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Abstract

We characterize classes of multi-graphs that by a transformation of Schrijver
give so called invariant ring in tensor algebra. This property enables us subse-
quently to show, that whenever we have an edge reflection positive and multi-
plicative graph parameter defined on this class such that its value on vertexless
loop is a natural number, it can be represented in edge coloring model.

1 Introduction

The area of graph parameters has received close attention in the recent years.
One of the central places of this area is counting of graph homomorphisms. A
very insightful survey on this subject is by Borgs, Chayes, Lovász, Sós, Szegedy
and Vesztergombi [BCL+06]. One direction springing out of the counting the
homomorphisms is the theory of a graph limit object and its application to the
graph parameters and property testing as well as the extremal graph theory.

Another direction (that further intersects with the first one though) that
we can follow is to study graph parameters coming out of the physical statis-
tical models, so called partition functions. (Formally, a graph parameter is a
function f : G → R where G is the class of all graphs and isomorphic graphs
are considered to be the same.) For instance it can be a partition function of
icing models. For more examples and explanation see [dlHJ93]. Although the
physical statistical models have a physical interpretation, they include many
purely combinatorial parameters.

The most general model and the one relevant to this paper is edge coloring
model. What are the combinatorial examples of graph1 parameters that are in
the edge coloring model? For instance the number of perfect matchings, the
number of proper edge colorings or the permanent of the adjacency matrix of

1from now on we will always consider graphs with multiple edges and every edge can have 2 endpoints, 1
endpoint (a loop) or even no endpoint (a vertexless loop).
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a given graph. For more examples of the parameters we refer reader to [Sze07].
And what do these parameters have in common? For each of them (and for
each parameter f in the edge coloring model) there is a finite set of colors, here
it will always be denoted as [n] := {1, . . . , n} and a function b : An → R where
An is a set of all multisets of colors such that the following holds for each graph
G:

f(G) = fb(G) :=
∑

φ:EG→[n]

∏
v∈V G

b(φ[δ(v)]) (1)

where δ(v) is a multisubset of edges of G incident with v (loops will appear
twice) and φ[δ(v)] is a corresponding multiset of colors given by edge coloring
φ. Note that for each graph G, H and their disjoint union then holds

fb(G)fb(H) = fb(G ]H).

Graph parameters satisfying the previous are called multiplicative.
Now the main question is, given a graph parameter f , can we decide whether

there is a natural number n and a function b : An → R such that fb = f?
This question can be solved by providing some suitable characterization of
parameters in the edge coloring model. Such one was first given by Szegedy
[Sze07] and later Schrijver [Sch08b] proved another one, that is very similar to
the Szegedy’s but in some sense it is more compact.

We will not go into details but we just mention that the sufficient and
necessary conditions for a graph parameter to be in the edge coloring model are
the multiplicativeness and positive semidefiniteness of certain matrices defined
by the values of the parameter (the so called edge reflection positivity).

The topic of our paper starts with the following question: Can we decide
whether certain parameter is in the edge coloring model even in situation when
the parameter is defined only on a certain class of graphs (let us call it a partial
parameter)? For which classes of graphs can we do that?

For the simplest instance, take as the partial parameter the number of per-
fect matchings defined on graphs with even number of vertices. To decide
whether this parameter is in the edge coloring model using the theorem of
Szegedy (or Schrijver) we would have to guess its value on graphs with odd
number of vertices. Should it be zero or the number of matchings with maximal
cardinality possible (i.e. number of matchings omitting exactly one vertex)?

In addition, this guessing could be done for us since if we manage to recognize
that a partial parameter is in the edge coloring model, i.e. if we find a number
n and a proper function b : An → R such that f = fb on the class of graphs,
then fb is an extension of f since by the formula 1 it is defined on all graphs
(the extension does not necessarily need to be unique).

If we compared the edge coloring model parameters to the continuous func-
tions and the class of all graphs to a Hausdorff topological space then our
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sought classes of graphs would be analogues to the closed sets and the ver-
sion of Szegedy’s theorem for the partial parameters would be analogue to the
classical Tietze-Urysohn extension theorem.

Our approach will be closest to the one described by Schrijver in [Sch06]
where the scope of Szegedy’s method is widened by applying Schrijver’s pre-
vious result [Sch08a, Theorem 1] providing characterization of certain tensor
subalgebras.

An important step in the technique of [Sch06] is a convenient transformation
of graphs into tensors. Such a transformation of all graphs with bounded degree
(i.e., all graphs that do not have a vertex of degree higher than some ∆) is
shown to generate a tensor algebra of form T (Rm)G (for some m and for some
subgroup G of orthogonal group O(Rm)), the so called invariant ring. The
notation T (Rm)G means the set of all tensors invariant under the action of the
group G where the action is uniquely determined by the action of the group
G on Rm. We will not further define this notion more precisely and we refer
the interested reader to [Sch08a, Theorem 1] where certain characterization of
invariant rings was found and that characterization we will state as definition
and use in our paper.

In a hope that such classes of graphs, that transformed into tensors turn
out to generate some invariant ring, might be good candidates for the “closed
sets” of the “space” of all graphs, we ask the first question of this paper: how
do they look like?

