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Abstract 
A problem of path planning for multiple robots is addressed in this paper. A specific case of 
the problem with so called θ-like environments is studied. This case of the problem represent 
one of the most difficult cases and an eventual solving method for this case can be used as a 
building block for more general solving procedures. We propose a solving method for multi-
robot path planning in θ-like environments that constructs a solution by composing it of the 
pre-calculated shortest solutions of certain sub-problems. This approach prefers short overall 
solutions. Moreover, we propose a new algorithm for pre-calculating shortest solutions of 
sub-problems - it is in fact an improvement of the IDA* algorithm. An experimental compari-
son of our methods with existing techniques is presented in the paper. 
 

Introduction and Motivation  
The problem addressed in this paper is a task of finding a sequence of moves for 
robots to reach given positions in a certain environment. The robots must avoid 
obstacles and must not collide with each other. This problem ranks among the 
most challenging problems of artificial intelligence (Russell & Norvig, 2003). 
However, the major gap in today’s results is a missing connection between theo-
retical (Wilson, 1974; Kornhauser et al., 1984; Ratner & Warmuth, 1986) and 
practical results (Ryan, 2007). This paper is trying to fill in this gap (at least par-
tially). We particularly concentrate on a special case of the problem with so 
called θ-like environment. This case represents one of the most difficult cases of 
the problem in certain sense. Moreover, solving procedure for this case can be 
used as the building block for the more general cases. It is the structurally sim-
plest environment in that the problem can be solved (the simpler case is just a 
cycle that is not always solvable). 
 The development of solving methods for problems of path planning for mul-
tiple robots is primarily motivated by tasks of moving objects in tight space 
(rearranging containers in storage yards, coordination of movements of a large 
group of automated agents - Ryan, 2007). However, this is not the only motiva-



tion. Many tasks from virtual spaces can be also viewed as problems of path 
planning for multiple robots (data transfer with limited buffers). 
 In this paper, we present two results. First, we present a new algorithm for 
solving the problem in θ-like environments by composing the overall solution of 
the pre-calculated optimal solutions of the sub-problems. This approach guaran-
tees high quality of the resulting solution (the solution is short). Second, we 
present a new algorithm for fast pre-calculating optimal solutions of the sub-
problems. This new algorithm is an improvement of the standard IDA* algo-
rithm. 

Path Planning for Multiple Robots 
The problem of path planning for multiple robots consists in finding a sequence 
of moves for rearranging robots in a certain environment. The robots occupy 
certain positions in the environment initially. The task is to move robots to a 
given goal positions. The robots must avoid obstacles in the environment and 
must not collide with each other. 
 The widely accepted formalization of the multi-robot path planning prob-
lem models the environment by an undirected graph. The vertices of this graph 
represent positions in the environment and edges represent unblocked way from 
one vertex (position) to another vertex. Robots are placed in vertices of the 
graph while at least one vertex remains unoccupied. A robot can move from a 
vertex to a neighboring target vertex if there is no robot in the target vertex and 
no other robot is simultaneously entering the target vertex. The formal definition 
of the problem is given in the following definition. 
 
Definition 1 (path planning for multiple robots). Let us have an undirected 
graph ( , )G V E=  where 1 2{ , ,V v v= … , }nv  that models the environment. Next, 
let us have a set of robots 1 2{ , , , }R r r rμ= …  where nμ < . The initial positions of 
the robots are defined by a function 0 :S R V→  where 0 0( ) ( )i jS r S r≠  for 
, 1,2, ,i j μ= …  with i j≠ . The goal positions of the robots are defined by a 

function :S R V+ →  where ( ) ( )i jS r S r+ +≠  for , 1,2, ,i j μ= …  with i j≠ . The 
problem of path planning for multiple robots is a task to find a number m  and a 
path 1 2[ , , , ]r r r

r mP p p p= …  for every robot r R∈  where r
ip V∈  for 1,2, ,i m= … , 

1 0 ( )rp S r= , ( )r
mp S r+= ,  and either 1{ , }r r

i ip p E+ ∈  or 1
r r
i ip p +=  for 

1,2, , 1i m= −… . Furthermore, paths 1 2[ , , , ]r r r
r mP p p p= …  and  

1 2[ , , , ]q q q
q mP p p p= …  for every two robots r R∈  and q R∈  such that r q≠  must 

satisfy that 1
r q
i ip p+ ≠  for 1,2, , 1i m= −…  (the target vertex is unoccupied) and 

r q
i ip p≠  for 1,2, ,i m= …  (no other robot is simultaneously entering the target 

vertex). □ 



 
 

Figure 1. A problem of path planning for multiple robots. The task is to move robots from 
their initial positions denoted as S0 to the goal positions denoted as S+. A solution of length 12 
is shown. Notice the parallelism at steps 7 and 8. 
 
