
Path Planning for Multiple Robots
in Bi-connected Environments

Pavel Surynek

Charles University

Faculty of Mathematics and Physics
Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic
pavel.surynek@mff.cuni.cz

Abstract
This paper addresses a problem of path planning for multiple robots. A class of the problem
with bi-connected environments is defined and a new polynomial-time solving algorithm for
this class is proposed. It is shown in the paper that the new algorithm significantly outper-
forms the existing state-of-the-art domain-independent approaches and it is able to solve prob-
lems of real-life size.

Introduction and Motivation
The problem of path planning for multiple robots ranks among the most chal-
lenging problems of artificial intelligence [5], [7], [10]. We need to plan a se-
quence of moves for each robot of a group of robots that can move in a certain
environment and that need to reach certain positions. The major complication is
that robots must not collide with each other that are especially prohibitive condi-
tions in the environments with a limited free space.
 This formal problem is motivated by many real-life tasks ranging from
rearranging containers in storage yards to coordination of movements of a large
group of automated agents [7], [8].
 We would like to introduce a new solving algorithm called BIBOX for a
class of multi-robot path planning problems with bi-connected environments and
at least two free places in this paper. We experimentally show that our new algo-
rithm outperforms existing state-of-the-art methods and it is suitable for prob-
lems of real-life size.

Problem of Path Planning for Multiple Robots
Consider a group of robots in a certain environment that need to move from their
initial positions to the given goal positions. The robots are required to avoid col-
lisions during their movements. Thus, the task is to find spatial-temporal paths
from the initial to the goal position for each robot such that these paths do not
intersect at the same time point.

 We abstract from the individual properties of robots. Hence we assume
that all the robots are the same. Furthermore, we abstract from the physical
properties of the robots and the environment. The only important property is the
topology of the environment in our abstraction. Hence the environment is mod-
eled as an undirected graph where the robots are placed in the vertices of this
graph.
 The dynamicity of the model is defined by the notion of an allowed move
for the robot. A robot can move from a vertex to a target neighboring vertex if
there is no robot in the target vertex and no other robot is simultaneously enter-
ing the target vertex. The problem of path planning for multiple robots is for-
mally described in the following definition.

Definition 1 (path planning for multiple robots). Let us have an undirected
graph (,)G V E= where 1 2{ , ,V v v= … , }nv that models the environment. Next,
let us have a set of robots 1 2{ , , , }R r r rμ= … where nμ < . The initial positions of
the robots are defined by a function 0 :S R V→ where 0 0() ()i jS r S r≠ for
, 1,2, ,i j μ= … such that i j≠ . The goal positions of the robots are defined by a

function :S R V+ → where () ()i jS r S r+ +≠ for , 1,2, ,i j μ= … such that i j≠ .
The problem of path-planning for multiple robots is a task to find a number m
and a path 1 2[, , ,]r r r

r mP p p p= … for every robot r R∈ where r
ip V∈ for

1,2, ,i m= … , 1 0 ()rp S r= , ()r
mp S r+= , and either 1{ , }r r

i ip p E+ ∈ or 1
r r
i ip p += for

1,2, , 1i m= −… . Furthermore, paths 1 2[, , ,]r r r
r mP p p p= … and

1 2[, , ,]q q q
q mP p p p= … for every two robots r R∈ and q R∈ such that r q≠ must

satisfy that 1
r q
i ip p+ ≠ for 1,2, , 1i m= −… (the target vertex is unoccupied) and

r q
i ip p≠ for 1,2, ,i m= … (no other robot is simultaneously entering the target

vertex). □

Figure 1. A problem of path planning for multiple robots. The task is to move robots from
their initial positions denoted as S0 to the goal positions denoted as S+. A solution of length 12
is shown. Notice the parallelism at steps 7 and 8.