By lifting the conditions of Schrijver’s characterization [Sch08a, Theorem 1]
into the language of graphs, we get that sufficient conditions for any class of
graphs G are:

1. Whenever graphs G and H are contained in G, then their disjoint union
G ∪H is contained in G.

2. For any graph G ∈ G and vertices u 6= v ∈ V G (with deg(u) = deg(v))
and any bijection of edges incident with u to edges incident with v, a
graph obtained by deleting u and v and gluing the edges incident with u
to their image edges incident with v is also contained in G.

3. Whenever G ∪ L ∈ G, then G ∈ G where L is vertexless loop.

A class G satisfying conditions 1., 2. and 3. will be referred to as collapse
closed.

Sufficient (and necessary) are actually only the first two conditions, but
as we will see, deleting the vertexless loop does not change the image of the
transformation (it means only multiplication by a real number).

Additionally, when a parameter is defined on a graph G ∪ L then we can
expect that we also know the value on G, hence it does not make much sense
to consider classes that do not satisfy the third condition.
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Can we really obtain the extended version of the Szegedy’s theorem for the
collapse closed classes? The answer is almost yes. If a class G satisfy a certain
condition (that holds for all interesting cases of the collapse closed classes) then
a Szegedy-type statement holds for the partial parameters defined on G. To
give the statement of the resulting theorem we would again need the notion of
the edge reflection positivity (on a class G). We leave the precise statement to
the fifth section.

Our paper is organized as follows: In the following section we introduce
preliminary notions required for our work.

The third section explains the main notion of the paper – the collapse closed
class of graphs together with its algebraic meaning and states their description
in a “description theorem”. The fourth section is fully devoted to the proof of
the description theorem. Both the statement and the proof of the description
theorem involves only combinatorics, thus reader, who is not interested in the
following application, can skip all algebraic parts of the second and the third
section.

In the fifth section we investigate the relation of collapse closed classes to
the edge coloring model which is a place where the algebraic meaning of the
collapse closed classes of graphs comes into play. Here we prove an extended
version of Szegedy’s characterization of graph parameters in the edge coloring
model. Concluding section contains final remarks and some open questions.

2 Background and Notation

In the paper by a graph G we will denote a triple (V G,EG, δ) where V G is a
finite set of vertices, EG is a finite set of edges and δ is a function that assigns
to each vertex v ∈ V G a multiset of edges δ(v) (that we call incident with
v) such that each edge appears in δ[V G] twice or never. If an edge e does not
appear in δ[V G] we call it a vertexless loop, if it appears twice in some δ(v)
we call it a loop. If an edge appears twice in δ[V G] with distinct vertices v, w,
it is an edge between v and w. By a degree of a vertex v ∈ V G we denote the
cardinality |δ(v)| =: deg(v).

By an isomorphism f : G → H we mean a pair of bijections fV : V G →
V H and fE : EG → EH such that for each vertex v ∈ V G it holds that
δ(fV (v)) = fE[δ(v)]. We will only write v′ instead of f(v) and e′ instead of
f(e) for G and G′ where we construct G′ as a disjoint copy of G so there is an
implicit isomorphism f between them.

Let G be a graph and let u, v ∈ V G be two of its distinct vertices and let
π : δ(u)↔ δ(v) be a multiset bijection from δ(u) to δ(v). Such a bijection will
give us a relation

π∼ on EG defined by e
π∼ f whenever an end of e is mapped

by π to an end of f .
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Later on, we will slightly abuse the notation by writing π(e) = f for some
e ∈ δ(u) and f ∈ δ(v) when it is clear that e and f are not loops or with
additional specification which ends of edges do we mean. If we were to be
precise and formal, we would represent δ(u) and δ(v) as sets of ends of edges
and π a bijection between them (thus there is |δ(u)|! different choices for π) but
we believe this is more understandable way of notation.

By collapsing in G vertex u with v with respect to π we get a graph denoted
as Gu,v,π and obtained from G by deleting u and v and gluing the end of each
edge e incident with u to the end of an edge π(e) incident with v. Formally,
Gu,v,π := (V G\{u, v}, E ′, δ′) where E ′ is the set of classes of the unique minimal
equivalence ∼π containing

π∼ and where δ′ is obtained from δ by replacing each
edge by its class of equivalence: δ′(v) := {[e]∼π | e ∈ δ(v)}.

Alternatively, we can describe the same operation using ordering of the
incident edges. Let for each u ∈ V G be ∆u : [deg(u)] → δ(u) a map such
that ∆u[[deg(u)]] = δ(u). We will call such ∆ as a local ordering. Then by
collapsing in G vertices u and v of the same degree with respect to ordering ∆
we get a graph Gu,v,∆ defined as (V G\{u, v}, E ′, δ′) where E ′ is set of classes of
the smallest equivalence ∼ such that ∆u(j) ∼ ∆v(j) for each j ∈ [deg(u)] and
where δ′ is obtained from δ by replacing each edge by its class of equivalence:
δ′(v) := {[e]∼ | e ∈ δ(v)}.

An example of collapsing a vertex u with a vertex v in a graph G is depicted
on the Figure 1. Here and further on we will always depict the graph in a way
that the planar cyclic ordering around collapsed vertices is compatible with the
ordering ∆ and collapsed vertices are connected by a red stripe narrowed in the
middle.

In this example ∆u = (f1, l1, l1, e1, g) and ∆v = (f2, e2, l2, l2, g).

e1

f1 f2 e2

l1

l2g

G

⇒
u v

w

x y

w

x y

Gu,v,∆

Figure 1: Illustration of a collapse. Note that the edges e1, l1, e2 and l2 turn
into one single edge.