 An example of the problem of multi-robot path planning is shown in fig-
ure 1. Notice that a path for a single robot may contain loops and the robot may 
stay in the same vertex for more than a single step. 
 There is a variety of modifications of the defined problem. A natural addi-
tional requirement is to produce shortest possible solution (that is we require the 
number m  to be smallest as possible). Unfortunately, this requirement makes 
the problem intractable (namely NP-complete; Ratner & Warmuth, 1986) while 
without the requirement on the optimality of m  the problem is in the P class 
(Kornhauser et al., 1984). Nevertheless, we care about the length of the solution 
in our approach. Although we do not try to construct optimal solutions, we are 
trying to produce shorter solutions than that produced by existing sub-optimal 
solving procedures (Kornhauser et al., 1984). 

A Special Case with θ-like Graph 
Let us now describe a special case of the problem of multi-robot path planning 
with a so called θ-like graph (a planar embedding of this graph resembles the 
Greek letter θ) and with only one unoccupied vertex (that is, | | 1Vμ = − ). 
 
Definition 2 (θ-like graph). A θ-like graph is an undirected graph 

( , , ) ( , )G a b c V Eθ θ θ=  where , , 2a b c b∈ ∧ ≥`  are parameters, 
1 2 1 2 1 2{ , , , , , , , , , , ,a bV x x x y y y z zθ = … … … }cz , and Eθ = 1 2{{ , }, ,x x … 1{ , },a ax x−  

1 2 1{ , }, ,{ , },b by y y y−…  1 2 1{ , }, ,{ , },c cz z z z−…  1 1{ , },{ , },a bx y x y  1 1{ , },{ , }}b cy z y z . □ 
 
 An example of the θ-like graph is shown in figure 2. An instance of the 
multi-robot path planning problem we are about to exanimate consists of a θ-
like graph ( , , )G a b cθ  where the vertex 1y  is unoccupied (that is, 1 2{ , ,R r r=  

, }rμ…  where 1a b cμ = + + − ). We are interested in two special cases of goal 
arrangements of robots. The first case - a transposition case - of goal arrange-
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ment is made from the original one by exchanging a pair of robots (that is, hav-
ing 0S  we set 0( ) ( )i jS r S r+ = , 0( ) ( )j iS r S r+ =  for i j≠  and 0( ) ( )k kS r S r+ =  for 

1,2, , ,k k i jμ= ∧ ≠… ). The second case - a 3-cycle case - of goal arrangement 
is obtained by rotating robots along an ordered triple of vertices (that is, 

0( ) ( )s pS r S r+ = , 0( ) ( )p qS r S r+ = , 0( ) ( )q sS r S r+ =  for , ,s p q  pair-wise distinct and 
0( ) ( )k kS r S r+ =  for 1,2, ,k μ= ∧… , ,k s p q≠ ). Our aim is to produce optimal 

(shortest possible) solutions for both described cases. An example of the trans-
position case of the problem with the θ-like graph is shown in figure 2. 
 

 
Figure 2: A transposition case of the problem of path planning for multiple robots with a θ-
like graph. The task is to transpose robots r1 and r3 using the smallest possible number of 
moves. 
 

Solving Algorithm for θ-like Environments 
Let us now develop an algorithm for producing sub-optimal solutions of the 
problem of multi-robot path planning in a θ-like graph. The main idea is to 
compose a sub-optimal solution of the problem from optimal solutions of the 
special cases of transposition and 3-cycle. The composition is naturally made by 
concatenating the corresponding sequences of moves. Since the overall solution 
is made of the optimal sub-solutions, we expect that the overall solution will be 
shorter than that produced by the existing method presented in (Kornhauser et 
al., 1984). 

