
Finding Sub-optimal Solutions for Problems of
Path Planning for Multiple Robots

in θ-like Environments

Pavel Surynek

Charles University
Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic
Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract
A problem of path planning for multiple robots is addressed in this paper. A specific case of
the problem with so called θ-like environments is studied. This case of the problem represent
one of the most difficult cases and an eventual solving method for this case can be used as a
building block for more general solving procedures. We propose a solving method for multi-
robot path planning in θ-like environments that constructs a solution by composing it of the
pre-calculated shortest solutions of certain sub-problems. This approach prefers short overall
solutions. Moreover, we propose a new algorithm for pre-calculating shortest solutions of
sub-problems - it is in fact an improvement of the IDA* algorithm. An experimental compari-
son of our methods with existing techniques is presented in the paper.

Introduction and Motivation
The problem addressed in this paper is a task of finding a sequence of moves for
robots to reach given positions in a certain environment. The robots must avoid
obstacles and must not collide with each other. This problem ranks among the
most challenging problems of artificial intelligence (Russell & Norvig, 2003).
However, the major gap in today’s results is a missing connection between theo-
retical (Wilson, 1974; Kornhauser et al., 1984; Ratner & Warmuth, 1986) and
practical results (Ryan, 2007). This paper is trying to fill in this gap (at least par-
tially). We particularly concentrate on a special case of the problem with so
called θ-like environment. This case represents one of the most difficult cases of
the problem in certain sense. Moreover, solving procedure for this case can be
used as the building block for the more general cases. It is the structurally sim-
plest environment in that the problem can be solved (the simpler case is just a
cycle that is not always solvable).
 The development of solving methods for problems of path planning for mul-
tiple robots is primarily motivated by tasks of moving objects in tight space
(rearranging containers in storage yards, coordination of movements of a large
group of automated agents - Ryan, 2007). However, this is not the only motiva-

tion. Many tasks from virtual spaces can be also viewed as problems of path
planning for multiple robots (data transfer with limited buffers).
 In this paper, we present two results. First, we present a new algorithm for
solving the problem in θ-like environments by composing the overall solution of
the pre-calculated optimal solutions of the sub-problems. This approach guaran-
tees high quality of the resulting solution (the solution is short). Second, we
present a new algorithm for fast pre-calculating optimal solutions of the sub-
problems. This new algorithm is an improvement of the standard IDA* algo-
rithm.

Path Planning for Multiple Robots
The problem of path planning for multiple robots consists in finding a sequence
of moves for rearranging robots in a certain environment. The robots occupy
certain positions in the environment initially. The task is to move robots to a
given goal positions. The robots must avoid obstacles in the environment and
must not collide with each other.
 The widely accepted formalization of the multi-robot path planning prob-
lem models the environment by an undirected graph. The vertices of this graph
represent positions in the environment and edges represent unblocked way from
one vertex (position) to another vertex. Robots are placed in vertices of the
graph while at least one vertex remains unoccupied. A robot can move from a
vertex to a neighboring target vertex if there is no robot in the target vertex and
no other robot is simultaneously entering the target vertex. The formal definition
of the problem is given in the following definition.

Definition 1 (path planning for multiple robots). Let us have an undirected
graph (,)G V E= where 1 2{ , ,V v v= … , }nv that models the environment. Next,
let us have a set of robots 1 2{ , , , }R r r rμ= … where nμ < . The initial positions of
the robots are defined by a function 0 :S R V→ where 0 0() ()i jS r S r≠ for
, 1,2, ,i j μ= … with i j≠ . The goal positions of the robots are defined by a

function :S R V+ → where () ()i jS r S r+ +≠ for , 1,2, ,i j μ= … with i j≠ . The
problem of path planning for multiple robots is a task to find a number m and a
path 1 2[, , ,]r r r

r mP p p p= … for every robot r R∈ where r
ip V∈ for 1,2, ,i m= … ,

1 0 ()rp S r= , ()r
mp S r+= , and either 1{ , }r r

i ip p E+ ∈ or 1
r r
i ip p += for

1,2, , 1i m= −… . Furthermore, paths 1 2[, , ,]r r r
r mP p p p= … and

1 2[, , ,]q q q
q mP p p p= … for every two robots r R∈ and q R∈ such that r q≠ must

satisfy that 1
r q
i ip p+ ≠ for 1,2, , 1i m= −… (the target vertex is unoccupied) and

r q
i ip p≠ for 1,2, ,i m= … (no other robot is simultaneously entering the target

vertex). □

Figure 1. A problem of path planning for multiple robots. The task is to move robots from
their initial positions denoted as S0 to the goal positions denoted as S+. A solution of length 12
is shown. Notice the parallelism at steps 7 and 8.