Since after the collapse, the local ordering ∆ can be naturally replaced
by ∆′ defined by ∆′u(i) := [∆u(i)]∼ for each u ∈ V G and j ∈ [deg(u)], for
any {u1, . . . , uk} ⊆ V G and {v1, . . . , vk} ⊆ V G we can define series of col-
lapses of u1 and v1, . . . and uk and vk with respect to the local ordering ∆
whenever deg(u1) = deg(v1), . . . , deg(uk) = deg(vk). Formally, it means to do
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each collapse in the series with respect to an local ordering ∆i, i ∈ [k] where
∆1 := ∆ and ∆i := ∆i−1′. The result is independent of reordering the vertices
since it is determined by the smallest equivalence relation ∼ on EG such that
∆ui(j) ∼ ∆vi(j) for each i ∈ [k] and j ∈ [deg(ui)].

Let S be a real inner product vector space. The tensor algebra T (S) is
equal to

T (S) :=
⊕
n∈N

S⊗n.

It is an R-algebra, with a product ⊗. A subalgebra A of T (S) is called graded
if A =

⊕
n∈N(A ∩ S⊗n). For distinct i, j ∈ N, the contraction operator Ci,j

is the linear function T (S) → T (S) such that Ci,j(z) = 0 where z ∈ S⊗n with
i > n or j > n, and

Ci,j(x1 ⊗ · · · ⊗ xn) = 〈xi, xj〉x1 ⊗ · · · x̂i, x̂j · · · ⊗ xn
if i, j ≤ n and x1, . . . , xn ∈ S.

A subalgebra A is called contraction closed if Ci,jA ⊆ A for all i, j.
For a given class G we define the class of graphs with an ordered set of

vertices (called ordered graphs) OG to contain all graphs from G with all
possible orderings of their vertex sets.

In this paper we will suppose that each ordered graph in OG has the vertex
set V G equal to {1, . . . , |V G|}.

Now, for any n (where the interpretation of n is the number of colors) we
define a transformation of ordered graphs into tensors over a real inner product
space Sn with orthonormal basis {eα|α ∈ An}. (Again, An is the set of all
multisets on elements 1, . . . , n, so Sn is an infinitely dimensional vector space.)

The transformation pn: OG → T (Sn) is defined in the following way:

pn(G) :=
∑

φ:EG→[n]

|V G|⊗
v=1

cφ[δ(v)]eφ[δ(v)]

where the coefficient cα is defined as

cα :=

√√√√ n∏
i=1

µi(α)!,

where µi(α) denotes the multiplicity of i in α.
Finally, for the main part we will need the following notions.
Let G be a graph with its vertex set labelled by the set of numbers [|V G|] :=

{1, 2, . . . , |V G|}. Then the adjacency function F(G) : [|V G|]≤2 → N of a graph
G is defined by number of edges connecting the given set of 0,1 or 2 vertices.
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LetG be a graph. Then we define score(G) as a sequence (score(G)k; k ∈ N) :=
(|{v ∈ V G; deg(v) = k}| | k ∈ N) that is nonzero at finitely many places. By
[score(G)] we denote the same sequence where we replace each entry by its
class of congruence modulo 2.

3 Collapse closed classes of graphs and their
algebraic meaning

By L, further on, we denote a graph consisting of a single vertexless loop, by
K0 a graph with no vertices and no edges. By the union of graphs G and
H denoted by G ∪ H we always mean disjoint union. Formally G ∪ H :=
(V G ] V H,EG ] EH, δG ] δH). In case of ordered graphs G,H we define
(instead of union) their tensor product G⊗H to be a disjoint union of G with
a copy of H where every vertex i ∈ V H is replaced by i+ |V G|.

Definition 1 We call a nonempty class of graphs G collapse closed if and
only if the following conditions hold:

1. If G,H ∈ G then G ∪H ∈ G.

2. If G is element of G, u, v are vertices of G and π is a bijection of δ(u) to
δ(v) then a graph obtained by collapsing u with v with respect to π is an
element of G as well.

3. If G ∪ L ∈ G then G ∈ G.

We can ask the following simple question about a collapse closed class of
graph G: Does it contain the vertexless loop L (and as a consequence of the
third condition also the empty graph K0?) The answer is positive whenever G
contains some G with at least one edge. Then it also contains G∪G′ where G′

is a copy of G. By collapsing every vertex v ∈ V G with v′ ∈ V G′ (with respect
to arbitrary bijections) we get a graph with no vertex and at least one edge
that has to form a vertexless loop.

What is the linear subspace 〈pn(OG)〉 ⊆ T (Sn) generated by the image of a
collapse closed class G?

First, note that for any ordered graph G holds pn(G⊗ L) = npn(G) so the
third condition does not influence the answer to this question.

As for the other two operations we have the following compatibility relations:

pn(G⊗H) = pn(G)⊗ pn(H)

for any two ordered graphs G,H and
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Ci,j(pn(G)) =
∑

π:δ(i)↔δ(j)

pn(Gi,j,π)

for any ordered graph G and two of its vertices i, j where π : δ(i) ↔ δ(j) is a
bijection of δ(i) and δ(j).

