
Semi-Online Preemptive Scheduling:

One Algorithm for All Variants

Tomáš Ebenlendr∗ Jǐŕı Sgall∗

Abstract: We present a unified optimal semi-online algorithm for preemptive

scheduling on uniformly related machines with the objective to minimize the

makespan. This algorithm works for all types of semi-online restrictions, including

the ones studied before, like sorted (decreasing) jobs, known sum of processing

times, known maximal processing time, their combinations, and so on. Based on

the analysis of this algorithm, we derive some global relations between various

semi-online restrictions and tight bounds on the approximation ratios for a small

number of machines.

Keywords: Algorithms, scheduling.

1 Introduction

We study online scheduling on uniformly related machines, which means that
the time needed to process a job with processing time p on a machine with
speed s is p/s. Preemption is allowed, which means that each job may be
divided into several pieces, which can be assigned to different machines in
disjoint time slots. The objective is to minimize the makespan, i.e., the length
of a schedule. In the online problem, jobs arrive one-by-one and we need to
assign each incoming job without any knowledge of the jobs that arrive later.
When a job arrives, its assignment at all times must be given and we are not
allowed to change this assignment later. In other words, the online nature
of the problem is given by the ordering of the input sequence and it is not
related to possible preemptions and the time in the schedule.

We focus on semi-online algorithms. This term encompasses algorithms
that are essentially online, but some partial information about the input is
given to the scheduler in advance. The main motivation behind this approach

∗Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. Par-
tially supported by Institutional Research Plan No. AV0Z10190503, by Inst. for Theor.
Comp. Sci., Prague (project 1M0545 of MŠMT ČR) and grant IAA1019401 of GA AV
ČR. Email: {ebik,sgall}@math.cas.cz.

1



is the observation that the classical competitive analysis is too pessimistic
compared to practical results, or, in other words, the adversary who may
arbitrarily determine the input sequence is too powerful. In practice, the
inputs are not completely arbitrary, and it may be reasonable to restrict the
set of inputs. In scheduling, numerous semi-online models have been stud-
ied; typical examples include (sequences of) jobs with decreasing processing
times, jobs with bounded processing times, sequences with known total pro-
cessing times of jobs and so on. Most of these models can be viewed as
online algorithms on a restricted set of input sequences. Restrictions of this
type have been studied also for other online problems; the most prominent
example is paging with locality of reference [1].

Our results

We give a semi-online algorithm for preemptive scheduling on uniformly
related machines which is optimal for any chosen semi-online restriction, see
Section 2. This means not only the cases listed above—the restriction can
be given as an arbitrary set of sequences that are allowed as inputs. For
any semi-online restriction, the algorithm achieves the best possible approx-
imation ratio for any number of machines and any particular combination of
machine speeds; it is deterministic, but its approximation ratio matches the
best possible approximation ratio of any randomized algorithm. This gen-
eralizes and unifies previous results for various special cases of semi-online
preemptive scheduling. We find such a general result providing a provably
optimal algorithm for many problems quite exceptional not only in the area
of scheduling but also in the whole area of online algorithms. Our result
also provides a clear separation between the design of the algorithm and the
analysis of the optimal approximation ratio. While the algorithm is always
the same, analysis of the optimal ratio depends on the studied restrictions.
Nevertheless, the general result also provides crucial new insights and meth-
ods and thus we can analyze the optimal ratio in cases that have been out
of reach with previously known techniques.

For typical semi-online restrictions, we show that the optimal ratio can be
computed by linear programs (with machine speeds as parameters). Studying
these linear programs allows us to progress in two directions. First, we are
able to completely analyze the optimal ratio for particular cases with a small
number of machines. Second, we are able to study the relations between the
optimal approximation ratios for different semi-online restrictions and give
some bounds for a large number of machines.

The exact analysis of special cases for a small number of machines was
given in [6, 3, 11] for various restrictions, and in many more cases for non-
preemptive scheduling. Typically, these results involve similar but ad hoc

2



algorithms and an extensive case analysis which is tedious to verify, and can
be done for two uniformly related machines or for more identical machines.
Using our linear programs we can calculate the ratio as a formula in terms
of speeds. This is a fairly routine task which can be simplified (but not
completely automated) using standard mathematical software. Once the
solution is known, verification amounts to checking the given primal and
dual solutions for the linear program. We give a few examples of such results
in Section 3; typically the verification is reasonably simple for m = 3 or
m = 4.

Another research direction is to compute, for a given semi-online restric-
tion, the optimal approximation ratio which works for any number of ma-
chines and combination of speeds. This task appears to be much harder, and
even in the online case we only know that the ratio is between 2.054 and
e ≈ 2.718; the lower bound is shown by a computer-generated hard instance
with no clear structure [4]. Only for identical machines, the exact ratio for
any number of machines is known (i) for the online case, where it tends to
e/(e − 1) ≈ 1.58 [2], and (ii) for non-increasing processing times, where it
tends to (1 +

√
3)/2 ≈ 1.366 [13].

We are able to prove certain relations between the approximation ratios
for different restrictions. Some basic restrictions form an inclusion chain:
The inputs where the first job has the maximal size (which is equivalent to
known maximal size) include the inputs with non-increasing processing times,
which in turn include the inputs with all jobs of equal size. Typically, the
hard instances have non-decreasing processing times. Thus, one expected
result is that the restriction to non-increasing processing times gives the
same approximation ratio as when all jobs have equal size, even for any
particular combination of speeds. The overall approximation ratio is at most
1.52, see Section 3.3. On the other hand, for known maximal size of a job we
have a computer-generated hard instance with approximation ratio 1.88 with
m = 120.1 Thus restricting the jobs to be non-increasing helps the algorithm
much more than just knowing the maximal size of a job. This is different
from identical machines, where knowing the maximal size is equally powerful
as knowing that all the jobs are equal, see [13].

More interestingly, the overall approximation ratio with known sum of
processing times is the same as in the online case—even though for a small
fixed number of machines knowing the sum provides a significant advantage.
This is shown by a padding argument, see Section 3.1.1. In fact this is
true also in presence of any additional restriction that allows scaling input
sequences, taking a prefix, and extending the input by small jobs at the end.

1See the Maple output at http://www.math.cas.cz/~sgall/ps/semirel-pmax.mpl

3



Thus, for example, the overall approximation ratio with non-increasing jobs
and known sum of processing times is at least 1.366, using the bound for
identical machines from [13].

Preliminaries

Let Mi, i = 1, 2, . . . , m denote the m machines, and let si be the speed of
Mi. W.l.o.g. we assume that the machines are sorted by decreasing speeds,
i.e., s1 ≥ s2 ≥ . . . ≥ sm. To avoid degenerate cases, we assume that s1 > 0.
The vector of speeds is denoted s. The sum of speeds is denoted S =

∑m

i=1 si

and Sk =
∑k

i=1 si is the sum of k largest speeds. To simplify the description
of the algorithm, we assume that there are infinitely many machines of speed
zero, i.e., si = 0 for any i > m. (Scheduling a job on one of these zero-speed
machines means that we do not process the job at the given time at all.) Let
J = (pj)

n
j=1 denote the input sequence of jobs, where n is the number of jobs

and pj ≥ 0 is the size, or processing time, of jth job. The sum of processing
times is denoted P = P (J ) =

∑n

j=1 pj. Given J and i ≤ n, let J[i] be the
prefix of J obtained by taking the first i jobs.

