, 5] it is unlikely that there is a Ramsey class of
infinite topological spaces. For some related applications see [38]. In [28], we
suggested an alternative (graph theoretical) proof of this partition relation.
An interesting version of this proof was given in [39].

There are several beautiful Ramsey type results for topological restricted
colorings (cf. [3, 6, 13]). For finite topological spaces, the full characteriza-
tion of Ramsey classes is given in [23, 24]. Ramsey classes of finite structures
are related to ultrahomogeneous structures [12, 22, 23], a connection which
recently yielded a spectacular application in the context of topological dy-
namics [12].
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Remark 2.6 Ramsey problems depend very much on the underlying cate-
gory. The more restrictive maps lead to fewer subspaces and thus we can
expect a richer spectrum of results. Examples of this phenomenon are Eu-
clidean and geometric Ramsey theorems [16] and also metric Ramsey theo-
rems [2, 17] (which should be distinguished from Ramsey theorem for finite
metric spaces [25]). However, these questions were studied much later.

3 The point character of ℓp(κ)

Let (X, ρ) be a metric space. An open covering U of (X, ρ) is a family of
open subsets of X with X =

⋃

U . We say that U is bounded if there exists
b > 0 with the property that diam U < b for all U ∈ U . We also say that U
is b-bounded if diam U < b for all U ∈ U . The covering U is called uniform if
there exists ε > 0 such that for every x ∈ X there is a U ∈ U which contains
the ε-ball B(x, ε) = {y : ρ(x, y) < ε}. By a well-known theorem of A.H.
Stone [36], every metric space is paracompact and hence every open covering
U of (X, ρ) has a locally finite open refinement V, i.e., there exists an open
covering V with the following two properties:

1. for each x ∈ X there is a neighborhood of x which meets only finitely
many members of V,

2. for every V ∈ V there is a U ∈ U with V ⊂ U .

A.H. Stone [37] asked whether the theorem remains valid when replacing
the open covering and its refinement by uniform ones (see also [9]). In other
words, is it true that in any metric space every uniform covering has a locally
finite uniform refinement? A space satisfying this property is said to have
the Stone uniform property. It is clear that Euclidean spaces and more
generally separable spaces have the Stone uniform property. However, it was
shown independently by Pelant [29] and Schepin [35] that the space ℓ∞(κ) for
κ sufficiently large does not have the Stone uniform property. Subsequently
in [33] and in [32] we proved that the space ℓp(κ), 1 ≤ p < ∞ and κ sufficiently
large, does not have the Stone uniform property either. Here we present the
result from [32] which is related to a paper from this volume [1].

For a family E of sets, we define ord(E) = sup {|D|+ : D ⊂ E ,
⋂

D 6= ∅}.

Definition 3.1 Let (X, ρ) be a metric space. The point character pc(X, ρ)
of (X, ρ) is the least cardinal β such that every uniform cover U of X has a
uniform refinement V with ord(V) ≤ β.
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A space with pc(X, ρ) ≤ ℵ0 is also called point finite. Point finite spaces
are those satisfying the Stone uniform property. For any Euclidean space En

we have that pc(En) = n+2. So the point character provides a generalization
of the notion of dimension for the “infinite dimensional case”.

For an infinite cardinal κ and p ≥ 1 recall that ℓp(κ) is the Banach space
whose elements are the real functions on κ such that

∑

i<κ |f(i)|p converges.
The operations are pointwise and the norm is defined by

‖f‖ =

(

∑

i<κ

|f(i)|p

)1/p

.

The main objective of this paragraph is to prove the following.

Theorem 3.2 For any limit ordinal α we have

pc (ℓ1(ωα)) ≥ ωα.

For the proof we shall need the following lemma. Let X be a set. We
denote the system of all n-element subsets of X by [X]n.

Lemma 3.3 Let n ≥ 2 be an integer and let γ be any ordinal. For ev-
ery mapping f : [ωγ+n−1]

n → ωγ+n−1 with the property that for any x, y ∈
[ωγ+n−1]n, x∩y = ∅ implies f(x) 6= f(y), there exists C ⊂ [ωγ+n−1]

n with the
following properties:

1. |C| = ωγ,

2. for any x1, x2 ∈ C, x1 6= x2, we have f(x1) 6= f(x2),

3. |
⋂

c∈C c| = n − 1.

For the proof see [1].

Proof of Theorem 3.2 Let U = {B(x, 1
2
), x ∈ X} be a cover consisting of

all balls of diameter 1. We will show that any refinement V of U satisfies
ord(V) ≥ ωα. In fact, we will show that any 1-bounded covering V has this
property.

Let us consider the topological subspace of ℓ1(ωα) on the set

{f | f : ωα → [0, 1], |cozf | < ω0 and f(x) = 1/|cozf |, for x ∈ cozf}

where cozf = {m| f(m) 6= 0}. We denote this subspace by F (ωα).
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As V is a uniform covering, there exists ε > 0 such that for every x ∈
F (ωα) there is a V ∈ V with B(x, ε) ⊂ V . Let us take n sufficiently large so
that 1/n < ε/2. Consider

F n(ωα) = {f | f ∈ F (ωα) and |cozf | = n}.

For any M ∈ [ωα]n, we denote by fM the unique map in F n(ωα) satisfying
coz(fM ) = M . Let us define the mapping g : [ωα]n → V so that for every
M ∈ [ωα]n, B(fM , ε) ∈ g(M). In other words, the map g “chooses” for each
M ∈ [ωα]n a set of V containing B(fM , ε).