This is true since∑
π:δ(i)↔δ(j)

pn(Gi,j,π) =
∑

π:δ(i)↔δ(j)

∑
φ:EG→[n]

φ(e)=φ(f) when e∼πf

⊗
v∈V G\{i,j}

cφ[δ(v)]eφ[δ(v)]

=
∑

φ:EG→[n]

∑
π:δ(i)↔δ(j)

φ(e)=φ(f) when e∼πf

⊗
v∈V G\{i,j}

cφ[δ(v)]eφ[δ(v)]

=
∑

α∈A|δ(i)|n

∑
φ:EG→[n]

φ[δ(i)]=φ[δ(j)]=α

∑
π:δ(i)↔δ(j)

φ(e)=φ(f) when e∼πf

⊗
v∈V G\{i,j}

cφ[δ(v)]eφ[δ(v)]

=
∑

α∈A|δ(i)|n

∑
φ:EG→[n]

φ[δ(i)]=φ[δ(j)]=α

c2
α

⊗
v∈V G\{i,j}

cφ[δ(v)]eφ[δ(v)]

= Ci,jpn(G)

where A
|δ(i)|
n denotes the set of multisets of colors of cardinality |δ(i)|. The

coefficient c2
α denotes by definition the number of color preserving bijections

from δ(i) to δ(j) where coloring of both gives the multiset α.
Thus we get that 〈pn(OG)〉 is an algebra (it is closed under the tensor

product) which is, moreover, contraction closed. Since 〈pn(OG)〉 is generated
by tensors contained in one grade of the tensor algebra T (Sn) (namely the grade
of pn(G) is equal to the number of vertices of the ordered graph G), the algebra
〈pn(OG)〉 has to be graded. At last, 〈pn(OG)〉 is symmetric: this is due to
the fact that with each ordered graph G all graphs differing only in the vertex
ordering are also contained in OG.

This gives all required conditions for [Sch06, Theorem 2] which gives us a
possibility of extending an algebra homomorphism f̂ : 〈pn(OG)〉 → R to an
algebra homomorphism f̃ : T (Sn)→ R. This will be the final step of the proof
in Section 5 by which we obtain an edge coloring model for a partial graph
parameter.2

Since we are already algebraically motivated for studying the collapse closed
classes, let us specify which of them we will particularly study and try to pre-

2We note that when a tensor algebra A satisfies the same conditions as 〈pn(OG)〉 does, namely that it is
contraction closed and graded, and when we set S to be the minimal vector space such that A ⊂ T (S) then by
[Sch08a, Corollary 1e] there is a subgroup H of the orthogonal group O(S) such that A is exactly the set of all
tensors of T (S) that are invariant under the action of the group H.
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cisely describe and after that we will mention some examples that we can figure
out without any deep understanding.

Definition 2 We additionally define a collapse closed class G as nondegen-
erate if it satisfies the following:

Whenever a graph G with a vertex of degree k ∈ N is contained in G then
there is a graph H in G having a vertex of degree k without loops and the vertex
belongs to a component of at least 3 vertices.

Since now on, we will be mainly interested in nondegenerate collapse closed
classes because of the following reasons:

1. For this classes of graphs we can easily provide the extension of the
Szegedy’s [Sze07, Teorem 2.2].

2. The most important classes are nondegenerate. As we are going to explain
in the end of this section, the degenerate classes do not provide any im-
portant enrichment, yet their description (and the proof of the description
as well) would become inadequately complicated.

Examples
By first three examples we would like to support our claim that it is reason-

able to omit the case of degenerate collapse closed classes from our attention:

1. The class containing graphs consisting only of isolated vertices (with some
loops possibly) and vertexless loops.

2. The class containing only disjoint unions of copies of vertexless loop L and
copies of two vertex components where only degrees k and k + 2 appear.

For example the three following graphs are contained in the class:

k k k

Ik I2
k I2,2

k

The examples of nondegenerate collapse closed classes follow:

1. The class of all graphs with vertices of degrees 2,4 or 6.
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2. The class of graphs such that the number of their vertices of degree 2,4
or 6 is even.

3. The class of such graphs that any of their components of connectivity has
either only vertices with degree 2 and 4 or only with degree 6.

As we are going to prove in our main description theorem, these three ex-
amples actually demonstrate the only three types of restrictions that any non-
degenerate collapse closed class can represent. First let us formalize these types
of restrictions.

Definition 3 Let G be a collapse closed class of graphs.

1. By DG⊂ N we denote the set of degrees of vertices of graphs in G.

2. We define relation ∼G on DG by a ∼G b if and only if there exists G ∈ G
with two vertices of degrees a and b in the same component. Because G
is closed on collapses, it is easily seen that ∼G is an equivalence relation.

3. By VG we denote the set {[score(G)] | G ∈ G} which is a subset of the
Z2-vector space of zero-one sequences

⊕
d∈D Z2. The set VG is actually

a linear subspace since [score(G)] + [score(H)] = [score(G ∪H)] and the
zero vector is in VG since K0 ∈ G.

Note that collapsing any two vertices in a graph G does not change the sequence
[score(G)] since two vertices of the same degree disappear. Also note that when
G is nondegenerate and 1 ∈ DG then there has to be k ∈ DG such that 1 ∼G k
because there is no 1-regular component of connectivity of at least 3 vertices.