Summary of Theoretical Foundations 
A bijection function :{1,2, , } {1,2, , }k kπ →… …  is called a permutation over k  
elements. An arrangement of robots in a graph of the instance of the multi-robot 
path planning problem can be viewed as a permutation over μ  elements (we 
suppose the unoccupied vertex to be still the same). A permutation is said to be 
even if it is expressible as a composition of the even number of transpositions. 
Otherwise, it is said to be an odd permutation. A permutation can be either even 
or odd, but not both. Permutations can be composed naturally. The effect of the 
composition (a product) of two permutations is the same as if one permutation is 
applied as the first and the other permutation is applied on the result of the first 
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application. The following several propositions represent theoretical foundations 
for our method. 
 
Proposition 1 (solution from transposition case). Any permutation over k  
elements can be obtained as a composition of at most 1k −  transpositions of 
pairs of elements. Moreover, a sequence of transpositions necessary for produc-
ing the permutation can be effectively determined in ( )O k  steps in the worst 
case. ■ 
 
 If all the (optimal) solutions for all the transposition cases in a θ-like 
graph are known in advance, we can effectively generate sub-optimal solution of 
every problem on the given θ-like graph. However, the presumption that there is 
always a solution of a transposition case does not hold. The following proposi-
tion is due to (Wilson, 1974). 
 
Proposition 2 (solvability of transposition case). A transposition case of path 
planning for multiple robots in a θ-like graph ( , , ) (2,3,2)G a b c Gθ θ≠  is solvable 
if and only if Gθ  contains a cycle of the odd length. ■ 
 
 Notice, that the problem with (2,3,2)Gθ  can be solved using a lookup ta-
ble containing solutions for all the possible arrangements of robots. Hence, we 
do not care about this situation further. 
 In the case when there is no cycle of the odd length in the given θ-like, 
only the arrangements of robots corresponding to even permutations are reacha-
ble. Hence, we need a different approach in this situation. The following propo-
sitions (Kornhauser et al., 1984) give us the direction. 
  
Proposition 3 (3-cycle case). Any even permutation over k  elements can be 
obtained as a composition of at most 1k −  rotations along 3-cycles. Moreover, 
a sequence of 3-cycle rotations necessary for the task can be effectively deter-
mined in ( )O k  steps in the worst case. ■ 
 
 Similarly as in the transposition case, if all the (optimal) solutions for the 
3-cycle rotation cases are known in advance, we can effectively generate sub-
optimal solution to any problem on a θ-like graph with goal arrangement of ro-
bots corresponding to an even permutation. Fortunately, it is possible to solve 
any 3-cycle case of the multi-robot path planning problem on a θ-like graph as it 
is stated in the following proposition. 
 
Proposition 4 (solvability of 3-cycle case). A 3-cycle case of path planning for 
multiple robots in a θ-like graph ( , , ) (2,3,2)G a b c Gθ θ≠  is always solvable. ■ 
 



 Some yet stronger result is shown in (Kornhauser et al., 1984). For every 
solvable multi-robot path planning problem with a graph ( , )G V E=  there exists 
a solution consisting of 3( )O V  moves. Hence, the overall sub-optimal solution 
of the problem can be completely generated in 4( )O V  steps (that is, in time cor-
responding to the size of the output). 

Symbolic Code of the Solving Algorithm 
At this point we have foundations to present the solving algorithm. Our new al-
gorithm for solving path planning for multiple robots in θ-like graphs is shown 
here as an algorithm 1. The algorithm is called θ-BOX. 
 The θ-BOX algorithm exploits the database of the optimal solutions of 
transposition and 3-cycle cases. The databases for transposition case and 3-cycle 
case are represented by two arrays - transpositiontable  and  3 cycletable − . Both arrays 
are indexed by a pair of vertices whose robots we need to transpose or by an or-
dered triple of vertices whose robots we need to rotate. The code presented as 
algorithm 1 assumes that the necessary records in the database are always 
present. If this is not true in the real implementation we should switch to an al-
ternative solving method. 
 The algorithm is represented by a single function θ-BOX-Solve; it gets the 
input graph ( ( , , )G a b cθ ), the initial ( 0S ) and the goal ( S + ) arrangements of ro-
bots in the vertices of the graph as its parameters. The function returns a solution 
of the problem as an ordered pair; the first element is the length of the solution 
(the number m ) and the second element is the sequence of moves. 