 An example of the problem of multi-robot path planning is shown in fig-
ure 1. Notice that a path for a single robot may contain loops and the robot may
stay in the same vertex for more than a single step.
 There is a variety of modifications of the defined problem. A natural addi-
tional requirement is to produce shortest possible solution (that is we require the
number m to be smallest as possible). Unfortunately, this requirement makes
the problem intractable (namely NP-complete; Ratner & Warmuth, 1986) while
without the requirement on the optimality of m the problem is in the P class
(Kornhauser et al., 1984). Nevertheless, we care about the length of the solution
in our approach. Although we do not try to construct optimal solutions, we are
trying to produce shorter solutions than that produced by existing sub-optimal
solving procedures (Kornhauser et al., 1984).

A Special Case with θ-like Graph
Let us now describe a special case of the problem of multi-robot path planning
with a so called θ-like graph (a planar embedding of this graph resembles the
Greek letter θ) and with only one unoccupied vertex (that is, | | 1Vμ = −).

Definition 2 (θ-like graph). A θ-like graph is an undirected graph

(, ,) (,)G a b c V Eθ θ θ= where , , 2a b c b∈ ∧ ≥` are parameters,
1 2 1 2 1 2{ , , , , , , , , , , ,a bV x x x y y y z zθ = … … … }cz , and Eθ = 1 2{{ , }, ,x x … 1{ , },a ax x−

1 2 1{ , }, ,{ , },b by y y y−… 1 2 1{ , }, ,{ , },c cz z z z−… 1 1{ , },{ , },a bx y x y 1 1{ , },{ , }}b cy z y z . □

 An example of the θ-like graph is shown in figure 2. An instance of the
multi-robot path planning problem we are about to exanimate consists of a θ-
like graph (, ,)G a b cθ where the vertex 1y is unoccupied (that is, 1 2{ , ,R r r=

, }rμ… where 1a b cμ = + + −). We are interested in two special cases of goal
arrangements of robots. The first case - a transposition case - of goal arrange-

v1

v2
v3

v5

v4

v6
v7

r1

r4

r2

r3

v1

v2
v3

v5

v4

v6
v7

r1
r4

r2
r3

S0
S+

Pr1=[v6,v6,v6,v6,v6,v7,v7,v3,v4,v1,v1,v1]
Pr2=[v7,v7,v7,v7,v3,v3,v2,v2,v2,v2,v2,v2]
Pr3=[v4,v4,v4,v1,v1,v1,v1,v5,v6,v6,v7,v3]
Pr4=[v2,v1,v5,v5,v5,v5,v6,v7,v7,v3,v4,v4]

m=12

1 2 3 4 5 6 7 8 9 10 11 12 Step:

ment is made from the original one by exchanging a pair of robots (that is, hav-
ing 0S we set 0() ()i jS r S r+ = , 0() ()j iS r S r+ = for i j≠ and 0() ()k kS r S r+ = for

1,2, , ,k k i jμ= ∧ ≠…). The second case - a 3-cycle case - of goal arrangement
is obtained by rotating robots along an ordered triple of vertices (that is,

0() ()s pS r S r+ = , 0() ()p qS r S r+ = , 0() ()q sS r S r+ = for , ,s p q pair-wise distinct and
0() ()k kS r S r+ = for 1,2, ,k μ= ∧… , ,k s p q≠). Our aim is to produce optimal

(shortest possible) solutions for both described cases. An example of the trans-
position case of the problem with the θ-like graph is shown in figure 2.

Figure 2: A transposition case of the problem of path planning for multiple robots with a θ-
like graph. The task is to transpose robots r1 and r3 using the smallest possible number of
moves.