Definition 4 Let D be a subset of N, let ∼ be an equivalence relation on D
such that there is k ∈ D such that 1 ∼ k and let V ≤ ZD

2 be a vector space of Z2
sequences nonzero on finitely many places. Then we call a triple P := (D,∼, V )
a graph class restriction.

By G(P ) we will denote the class of all graphs G such that all vertices of G
have degree in D, [score(G)] ∈ V and for each two connected vertices u, v ∈ V G
holds that deg(u) ∼ deg(v).

Observation 1 For any graph class restriction P = (D,∼, V ) the class G(P )
is collapse closed that is, moreover, nondegenerate.

Proof. It is easily seen that deleting a vertexless loop from any graph changes
neither its score nor the connectivity of any of its two vertices. It is also easily
seen that none of the three operations of collapse closed classes can create a
vertex of a new degree.
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Since [score(G)] + [score(H)] ∈ V whenever G,H ∈ G(P ) and since any two
vertices connected by a path in G ∪H are already connected by a path either
in G or in H, also G ∪H ∈ G(P ) whenever G,H ∈ G(P ).

For any G, u, v ∈ V G and any bijection π : δ(u) → δ(v) it holds that
[score(Gu,v,π)] = [score(G)] and that any two vertices w,w′ ∈ V Gu,v,π connected
by a path in Gu,v,π are either connected by the same path in G or each of them
is connected by a path with either u or v, the vertices of the same degree. Hence
deg(w) ∼ deg(w′) and thus Gu,v,π ∈ G(P ) if G ∈ G(P ).

By constructing simple examples of graphs, we get that G is nondegenerate.
�

By the Observation 1, picking an arbitrary graph class restriction is a way of
constructing a nondegenerate collapse closed class of graphs. Our main result,
the description of nondegenerate collapse closed classes claims that in this way
we get all of them.

Theorem 1 (The description theorem) For any nondegenerate collapse closed
class of graphs G the following holds:

G = G(P )

where P := (DG,∼G, VG).

To give an rough idea about the description of all collapse closed classes we
provide the following unproven and informal statement:

Each collapse closed class of graphs can be obtained from some nondegener-
ate class G by attaching to each vertex of degree d some fixed number of loops
f(d) for each d ∈ DG and then adding components of cardinality at most 2 with
degrees in D′ ⊇ DG to graphs in G.

We do not consider this to be a true enrichment whereas the description
(mainly the description of 2 vertex components) would become unnecessarily
complicated and, however, the proof could be obtained by extending of our
proof, it would be inadequately technical.

4 Proof of the description theorem

Proof of the Theorem 1. The inclusion G ⊆ G(P ) is trivial. For the opposite
inclusion G(P ) ⊆ G we want to prove that when we take any graph G ∈ G(P )
then also G ∈ G. We will do that in three steps:

1. Constructing the vertex set.

Claim 1 The class G contains a graph G0 with score equal to score(G).
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We will make use of the following simple lemma that will easily follow
from the second step (that is independent on the first step).

Lemma 1 For each degree k ∈ DG the graph Ik consisting of two vertices
connected by k edges is contained in G.

From the definition of VG we know that there is a graph H ∈ G such that
[score(H)] = [score(G)]. To get a graph such that it has the number of
vertices of degree k equal to score(G)k we just need to make a union of H
with the appropriate number of copies of Ik or apply to H the appropriate
number of collapses of vertices of degree k. After we do this for each degree
k appearing in the graph G, we get the desired graph. We will further
denote it as G0.

2. Swapping gadget construction. In this technical step we prepare for
every two degrees k ∼G l ∈ DG an auxiliary four-vertex graph Sk,l. These
auxiliary graphs will be used for modification of G0 into G.

We first have to do some preparations, namely getting rid of the loops
from any pair of vertices of some degrees k and l and at the same time
making their distance greater than one. The following technical but not
difficult lemma will do that for us.

Lemma 2 For each k ∼G l there is a graph Fk,l contained in G such that
it has two connected vertices of degrees k and l without loops with distance
greater than one.

So let us take for any k ∼G l the graph F := Fk,l ∈ G with connected
vertices u and v of degrees k and l without loops such that their distance is
greater than 1. Then there is a sequence of vertices v0 = u, v1, . . . , vd = v
and such that each subsequent pair vi, vi+1 is connected by an edge ei. We
make a union F ∪F ′ where F ′ is a copy of F . The following procedure is
captured in the Figure 2.

We fix an arbitrary local ordering ∆ on F ∪ F ′ that is the same on F ′

as on F except that ∆ on F ′ swaps the edges e′i−1 and e′i at each v′i (as
the Figure 2 suggest: we want the edges of the same color to get glued
together). Formally, ∆ is such an local ordering that ∆vi(1) = ei−1 and
∆vi(2) = ei, ∆v′i

(1) = e′i and ∆v′i
(2) = e′i−1 for i = 1, . . . , d−1 and, finally,

∆v′(j) = ∆v(j)
′ in all other cases.