For any two disjoint M ,N ∈ [ωα]n we have dist(fM , fN) = 2. Since V is
1-bounded, g(M) and g(N) must be different. Hence, the mapping g satisfies
the assumption of Lemma 3.3.

Let now γ < α. As α is a limit ordinal we have also ωγ+n−1 < ωα and
thus, by Lemma 3.3, there is a family C ⊂ [ωγ+n−1]

n satisfying the following
properties:

1. |C| = ωγ,

2. for any c1, c2 ∈ C, if c1 6= c2, then g(c1) 6= g(c2),

3. |
⋂

c∈C c| = n − 1.

Fix c ∈ C. For each c′ ∈ C we have ρ(fc, fc′) = 2
n

< ε, and so fc ∈
B(fc′ , ε) ⊂ g(c′). Hence c is contained in ωγ elements of V. Since γ < α was
arbitrary, we infer that pc(ℓ1(ωα)) ≥ ωα.

Finally, let us note that the proof for p > 1 is analogous. For more details
see [29, 30, 34].

4 Tournaments and algebras

The first two papers [19, 31] of Jan Pelant deal with relations: [31] can be
traced to a dimension question of M. Katětov while [19] is an abstract of the
main activity of the combinatorial seminars in 1970−1971. It deals with the
following notion:

Definition 4.1 A tournament (X, R) is a reflexive relation which is com-
plete and antisymmetric. Explicitly, R satisfies

R ∪ R−1 = X2, R ∩ R−1 = {(x, x) : x ∈ X}.

Thus for x, y ∈ X, x 6= y we have (x, y) ∈ R ⇐⇒ (y, x) /∈ R.
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In [19, 20, 21] we studied tournaments from the algebraic point of view:
every tournament T = (X, R) corresponds uniquely to the binary tournament
algebra (X, ·T ) defined by

x ·T y =

{

x if (x, y) ∈ R,

y if (y, x) ∈ R.

In [19, 20, 21] we studied tournaments from the algebraic point of view:
Every tournament T = (X, R) corresponds uniquely to the binary tourna-
ment algebra (X, ·T ) defined by x ·T y = z if (x, y) ∈ R and x = z.

Clearly tournament algebras are just quasitrivial (x · y ∈ {x, y}), com-
mutative and idempotent algebras. Note also that f : (X, R) → (X ′, R′)
is a (relational) homomorphism if and only if f : (X, ·T ) → (X ′, ·T ′) is an
(algebraic) homomorphism.

This connection led us to investigate the tournament algebras thoroughly.
This resulted in papers [20, 21] where we (among other things) characterized
the congruence lattices of tournaments algebras. It also led to new notions
such as the simple tournament.

Definition 4.2 A tournament T = (X, R) is simple if every non-constant
homomorphism f : T → T is an automorphism. (These are now called core
tournaments [8].)

Inspired by the characterization of the groups of automorphisms of tour-
naments we proved that every such group can be represented by a simple
tournament. We also characterized scores of simple tournaments, where by
the score of a tournament we mean the sequence of the degrees of its vertices
(loops not counted). Furthermore, we characterized scores for which every
tournament is simple (these are just scores (1, 1, 1), (2, 2, 2, 2, 2),(3, 3, 3, 3, 3, 3, 3)).
It came then as a surprise that the this notion was studied independently
at the same time by P. Erdős, A. Hajnal, E. Milner and Moon [5, 18]. We
found this very encouraging.

Tournament algebras proved to be useful. Denote by VT the variety (in
the sense of Birkhoff) generated by the finite tournament algebras. In [20]
we isolated infinitely many irreducible equations valid in VT and posed as a
problem whether VT is finitely axiomatizable. This problem was solved by J.
Ježek, M. Mároti and R. McKenzie [10] (there is no finite axiomatization). It
appeared that tournament algebras form an important class (see, e.g., [15]).
They played a role in Ramsey theory as well. We finish this paper by stating
explicitly this connection.

Let K be a class of idempotent algebras (by this we mean that every
single element subset induces a subalgebra). The notation B → (A)1

k has the
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analogous meaning as above in Section 2 (for topological spaces). More gen-
erally given algebras A, B we also write C → (B)A

k if the following statement
holds:

For every partition of the set
(

C
A

)

of all subalgebras of C which are iso-
morphic to A into k classes there exists a subalgebra B′ of C, B′ ≃ B, such
that

(

B′

A

)

is a subset of one of the classes of the partition. We say that K has
the A-Ramsey property if for every positive k and every B ∈ K there exists
C such that C → (B)A

k .
In [11] we proved:

Theorem 4.3

1. Every variety V of idempotent algebras has the point Ramsey property.

2. The variety VT generated by the tournament algebras has the A-Ramsey
property if and only if A is the singleton.

In [27] we investigated varieties of partially ordered sets and lattices.
Particularly we characterized those lattices A for which the class of all finite
distributive lattices has the A-Ramsey property and for which the class of all
lattices have the A-Ramsey property. However, for the class M of all finite
modular lattices the situation is not clear and still presents an open problem:

Problem 4.4 Characterize those modular lattices A for which the class M
has the A-Ramsey property.
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[32] J. Pelant and V. Rödl. On coverings of infinite-dimensional metric
spaces. Discrete Math., 108:75–81, 1992.

10



[33] V. Rödl. Canonical partition relations and point-character of ℓp-spaces.
Seminar Uniform Spaces (1976-77), Math. Institute of Czechoslovak
Academy of Science, pages 79–82, 1978.
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