Solving Algorithm for θ-like Environments
Let us now develop an algorithm for producing sub-optimal solutions of the
problem of multi-robot path planning in a θ-like graph. The main idea is to
compose a sub-optimal solution of the problem from optimal solutions of the
special cases of transposition and 3-cycle. The composition is naturally made by
concatenating the corresponding sequences of moves. Since the overall solution
is made of the optimal sub-solutions, we expect that the overall solution will be
shorter than that produced by the existing method presented in (Kornhauser et
al., 1984).

Summary of Theoretical Foundations
A bijection function :{1,2, , } {1,2, , }k kπ →… … is called a permutation over k
elements. An arrangement of robots in a graph of the instance of the multi-robot
path planning problem can be viewed as a permutation over μ elements (we
suppose the unoccupied vertex to be still the same). A permutation is said to be
even if it is expressible as a composition of the even number of transpositions.
Otherwise, it is said to be an odd permutation. A permutation can be either even
or odd, but not both. Permutations can be composed naturally. The effect of the
composition (a product) of two permutations is the same as if one permutation is
applied as the first and the other permutation is applied on the result of the first

x1

x2

x3

z1

z2

y1

y2

y32 S0 S+

r1

r2

r3
r5

r4

r6

r7

x1

x2

x3

z1

z2

y1

y2

y32

r2

r3

r1
r5

r4

r6

r7

Gθ(3,3,2)

application. The following several propositions represent theoretical foundations
for our method.

Proposition 1 (solution from transposition case). Any permutation over k
elements can be obtained as a composition of at most 1k − transpositions of
pairs of elements. Moreover, a sequence of transpositions necessary for produc-
ing the permutation can be effectively determined in ()O k steps in the worst
case. ■

 If all the (optimal) solutions for all the transposition cases in a θ-like
graph are known in advance, we can effectively generate sub-optimal solution of
every problem on the given θ-like graph. However, the presumption that there is
always a solution of a transposition case does not hold. The following proposi-
tion is due to (Wilson, 1974).

Proposition 2 (solvability of transposition case). A transposition case of path
planning for multiple robots in a θ-like graph (, ,) (2,3,2)G a b c Gθ θ≠ is solvable
if and only if Gθ contains a cycle of the odd length. ■

 Notice, that the problem with (2,3,2)Gθ can be solved using a lookup ta-
ble containing solutions for all the possible arrangements of robots. Hence, we
do not care about this situation further.
 In the case when there is no cycle of the odd length in the given θ-like,
only the arrangements of robots corresponding to even permutations are reacha-
ble. Hence, we need a different approach in this situation. The following propo-
sitions (Kornhauser et al., 1984) give us the direction.

Proposition 3 (3-cycle case). Any even permutation over k elements can be
obtained as a composition of at most 1k − rotations along 3-cycles. Moreover,
a sequence of 3-cycle rotations necessary for the task can be effectively deter-
mined in ()O k steps in the worst case. ■

 Similarly as in the transposition case, if all the (optimal) solutions for the
3-cycle rotation cases are known in advance, we can effectively generate sub-
optimal solution to any problem on a θ-like graph with goal arrangement of ro-
bots corresponding to an even permutation. Fortunately, it is possible to solve
any 3-cycle case of the multi-robot path planning problem on a θ-like graph as it
is stated in the following proposition.

Proposition 4 (solvability of 3-cycle case). A 3-cycle case of path planning for
multiple robots in a θ-like graph (, ,) (2,3,2)G a b c Gθ θ≠ is always solvable. ■

 Some yet stronger result is shown in (Kornhauser et al., 1984). For every
solvable multi-robot path planning problem with a graph (,)G V E= there exists
a solution consisting of 3()O V moves. Hence, the overall sub-optimal solution
of the problem can be completely generated in 4()O V steps (that is, in time cor-
responding to the size of the output).