On the graph F ∪ F ′ we make a series of collapses of form vi with v′i, for
i = 1, . . . , d−1, d+1, . . . , |V F | with respect to the local ordering ∆ where
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e0

e1

ed−1

ed−2

v0

v1v2

vd

vd−1vd−2

e′0

e′1

e′d−1

e′d−2

v′0

v′1 v′2

v′d

v′d−1 v′d−2

Fk,l ∪ F ′k,l

=⇒

k − 1

l − 1

s2s1

t2t1

Sk,l

Figure 2: The swapping gadget construction for the case when distance of u
and v is even.

vd+1, . . . , v|V F | is an arbitrary numbering of the remaining vertices of F .
In the end we obtain a graph on vertices v0, vd, v

′
0 and v′d determined by

such an equivalence ∼ on EF ∪ EF ′ that e0 ∼ e′1 ∼ e2 ∼ e′3 ∼ . . . and
e′0 ∼ e1 ∼ e′2 ∼ e3 ∼ . . . and e ∼ e′ for all non-indexed edges e. Thus
we get that the edge [e0]∼ connects v0 with vd or v′d and the edge [e′0]∼
connects v′0 with v′d or vd depending on whether d is odd or even. For
all k − 1 of non-indexed edges e incident with v0 the resulting edge [e]∼
connects v0 with v′0 and for all l − 1 of not indexed edges e incident with
vd the resulting edge [e]∼ connects vd with v′d. All remaining edges e form
a loop together with e′.

When we delete the vertexless loops from the result and denote the re-
maining four vertices as s1, s2, t1, t2 in such a way that t2 is connected by
a single edge to s1 and t1 is connected by a single edge to s2, we get the
desired graph Sk,l as depicted on the right part of the Figure 2.

Thus we get:

Claim 2 For each k, l ∈ DG such that k ∼G l it holds that G contains the
graph Sk,l.

Proof of Lemma 1. Since Sk,k ∈ G then also (Sk,k)s1,s2,π ∈ G for any π.
But this is the graph Ik possibly with some extra vertexless loops. �

3. Edge swapping.
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Claim 3 For any labelling of V G by {1, 2, . . . , |V G|} and for each 0 ≤
a ≤ 2|EG| there is a graph Ga ∈ G with the vertex set labelled by
{1, 2, . . . , |V G|} such that |F(Ga)−F(G)|1 is at most 2|EG| − a.

Note that this directly implies our goal.

As the statement of the Claim 3 suggest, we prove it by induction, where
the first step for a = 0 follows from the Claim 1 (Constructing the vertex
set) where we use any labelling of V G0 such that equally labelled vertices
in V G and in V G0 have the same degree. For the rest, let us suppose that
G contains Ga, where a < |EG| such that the hypothesis holds. Then
we know that there are vertices u1, u2 and v2 such that u1 and u2 are
connected in Ga by more edges than in G (let us denote the superfluous
edge as e) and u1 and v2 are connected in Ga by fewer edges than in G.
Additionally, it follows that there is a vertex v1 such that v2 and v1 are
in Ga connected by more edges than in G (let us denote the superfluous
edge as f). The situation is captured in the left part of the Figure 3.

l − 1

k − 1

v2

u2 u1

v1

e

f

k − 1

l − 1

s2s1

t2t1
=⇒

Ga ∪ Sk,l Ga+2

l − 1

k − 1

v2

u2 t2

s2

Figure 3: Swapping of a superfluous edge for the case when all vertices u1, u2, v1
and v2 are distinct.

Note that the vertices u1, u2, v1 and v2 do not necessarily need to be all
distinct. (Also it can happen that e = f when u1 = v2 and u2 = v1.)
Our situation only guarantees that u2 6= v2 and u1 6= v1 since the number
of edges connecting two vertices cannot be at the same time bigger and
smaller than another number. Although the Figure 3 only captures the
case, when all the vertices are distinct, the following procedure works for
all cases.

Let us denote the degree of u1 as k and the degree of v1 as l. Since both
Ga and G are in G, we have that k ∼G l and that is why by Claim 2 the
graph Sk,l is contained in G. We make a union Ga with one copy of Sk,l
and perform a collapse of u1 with s1 with respect to any bijection that
maps e to the only single edge of s1 and, similarly, we collapse v1 with t1
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with respect to any bijection that maps f to the only single edge of t1. In
the case that e or f is a loop, only one end is mapped as described, the
other end is mapped (as all the other edges) arbitrarily. In the resulting
graph (let us denote it as Ga+2) s2 has the same neighbors as u1 had
except that one edge is now going to v2 instead of u2. And, similarly, t2
has the same neighbors as v1 had except that one edge is now going to u2
instead of v2.

When we label the vertex s2 by the label of u1 and t2 by the label of v1,
we have that G contains Ga+2 such that the hypothesis holds since the
superfluous edge e has been deleted and the missing edge between u1 and
v2 has been added. Beside that we have deleted other superfluous edge
f but we have added an edge between u1 and v2 that might be again
superfluous. �

Proof of the Lemma 2. We proceed in two steps. In the first one, we
prove the lemma in the case when k = l. Then, because G is nondegener-
ate, there is a graph H ∈ G with a vertex u of degree k and without loops,
and with vertices v and w, all of them being in one component. We fix
an arbitrary local ordering ∆ on H. We make a union H ∪H ′∪H ′′ where
H ′ and H ′′ are copies of H with a local ordering ∆ ∪ ∆′ ∪ ∆′′ where ∆′

and ∆′′ are copies of ∆. It remains to set Fk,k as a result of collapsing v
with v′ and w′ with w′′ in H ∪H ′ ∪H ′′ with respect to the local ordering
∆ ∪ ∆′ ∪ ∆′′. Indeed, in Fk,k the vertices u and u′′ are without loops,
have degree k and all neighbors of u are in V H ∪ {u′} since any edge e
connecting u with v gets glued with the edge e′ connecting v′ with u′.