The algorithm directly follows the series of propositions above. The spe-
cial case of the graph (2,3,2)Gθ  is checked first (lines 2-3). If the input graph is 
not (2,3,2)Gθ , the algorithm checks whether it contains an odd cycle (line 6). If 
there is an odd cycle in the graph, the algorithm proceeds according to the prop-
osition 1 (lines 6-12); that is, the solution is composed of the optimal solutions 
of transposition cases. If there is none odd cycle in the graph, the algorithm 
proceeds according to the proposition 3 (lines 14-23); that is, the solution is 
composed of the optimal solutions of the 3-cycle cases. Let us briefly summar-
ize computational complexity of the θ-BOX algorithm. 

 
Proposition 5 (complexity of the θ-BOX algorithm). Let us have an instance of 
the multi-robot path planning problem with a θ-like graph ( , , )G a b cθ =  
( , )V Eθ θ . If all the necessary records are present in the solution database for 
transposition and 3-cycle cases, then the θ-BOX algorithm produces the solution 
in the worst case time of 4( )O Vθ . ■ 
 
Sketch of proof. The algorithm requires time proportional to the size of the out-
put. The size of the output is at most Vθ  times the length of the solution of the 
transposition case or the 3-cycle case. We use the result from (Kornhauser et al., 
1984) which states that a solution to every multi-robot path planning problem 
consists of at most 3( )O Vθ  moves. Hence the worst case time complexity of the 



algorithm is 4( )O Vθ . In this proof, we suppose that a record can be found in the 
database in the constant time. ■ 
 
 
Algorithm 1. The θ-BOX algorithm. The symbolic code of the algorithm for solving multi-
robot path planning problem in a θ-like graph. An empty sequence is denoted as [] . An opera-
tion of concatenation of sequences is denoted as .  (dot). Comments are in {} (braces). 
 
function θ-BOX-Solve 0( ( , , ), , )G a b c S Sθ

+ : pair 

1: 0S S←  

2:  if ( , , ) (2,3,2)G a b c Gθ θ=  then 
3:  232

0( , ) [ , ]m table S Sσ +←  
4: else 
5:  ( , ) (0,[])m σ ←  
6:  if Gθ  contains an odd cycle then 
7:   for 1,2, , 1i μ= −…  do { 1a b cμ = + + − } 
8:    if ( ) ( )i iS r S r+≠  then 
9:     ( , ) [ ( ), ( )]G

transposition i im table S r S rθσ +′ ′ ←  
10:     S ← Apply ( , )Sσ ′  
11:     m m m′← +  
12:     .σ σ σ ′←  
13:  else {Gθ  does not contain any odd cycle} 
14:   if S +  represents an odd permutation w.r.t. 0S  then 
15:    ( , ) ( ,[])m σ ← ∞  {the problem is unsolvable} 
16:   else { S +  represents an even permutation w.r.t. 0S } 
17:    for 1,2, , 1i μ= −…  do { 1a b cμ = + + − } 
18:     if ( ) ( )i iS r S r+≠  then 
19:      let 1 2( ), ( ), ( ), , ( )i iv S r S r S r S r+ + +≠ …  
20:      3( , ) [ ( ), ( ), ]G

cycle i im table S r S r vθσ +
−′ ′ ←  

21:      S ← Apply ( , )Sσ ′  
22:      m m m′← +  
23:      .σ σ σ ′←  
24: return ( , )m σ  
 
  