Symbolic Code of the Solving Algorithm
At this point we have foundations to present the solving algorithm. Our new al-
gorithm for solving path planning for multiple robots in θ-like graphs is shown
here as an algorithm 1. The algorithm is called θ-BOX.
 The θ-BOX algorithm exploits the database of the optimal solutions of
transposition and 3-cycle cases. The databases for transposition case and 3-cycle
case are represented by two arrays - transpositiontable and 3 cycletable − . Both arrays
are indexed by a pair of vertices whose robots we need to transpose or by an or-
dered triple of vertices whose robots we need to rotate. The code presented as
algorithm 1 assumes that the necessary records in the database are always
present. If this is not true in the real implementation we should switch to an al-
ternative solving method.
 The algorithm is represented by a single function θ-BOX-Solve; it gets the
input graph ((, ,)G a b cθ), the initial (0S) and the goal (S +) arrangements of ro-
bots in the vertices of the graph as its parameters. The function returns a solution
of the problem as an ordered pair; the first element is the length of the solution
(the number m) and the second element is the sequence of moves.

The algorithm directly follows the series of propositions above. The spe-
cial case of the graph (2,3,2)Gθ is checked first (lines 2-3). If the input graph is
not (2,3,2)Gθ , the algorithm checks whether it contains an odd cycle (line 6). If
there is an odd cycle in the graph, the algorithm proceeds according to the prop-
osition 1 (lines 6-12); that is, the solution is composed of the optimal solutions
of transposition cases. If there is none odd cycle in the graph, the algorithm
proceeds according to the proposition 3 (lines 14-23); that is, the solution is
composed of the optimal solutions of the 3-cycle cases. Let us briefly summar-
ize computational complexity of the θ-BOX algorithm.

Proposition 5 (complexity of the θ-BOX algorithm). Let us have an instance of
the multi-robot path planning problem with a θ-like graph (, ,)G a b cθ =
(,)V Eθ θ . If all the necessary records are present in the solution database for
transposition and 3-cycle cases, then the θ-BOX algorithm produces the solution
in the worst case time of 4()O Vθ . ■

Sketch of proof. The algorithm requires time proportional to the size of the out-
put. The size of the output is at most Vθ times the length of the solution of the
transposition case or the 3-cycle case. We use the result from (Kornhauser et al.,
1984) which states that a solution to every multi-robot path planning problem
consists of at most 3()O Vθ moves. Hence the worst case time complexity of the

algorithm is 4()O Vθ . In this proof, we suppose that a record can be found in the
database in the constant time. ■

Algorithm 1. The θ-BOX algorithm. The symbolic code of the algorithm for solving multi-
robot path planning problem in a θ-like graph. An empty sequence is denoted as [] . An opera-
tion of concatenation of sequences is denoted as . (dot). Comments are in {} (braces).

function θ-BOX-Solve 0((, ,), ,)G a b c S Sθ

+ : pair

1: 0S S←

2: if (, ,) (2,3,2)G a b c Gθ θ= then
3: 232

0(,) [,]m table S Sσ +←
4: else
5: (,) (0,[])m σ ←
6: if Gθ contains an odd cycle then
7: for 1,2, , 1i μ= −… do { 1a b cμ = + + − }
8: if () ()i iS r S r+≠ then
9: (,) [(), ()]G

transposition i im table S r S rθσ +′ ′ ←
10: S ← Apply (,)Sσ ′
11: m m m′← +
12: .σ σ σ ′←
13: else {Gθ does not contain any odd cycle}
14: if S + represents an odd permutation w.r.t. 0S then
15: (,) (,[])m σ ← ∞ {the problem is unsolvable}
16: else { S + represents an even permutation w.r.t. 0S }
17: for 1,2, , 1i μ= −… do { 1a b cμ = + + − }
18: if () ()i iS r S r+≠ then
19: let 1 2(), (), (), , ()i iv S r S r S r S r+ + +≠ …
20: 3(,) [(), (),]G

cycle i im table S r S r vθσ +
−′ ′ ←

21: S ← Apply (,)Sσ ′
22: m m m′← +
23: .σ σ σ ′←
24: return (,)m σ

IDA* with Learning for Solving Cases Optimally
The solving algorithm for transposition and 3-cycle cases we have developed is
based on the standard IDA* algorithm (Russell & Norvig, 2003). We improved
IDA* by a special kind of learning since the standard IDA* with distance based
heuristic was not efficient enough to generate necessary solution database. We
call the new algorithm learning IDA* or shortly LIDA*. The main idea of the
algorithm is to learn the heuristic for estimating the number of steps necessary
for reaching the goal from the set of already explored states. The algorithm is
shown here using the symbolic code as the algorithm 2.
 The LIDA* algorithm interprets arrangements of robots in the vertices of
the θ-like graph as permutations. A difference between the initial arrangement
and the current state can be also interpreted as a permutation (a difference be-
tween two permutations is a permutation). The same can be done with respect to
the goal arrangement of robots. As the algorithm proceeds the minimum number