In the second step we prove the lemma in the case that k 6= l. We know
that there is a graph H in G with vertices x and y of degrees k and l
connected by a path. We make a union Fk,k ∪H and collapse u′′ with x
with respect to a bijection mapping the first edge on the path from u′′ to
u to the first edge on the path between x and y. If we do the same with
Fl,l and the vertex y, we get the desired graph Fk,l. �

5 Extending the Szegedy’s characterization to
collapse closed classes

As we promised earlier, now we will introduce the characterization of partial
graph parameters in the edge coloring model. For this let G again be a collapse
closed class of graphs. Let f : G → R be a real parameter on G. We say that f
is multiplicative on G whenever for any G,H ∈ G we have that f(G ∪H) =
f(G)f(H).
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u

vw

u′

w′v′

u′′

v′′w′′
H ∪H ′ ∪H ′′

⇓Fk,k

u u′ u′′

Figure 4: Construction of the graph Fk,k.

For further statements we will need the following. For a class of graphs G
we denote QG a collection of all formal linear combinations of graphs

∑
G γGG

with at most finitely many γG nonzero. These are called quantum graphs.
By taking the linear extension of the disjoint union G ∪ H as multiplication,
QG becomes a commutative algebra. The partial parameter f can be extended
linearly to QG.

By (G)u1,v1,π1,...,uk,vk,πk we will denote (. . . (G)u1,v1,π1
. . .)un,vn,πn. For G,H ∈ G

and k ∈ N, define the quantum graph λk(G,H) by

λk(G,H) :=
∑

u1,v1,π1,...,uk,vk,πk

(G ∪H)u1,v1,π1,...,uk,vk,πk, (2)

where the sum is taken over all distinct u1, . . . , uk ∈ V G, distinct v1, . . . , vk ∈
V H and all bijections πi : δ(ui) → δ(vi), for i = 1, . . . , k. We can linearly
extend λk to the whole QG.

In this paper we state only a symmetric version of edge reflection positivity
for which it was shown by Schrijver [Sch08b] that it can replace edge reflection
positivity of Szegedy.

For k ∈ N let us define G × G matrix Mf,k by expressing the entry indexed
by G,H ∈ G:

(Mf,k)(G,H) := f(λk(G,H))

We define a partial parameter f to be edge reflection positive on class G
if and only if the matrix Mf,k is positive semidefinite for each k. Positive
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semidefiniteness of Mf,k is equivalent to the fact that f(λk(γ, γ)) ≥ 0 for each
γ ∈ QG.

In [Sch08b] it is proven:

Proposition 1 Be G the class of all graphs and let f : G → R. Then f = fb
for some n ∈ N and for some b : An → R if and only if f is multiplicative and
edge reflection positive on G.

What we want to show is that actually the class of all graphs can be replaced
by any nondegenerate collapse closed class of graphs. First note that we need
to have unions and collapses included in the class if only for the condition of
multiplicativity and edge reflection positivity. So we need to have G collapse
closed unless we would completely change the statement.

Why cannot G be degenerate collapse closed classes? In our proof of the
Theorem 2 (namely in the proof of Claim 4) we need that for each d ∈ DG the
graph Id is an element of G. Though this is a weaker condition than nonde-
generateness we leave the statement in the following form since we consider the
case of nondegenerate classes to be far the most important:

Theorem 2 Let G be a collapse closed class of graphs that is nondegenerate
and let f : G → R. Then f = fb for some n ∈ N and for some b : An → R if f
is multiplicative, edge reflection positive on G and f(L) ∈ N.

To validate that Theorem 2 is indeed an extension of Proposition 1 we need
to refer to [Sch08b] where the condition f(L) ∈ N, in the case of G equals to the
class of all graphs, is derived from the multiplicativity and the edge reflection
positivity.

In our case we were not able to derive the same condition again. For more
explanation see the last section.

And also note that the inverse implication follows from the Proposition 1
and from the fact that fb(L) = n for any b : An → R.
Proof. In the first part of the proof we will show an existence of an algebra
homomorphism f̃ : 〈pn(OG)〉 → R such that f(G) = f̃(pn(G)). We will almost
exactly follow the steps of the Schrijver’s proof in [Sch08b].

Claim 4 Let γ be a quantum graph consisting of k-vertex graphs. If f(λk(γ, γ)) =
0 then f(γ) = 0.

Proof of the Claim 4. We prove the claim by induction on k. So assume
that the claim holds for all quantum graphs made of graphs with less than k
vertices.

We can assume that all graphs occurring in γ with nonzero coefficient have
the same degree sequence d1, . . . , dk, since if we would write γ = γ1+γ2, where all

17



graphs in γ1 have degree sequence different from those in γ2, then λk(γ1, γ2) = 0,
whence f(λk(γi, γi)) = 0 for i = 1, 2.

Now f(λk(γ, γ)) = 0 implies, by the positive semidefiniteness of Mf,k:

f(λk(γ,H)) = 0 for each graph H ∈ G. (3)

Let P be the graph P := Id1
∪ . . . ∪ Idk. Since d1, . . . , dk ∈ DG and

[score(P )] = 0 the graph P is in G.
If d1, . . . , dk are all distinct, we are done, since then γ is a multiple of

λk(γ, P ), implying with 3 that f(γ) = 0 — but generally there can be vertices
of equal degrees.