v1

v2
v3

v5

v4

v6
v7

r1

r4

r2

r3

v1

v2
v3

v5

v4

v6
v7

r1
r4

r2
r3

S0
S+

Pr1=[v6,v6,v6,v6,v6,v7,v7,v3,v4,v1,v1,v1]
Pr2=[v7,v7,v7,v7,v3,v3,v2,v2,v2,v2,v2,v2]
Pr3=[v4,v4,v4,v1,v1,v1,v1,v5,v6,v6,v7,v3]
Pr4=[v2,v1,v5,v5,v5,v5,v6,v7,v7,v3,v4,v4]

m=12

1 2 3 4 5 6 7 8 9 10 11 12 Step:

 The problem of path planning for multiple robots is illustrated in figure 1.
Notice that path for an individual robot may contain loops and the robot may
stay in a vertex for more than a single time step. Another important property of
the definition is that it intrinsically allows parallel movements of the robots
(more than one robot can perform a move in a single time step). It is also possi-
ble to require the number m to be smallest as possible. However, this require-
ment makes the problem intractable (see the section Related Works).

Solving Algorithm for Bi-connected Environments
An algorithm for a class of problems of path planning for multiple robots is de-
scribed in this section. We found that the problem is always solvable if the graph
G is bi-connected and 2nμ ≤ − , that is, at least two vertices in the graph G are
unoccupied. Moreover, our solving algorithm for this class of problem runs in
polynomial time. We called our algorithm BIBOX.

Graph Theoretical Preliminaries
Let us remind some basic graph theoretical notions [10] before we start with the
description of the algorithm.

Definition 2 (graph connectivity). An undirected graph (,)G V E= is connected
if 2V ≥ and for every pair of vertices u V∈ and v V∈ such that u v≠ there is a
path connecting u and v consisting of edges from E . □

Definition 3 (graph bi-connectivity). An undirected graph (,)G V E= is bi-
connected if 3V ≥ and the graph ({ }, {{ , } | ,G V v E u w u w V u v′ = − ∩ ∈ ∧ ≠ ∧

})w v≠ is connected for every v V∈ . □

 Bi-connected graphs have an important well known property which we

exploit in our algorithm. Each bi-connected graph can be constructed from a
cycle by an operation of adding loops to the graph [10].

 Adding a loop which is a sequence of vertices 1 2[, , ,..., ,]lL u x x x v= to an
undirected graph (,)G V E= where ,u v V∈ and ix V∉ for 1,2, ,i l= … (ix are
new vertices) means to create a new graph ' (', ')G V E= ; where

1 2{ , , , }lV V x x x′ = ∪ … and either {{ , }}E E u v′ = ∪ in the case when 0l = or
1 1 2 1{{ , },{ , }, ,{ , },l lE E u x x x x x−′ = ∪ … { , }}lx v in the case when 1l ≥ . As a prep-

aration for the design of the algorithm the loop L is assigned a cycle ()C L if the
graph G is connected. The cycle ()C L consists of vertices on a path between u
and v in G followed by vertices 1 2, , , lx x x… .

Lemma 1 (loop decomposition) [9], [10]. Any bi-connected graph can be ob-
tained from a cycle graph by the operation of adding a loop. ■

 In addition to the above lemma the more holds. It is possible to decom-
pose a given undirected graph (,)G V E= to a sequence of loops in time

(| | | |)O V E+ [9]. Moreover, the graph is bi-connected at any stage of the con-
struction according to the decomposition.

Algorithm for Bi-connected Graphs
Let us have an instance of the multi-robot path planning problem with a bi-
connected graph (,)G V E= modeling the environment. Assume that a loop de-
composition of the graph is constructed. That is we have a cycle 0C and a se-
quence of loops 1 2, , , kL L L… such that the graph G can be constructed from 0C
by adding loops 1 2, , , kL L L… incrementally. Since the construction of the graph
G starts with a cycle 0C (which is a connected graph) ()iC L is defined for
every 1,2, ,i k= … . Specially, we define 0 0()C C C= . Moreover, we assume that
each vertex v V∈ has assigned a loop or initial cycle that it is part of. This as-
signment is formally expressed by a function 0 1 2: { , , , , }kV C L L LΓ → … .