IDA* with Learning for Solving Cases Optimally 
The solving algorithm for transposition and 3-cycle cases we have developed is 
based on the standard IDA* algorithm (Russell & Norvig, 2003). We improved 
IDA* by a special kind of learning since the standard IDA* with distance based 
heuristic was not efficient enough to generate necessary solution database. We 
call the new algorithm learning IDA* or shortly LIDA*. The main idea of the 
algorithm is to learn the heuristic for estimating the number of steps necessary 
for reaching the goal from the set of already explored states. The algorithm is 
shown here using the symbolic code as the algorithm 2. 
 The LIDA* algorithm interprets arrangements of robots in the vertices of 
the θ-like graph as permutations. A difference between the initial arrangement 
and the current state can be also interpreted as a permutation (a difference be-
tween two permutations is a permutation). The same can be done with respect to 
the goal arrangement of robots. As the algorithm proceeds the minimum number 
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of moves for reaching every encountered arrangement of robots (that is, every 
encountered permutation) is memorized. When a move is made, the algorithm 
proceeds in search only if the number of already consumed moves plus the esti-
mated minimum number of moves required for reaching the goal does not ex-
ceed the maximum number of allowed moves (lines 6-8). The estimation of the 
number of necessary moves is extracted from memorized records. 
 The LIDA* algorithm is represented by two functions. The LearnIDA*-
Solve function represents the main loop in which the maximum number of 
moves is iteratively increased (the variable max ). The search for the bounded 
depth is represented by the LearnIDA*-Search function. 
  
 
Algorithm 2. The Learning IDA* algorithm. The symbolic code of the algorithm designed for 
solving transposition and 3-cycle cases. 
  

function LearnIDA*-Solve 0( ( , , ), , )G a b c S Sθ
+ : pair 

1: 1max ←  
2: loop 
3:  ( , )m σ ← LearnIDA*-Search 0 0( , , ,0, ,[])S S S max+  
4:  if m ≠ ∞  then 
5:   return ( , )m σ  
6:  1max max← +  
 
function LearnIDA*-Search 0( , , , , , )S S S d max σ+ : pair 
1: if S S +=  then {a solution has been found} 
2:  return ( , )d σ  
3: else {no solution has been found yet} 
4:  π ←Difference ( , )S S +  
5:  [Hash )]distancetable (δ π←  
6:  if δ ≠ ∞  and d maxδ+ >  then 
7:   return ( ,[])∞  { S +  is unreachable using max  steps} 
8:  else { S +  may be reachable using max  steps} 
9:   ψ ← Difference 0( , )S S  
10:   [Hash )] min( , [Hash )])distance distancetable ( d table (ψ ψ←  
11:   if d max<  then 
12:    for every allowed move M  in S  do 
13:     S ← Move ( , )M S  
14:     .[ ]Mσ σ′←  
15:      ( , )m σ ← LearnIDA*-Search 0( , , , 1, , )S S S d max σ+ ′+   
16:        if m ≠ ∞  then 
17:         return ( , )m σ  
18: return ( ,[])∞  
 

 
Special primitives Difference  and Hash  are used as building blocks of 

the algorithm. The primitive Difference  is a function, which maps two arrange-
ments of robots to a permutation that represents the difference between them. 
The primitive Hash  is a function that maps permutations to natural numbers. In 
order to preserve soundness of the algorithm we require special properties of the 



Hash  function. Let 1 2 1 2, , , ,ψ ψ π π ρ  be permutations over μ  elements such that 
1 1ψ ρ π= D  and 2 2ψ ρ π= D . Then the following property must hold: 

1 2Hash( )=Hash( )ψ ψ ⇒ 2Hash( )π . The memorized estimations are stored in the 
array distancetable . We suppose that every cell of the array is initially set to the ∞  
value (infinity). 
 
Theorem 1 (soundness of Learning IDA*). The learning IDA* algorithm is 
sound. That is, if the given multi-robot path planning problem is solvable, then 
the algorithm finds a shortest solution of the problem. ■ 
 
Proof. Since the learning IDA* algorithm is based on the standard IDA*, it is 
sufficient to prove that the heuristic we are using is admissible (lines 4-7 of 
LearnIDA*-Search function). In other words, we need to prove that if the condi-
tion on the line 6 of the LearnIDA*-Search function is satisfied (execution enters 
the line 7), then there is no chance to reach a solution using at most max  steps. 
If this is true, then the iterative increasing of the number of allowed steps (varia-
ble max ) guarantees that a shortest possible solution is found (provided that 
there is some). 
 From the properties of the hashing function Hash  we are able to prove 
that the assignment on the line 10 of LearnIDA*-Search function assigns always 
the same value to the same cell of the array distancetable . Hence, the contents of 

distancetable  defines the lower bound estimation on the number of steps necessary 
for reaching the goal arrangement since the lowest depth is stored. 
 Let us prove this. Suppose that it not true. Then there will be a number 