The time needed to process a job pj on machine Mi is pj/si; each machine
can process at most one job at any time. Preemption is allowed, which means
that each job may be divided into several pieces, which can be assigned to
different machines, but any two time slots to which a single job is assigned
must be disjoint (no parallel processing of a job); there is no additional cost
for preemptions. Formally, if ti denotes the total length of the time intervals
when the job pj is assigned to machine Mi, it is required that t1s1 + t2s3 +
· · · + tmsm = pj. (A job may be scheduled in several time slots on the
same machine, and there may be times when a partially processed job is not
running at all.) In the (semi-)online version of this problem, jobs arrive one-
by-one and at that time the algorithm has to give a complete assignment of
this job at all times, without the knowledge of the jobs that arrive later. The
objective is to find a schedule of all jobs in which the maximal completion
time (the makespan) is minimized.

For an algorithm A, let CA

max[J ] be the makespan of the schedule of J
produced by A. By C∗

max[J ] we denote the makespan of the optimal offline
schedule of J . An algorithm A is an R-approximation if for every input
J , the makespan is at most R times the optimal makespan, i.e., CA

max[J ] ≤
R · C∗

max[J ]. In case of a randomized algorithm, the same must hold for
every input for the expected makespan of the online algorithm, E[CA

max[J ]] ≤
R · C∗

max[J ], where the expectation is taken over the random choices of the
algorithm.

The optimal makespan can be computed as

C∗
max[J ] = max{P/S, maxm−1

k=1 {Pk/Sk}}, (1)

4



where Pk denotes the sum of k largest processing times in J and Sk is the
sum of k largest speeds. It is easy to see that the right-hand side is a lower
bound on the makespan, as the first term gives the minimal time when all the
work can be completed using all machines fully, and similarly the term for k
is the minimal time when the work of k largest jobs can be completed using
k fastest machines fully. The tightness of this bound follows from [10, 8, 5].

Semi-online restrictions and previous work

We define a general semi-online input restriction to be simply a set Ψ
of allowed inputs, also called input sequences. We call a sequence an partial
input if it is a prefix of some input sequence; the set of all partial inputs
is denoted pref(Ψ). Thus partial inputs are exactly the sequences that the
algorithm can see at some point. A (randomized) semi-online algorithm
A with restriction Ψ is an R-approximation algorithm if E[CA

max[J ]] ≤ R ·
C∗

max[J ] for any J ∈ Ψ. Note that this implies the same condition even for
any J ∈ pref(Ψ).

Below we list some of the restrictions that are studied in literature, to-
gether with the notation that we are going to use, previous work, and our
results.

Known sum of processing times,
∑

pj = P . For a given value P̄ ,
Ψ contains all sequences with P = P̄ . We prove that the overall ratio is
surprisingly the same as in the general online case, on the other hand we
note that for m = 2, 1-approximation is possible and we analyze the cases of
m = 3, 4.

Non-increasing processing times, denoted decr. Ψ contains all se-
quences with p1 ≥ p2 ≥ · · · ≥ pn. For m = 2, the optimal algorithm for
all speeds was analyzed in [6] and for identical machines in [13]. We prove
that for any speeds this case is the same as the case with all jobs equal. We
analyze the cases for m = 2, 3, and prove some bounds for larger m.

Known optimal makespan, C∗
max = T . For a given value T̄ , Ψ contains

all sequences with C∗
max[J ] = T̄ . In this case 1-approximation semi-online

algorithm is known for any speeds, see [5].

Known maximal job size, pmax = p. For a given value p̄, Ψ contains
all sequences with max pj = p̄. It is easy to see that this restriction is
equivalent to the case when the first job is maximal, as any algorithm for
that special case can be used also for the case when the maximal job arrives
later. Thus this restriction also includes non-increasing jobs. This restriction
was introduced in [9] for non-preemptive scheduling on 2 identical machines.
In [13] it is shown that for identical machines, the approximation ratio is the
same as when the jobs are non-increasing. We show that this is not the case
for general speeds.

5



Tightly grouped processing times, pj ∈ [p, αp]. For given values p̄ and
α, Ψ contains all sequences with pj ∈ [p, αp] for each j. This restriction
was introduced in [9] for non-preemptive scheduling on 2 identical machines.
Tight bounds for preemptive scheduling on 2 uniformly related machines
were given in [3].

Inexact partial information. In this case, some of the previously consid-
ered values (optimal makespan, sum of job sizes, maximal job size) is not
known exactly but only up to a certain factor. These variants were studied
first in [15] without preemption and then in [11] for preemptive scheduling;
both on identical machines.

Online scheduling. Here Ψ contains all sequences. In our (i.e., the authors
and Wojtek Jawor) previous work [4], we have designed an optimal online
algorithm for all speed vectors. The algorithm and the proof of the main
result in this paper generalize that result, using the same techniques, how-
ever, some technical issues have to be handled carefully to achieve the full
generality of our new result. Online preemptive scheduling was studied first
in [2].

The paper [12] is probably the first paper which studied and compared
several notions of semi-online algorithms, including known sum of processing
times. Some combination of the previous restrictions were studied in [14]
for non-preemptive scheduling on identical machines. We should note that
there are also semi-online models that do not fit into our framework at all.
For example, the algorithm may get a hint which job is the last one, or it is
allowed to store some job(s) in a buffer.

2 The optimal algorithm

The new algorithm is based on the algorithm for online scheduling from [4].
Since the technical parts are similar, we have chosen to present the precise
description and proofs only in Appendix A. In this section we present the
key ideas with emphasis on the issues that need to be handled differently in
the more general semi-online setting.

Suppose that we are given a parameter r and we try to develop an r-
approximation algorithm. In the online case, we simply make sure that the
current job completes by time r times the current optimal makespan. In
the semi-online case, if the restriction is not closed under taking a prefix,
this would be too pessimistic. It may happen that the current partial input
is not in Ψ and we know that any extension in Ψ has much larger optimal
makespan; then we can run the current job on a slow machine. For this

6



purpose, we define the appropriate quantity to be used instead of the current
optimal makespan.

Definition 2.1 For an input restriction Ψ and a partial input J ∈ pref(Ψ),
we define the optimal makespan as the infimum over all possible end exten-
sions of J that satisfy Ψ:

C∗,Ψ
max[J ] = inf{C∗

max[J ′] | J ′ ∈ Ψ & J is a prefix of J ′}

Note that for any input sequence J ∈ Ψ we have C∗
max[J ] = C∗,Ψ

max[J ].

Algorithm RatioStretch

Our algorithm takes as a parameter a number r which is the desired ap-
proximation ratio. Later we show that for the right choice of this parameter,
our algorithm is optimal. Given r, we want to schedule each incoming job
so that it completes at time r · C∗,Ψ

max[J[j]]. If this is done for each job, the
algorithm is obviously r-approximation.