 In order to reduce the complexity of the code we assume that 2nμ = −
and unoccupied vertices of the goal situation to be in the cycle 0C (that is
(() ())v V r R S r v+∈ ∧ ∀ ∈ ≠ 0v C⇒ ∈). Overcoming these assumptions is dis-
cussed in the next section.

 The BIBOX algorithm itself is built upon several primitives. The pseudo-
code of the BIBOX algorithm is presented as algorithm 1 (the code is illustrated
with pictures for easier understanding). Except the functions 0S and S + we fur-
ther have a function :S R V→ expressing current positions of robots. Next we
have functions 0 : { }V RΦ → ∪ ⊥ , : { }V R+Φ → ∪ ⊥ , and : { }V RΦ → ∪ ⊥
which are generalized inverses of 0S , S + , and S respectively where the symbol
⊥ stands for unoccupied vertex (that is, () (())r R S r r∀ ∈ Φ = ; ()vΦ =⊥ if
() ()r R S r v∀ ∈ ≠). Next, we assume that we have a sequence of potentially infi-
nite sequences representing the solution of the problem

1 2
[, , ,]r r rP P P

μ
… . For easi-

er expressing of the algorithm we also have functions / (,)next V C v ,
/ (,)prev V C v , / (,)next S C r , / (,)prev S C r , / (,)next S C r+ , / (,)prev S C r+ that

return the next or the previous vertex or robot in the given cycle with respect to
the clock-wise orientation of the cycle (that is, for instance / (,)next S C r+ re-
turns a robot next to the robot r in the cycle C with respect to the goal positions
of robots expressed by S +) . Finally, we use operations lock()X and unlock
()X that locks or unlocks a set of vertices X . Each vertex is either locked or
unlocked. Robots in the locked vertices are restricted to move.

 The algorithm works in two phases. Robots whose goal positions are
within the regular loops of the loop decomposition are placed to their goal posi-
tions in the first phase (lines 2-4 of BIBOX-Solve). The second phase consists in
placing the robots to the goal positions in the original cycle of the cycle decom-
position (line 5 of BIBOX-Solve). This is due to the fact that original cycle needs
a specialized approach.

 The first phase proceeds from the last loop to the first loop of the loop de-
composition. After the robots are placed to their goal positions within the cur-
rent loop the algorithm proceeds with the previous loop. Notice that after finish-
ing a loop we obtain a problem of the same type but smaller.

 Within a loop, robots are placed to their goal positions in the stack manner
(that is, a new robot comes at the beginning of the loop and the loop is rotated -
stack pushes). The last rotation of the loop places the robots to their destinations.
When placing the robots within the loop it is necessary to distinguish between
the situation when the robot is outside the loop (lines 3-8 of SolveRegularCycle)
and the situation when the robot is already within the current loop (lines 10-29
of SolveRegularCycle).

 The whole first phase manages with only one unoccupied vertex. The
second unoccupied vertex is necessary for placing the robots within the original
cycle of the decomposition. A completely different approach is used here. Hav-
ing two unoccupied vertices we are able to exchange two robots with respect to
the clock-wise ordering in the original cycle (function ExchangeRobots). Using
the operation of exchanging robots it is not difficult to obtain the goal permuta-
tion of robots in the cycle with respect to the clock-wise ordering (lines 3-6 of
SolveOriginalCycle). Finally, it is necessary to rotate the cycle to place robots to
their goal positions (lines 7-8 of SolveOriginalCycle) and free vertices that
should be finally unoccupied (lines 9-13 of SolveOriginalCycle).