The sum in 2 for λk can be decomposed according to the set I of those
components of P with both vertices chosen among v1, . . . , vk and to the set J
of those components of P with no vertices chosen among v1, . . . , vk (necessarily
|I| = |J |). Let K denote the set of components of P , and for J ⊆ K, let PJ be
the union of the components in J . Then

λk(γ, P ) =
∑

I,J⊆K,I∩J=∅,|I|=|J |

αI,JγI ∪ PJ , (4)

where αI,J ∈ N with α∅,∅ 6= 0, and where

γI := λ2|I|(γ, PI).

Now for each I ⊆ K, we have λk−2|I|(γI , γI) = λk(γ, γI ∪ PI). Hence

f(λk−2|I|(γI , γI)) = f(λk(γ, γI ∪ PI)) = 0,

by 3. So by induction, if I 6= ∅ then f(γI) = 0. Therefore, by 4, since
f(λk(γ, P )) = 0 and α∅,∅ 6= 0, f(γ) = f(γ∅ ∪ P∅) = 0. �

Since f(L) ∈ N we can set n := f(L).
Then Claim 4 implies:

there is a linear function f̂ : 〈pn(OG)〉 → R such that f = f̂ ◦ pn. (5)

Otherwise, there is a quantum graph γ with pn(γ) = 0 and f(γ) 6= 0. We can
assume that γ is homogenous, that is, all graphs in γ have the same number
of vertices, k say, since pn(γk + γl) = 0 where γk and γl consists of graphs on k
and l vertices, respectively, implies pn(γk) = 0 and pn(γl) = 0.

Since λk(γ, γ) is a polynomial in L, and since f(L) = n = pn(L),

f(λk(γ, γ)) = pn(λk(γ, γ))

= pn

( ∑
u1,v1,π1,...,uk,vk,πk

(γ ⊗ γ)u1,v1,π1,...,uk,vk,πk

)
=

∑
u1,v1,...,uk,vk

Cu1,v1 ◦ . . . ◦ Cuk,vk(pn(γ ⊗ γ))

= 0
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where we use the compatibility of contraction and collapse. So by Claim 4,
f(γ) = 0. This proves 5.

In fact, f̂ is an algebra homomorphism, since for all G,H ∈ OG:

f̂(pn(G)pn(H)) = f̂(pn(G⊗H)) = f(GH) = f(G)f(H) = f̂(pn(G))f̂(pn(H)).

Because f does not depend on ordering of vertices, also f̂ is symmetric. We
define (., .) : 〈pn(OG)〉 × 〈pn(OG)〉 → 〈pn(OG)〉 by

(pn(G), pn(H)) :=
k∑
i=1

l∑
j=1

Ci,k+j(pn(G)⊗ pn(H)),

for k vertex ordered graphG and l vertex ordered graphH. But then (pn(G), pn(H)) =
pn(λ1(G,H)) since by compatibility of contraction and collapse

k∑
i=1

l∑
j=1

Ci,k+j(pn(G)⊗ pn(H)) =
k∑
i=1

l∑
j=1

∑
π:δ(i)↔δ(j)

pn((G⊗H)i,k+j,π).

Then by positive semidefiniteness of Mf,1 for any quantum graph γ holds

f̂((pn(γ), pn(γ))) = f(λ1(γ, γ)) ≥ 0.

So we can use [Sch06, Theorem 1] and we get that there is an algebra homo-
morphism f̃ : T (Sn)→ R such that f(G) = f̃(pn(G)). Now we only need to set
b(α) := cαf̃(eα) since then fb(G) = f̃(pn(G)) = f(G).

6 Further questions and problems

The similar question of description of the collapse closed classes could be raised
for embedded graphs where a graph embedding is determined by a cyclic order-
ing of ends of edges around each vertex. Here we would require that the bijection
in the collapse operation would respect the cyclic ordering of the edges around
respective vertices. When the ordering is given, such a bijection is determined
only by specifying a “first” end of edge at each of two collapsed vertices. In
this way we get an embedded graph that can be realized by adding a handle
connecting two appropriate areas incident with the two collapsed vertices and
using the handle to connect the corresponding edges.

Can we then characterize all classes of embedded graphs closed for disjoint
union, deleting loops and collapse? Again after a convenient transformation
each such a class would give us a contraction closed, graded and symmetric
tensor subalgebra.
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Besides, it would be nice to state the Theorem 2 without the additional con-
dition f(L) ∈ N. This condition is fundamental in the proof of the Proposition
1 in [Sch08b] but there it is derived from the edge reflection positivity and the
fact that the parameter is defined on every 2-regular graph on k vertices for
some big enough k of a convenient parity. Whereas in the proof of the Theorem
2 we can only suppose that we have arbitrary d-regular graphs for some d ∈ N
on even number of vertices. It is unclear to us whether the condition that f ∈ N
follows from this or there is an example of a multiplicative and edge reflection
positive parameter that violates this condition.

At last we conjecture the validity of the Theorem 2 even for all collapse
closed classes of graphs. However, we expect technical difficulties in the proof
and we did not consider it to be such an important improvement worth of the
effort.
Acknowledgement I am indebted to Lex Schrijver who introduced me to the
topic of the edge coloring model and who was my advisor during my master’s
studies in Amsterdam.
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