Even when we decide the completion time of a job, there are many ways
to schedule it given the flexibility of preemptions. We choose a particular
one based on the notion of a virtual machine from [5, 4]. We define the
ith virtual machine, denoted Vi, so that at each time τ it contains the ith
fastest machine among those real machines M1, M2, . . ., Mm that are idle
at time τ . Due to preemptions, a virtual machine can be thought and used
as a single machine with changing speed. When we schedule (a part of) a
job on a virtual machine during some interval, we actually schedule it on the
corresponding real machines that are uniquely defined at each time.

Upon arrival of a job j we compute a value Tj defined as r · C∗,Ψ
max[J[j]].

Then we find two adjacent virtual machines Vk and Vk+1, and time tj, such
that if we schedule j on Vk+1 in the time interval (0, tj] and on Vk from tj
on, then j finishes exactly at time Tj.

We need to show that we can always find such machines Vk and Vk+1.
Since we have added the machines of speed 0, it only remains to prove that
each job can fit on V1. This is true for the appropriate value of r.

Before we sketch the proof, we make a few remarks concerning efficiency
and uniformity of the algorithm. The only parts of the algorithm that de-
pend on the semi-online restriction are (i) the computation of the optimal
approximation ratio and (ii) the computation of C∗,Ψ

max[J ]. The rest of the
algorithm is independent of the restriction and very efficient. Similarly to
the online algorithms, for semi-online algorithms we generally do not require
the computation to be polynomial time. For a general restriction the optimal
algorithm cannot be efficient. (If the set of input sequences is, e.g., not re-
cursive, then it may be algorithmically undecidable how much time we have

7



even for scheduling the first job. Besides, there are more possible restrictions
than algorithms.) Nevertheless, the algorithm is efficient for many natural
restrictions. Computing C∗,Ψ

max[J ] is usually simple. If the restriction is closed
under taking prefixes, then it is equal to C∗

max[J ]. In other cases it is easy
to see which extension has the smallest makespan. Computing the optimal
approximation ratio is more difficult, but in Section 3 it is shown that in
many natural cases it reduces to linear programming. Alternatively, we can
use any upper bound on the approximation ratio and give to the algorithm
as a parameter.

Optimality of Algorithm RatioStretch

Our goal is to show that Algorithm RatioStretch works whenever the
parameter r is at least the optimal approximation ratio for the given Ψ
and s. We actually prove the converse: Whenever for some instance J
Algorithm RatioStretch with the parameter r fails, we prove that there is no
r-approximation algorithm.

This is based on a generalization of a lemma from [7] which provides the
optimal lower bounds for online algorithms, as shown in [4]. The key obser-
vation in its proof is this: On an input J , if the adversary stops the input
sequence at the ith job from the end, any r-competitive online algorithm
must complete by time r times the current optimal makespan, and after this
time, in the schedule of J , only i − 1 machines can be used. This bounds
the total work of all the jobs in terms of r and optimal makespans of the
prefixes, and thus gives a lower bound on r. To generalize to an arbitrary
restriction Ψ, we need to deal with two issues.

First, the adversary cannot stop the input if the current partial input
is not in Ψ. Instead, the sequence then must continue so that its optimal
makespan is the current C∗,Ψ

max (or its approximation). Consequently, the
bound obtained uses C∗,Ψ

max in place of previous C∗
max, which possibly decreases

the obtained bound.
Second, for a general semi-online restriction, using the last m prefixes of

J may not give the best possible lower bound. E.g., the restriction may force
that some job is tiny, and thus using the prefix ending at this job is useless;
in general, we also cannot remove such a job from the input sequence. To
get a stronger lower bound, we choose a subsequence of important jobs from
J and bound their total work in terms of values C∗,Ψ

max of the prefixes of the
original sequence J .

Lemma 2.2 Let A be any randomized R-approximation semi-online algo-
rithm for preemptive scheduling on m machines with an input restriction Ψ.
Then for any partial input J ∈ pref(Ψ), for any k, and for any subsequence

8



of jobs 1 ≤ j1 < j2 < · · · < jk ≤ n we have

k
∑

i=1

pji
≤ R ·

k
∑

i=1

sk+1−iC
∗,Ψ
max[J[ji]].

We define rΨ to be the largest lower bound on the approximation ratio
obtained by Lemma 2.2.

Definition 2.3 For any vector of speeds s and any partial input J ∈ pref(Ψ),

rΨ(s,J ) = sup
1≤j1<j2<···<jk≤n

∑k

i=1 pji
∑k

i=1 sk+1−i · C∗,Ψ
max[J[ji]]

.

For any vector of speeds s, let rΨ(s) = supJ∈pref(Ψ) rΨ(s,J ). Finally, let

rΨ = sup
s
rΨ(s).

With these definitions and Lemma 2.2, we can prove the following main
theorem. If Algorithm RatioStretch cannot schedule the incoming job, we
choose a subsequence including the jobs scheduled so far on the first virtual
machine and the incoming job. We use Lemma 2.2 with this subsequence to
argue that that no (randomized) algorithm can have the same approximation
ratio.

Theorem 2.4 For any restriction Ψ and vector of speeds s, Algorithm Ra-

tioStretch with a parameter r ≥ rΨ(s) is an r-approximation algorithm for
semi-online preemptive scheduling on m uniformly related machines. In par-
ticular, rΨ(s) (resp. rΨ) is the optimal approximation ratio for semi-online
algorithms for Ψ with speeds s (resp. with arbitrary speeds).

3 Reductions and linear programs

We have an abstract formula for rΨ(s) which gives the desired approximation
ratio for any speeds and Ψ as a supremum over a bound for all partial inputs
and all their subsequences. It is not obvious how to turn this into an efficient
algorithm. Now we develop a general methodology how to compute the ratio
using linear programs and apply it to a few cases.

We observed that for a general restriction it may be necessary to use an
arbitrary subsequence in Definition 2.3. However, for many restrictions it is
sufficient to use the whole sequence, similarly as for online scheduling. Usual
restrictions are essentially of two kinds. The first type are those restriction
that put conditions on individual jobs or their order. These restrictions are

9



closed under taking subsequences (not only prefixes), i.e., any subsequence of
an input sequence is also in Ψ. The second type are those restriction where
some global information is given in advance, like

∑

pj = P or C∗
max = T .

These are not closed under taking subsequences, but are closed under permut-
ing the input sequence. We define a large class of restrictions that includes
both types of restrictions discussed above as well as their combinations; in
particular it includes all the restrictions listed and studied here.

Definition 3.1 An input restriction Ψ is proper if for any J ∈ Ψ and
any subsequence I of J , we have I ∈ pref(Ψ) and furthermore C∗,Ψ

max[I] ≤
C∗,Ψ

max[J ].

Definition 3.2 Let Ψ be a proper semi-online restriction and J ∈ pref(Ψ)
a partial input. We define

r̄Ψ(s,J ) =

∑n

j=1 pj
∑n

j=1 sn+1−j · C∗,Ψ
max[J[j]]

.

From now on, we focus on proper restrictions. It may happen that
rΨ(s,J ) > r̄Ψ(s,J ). By Definitions 2.3 and 2.3 we may take a subsequence
of jobs I = (pji

)k
i=1 that achieves the value of r̄Ψ(s, I) ≥ rΨ(s,J )− ε for any

ε > 0. By the definition of a proper restriction, I ∈ pref(Ψ). Taking the
supremum over all partial inputs, we obtain the following simpler formula
for the optimal approximation ratio.