Algorithm 1. The BIBOX algorithm in the pseudo-code. The presented code solves the prob-
lem of multi-robot path planning in a bi-connected graph (,)G V E= with exactly two vertic-
es unoccupied. The algorithm assumes that goal positions of the robots preserves unoccupied
vertices in the initial cycle of the loop decomposition of the graph G .

function BIBOX-Solve: pair
1: 0m ←
2: for , 1, ,1c k k= − … do
3: if | | 2cL > then
4: SolveRegularCycle ()c
5: SolveOriginalCycle
6: return

1 2
(,[, , ,])r r rm P P P

μ
…

procedure SolveRegularCycle ()c
1: let 1 2[, , , , ,]l cu x x x v L=…
2: for 1,2, ,i l= … do
3: if ((()))i cS x L+Γ Φ ≠ then
4: lock ()cL
5: MoveRobot ((),)ix u+Φ
6: MoveUnoccupied ()v
7: unlock ()cL
8: RotateCycle+ (())cC L
9: else
10: lock ()cL
11: MoveUnoccupied ()u

12: unlock ()cL
13: 0ρ ←
14: while (()))iS x v+Φ ≠ do
15: RotateCycle+ (())cC L
16: 1ρ ρ← +
17: lock ()cL
18: let (())k

i ci co V L C L=∈ − ∪∪
19: MoveRobot ((),)ix o+Φ
20: lock ({ })o
21: MoveUnoccupied ()u
22: unlock ()cL
23: while 0ρ > do
24: RotateCycle− (())cC L
25: 1ρ ρ← −
26: unlock ({ })o
27: MoveRobot ((),)ix u+Φ
28: MoveUnoccupied ()v
29: RotateCycle+ ()cL
30: lock ()cL

procedure SolveOriginalCycle
1: let 0u C∈ and 0v V C∈ − such that { , }u v E∈
2: let 1 2 0[, , ,]lx x x C=…
3: for 1,2, , 1i l= −… do
4: 0/ (, ())ir next S C x+ +← Φ ; 0/ (, ())iq next S C x+← Φ
5: if r q≠ then
6: ExchangeRobots (, , ,)r q u v
7: while () ()S r S r+≠ do
8: RotateCycle+

0()C
9: let 0x C∈ such that ()x+Φ =⊥ and x is not locked
10: MoveUnoccupied ()x
11: lock ()x
12: let 0y C∈ such that ()y+Φ =⊥ and y is not locked
13: MoveUnoccupied ()y

procedure ExchangeRobots (, , ,)r q u v
1: ()s v←Φ
2: MoveUnoccupied ()u
3: SwapRobotUnoccupied (,)v u
4: while ()S r u≠ do
5: RotateCycle+

0()C
6: SwapRobotUnoccupied (,)u v
7: lock ()u
8: 0ρ ←
9: while 0() / (,)S q prev V C u≠ do
10: RotateCycle+

0()C
11: 1ρ ρ← +
12: MoveUnoccupied 0(/ (,))next V C u
13: SwapRobotUnoccupied 0(/ (,),)prev V C u u
14: SwapRobotUnoccupied 0(, / (,))u next V C u
15: SwapRobotUnoccupied (,)v u
16: SwapRobotUnoccupied 0(, / (,))u prev V C u
17: SwapRobotUnoccupied 0(/ (,),)next V C u u

18: SwapRobotUnoccupied (,)u v
19: SwapRobotUnoccupied (,)u v
20: while 0ρ > do
21: RotateCycle− 0()C
22: 1ρ ρ← −
23: SwapRobotUnoccupied (,)v u
24: while ()S s u≠ do
25: RotateCycle+