Gθ(2,3,2)

S(ri)

S+(ri)

S(ri)

S+(ri)

v

of moves for reaching every encountered arrangement of robots (that is, every
encountered permutation) is memorized. When a move is made, the algorithm
proceeds in search only if the number of already consumed moves plus the esti-
mated minimum number of moves required for reaching the goal does not ex-
ceed the maximum number of allowed moves (lines 6-8). The estimation of the
number of necessary moves is extracted from memorized records.
 The LIDA* algorithm is represented by two functions. The LearnIDA*-
Solve function represents the main loop in which the maximum number of
moves is iteratively increased (the variable max). The search for the bounded
depth is represented by the LearnIDA*-Search function.

Algorithm 2. The Learning IDA* algorithm. The symbolic code of the algorithm designed for
solving transposition and 3-cycle cases.

function LearnIDA*-Solve 0((, ,), ,)G a b c S Sθ
+ : pair

1: 1max ←
2: loop
3: (,)m σ ← LearnIDA*-Search 0 0(, , ,0, ,[])S S S max+
4: if m ≠ ∞ then
5: return (,)m σ
6: 1max max← +

function LearnIDA*-Search 0(, , , , ,)S S S d max σ+ : pair
1: if S S += then {a solution has been found}
2: return (,)d σ
3: else {no solution has been found yet}
4: π ←Difference (,)S S +
5: [Hash)]distancetable (δ π←
6: if δ ≠ ∞ and d maxδ+ > then
7: return (,[])∞ { S + is unreachable using max steps}
8: else { S + may be reachable using max steps}
9: ψ ← Difference 0(,)S S
10: [Hash)] min(, [Hash)])distance distancetable (d table (ψ ψ←
11: if d max< then
12: for every allowed move M in S do
13: S ← Move (,)M S
14: .[]Mσ σ′←
15: (,)m σ ← LearnIDA*-Search 0(, , , 1, ,)S S S d max σ+ ′+
16: if m ≠ ∞ then
17: return (,)m σ
18: return (,[])∞

Special primitives Difference and Hash are used as building blocks of

the algorithm. The primitive Difference is a function, which maps two arrange-
ments of robots to a permutation that represents the difference between them.
The primitive Hash is a function that maps permutations to natural numbers. In
order to preserve soundness of the algorithm we require special properties of the

Hash function. Let 1 2 1 2, , , ,ψ ψ π π ρ be permutations over μ elements such that
1 1ψ ρ π= D and 2 2ψ ρ π= D . Then the following property must hold:

1 2Hash()=Hash()ψ ψ ⇒ 2Hash()π . The memorized estimations are stored in the
array distancetable . We suppose that every cell of the array is initially set to the ∞
value (infinity).

Theorem 1 (soundness of Learning IDA*). The learning IDA* algorithm is
sound. That is, if the given multi-robot path planning problem is solvable, then
the algorithm finds a shortest solution of the problem. ■

Proof. Since the learning IDA* algorithm is based on the standard IDA*, it is
sufficient to prove that the heuristic we are using is admissible (lines 4-7 of
LearnIDA*-Search function). In other words, we need to prove that if the condi-
tion on the line 6 of the LearnIDA*-Search function is satisfied (execution enters
the line 7), then there is no chance to reach a solution using at most max steps.
If this is true, then the iterative increasing of the number of allowed steps (varia-
ble max) guarantees that a shortest possible solution is found (provided that
there is some).
 From the properties of the hashing function Hash we are able to prove
that the assignment on the line 10 of LearnIDA*-Search function assigns always
the same value to the same cell of the array distancetable . Hence, the contents of

distancetable defines the lower bound estimation on the number of steps necessary
for reaching the goal arrangement since the lowest depth is stored.
 Let us prove this. Suppose that it not true. Then there will be a number