Observation 3.3 For any proper restriction Ψ,

rΨ(s) = sup
J∈pref(Ψ)

r̄Ψ(s,J )

Our strategy is to reduce the number of sequences J that need to be taken
into account. Typically, we show that the sequences must be sorted. Then
we know which jobs are the biggest ones and we can express the optimal
makespans for prefixes by linear constraints in job sizes. Maximizing the
expression for r̄Ψ(s), which gives the desired bound, is then reduced to solving
one or several linear programs. The following observation helps us to limit
the set of relevant sequences.

Observation 3.4 Let Ψ be arbitrary proper restriction, let s be arbitrary
speed vector, and let J ,J ′ ∈ pref(Ψ),. be two partial inputs with n jobs.
Suppose that for some b > 0:

n
∑

j=1

p′j = b ·
n
∑

j=1

pj, and

(∀i = 1, . . . , n) C∗,Ψ
max[J ′

[i]] ≤ b · C∗,Ψ
max[J[i]].

10



Then r̄(s,J ′) ≥ r̄(s,J ).

The observation follows immediately from the definition of r̄Ψ(s,J ).
Whenever (i) Ψ is closed under permutations of the sequence and (ii)

increasing the size of the last job of a partial input cannot decrease C∗,Ψ
max,

the observation implies that it is sufficient to consider sequences of non-
decreasing jobs: If J contains two jobs with pk < pk+1, swapping them can
only increase C∗,Ψ

max[J[k]] and any other C∗,Ψ
max[J[i]] remains unchanged; thus the

observation applies with b = 1.

3.1 Known sum of processing times,
∑

pj = P

Here we are given a value P̄ and Ψ contains all J with P = P̄ . It can be
easily verified that C∗,Ψ

max[J ] = max{C∗
max[J ], P̄ /S} for any J with P ≤ P̄ .

Since we can permute the jobs and increasing the size of the last job does
not decrease C∗,Ψ

max, Observation 3.4 implies that we can restrict ourselves to
non-decreasing sequences J . Furthermore, we may assume that P = P̄ :
We know that P ≤ P̄ , as otherwise J is not a partial input. If P < P̄ ,
we scale up J to J ′ by multiplying all the sizes by b = P ′/P . Observa-
tion 3.4 then applies, as each C∗,Ψ

max[J ′
[i]] = max{C∗

max[J ′
[i]], P̄ /S} increases

by at most the scaling factor b. Finally, we observe that we can restrict
ourselves to sequences J with less than m jobs. If n ≥ m, we use the fact
that C∗,Ψ

max[J[i]] ≥ P̄ /S for any i and obtain r̄Ψ(s,J ) = P/(
∑n

i=1 sn+1−i ·
C∗,Ψ

max[J[i]]) ≤ P/(
∑n

i=1 sn+1−i · P̄ /S) = 1, using n ≥ m in the last step.
Summarizing, we can assume that J is a non-decreasing sequence of

n < m jobs with P = P̄ . (Note that this does not mean that the adversary
uses fewer jobs than machines, as he may need to release some small jobs at
the end of the prefix sequence, to extend it to a sequence in Ψ.) To obtain
the worst case bound, we compute m− 1 linear programs, one for each value
of n, and take the maximum of their solutions. The linear program for a
given P , s, and n has variables qi for job sizes and Oi for optimal makespans
of the prefixes:

minimize r−1 =
s1On + s2On−1 + · · ·+ snO1

P̄
subject to

q1 + · · ·+ qn = P̄
P̄ ≤ (s1 + s2 + · · ·+ sm)Ok for k = 1, . . . , n

qj + qj+1 + · · · + qk ≤ (s1 + s2 + · · ·+ sk−j+1)Ok for 1 ≤ j ≤ k ≤ n
qj ≤ qj+1 for j = 1, · · · , n − 1
0 ≤ q1

11



If we fix the input sequence, i.e., the values of qi, then the smallest objec-
tive is achieved for Ok as small as possible which is exactly the value of the
optimal makespan, by the constraints involving Ok. Thus the linear program
computes correctly the (inverse of the) value r

∑

pj=P (s). We can also see that
the linear program scales and the optimum does not depend on the value P̄ .

We now examine the special cases of m = 2, 3. The linear program is
trivial for n = 1, and we conclude that for m = 2 the approximation ratio
is equal to 1, i.e., RatioStretch always produces an optimal schedule. We
can see this also intuitively: The algorithm starts scheduling the incoming
jobs in the interval [0, T1) where T1 ≥ P̄ /S. Consider the first time when
a job is scheduled at the first real machine M1. It is always possible to
schedule this job at the empty machine M1 so that it completes before the
current optimal makespan. Furthermore, after M1 is used the first time,
the algorithm guarantees that in the interval [0, T1) there is only one real
machine idle at any time. This in turn implies that the remaining jobs can
be completed by time T1, as the total size of all jobs is P̄ ≤ S · T1.

For m = 3, it remains to solve the linear program for n = 2, which we do
in Appendix B. The resulting ratio is:

r
∑

pj=P (s1, s2, s3) =







s1(s1 + s2)

s2
1 + s2

2

for s2
1 ≤ s2(s2 + s3)

1 + s2s3

s1(s1+s2+s3)+s2(s1+s2)
for s2

1 ≥ s2(s2 + s3)

The overall worst case ratio for three machines is 2+
√

2
3

≈ 1.138 for s1 =√
2, s2 = s3 = 1. This should be compared with the unrestricted online case

where the optimal ratio for two machines is 4/3 and for three machines 1.461.

3.1.1 Padding

We prove a theorem that shows that knowing the total size of jobs does
not improve the overall approximation ratio. This may sound surprising,
as for two machines, knowing the sum allows to generate an optimal sched-
ule, and also for three machines the improvement is significant. The same
result holds also in presence of an additional restriction with suitable proper-
ties. Among the restrictions that we consider, the requirements are satisfied
for non-increasing jobs, known maximal job size, or the online case. By
“Ψ,

∑

pj = P” we denote the intersection of the two restrictions, i.e., the set
of all sequences (pj)

n
j=1 ∈ Ψ such that

∑n

i=1 pj = P̄ for a given value of P̄
We say that Ψ allows scaling if for any J ∈ Ψ and b > 0, the modified

sequence J ′ = (bpj)
n
j=1 satisfies J ′ ∈ Ψ. We say that Ψ allows padding if

for any J ∈ Ψ, there exists ε0 > 0 such that any sequence J ′ created by

12



extending J by an arbitrary number of equal jobs of size ε < ε0 at the end
satisfies J ′ ∈ Ψ.

Theorem 3.5 Suppose that Ψ is proper, allows scaling, padding, and is
closed under taking prefixes. Let J ∈ Ψ and let s be arbitrary. Then for
any δ > 0 there exists J ′ and s′ such that

r̄Ψ,
∑

pj=P (s′,J ′) ≥ r̄Ψ(s,J )/(1 + δ).

Consequently, rΨ,
∑

pj=P = rΨ.

Proof: We fix s, J , and P̄ given to the algorithm with the restriction
∑

pj =
P . We proceed towards constructing the appropriate s′ and J ′.