0()C
26: SwapRobotUnoccupied (,)u v
27: unlock ()u

procedure RotateCycle+ ()C
1: let x C∈ such that ()xΦ =⊥ and x is not locked
2: for 1,2, ,| |i C= … do
3: SwapRobotUnoccupied (/ (,),)prev V C x x
4: / (,)x prev V C x←

procedure RotateCycle− ()C
1: let x C∈ such that ()xΦ =⊥ and x is not locked
2: for 1,2, ,| |i C= … do
3: SwapRobotUnoccupied (/ (,),)next V C x x
4: / (,)x next V C x←

procedure MoveUnoccupied ()v
1: let x V∈ such that ()xΦ =⊥ and x is not locked
2: let 1 2[, , ,]jx p p p u= =… be a shortest path between
3: x and v in G not containing locked vertices
4: for 1,2, , 1i j= −… do
5: SwapRobotUnoccupied 1(,)i ip p+

procedure MoveRobot (,)r v
1: let 1 2[() , , ,]jS r p p p v= =… be a shortest path between
2: ()S r and v in G not containing locked vertices
3: for 1,2, , 1i j= −… do
4: lock ({ })ip
5: MoveUnoccupied 1()ip +
6: unlock ({ })ip
7: SwapRobotUnoccupied 1(,)i ip p +

procedure SwapRobotUnoccupied (,)u v
1: (())S u vΦ = ; ()uΦ =⊥ ; ()v rΦ =
2: for 1,2, ,i μ= … do
3: ()ir

m ip S r=
4: 1m m← +

Analysis of the BIBOX Algorithm
We briefly mention ideas supporting the correctness of the BIBOX algorithm in
this section. Next, asymptotic time complexity of the algorithm is discussed. All
the claims are presented as a series of propositions.

Lemma 2 (each vertex in a cycle). For any vertex v V∈ of a given bi-connected
graph (,)G V E= there exists a cycle in G containing v . ■

Proof. Let us have a loop decomposition of the graph G according to the lemma
1. Then (())C vΓ with respect to the given decomposition determines a cycle
containing v . ■

Proposition 1 (correctness of the BIBOX algorithm). The BIBOX algorithm
(algorithm 1) is correct. That is, it solves the problem of path planning for mul-
tiple robots under specified conditions. ■

Idea of proof. The crucial point where the algorithm may be suspected to fail is
when a path between two vertices is searched under the condition that it does not
contain any locked vertex (the failure may be caused by the non-existence of
such a path - see lines 4-5 of MoveRobot). Without detailed proof observe that
such path always exists since we lock at most one vertex in a cycle (lemma 2) in
the not yet finished part of the graph. Hence a path using the not locked section
of the cycle exists. ■

Proposition 2 (complexity of the BIBOX algorithm). The BIBOX algorithm (al-
gorithm 1) solves the problem of path planning for multiple robots with the
graph (,)G V E= in 3(| |)O V steps.

Proof. The initial loop decomposition can be found in (| | | |)O V E+ [9] which is

2(| |)O V . Placing a single robot (one iteration of the cycle on line 2 of SolveRe-
gularCycle) requires 2(| |)O V steps since a robot must be moved across the
whole graph (must visit all the vertices) in the worst case and a moving through
an edge takes (| |)O V steps (one iteration of cycle on line 3 of MoveRobot).
Hence, we need 3(| |)O V steps to place robots to their goal positions in the loops
except the original cycle of the decomposition.

For the original cycle we need (| |)O V operations of exchanging robots
(line 6 of SolveOriginalCycle). Each operation of exchange robots takes

2(| |)O V steps since the cycle must be rotated (| |)O V times and each rotation
takes (| |)O V steps. Again we have 3(| |)O V steps for solving the original
cycle. ■

Extensions and the Real Implementation
The presented pseudo-code of the BIBOX algorithm requires two special as-
sumptions. The assumption that 2nμ = − can is easy to overcome since it is
possible to use dummy robots instead of unoccupied vertices and to ignore their
moves in the solution. The assumption that finally unoccupied vertices must be
in the original cycle is little bit complicated. We need to modify the required
solution given by the function S + so that unoccupied vertices are moved to the

original cycle along two disjoint paths (that always exist in a bi-connected
graph). After solving the problem by the presented algorithm we move unoccu-
pied vertices back along these paths which finishes the solution of the original
unmodified problem.