1d < ∞ in a cell of the array distancetable , which is subsequently replaced, by a
smaller number 2 1d d< . Assume that 1d was written through a permutation 1ψ
(that is, 1 1[Hash()]distancetable dψ ←) and 2d was written through a permutation

2ψ (that is, 2 2[Hash()]distancetable dψ ←). Both permutation produces the same
result of the hashing function, that is 1 2Hash() Hash()ψ ψ= . Let 1π and 2π be
the permutations representing the differences from the goal arrangement of ro-
bots corresponding to 1ψ and 2ψ respectively. The described execution of the
algorithm implies that 2[Hash()]distancetable π > 1[Hash()]distancetable π (because at
depths 1 2d d> we have 2 2[Hash()]distanced table π+ > 1 1[Hash()]distanced table π+).
 Now, observe that there exists a permutation ρ such that 1 1ψ ρ π= D and

2 2ψ ρ π= D . Hence, we have that 1 2Hash() Hash()π π= , because
1 2Hash() Hash()ψ ψ= (the property of Hash function we are using). But then

2[Hash()]distancetable π = 1[Hash()]distancetable π which is a contradiction. ■

 The slight complication of the described approach is the construction of
the required hashing function Hash . One way to construct such a hashing func-
tion is to avoid collisions between permutations; that is, to construct a perfect
hashing function (1 2Hash()=Hash()ψ ψ never happen for any two stored permu-

tations 1ψ and 2ψ). This approach is actually used in our experimental imple-
mentation.

Experimental Evaluation
We considered several algorithms for solving the transposition and 3-cycle cas-
es. The uninformed iterative deepening, the standard A* with distance based
heuristic, and the standard IDA* with distance based heuristic were tested (Rus-
sel & Norvig, 2003). None of these existing algorithms was efficient enough to
compete with our learning IDA*. The justification of this claim is represented
by an experimental evaluation, which is presented below.
 The results of this experimental comparison are shown in figure 3. The
solving times of instances of transposition and 3-cycle cases of the multi-robot
path planning problems are compared. Small problems with up to 20 vertices are
shown. The complete results together with the source for reproducing the expe-
riments code are available at:
http://ktiml.mff.cuni.cz/~surynek/research/flairs2009/1. A database of solutions
for transposition and 3-cycle cases can be also found at this web.
 The experimental evaluation shows that the LIDA* algorithm significant-
ly outperforms all the other tested algorithms. The LIDA* algorithm is more
than 10 times faster than IDA* with distance based heuristic.
 To evaluate the qualities of the proposed θ-BOX algorithm we made an
experimental comparison with the existing algorithm described in (Kornhauser
et al., 1984) - we denote this algorithm as MIT.
 We compared both algorithms on a set of problems on θ-like graphs. Re-
sults on graphs with up to 20 vertices are shown in figure 4. All the necessary
solutions of the cases were present in the database. Overall solving time and the
length of the solution are compared. The complete results and the source code
for the experiments can be again found at our web.
 We can conclude that the θ-BOX algorithm outperforms the MIT algo-
rithm significantly. The θ-BOX algorithm is more than 10 times faster than the
MIT algorithm on the tested instances. Moreover, our algorithm produces about
10 times shorter solutions.

1 All the tested algorithm were implemented in C++ and the experimental evaluation was made on a machine with Pentium 4 2.4 GHz with
512Mb of memory under Mandriva Linux 10.1.

Figure 3: Comparison of solving times of A*, iterative deepening (ID), IDA*, and LIDA* on
transposition and 3-cycle cases in a θ-like graph. The logarithmic scale is used for times in
seconds; the problems over the horizontal axis are ordered according to the increasing length
of the solution.