Since Ψ allows scaling, the value C∗,Ψ
max[J ] is multiplied by b when J is

scaled by b. Consequently, the value of r̄Ψ(s,J ) does not change when J
is scaled. Let J ′ = (p′j)

n
j=1 be the sequence J scaled so that

∑n

j=1 p′j = P̄ .

Then r̄Ψ(s,J ′) = r̄Ψ(s,J ).
Choose a small σ > 0 so that σ < sm and σ < δS/n. Let O1 = p′1/s1,

i.e., the optimal makespan after the first job. Let s′ be the sequence of
speeds starting with s and continuing with n + P̄ /(O1σ) of values σ. The
first condition on σ guarantees that s′ is monotone and thus a valid sequence
of speeds. The second condition guarantees that the added machines are
sufficiently slow, so that for any sequence of at most n jobs, in particular for
the prefixes of J ′, the makespan decreases by at most the factor of (1 + δ).
Since Ψ is closed under taking prefixes, C∗,Ψ

max equals C∗
max for any sequence.

Thus we conclude that r̄Ψ(s′,J ′) ≥ r̄Ψ(s,J ′)/(1 + δ).
Finally, we have added sufficiently many new machines so that for any

sequence of at most n jobs, the empty new machines can accommodate total
work of P̄ without exceeding makespan O1. This implies that for all prefixes

of J ′, C
∗,Ψ,

∑

pj=P
max [J ′

[i]] = C∗,Ψ
max[J ′

[i]]; thus r̄Ψ,
∑

pj=P (s′,J ′) = r̄Ψ(s′,J ′).

Chaining the (in)equalities at the end of the last three paragraphs yields
the theorem. �

3.2 Known maximal processing time, pmax = p

Here we are given p̄, the maximal size of a job. As noted before, any algorithm
that works with the first job being the maximal one can be easily changed
to a general algorithm for this restriction. First it virtually schedules the
maximal job and then it compares the size of each job to p̄. If it is equal for
the first time, it schedules the job to the time slot(s) it reserved by virtual
scheduling at the beginning. Other jobs are scheduled in the same way in

13



both algorithms. Thus we can work with the equivalent restriction containing
all the sequences where the first job is maximal. Then C∗,Ψ

max[J ] = C∗
max[J ]

for any partial input. Furthermore, by Observation 3.4, the other jobs can be
swapped as in the previous case, and we can maximize only over sequences
with non-decreasing job sizes from the second job on.

In this case we are able to use a single linear program to cover input
sequences of an arbitrary length. The variables are: p for the length of the
first job, q1 for the total length of jobs p2, . . . , pn−m+1, and q2, . . . ,qm for the
jobs pn−m+2, . . . ,pn. For sequences with n < m, we set q1 = q2 = · · · qn−m =
0. The optimal approximation ratio is given by the following non-linear
program:

maximize r =
P

s1Om + s2Om−1 + · · ·+ smO1

subject to

p + q1 + · · ·+ qm = P
p + q1 + · · ·+ qk ≤ (s1 + · · · + sm)Ok for k = 1, . . . , m

p + qj+1 + · · ·+ qk ≤ (s1 + · · · + sk−j+1)Ok for 1 ≤ j ≤ k ≤ m
qj ≤ qj+1 for j = 2, · · · , m − 1
0 ≤ q1

qm ≤ p
0 ≤ q2

(2)

If we fix the values of qi, then the largest objective is achieved for Ok as small
as possible. By the constraints involving Ok, this is exactly the value of the
optimal makespan for a sequence where q1 represents a prefix of a sequence
of jobs smaller than q2. (As a technicality, if q2 = 0, Ok may only be an
infimum of the optimal makespans of the corresponding sequences.) Thus
the program computes correctly the value r

∑

pj=P (s).
The program scales, thus we can normalize any feasible solution so that

the denominator of the objective function is a constant. More precisely, we
get an equivalent linear program after adding the constraint

1 = s1Om + s2Om−1 + · · ·+ smO1.

Now, after examining the linear program, we can further restrict its feasible
domain. For any feasible solution, we can set both variables p and qm to
(p+ qm)/2. The solution remains feasible and the objective does not change.
Thus the linear program with an added constraint p = qm is also equivalent.
In other words, we can assume that the last job is equal to first (maximal)
job.

14



Small number of machines. For two machines we get the approximation
ratio

rpmax=p(s1, s2) = 1 +
s1s2

(s1 + s2)2 + s2
1

The maximum is 1.2 for s1 = s2. For three machines we get

rpmax=p(s1, s2, s3) =











1 +
s1(s2 + s3)

S2 + s2
1

for s1s2 ≥ s3S

1 +
s1s2 + 2s1s3

S2 + 2s2
1 + s1s2

for s1s2 ≤ s3S

This is maximized at s1 = 2, s2 = s3 =
√

3, which falls into the second case
and gives the ratio (8 + 12

√
3)/23 ≈ 1.252.

3.3 Non-increasing processing times, decr

We are also interested in sequences of non-increasing jobs, as this is one of the
most studied restrictions. Now Ψ contains sequences which have pj ≥ pj+1

for all j. We cannot swap jobs, however, we can take two adjacent jobs j and
j + 1 and replace both of them by jobs of the average size (pj + pj+1)/2. By
Observation 3.4, the approximation ratio does not decrease. Similarly, we
can replace longer segment of jobs with only two distinct sizes by the same
number of jobs of the average size. Repeating this process, we can conclude
that for the worst case for a given set of speeds it is sufficient to consider
sequences where all jobs have equal size. By scaling, the actual size of jobs
does not matter, we only need to determine the length of the sequence which
gives the highest ratio.

Let us denote r̂n(s) = r̄decr(s,J ) for a sequence J with n jobs with
pj = 1. For this sequence, C∗,Ψ

max[J ] = C∗
max[J ] = n/Sn. (Recall that si = 0

for i > m and Sk =
∑k

i=1 si.) Using this for the prefixes, we obtain from
Observation 3.3 that

r̂n(s) = n ·
(

n
∑

k=1

ksn−k+1

Sk

)−1

. (3)

It can be seen that for any speed vector, the sequence r̂n(s) decreases with n
for n ≥ 2m. Thus computing the approximation ratio for any given speeds
is efficient.

A natural approach to estimate the overall ratio is to find for each n the
worst speed vector and the corresponding ratio r̂n = sup

s
r̂n(s). Based on

numerical experiments, we conjecture that for each n, r̂n is attained for some
s with s1 = s2 = · · · = sm−1. I.e., almost all the speeds are equal. This

15



conjecture would imply that with non-increasing jobs, the optimal overall
approximation ratio is the same for the uniformly related machines and for
the identical machines, and this is equal to (1 +

√
3)/2 ≈ 1.366 by [13].

This is almost equivalent to an intriguing geometric question. Suppose
we have numbers xi, yi, i = 1, . . . , n such that xiyi = i for all i and both
sequences (xi)

n
i=1 and (yi)

n
i=1 are non-decreasing. Consider the union of rect-

angles [0, xi]× [0, yn+1−i] over all i; this is a staircase-like part of the positive
quadrant of the plane. What is the smallest possible area of this union of
rectangles? We conjecture that the minimum is attained for an instance with
y1 = y2 = . . . = yk and xk+1 = xk+2 = . . . = xn for some k. This would
imply the previous conjecture.