 We implemented the proposed algorithm in C++. Our implementation
uses additional techniques to increase speed and quality of solutions. Space limi-
tations do not allow us to describe them in details. Nevertheless, let us mention
the main ideas. First, the non-determinism of the code (for example line 1 of
MoveUnoccupied) is replaced by the code that prefers shortest possible solu-
tions. Second, the implementation performs additional analysis of the solution to
increase parallelism (more than a single move is done in a time-step). And final-
ly, the solving process for the original cycle of the decomposition is imple-
mented in a more sophisticated way - again to shorten and to parallelize the so-
lution.

Experimental Evaluation
We evaluated our new BIBOX algorithm by a collection of experiments. The
experimental evaluation is targeted on the analysis of the quality of the resulting
solutions as well as on the performance of the BIBOX algorithm.
 The experimental evaluation is divided into two parts. A comparison of
the BIBOX algorithm with two domain-independent planners is made in the first
part. We selected two domain-independent planners for this evaluation - namely
SGPLAN 5.1 [3] and LPG-td 1.0 [2] planners. This selection was guided by the
fact that these two planners proved to perform well on the problem of multi-
robot path planning. Both selected planners rank among the best in the Interna-
tional Planning Competition (IPC) [1]. We also considered some other planners
from IPC for this evaluation - namely IPP 4.1, MAXPLAN/miniSAT 2.0, SAT-
PLAN/Siege 4, and STAN 3. However, these planners failed to solve even the
very small instances of the multi-robot path planning problem which makes
them unsuitable for the experiments.

 The second part of the experimental evaluation is targeted on the perfor-
mance tests of the BIBOX algorithm on the large instances of the multi-robot
path planning problem.

 All the data necessary for reproducing the presented experiments includ-
ing the source code of BIBOX are available at:
http://ktiml.mff.cuni.cz/~surynek/research/icra2009/.

Competitive Comparison
We concentrate on comparison of the performance of the BIBOX algorithm with
domain-independent planners SGPLAN and LPG in this part. These planners
turned out to be the only systems publicly available that are able to solve the
problem of path planning for multiple robots.

 We generated several problems with random bi-connected graphs of small
sizes modeling the environment. The graphs were generated by random adding
of loops (connection vertices of the loop are randomly selected in the already
existing graph using uniform distribution) of random sizes (the size of the loop
is randomly selected from the interval 1,2, ,4… using uniform distribution) to
the original cycle of random size (again the size of the cycle is randomly se-
lected from the interval 3,4, ,6… using uniform distribution). Then the random
initial positions 0S and random goal positions S + of the robots were generated.
In addition, two categories of problems were generated - problems with just 2
unoccupied vertices and problems with 10% of unoccupied vertices.

These problems were solved by using the BIBOX algorithm and by
SGPLAN and LPG planners. The tests were run on a machine with AMD Opte-
ron 1600MHz, 1GB of RAM, under Mandriva Linux 10.1. Along the process of
solving several statistical data were collected. The comparison of duration of
plans (lengths of solutions; m) is shown in figure 2. There are sizes of the
graphs shown over the horizontal axis. Problems are ordered according to the
increasing plan duration produced by the BIBOX algorithm. The new BIBOX
algorithm produces plans that rank among those produces by the SGPLAN and
LPG with respect to the length of solution. SGPLAN produces shortest solutions.
The comparison of runtime is shown in figure 3. This result undoubtedly shows
that the BIBOX algorithm is faster by orders of magnitude than SGPLAN and
LPG on the problem of multi-robot path planning. Finally, the figure 4 shows
comparison of parallelism of resulting solutions (the ratio of the number of
movements to the length of the solution). The BIBOX algorithm has almost al-
ways the highest parallelism of solutions.