1d < ∞  in a cell of the array distancetable , which is subsequently replaced, by a 
smaller number 2 1d d< . Assume that 1d  was written through a permutation 1ψ   
(that is, 1 1[Hash( )]distancetable dψ ← ) and 2d  was written through a permutation 

2ψ  (that is, 2 2[Hash( )]distancetable dψ ← ). Both permutation produces the same 
result of the hashing function, that is 1 2Hash( ) Hash( )ψ ψ= . Let 1π  and 2π  be 
the permutations representing the differences from the goal arrangement of ro-
bots corresponding to 1ψ  and 2ψ  respectively. The described execution of the 
algorithm implies that 2[Hash( )]distancetable π > 1[Hash( )]distancetable π  (because at 
depths 1 2d d>  we have  2 2[Hash( )]distanced table π+ >  1 1[Hash( )]distanced table π+ ). 
 Now, observe that there exists a permutation ρ  such that 1 1ψ ρ π= D  and 

2 2ψ ρ π= D . Hence, we have that 1 2Hash( ) Hash( )π π= , because 
1 2Hash( ) Hash( )ψ ψ=  (the property of Hash  function we are using). But then 

2[Hash( )]distancetable π = 1[Hash( )]distancetable π  which is a contradiction. ■ 
 
 The slight complication of the described approach is the construction of 
the required hashing function Hash . One way to construct such a hashing func-
tion is to avoid collisions between permutations; that is, to construct a perfect 
hashing function ( 1 2Hash( )=Hash( )ψ ψ  never happen for any two stored permu-



tations 1ψ  and 2ψ ). This approach is actually used in our experimental imple-
mentation. 

Experimental Evaluation 
We considered several algorithms for solving the transposition and 3-cycle cas-
es. The uninformed iterative deepening, the standard A* with distance based 
heuristic, and the standard IDA* with distance based heuristic were tested (Rus-
sel & Norvig, 2003). None of these existing algorithms was efficient enough to 
compete with our learning IDA*. The justification of this claim is represented 
by an experimental evaluation, which is presented below. 
 The results of this experimental comparison are shown in figure 3. The 
solving times of instances of transposition and 3-cycle cases of the multi-robot 
path planning problems are compared. Small problems with up to 20 vertices are 
shown. The complete results together with the source for reproducing the expe-
riments code are available at: 
http://ktiml.mff.cuni.cz/~surynek/research/flairs2009/1. A database of solutions 
for transposition and 3-cycle cases can be also found at this web. 
 The experimental evaluation shows that the LIDA* algorithm significant-
ly outperforms all the other tested algorithms. The LIDA* algorithm is more 
than 10 times faster than IDA* with distance based heuristic.  
 To evaluate the qualities of the proposed θ-BOX algorithm we made an 
experimental comparison with the existing algorithm described in (Kornhauser 
et al., 1984) - we denote this algorithm as MIT. 
 We compared both algorithms on a set of problems on θ-like graphs. Re-
sults on graphs with up to 20 vertices are shown in figure 4. All the necessary 
solutions of the cases were present in the database. Overall solving time and the 
length of the solution are compared. The complete results and the source code 
for the experiments can be again found at our web. 
 We can conclude that the θ-BOX algorithm outperforms the MIT algo-
rithm significantly. The θ-BOX algorithm is more than 10 times faster than the 
MIT algorithm on the tested instances. Moreover, our algorithm produces about 
10 times shorter solutions. 
 
 
 
 
 
 
 
 
 
                                                           
1 All the tested algorithm were implemented in C++ and the experimental evaluation was made on a machine with Pentium 4 2.4 GHz with 
512Mb of memory under Mandriva Linux 10.1. 