We are not able to determine exactly the values of r̂n, but we can prove
certain relations between these values. In particular, for any integers a, n,
and n′, ran ≥ rn and rn′ ≤ n+1

n
rn. For the first proof, we replace a sequence

of speeds from the bound for rn by a sequence where each speed is repeated a
times, and the bound follows by manipulating the formula for rn. The second
inequality is shown by replacing the speeds for rn′ by a shorter sequence where
each new speed is a sum of a segment of a speeds in the original sequence,
for a suitable a. Details are postponed to Appendix C. These relations show
that whenever we are able to evaluate some rn for a fixed n, the optimal
overall ratio is at most n+1

n
rn.

For n = 3, maximizing the function r̂n(s) can be done by hand and the
maximum is r3 = 1.2 for s1 = s2 = 1, s3 = 0. This yields an overall
upper bound of r̂n ≤ 4

3
· 6

5
= 1.6. By a computer-assisted proof we have

shown that r̂4 = (
√

7 + 1)/3 ≈ 1.215, yielding an overall upper bound of
r̂n ≤ 5

4
r̂4 = 5

12
(
√

7 + 1) ≈ 1.52.

3.4 Other variants

If Ψ is given as an intersection of two standard restrictions, the same methods
for reducing the number of candidates for the worst case instances apply.
Thus typically we get again a linear program or an expression as for the
individual restrictions, with additional constraints.

If some value from previous restrictions is given not exactly but it is
only known to belong to some interval, typically it means that the linear
program is weakened by relaxing some equation to a pair of inequalities, or
by relaxing some inequality. Then the optimal ratio is again computed using
a linear program.

16



Conclusions.

Similar methods can be used to analyze other semi-online restrictions, their
combinations and inexact versions, or give formulas for the approximation
ratios for more machines. This becomes a somewhat mechanical exercise; we
have not found any surprising phenomenon in the cases we have examined
so far.

It would be interesting, and it seems hard to us but not impossible, to
determine the exact overall approximation ratios for the basic restrictions.

References

[1] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging
with locality of reference. J. Comput. Systems Sci., 50:244–258, 1995.

[2] B. Chen, A. van Vliet, and G. J. Woeginger. An optimal algorithm for
preemptive on-line scheduling. Oper. Res. Lett., 18:127–131, 1995.

[3] D. Du. Optimal preemptive semi-online scheduling on two uniform pro-
cessors. Inform. Process. Lett., 92(5):219–223, 2004.

[4] T. Ebenlendr, W. Jawor, and J. Sgall. Preemptive online scheduling:
Optimal algorithms for all speeds. In Proc. 13th European Symp. on
Algorithms (ESA), volume 4168 of Lecture Notes in Comput. Sci., pages
327–339. Springer, 2006.

[5] T. Ebenlendr and J. Sgall. Optimal and online preemptive scheduling
on uniformly related machines. In Proc. 21st Symp. on Theoretical As-
pects of Computer Science (STACS), volume 2996 of Lecture Notes in
Comput. Sci., pages 199–210. Springer, 2004.

[6] L. Epstein and L. M. Favrholdt. Optimal preemptive semi-online
scheduling to minimize makespan on two related machines. Oper. Res.
Lett., 30:269–275, 2002.

[7] L. Epstein and J. Sgall. A lower bound for on-line scheduling on uni-
formly related machines. Oper. Res. Lett., 26(1):17–22, 2000.

[8] T. F. Gonzales and S. Sahni. Preemptive scheduling of uniform processor
systems. J. ACM, 25:92–101, 1978.

[9] Y. He and G. Zhang. Semi on-line scheduling on two identical machines.
Computing, 62(3):179–187, 1999.

17



[10] E. Horwath, E. C. Lam, and R. Sethi. A level algorithm for preemptive
scheduling. J. ACM, 24:32–43, 1977.

[11] Y. Jiang and Y. He. Optimal semi-online algorithms for preemptive
scheduling problems with inexact partial information. Theoret. Comput.
Sci., 44(7-8):571–590, 2007.

[12] H. Kellerer, V. Kotov, M. G. Speranza, and Z. Tuza. Semi on-line
algorithms for the partition problem. Oper. Res. Lett., 21:235–242, 1997.

[13] S. Seiden, J. Sgall, and G. J. Woeginger. Semi-online scheduling with
decreasing job sizes. Oper. Res. Lett., 27:215–221, 2000.

[14] Z. Tan and Y. He. Semi-on-line problems on two identical machines
with combined partial information. Oper. Res. Lett., 30:408–414, 2002.

[15] Z. Tan and Y. He. Semi-online scheduling problems on two identical ma-
chines with inexact partial information. Theoret. Comput. Sci., 377(1-
3):110–125, 2007.

Appendix

A The optimal algorithm: Description and

proofs

Description of the algorithm

To facilitate the proof, we maintain an assignment of scheduled jobs (and
consequently busy machines at each time) to the set of virtual machines,
i.e., for each virtual machine Vi we compute a set Si of jobs assigned to Vi.
Although the incoming job j is split between two different virtual machines,
at the end of each iteration each scheduled job belongs to exactly one set
Si, since right after j is scheduled the virtual machines executing this job
are merged (during the execution of j). The sets Si serve only as means of
bookkeeping for the purpose of the proof, and their computation is not an
integral part of the algorithm.

At each time τ , machine Mi′ belongs to Vi if it is the ith fastest idle
machine at time τ , or if it is running a job j ∈ Si at time τ . At each time
τ the real machines belonging to Vi form a set of adjacent real machines,
i.e., all machines Mi′ , Mi′+1, . . . , Mi′′ for some i′ ≤ i′′. This relies on the fact
that we always schedule a job on two adjacent virtual machines which are
then merged into a single virtual machine during the times when the job is

18



running, and on the fact that these time intervals (0, Tj] increase with j, as
adding new jobs cannot decrease C∗,Ψ

max[(pi)
j
i=1]. See Figure 1 for an example

of a step of the algorithm.

R · OPT1

R · OPT2

R · OPT1

R · OPT2

Figure 1: An illustration of a schedule of two jobs on three machines produced
by RatioStretch. Vertical axis denotes the time, horizontal axis corresponds
to the speed of the machines. The pictures on the left depict the schedule
on the real machines, with bold lines separating the virtual machines. The
pictures on the right show only the idle time on the virtual machines. The
top pictures show the situation after the first job, with the second job being
scheduled on the first two virtual machines. The bottom pictures show the
situation after the second job is scheduled and virtual machines updated.

Let vi(t) denote the speed of the virtual machine Vi at time t, which is
the speed of the unique idle real machine that belongs to Vi. Let Wi(t) =
∫ t

0
vi(τ)dτ be the total work which can be done on machine Vi in the time

interval (0, t]. By definition we have vi(t) ≥ vi+1(t) and thus also Wi(t) ≥
Wi+1(t) for all i and t. Also Wm+1(t) = vm+1(t) = 0 for all t.