 The above experimental results provide a justification for the claim that
the BIBOX algorithm significantly outperforms SGPLAN and LPG in terms of
speed on multi-robot problems. In other measured aspects BIBOX is competi-
tive.

Figure 2. Comparison of plan durations of LPG, SGPLAN, and BIBOX. The number of time-
steps is compared (parallel execution is allowed) depending on the size of the graph defining
the environment. Two experiments are shown: a situation with 2 unoccupied vertices and with
10% of unoccupied vertices.

0

100

200

300

400

500

600

|V|

Plan duration - 2 free LPG
SGPLAN
BIBOX

0
50

100
150
200
250
300
350
400
450

|V|

Plan duration - 10% free LPG
SGPLAN
BIBOX

Figure 3. Comparison of solving times of LPG, SGPLAN, and BIBOX. The solving runtimes
in seconds are compared depending on the size of the graph defining the environment (the
vertical time axis uses the logarithmic scale). Two experiments are shown: a situation with 2
unoccupied vertices and with 10% of unoccupied vertices.

0,0001

0,001

0,01

0,1

1

10

100

|V|

Solving time - 2 free LPG
SGPLAN
BIBOX

0,0001

0,001

0,01

0,1

1

10

|V|

Solving time - 10% freeLPG
SGPLAN
BIBOX

Figure 4. Comparison of parallelism of LPG, SGPLAN, and BIBOX. The average parallelism
is compared depending on the size of the graph defining the environment. Average paral-
lelism is defined as the ratio of the number of movements to the length of solution (m). Two
experiments are shown: a situation with 2 unoccupied vertices and with 10% of unoccupied
vertices.

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

|V|

Parallelism - 2 free LPG
SGPLAN
BIBOX

0,9

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

|V|

Parallelism - 10% free LPG
SGPLAN
BIBOX

Performance Analysis
This part of experimental evaluation is devoted to experimental evaluation of the
BIBOX algorithm on large problems. These problems are unsolvable in reasona-
ble time by domain-independent planners (this observation renders the tested
planners useless for problems of real-life size).

 We generated a collection of problems with random bi-connected graphs.
In this case the size of graphs ranged up to almost 400 vertices. The graphs
were generated by random adding of loops of random sizes to the original cycle
of random size. The range of sizes of the loop was 1,2, ,8… and range of sizes
of the original cycle was 3,4, ,10… . Three categories of problems were generat-
ed - problems with just 2 unoccupied vertices, problems with 10% of unoccu-
pied vertices, and problems with 50% unoccupied vertices.

The results regarding lengths of solution, runtime, and parallelism are
shown in figure 5 (tests were run on the same machine). Problems are ordered
along the horizontal axis according to the increasing size of the graph. The most
importantly, the results show that by using the BIBOX algorithm we can simply
solve a problem with solutions consisting of 10000s of moves which is far
beyond what can be reached by domain-independent planners. This result shows
that BIBOX is capable of solving problems of real-life size.

Figure 5. Performance analysis of the BIBOX algorithm on large problems. The plan dura-
tion, solving runtime, and average parallelism are compared depending on the size of the
graph defining the environment. Three setups are used for every test: a setup with 2 unoccu-
pied vertices, with 10% of unoccupied vertices, and with 50% unoccupied vertices.

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
|V|

Plan duration 2 free
10% free
50% free

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
|V|

Solving time 2 free
10% free
50% free

0,9

1,1

1,3

1,5

1,7

1,9

2,1

2,3

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
|V|

Parallelism 2 free
10% free
50% free

Related Works and Concluding Discussion
The problem of multi-robot path planning has been already studied in the litera-
ture. It is sometimes referred as a problem of pebble motion on graphs or sling
box puzzle. The non-constructive proof of that any problem with bi-connected
non-bipartite graph can be solved when there is at least one unoccupied vertex is
given in [10]. The constructive variant of this result is discussed in [5]; the au-
thors present an algorithm of the worst case time complexity of 3(| |)O V . How-
ever, parallelism and experimentally tested performance of the algorithm is not
addressed in the paper.