 
 
 
 
 
 

 
Figure 3: Comparison of solving times of A*, iterative deepening (ID), IDA*, and LIDA* on 
transposition and 3-cycle cases in a θ-like graph. The logarithmic scale is used for times in 
seconds; the problems over the horizontal axis are ordered according to the increasing length 
of the solution. 
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Figure 4: Comparison of solving times and solution lengths of the MIT algorithm and the θ-
BOX algorithm. The logarithmic scale is used for times in seconds and for the number of 
moves. The problems over the horizontal axis are ordered according to the increasing solving 
time of the θ-BOX algorithm. The upper part of the figure shows solving time necessary for 
solving 1000 random problems on the fixed graph. The lower part of the figure shows average 
length of the solution of 1000 random problems on the fixed graph. 
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Related Works 
Our work was primarily motivated by the work of Ryan (2007). He introduces 
the notion of path planning for multiple robots in a similar way as it is done in 
our definition 1. The approach for solving the problem used in (Ryan, 2007) is 
based on a search with decomposition of the graph modeling the environment to 
easily tractable sub-graphs. However, the work (Ryan, 2007) is not put in rela-
tion with existing theoretical works of Wilson (1974), Kornhauser et al. (1984), 
and Ratner & Warmuth (1986), which represents seminal works of the field (the 
multi-robot path planning is called here graph puzzles or pebble motion in 
graphs). On the other hand, no experimental results are presented in these theo-
retical works. 
 In (Wilson, 1974) a solvability decision criterion for multi-robot path 
planning problem is described. Nevertheless, efficiency of this decision criterion 
is not addressed in this paper. This result was extended by Kornhauser et al. 
(1984); the authors described a polynomial time solving algorithm - we call it 
the MIT algorithm in this paper. Their algorithm solves the multi-robot path 
planning problem with an arbitrary graph ( , )G V E=  in the worst case time of 

3( )O V  and the length of the solution is 3( )O V . 
 It is an interesting result that although our θ-BOX algorithm consumes 
time of 4( )O V  in the worst case and length of its solutions is 4( )O V  it is prac-
tically faster than the MIT algorithm and its solutions are significantly shorter. 
Tractability issues of the problem of path planning for multiple robots are stu-
died in (Ratner & Warmuth, 1986). The result is quite negative: if we require the 
shortest possible solution, then the decision variant of this problem is 
NP-complete. That is why the studied problem is a challenging one. 
 An important related work is (Surynek, 2008). A polynomial time solving 
algorithm for the problem with bi-connected graphs is proposed in this paper. 
The quite non-standard requirement of the algorithm is that at least two unoccu-
pied vertices are required. This requirement is imposed by θ-like graphs. The 
corollary of this paper is that having the solving procedure for θ-like graphs we 
can adapt the solving procedure for bi-connected graphs to require only one un-
occupied vertex. Another interesting related work is (Felner et al., 2007) which 
deals with a so called top-spin puzzle. This problem is very similar to path plan-
ning for multiple robots in θ-like environments. 

Conclusion and Future Work 
We proposed a new algorithm called θ-BOX for solving problem of path plan-
ning for multiple robots in the special environments we call θ-like environments. 
This type of environments represents the most difficult case in some sense and 
the solving procedure for this case can be used as the building block for solving 
procedure for problems over graphs that are more general (a bi-connected graph 
can be covered with θ-like graphs). Our algorithm constructs a sub-optimal solu-
tion of the pre-calculated optimal solutions of the sub-problems - we call them 



transposition and 3-cycle cases. This approach guarantees speed and the high 
quality of the produced solution (solution is short). Moreover, we proposed a 
new algorithm called LIDA* for finding shortest possible solutions for problems 
with θ-like environments. We use LIDA* for pre-calculating optimal solutions 
of transposition and 3-cycle cases. It is a variant of IDA* with learning heuristic. 
We experimentally showed that both proposed methods are order of magnitude 
faster than the comparable existing approaches. 
 The important feature of our approach is that we intrinsically treat the 
group of robots as a single entity. That is, we are reasoning about the group of 
robots globally.  However, there are still some open questions. We do not know 
how difficult is the problem of finding shortest solution for the problem with a 
θ-like graph from the theoretical point of view. Is it NP-complete or not? Is 
PSPACE-complete of not? 
 Regarding practical aspect of our work, there is still a room for improve-
ments. Our experiments were performed on quite small problems. It seems to be 
unrealistic to pre-calculate optimal solutions for special cases of all the problems 
with θ-like environments of practical size. It took more than a week to pre-
calculate all the problems up to the size of 30 vertices. For larger problems, we 
would have to relax from the requirement of solving the cases for pre-
calculating optimally. So, the resulting sub-optimal solution should be con-
structed of sub-optimal (but not so bad) solutions of the transposition and 3-
cycle cases. 
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