0,001

0,01

0,1

1

10

100

1000

4,
2,

1

6,
2,

1

8,
2,

1

12
,2

,1

10
,2

,1

2,
2,

1

3,
3,

2

4,
2,

3

4,
4,

1

6,
2,

3

8,
2,

3

10
,2

,3

12
,2

,3

2,
6,

1

6,
4,

1

5,
3,

4

3,
7,

2

6,
2,

5

7,
3,

2

8,
2,

5

10
,2

,5

12
,2

,5

4,
4,

3

4,
6,

3

2,
8,

1

6,
4,

3

5,
3,

2

3,
5,

2

5,
5,

2

3,
9,

2

9,
3,

2

7,
5,

2

3,
11

,2

3,
13

,2

8,
6,

1

5,
5,

4

9,
5,

2

8,
2,

7

7,
3,

6

10
,2

.7

12
,2

,7

8,
4,

1

2,
10

,1

10
,4

,1

2,
12

,1

11
,3

,2

8,
4,

3

2,
14

,1

10
,4

,3

4,
6,

1

7,
3,

4

6,
6,

1

4,
10

,1

4,
8,

1

Ti
m

e
(s

ec
on

ds
)

Problem G-theta(a,b,c)

Solving time A*
ID
IDA*
LIDA*

Figure 4: Comparison of solving times and solution lengths of the MIT algorithm and the θ-
BOX algorithm. The logarithmic scale is used for times in seconds and for the number of
moves. The problems over the horizontal axis are ordered according to the increasing solving
time of the θ-BOX algorithm. The upper part of the figure shows solving time necessary for
solving 1000 random problems on the fixed graph. The lower part of the figure shows average
length of the solution of 1000 random problems on the fixed graph.

0,01

0,1

1

10

4,
2,

1

3,
3,

2

4,
2,

3

3,
5,

2

4,
4,

1

4,
4,

3

5,
3,

2

6,
2,

1

6,
2,

3

6,
4,

1

3,
7,

2

4,
6,

1

5,
5,

4

7,
3,

2

8,
2,

1

4,
8,

1

7,
3,

4

6,
6,

1

8,
4,

1

8,
4,

3

9,
3,

2

5,
3,

4

4,
6,

3

5,
5,

2

6,
4,

3

8,
2,

3

8,
2,

5

7,
5,

2

6,
2,

5

3,
9,

2

Ti
m

e
(s

ec
on

d)

Problem G-theta(a,b,c)

Solving time
MIT

Theta-BOX

1

10

100

1000

10000

100000

4,
2,

1

3,
3,

2

4,
2,

3

3,
5,

2

4,
4,

1

4,
4,

3

5,
3,

2

6,
2,

1

6,
2,

3

6,
4,

1

3,
7,

2

4,
6,

1

5,
5,

4

7,
3,

2

8,
2,

1

4,
8,

1

7,
3,

4

6,
6,

1

8,
4,

1

8,
4,

3

9,
3,

2

5,
3,

4

4,
6,

3

5,
5,

2

6,
4,

3

8,
2,

3

8,
2,

5

7,
5,

2

6,
2,

5

3,
9,

2

N
um

be
r o

f m
ov

es

Problem G-theta(a,b,c)

Solution length

MIT

Theta-BOX

Related Works
Our work was primarily motivated by the work of Ryan (2007). He introduces
the notion of path planning for multiple robots in a similar way as it is done in
our definition 1. The approach for solving the problem used in (Ryan, 2007) is
based on a search with decomposition of the graph modeling the environment to
easily tractable sub-graphs. However, the work (Ryan, 2007) is not put in rela-
tion with existing theoretical works of Wilson (1974), Kornhauser et al. (1984),
and Ratner & Warmuth (1986), which represents seminal works of the field (the
multi-robot path planning is called here graph puzzles or pebble motion in
graphs). On the other hand, no experimental results are presented in these theo-
retical works.
 In (Wilson, 1974) a solvability decision criterion for multi-robot path
planning problem is described. Nevertheless, efficiency of this decision criterion
is not addressed in this paper. This result was extended by Kornhauser et al.
(1984); the authors described a polynomial time solving algorithm - we call it
the MIT algorithm in this paper. Their algorithm solves the multi-robot path
planning problem with an arbitrary graph (,)G V E= in the worst case time of