Algorithm RatioStretch. Let r be a parameter such that r ≥ rΨ(s1, . . . , sm).
Initialize T0 := 0, Si := ∅, vi(τ) := si, for all i = 1, 2, . . . , m + 1 and τ ≥ 0.
This also sets vm+1(τ) ≡ 0.
For each arriving job j, compute the output schedule as follows:

19



(1) Let Tj := r · C∗,Ψ
max[(pi)

j
i=1].

(2) Find the smallest k such that Wk(Tj) ≥ pj ≥ Wk+1(Tj). If such k
does not exist, then output “failed” and stop. Otherwise find time
tj ∈ [0, Tj] such that Wk+1(tj) + Wk(Tj) − Wk(tj) = pj.

(3) Schedule job j on Vk+1 in time interval (0, tj] and on Vk in time interval
(tj, Tj].

(4) Set vk(τ) := vk+1(τ) for τ ∈ (tj, Tj], and vi(τ) := vi+1(τ) for i =
k + 1, . . . , m and τ ∈ (0, Tj]. Also set Sk := Sk ∪ Sk+1 ∪ {j}, and
Si := Si+1 for i = k + 1, . . . , m.

We leave out implementation details. We only note that the functions
wi and Wi are piecewise linear with at most 2n parts. Thus it is possible to
represent and process them efficiently. The computation of Tj is efficient as
well. To compute the parameter r, we need to design an algorithm for every
particular restriction Ψ. In our applications we can use r = rΨ(s1, . . . , sm)
as the optimal approximation can be computed for fixed speeds using linear
programs.

Proof of Lemma 2.2

Fix a sequence of random bits used by A. For i ≤ k + 1, let Ti denote the
last time when at least i machines are running the jobs from subsequence
j1, j2, . . . , jk; note that Tk+1 = 0. First observe that

k
∑

i=1

pji
≤

k
∑

i=1

siTi. (4)

During the time interval (Ti+1, Ti] at most i machines are busy with jobs from
(j`)

k
`=1, and their total speed is at most s1 +s2 + . . .+si. Thus the maximum

possible work done on J in this interval is (Ti − Ti+1)(s1 + s2 + . . . + si).
Summing over all i = 1, . . . , k, we obtain

∑m

i=1 siTi. In any valid schedule of
J all the jobs are completed, so (4) follows.

Since the algorithm is semi-online, the schedule for J[ji] is obtained from
the schedule for J by removing the jobs j > ji. At time Ti there are at least
i jobs from (j`)

k
`=1 running, thus at least one job from (j`)

k−i+1
`=1 is running.

So we have Ti ≤ CA

max[J[jk−i+1]] for any fixed random bits. Averaging over
random bits of the algorithm and using (4), we have

k
∑

i=1

pji
≤ E

[

k
∑

i=1

siC
A

max[J[jk−i+1]]

]

=
k
∑

i=1

siE
[

CA

max[J[jk−i+1]]
]

. (5)

Since A is R-approximation algorithm, we claim that for any partial input I ∈
pref(Ψ), we have E[CA

max[I]] ≤ R · C∗,Ψ
max[I]: For I ∈ Ψ this follows from the

20



definition of an approximation ratio of the semi-online algorithm. Otherwise
this follows since the semi-online algorithm has E[CA

max[I ′]] ≥ E[CA

max[I]] for
any end extension I ′ of I and C∗,Ψ

max[I] is defined the an infimum for all such
extensions in Ψ.

The bound in the lemma now follows by using the previous claim for each
term of the right-hand side of (5), i.e., for each I = J[jk−i+1]] and reindexing
the sum backwards. �

Proof of Theorem 2.4

If RatioStretch schedules a job, it is always completed at time Tj ≤ r ·
C∗,Ψ

max[(pi)
n
i=1]. Thus to prove the theorem, it is sufficient to guarantee that

the algorithm does not fail to find machines Vk and Vk+1 for the incom-
ing job j. This is equivalent to the statement that there is always enough
space on V1, i.e., that pj ≤ W1(Tj) in the iteration when j is to be sched-
uled. Since Wm+1 ≡ 0, this is sufficient to guarantee that required k exists.
Given the choice of k, it is always possible to find time tj as the expression
Wk+1(tj) + Wk(Tj) − Wk(tj) is continuous in tj, for tj = 0 it is equal to
Wk(Tj) ≥ pj, and for tj = Tj it is equal to Wk+1(Tj) ≤ pj.

Consider now all the jobs scheduled on the first virtual machine, i.e., the
set S1. Let j1 < j2 < · · · < jk−1 denote the jobs in S1, ordered as they appear
on input. Finally, let jk = j be the incoming job.

Consider any i = 1, . . . , k and any time τ ∈ (0, Tji
]. Using the fact that

the times Tj are non-decreasing in j and that the algorithm stretches each
job j over the whole interval (0, Tj], there are at least k − i jobs from S1

running at τ , namely jobs ji, ji+1, . . . , jk−1. Including the idle machine, there
are at least k + 1 − i real machines belonging to V1. Since V1 is the first
virtual machine and the real machines are adjacent, they must include the
fastest real machines M1, . . . , Mk+1−i. It follows that the total work that
can be processed on the real machines belonging to V1 during the interval
(0, Tjm

] is at least s1Tjm
+ s2Tjm−1

+ · · · + smTj1. The total processing time
of jobs in S1 is pj1 + pj2 + · · ·+ pjk−1

. Thus to prove that jk can be scheduled
on V1 we need to verify that

pjk
≤ s1Tjk

+ s2Tjk−1
+ · · ·+ skTj1 − (pj1 + pj2 + · · ·+ pjk−1

).

Using Tji
= r · C∗,Ψ

max[J[ji]], this is equivalent to the conclusion of Lemma 2.2

k
∑

i=1

pji
≤ r ·

k
∑

i=1

sk+1−i · C∗,Ψ
max[J[ji]].

21



By the choice of r in the algorithm we know that there exist an semi-online
r-approximation algorithm, thus Lemma 2.2 guarantees that the inequality
indeed holds. �

22



B Known sum of processing times, m = 3

Here we solve explicitly the linear program from Section 3.1 for m = 3 to
illustrate our techniques for obtaining closed formulas for a fixed number of
machines. Here the resulting formula is

r
∑

pj=P (s1, s2, s3) =







s1(s1 + s2)

s2
1 + s2

2

for s2
1 ≤ s2(s2 + s3)

1 + s2s3

s1(s1+s2+s3)+s2(s1+s2)
for s2

1 ≥ s2(s2 + s3)

We know that the optimal approximation ratio is given by the following
linear program for n = 2 jobs (as the case n = 1 is trivial). We write it
explicitly:

maximize r = q1 + q2

subject to

1 = s1O2 + s2O1 (znorm)
q1 + q2 ≤ (s1 + s2 + s3)O1 (z1)
q1 + q2 ≤ (s1 + s2 + s3)O2 (z2)

q1 ≤ s1O1 (z1,1)
q1 + q2 ≤ (s1 + s2)O2 (z1,2)

q2 ≤ s1O2 (z2,2)
q1 ≤ q2 (z≤)
0 ≤ q1 (z0)

(6)

We can see that condition (z2) is implied by condition (z1,2). So we omit
(z2) in the following computations.