 A modification of the problem with the requirement of the shortest possi-
ble solution has been also studied. However, the result is quite negative [6] since
this requirement makes the problem NP-complete assuming that there is a con-
stant number of unoccupied vertices.

 A relatively modern approach to the problem of multi-robot path planning
is presented in [7], [8]. The author’s approach is to decompose the graph of the
problem to well structured sub-graphs. The drawback is that this approach is
based on (non-polynomial) search and only small numbers of robots were tested
(up to 10 robots; notice that we simply manage 100s of robots).

 Our contribution consists in complete solving of a relatively large class of
the problem of multi-robot path planning (in [4] a solving process of this class of
the problem is referred as an open question). In addition to related works, we
present an experimental evaluation which shows that our algorithm is capable of
solving order of magnitudes larger problems than other comparable algorithms.
We plan to extend our technique to arbitrary graphs (not only bi-connected) and
we plan to implement a more efficient algorithm for problems with only one un-
occupied vertex than presented in [5]. Another issue worth studying is how to
increase parallelism and how to shorten solutions.

References
[1] Gerevini, A., Bonet, B., Givan, B. (editors), “5th International Planning

Competition”, event in the context of ICAPS 2006 conference, United King-
dom, University of Brescia, Italy, 2006,
Available: http://ipc5.ing.unibs.it (January 2008).

[2] Gerevini, A., Serina, I., “Homepage of LPG”, research web page, University
of Brescia, Italy, 2008,
Available: http://zeus.ing.unibs.it/lpg/ (January 2008).

[3] Hsu, C. W., Wah, B. W., Huang, R., Chen, Y. X., “SGPlan 5: Subgoal Parti-
tioning and Resolution in Planning”, research web page, University of Illino-
is, USA, 2008,
Available: http://manip.crhc.uiuc.edu/programs/SGPlan/index.html (January
2008).

[4] Johnson, D. S., “The NP-Completeness Column: An Ongoing Guide”, Jour-
nal of Algorithms, Volume 4 (4), pp. 397-411, Elsevier, 1983.

[5] Kornhauser, D., Miller, G. L., Spirakis, P. G., “Coordinating Pebble Motion
on Graphs, the Diameter of Permutation Groups, and Applications”, in Pro-
ceedings of the 25th Annual Symposium on Foundations of Computer
Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

[6] Ratner, D., Warmuth, M. K., “Finding a Shortest Solution for the N × N Ex-
tension of the 15-PUZZLE Is Intractable”, in Proceedings of the 5th National
Conference on Artificial Intelligence (AAAI 1986), pp. 168-172, Morgan
Kaufmann Publishers, 1986.

[7] Ryan, M. R. K., “Multi-robot path planning with sub graphs”, in Proceedings
of the 19th Australasian Conference on Robotics and Automation, Auckland,
New Zeland, Australian Robotics & Automation Association, 2006.

[8] Ryan, M. R. K., “Graph Decomposition for Efficient Multi-Robot Path Plan-
ning”, in Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, pp. 2003-2008, IJCAI Confe-
rence, 2007.
Available: http://www.ijcai.org (February 2008).

[9] Tarjan, R., E., “Depth-First Search and Linear Graph Algorithms”, SIAM
Journal on Computing, Volume 1 (2), pp. 146-160, Society for Industrial and
Applied Mathematics, 1972.

[10] West, D. B., “Introduction to Graph Theory, second edition”, Prentice-
Hall, 2000.

[11] Wilson, R. M., “Graph Puzzles, Homotopy, and the Alternating Group”,
Journal of Combinatorial Theory, Ser. B 16, pp. 86-96, Elsevier, 1974.