3()O V and the length of the solution is 3()O V .
 It is an interesting result that although our θ-BOX algorithm consumes
time of 4()O V in the worst case and length of its solutions is 4()O V it is prac-
tically faster than the MIT algorithm and its solutions are significantly shorter.
Tractability issues of the problem of path planning for multiple robots are stu-
died in (Ratner & Warmuth, 1986). The result is quite negative: if we require the
shortest possible solution, then the decision variant of this problem is
NP-complete. That is why the studied problem is a challenging one.
 An important related work is (Surynek, 2008). A polynomial time solving
algorithm for the problem with bi-connected graphs is proposed in this paper.
The quite non-standard requirement of the algorithm is that at least two unoccu-
pied vertices are required. This requirement is imposed by θ-like graphs. The
corollary of this paper is that having the solving procedure for θ-like graphs we
can adapt the solving procedure for bi-connected graphs to require only one un-
occupied vertex. Another interesting related work is (Felner et al., 2007) which
deals with a so called top-spin puzzle. This problem is very similar to path plan-
ning for multiple robots in θ-like environments.

Conclusion and Future Work
We proposed a new algorithm called θ-BOX for solving problem of path plan-
ning for multiple robots in the special environments we call θ-like environments.
This type of environments represents the most difficult case in some sense and
the solving procedure for this case can be used as the building block for solving
procedure for problems over graphs that are more general (a bi-connected graph
can be covered with θ-like graphs). Our algorithm constructs a sub-optimal solu-
tion of the pre-calculated optimal solutions of the sub-problems - we call them

transposition and 3-cycle cases. This approach guarantees speed and the high
quality of the produced solution (solution is short). Moreover, we proposed a
new algorithm called LIDA* for finding shortest possible solutions for problems
with θ-like environments. We use LIDA* for pre-calculating optimal solutions
of transposition and 3-cycle cases. It is a variant of IDA* with learning heuristic.
We experimentally showed that both proposed methods are order of magnitude
faster than the comparable existing approaches.
 The important feature of our approach is that we intrinsically treat the
group of robots as a single entity. That is, we are reasoning about the group of
robots globally. However, there are still some open questions. We do not know
how difficult is the problem of finding shortest solution for the problem with a
θ-like graph from the theoretical point of view. Is it NP-complete or not? Is
PSPACE-complete of not?
 Regarding practical aspect of our work, there is still a room for improve-
ments. Our experiments were performed on quite small problems. It seems to be
unrealistic to pre-calculate optimal solutions for special cases of all the problems
with θ-like environments of practical size. It took more than a week to pre-
calculate all the problems up to the size of 30 vertices. For larger problems, we
would have to relax from the requirement of solving the cases for pre-
calculating optimally. So, the resulting sub-optimal solution should be con-
structed of sub-optimal (but not so bad) solutions of the transposition and 3-
cycle cases.

References
Felner, A., Korf, R. E., Meshulam, R., Holte, R. C., 2007. Compressed Pattern
Databases. Journal of Artificial. Intelligence Research (JAIR), Volume 30, pp.
213-247, AAAI Press.

Kornhauser, D., Miller, G. L., Spirakis, P. G., 1984. Coordinating Pebble Mo-
tion on Graphs, the Diameter of Permutation Groups, and Applications. Pro-
ceedings of the 25th Annual Symposium on Foundations of Computer Science
(FOCS 1984), pp. 241-250, IEEE Press.

Ratner, D., Warmuth, M. K., 1986. Finding a Shortest Solution for the N × N
Extension of the 15-PUZZLE Is Intractable. Proceedings of the 5th National
Conference on Artificial Intelligence (AAAI 1986), pp. 168-172, Morgan
Kaufmann Publishers.

Russell, S., Norvig P., 2003. Artificial Intelligence: A Modern Approach (second
edition). Prentice Hall.

Ryan, M. R. K., 2007. Graph Decomposition for Efficient Multi-Robot Path
Planning. Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, pp. 2003-2008, IJCAI Conference,
2007.

Surynek, P., 2008. Path Planning for Multiple Robots in Bi-connected Environ-
ments. Submitted to the 2009 IEEE International Conference on Robotics and
Automation (ICRA 2009), Kobe, Japan.

Wilson, R. M., 1974. Graph Puzzles, Homotopy, and the Alternating Group.
Journal of Combinatorial Theory, Ser. B 16, pp. 86-96, Elsevier.