We distinguish two cases. In each case we simply give explicit primal
and dual optimal solutions. The primal solution is essentially the hardest
sequence of jobs, together with the values of Oi corresponding to the values
of C∗,Ψ

max on the prefixes of the sequence. The dual solution gives a linear
combination of the constraints such that if we add up these multiples of the
constraint, we derive a tight upper bound on r.

Case I: s2
1 ≤ s2(s2 + s3).

Let D = s2
1 + s2

2. This will be the common denominator for all values in
the feasible solution of this case.

The hardest sequence has two jobs: p1 = s1s2/D and p2 = s2
1/D. These

jobs induce a feasible solution, where q1 = p1, q2 = p2, O1 = s2/D, O2 =
s1/D. We can see that (z≤) and (z0) are satisfied. Moreover (z1,1), (z2,2) and
(z1,2) are satisfied and an equality is attained. Thus it remains to prove (z1).
After substitution we get (s1 + s2)s1/D ≤ (s1 + s2 + s3)s2/D. If we multiply
both sides by D and subtract s1s2, we can see that this is equivalent to case

23



condition. Finally, we check that the objective value is s1s2/D + s2
1/D =

s1(s1 + s2)/(s2
1 + s2

2) which is equal to the claimed bound.
To demonstrate the dual solution, we add up inequalities in (6) with the

following coefficients (each coefficient corresponds to the inequality with the
same label): z1,1 = z2,2 = s2(s1+s2), z1,2 = s1(s1−s2), znorm = −s1(s1+s2).
We obtain the inequality

(q1 + q2)(s
2
1 + s2

2) − s1(s1 + s2) ≤ 0.

Equivalently, we get r = q1 + q2 ≤ s1(s1 + s2)/(s2
1 + s2

2). Thus for every
feasible primal solution, r satisfies this bound.

This completes the proof that s1(s1 + s2)/(s2
1 + s2

2) is the optimal approx-
imation ratio for three machines in Case I.

Case II: s2
1 ≥ s2(s2 + s3).

Let D = s1(s1 + s2 + s3) + s2(s1 + s2).
The worst sequence has two jobs: p1 = s2(s1 + s2 + s3)/D and p2 =

s1(s1 + s2 + s3)/D. These jobs induce a feasible solution, where q1 = p1,
q2 = p2, O1 = (s1 + s2)/D and O2 = (s1 + s2 + s3)/D. We can see that (z≤)
and (z0) are satisfied. Moreover (z1,2), (z2,2) and (z1) are satisfied and equality
holds. We need to prove (z1,1). After substitution we get s2(s1+s2+s3)/D ≤
s1(s1+s2)/D, which is equivalent to the case condition. Finally, the objective
value is q1 + q2 = s2(s1 + s2 + s3)/D + s1(s1 + s2 + s3)/D, which is equal to
the claimed bound.

Again we need to prove a matching upper bound. We add up inequalities
in (6) with the following coefficients: z1 = s2(s1 + s2), z1,2 = s1(s1 + s2 + s3),
znorm = −(s1+s2)(s1+s2+s3). We obtain (q1+q2)D−(s1+s2)(s1+s2+s3) ≤
0. This gives the upper bound r = q1 + q2 ≤ (s1 + s2)(s1 + s2 + s3)/D which
is equal to the claimed bound. This completes the proof.

C Sequences with non-increasing processing

times

Here we can prove two bounds on r̂n, the approximation ratio for jobs with
non-increasing sizes.

Lemma C.1 For any positive integers n and a and any speed vector s there
exists a speed vector s′ such that r̂n(s) ≤ r̂an(s′). Consequently r̂n ≤ r̂an.

Proof: We choose s′ so that it has a machines with each speed si. Formally,
we set s′ua−v = su for any positive integer u and v = 0, . . . , n − 1. Let

S ′
k =

∑k

i=1 s′k, and recall that Su =
∑u

i=1 su.

24



Let k = ua − v for some positive integer u and v ∈ {0, . . . , n − 1}. We
claim that S ′

k/k ≥ Su/u: We are comparing two averages of some sets of
speeds. In S ′

k we sum a copies of each speed in the sum Su, except that v
copies of the smallest speed are omitted; thus the average can only increase.
Observe also that s′an−k+1 = sn−u+1. Thus

ks′an−k+1

S ′
k

≤ usn−u+1

Su

. (7)

In the middle step of the following derivation, we use (7) for each term
in the sum (obtaining a equal terms for each u). The first and the last steps
follow from (3).

(r̂an(s′))−1 =
1

an

an
∑

k=1

ks′an−k+1

S ′
k

≤ 1

an

n
∑

u=1

a
usn−u+1

Su

=
1

n

n
∑

u=1

usn−u+1

Su

= (r̂n(s))−1.

This completes the proof of the lemma. �

Lemma C.2 For any positive integers n and n′, r̂n′ ≤ n+1
n

· r̂n.

Proof: Let N ≥ n and let a =
⌊

N+1
n+1

⌋

. We prove that r̂N ≤ N
an

· r̂n.

First we show that this implies the lemma. For N → ∞, N
an

converges to
n+1

n
. Thus lim supN→∞ r̂N ≤ n+1

n
· r̂n. If N is a multiple of n′, Lemma C.1

implies that r̂n′ ≤ r̂N . Since the multiples can be taken arbitrarily large,
together with the limit property above this implies r̂n′ ≤ lim supN→∞ r̂N ≤
n+1

n
· r̂n.
Now consider an arbitrary speed vector s′. We construct a speed vector

s such that r̂N(s′) ≤ N
an

r̂n(s). This implies that r̂N ≤ N
an

· r̂n.

Denote again S ′
k =

∑k

i=1 s′k. We choose the speeds s so that we divide s′

into groups of a speeds, and su is the sum of the speeds in the uth group.
Formally, si =

∑a−1
v=0 s′ua−v.

By (3) we have

(r̂N(s′))−1 =
1

N

an
∑

k=1

ks′an−k+1

S ′
k

≥ 1

N

n
∑

u=1

a−1
∑

v=0

(N − na + ua − v)s′na−ua+v+1

S ′
N−na+ua−v

,

where the inequality follows by dropping the first N − an terms in the sum
and grouping and reindexing the remaining ones, using the substitution k =
N − na + ua − 1 for some u ≥ 1 and v ∈ {0, . . . , a − 1}.

Now we proceed towards bounding the inner sums. We have S ′
N−na+ua−v/

(N−na+ua−v) ≤ S ′
ua/(ua), as by the choice of a we have N ≥ an+a−1 ≥

25



na+ v and thus on the left-hand side we take the average of the same speeds
as on the right-hand side, plus possibly some smaller ones. Thus we have

a−1
∑

v=0

(N − na + ua − v)s′na−ua+v+1

S ′
N−na+ua−v

≥ ua

S ′
ua

·
a−1
∑

v=0

s′na−ua+v+1 =
ua

Su

· sn−u+1 .

Using this bound for the inner sums we have

(r̂N(s′))−1 ≥ 1

N

n
∑

u=1

(

ua

Su

· sn−u+1

)

=
na

N
· 1

n
·

n
∑

u=1

usn−u+1

Su

=
na

N
(r̂n(s))−1 .

This completes the proof of the lemma. �

26


