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Abstract

We give a proof of Brooks’ theorem as well as its list coloring
extension using the algebraic method of Alon and Tarsi.

1 Introduction

One of the most famous theorems on graph colorings is Brooks’ theorem [3]
which asserts that every connected graph G with maximum degree ∆ is ∆-
colorable unless G is an odd cycle or a complete graph. Brooks’ theorem has
been extended in various directions, e.g., its list version can be found in [8],
also see [4].

A non-integer relaxation of the chromatic number χ(G) is the circular
chromatic number χc(G), which was introduced in [7] and attracted a con-
siderable amount of interest of researchers (see two recent surveys [9, 11] on
circular colorings by Zhu). Classical and circular colorings are closely re-
lated, in particular, it holds that χ(G) = dχc(G)e. An analogous equality
is not true for their list counterparts. The circular list chromatic number
is always at least the list chromatic number decreased by one but it is not
upper-bounded by any function of the list chromatic number [10].

Circular list colorings seem to be of surprising difficulty, e.g., Norine [5]
only recently proved that the list chromatic number of even cycles is equal to
two. In his proof, he has successfully applied the algebraic method of Alon
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and Tarsi from [2]. For another application of this method to circular list
colorings, see [6]. It seems natural to ask whether this approach can also be
used to prove the variant of Brooks’ theorem for circular list colorings, which
is still not known [10]. The natural first step towards this goal is finding an
algebraic proof of the classical Brooks’ theorem. We fulfil this goal in this
short note. We also believe that an algebraic proof of Brooks’ theorem is of
its own interest independent of possible applications to circular list colorings.

The algebraic method of Alon and Tarsi is based on studying of properties
of a certain graph polynomial. This polynomial is closely related to the
existence of special orientations with bounded in-degrees. We summarize
this relation in the next theorem.

Theorem 1 (Alon and Tarsi [2]). Let G be a graph whose edges are oriented

in such a way that the maximum in-degree of G is at most k. If the numbers

of even and odd Eulerian subgraphs of G differ, then G is list (k+1)-colorable.

Let us remind that an even Eulerian subgraph is a spanning subgraph of
G with even number of edges such that each vertex has the same in-degree
and out-degree. Similarly, an odd Eulerian subgraph is such a subgraph
with an odd number of edges. Even and odd Eulerian subgraphs do not
need be connected and can contain isolated vertices. Theorem 1 has been
successfully applied to several coloring problems, e.g., showing that planar
bipartite graphs are list 3-colorable [2]. We refer the reader to [1] for further
applications.

2 Structural lemma

In this section, we give a structural lemma which allows us to apply the
algebraic technique of Alon and Tarsi in our proof of Brooks’ theorem.

Lemma 2. Let G be a connected ∆-regular graph. If G is neither an odd

cycle nor a complete graph, then G contains an even cycle C with at most

one chord.

Proof. We prove the lemma in a series of four claims.

Claim 1. The graph G contains an even cycle C that does not induce a

complete graph.

If G is not 2-connected, let H be an end-block of the block-decomposition
of G, v the cut-vertex of G contained in H and w any vertex of H not adjacent
to v. If G is 2-connected, set H to be G and let v and w be arbitrary two
vertices of H. By Menger’s theorem, there are two vertex disjoint paths
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between v and w in H. Consider two such shortest paths and let Cvw be
the cycle formed by them. Observe that both v and w have exactly two
neighbors on Cvw (otherwise, the two paths could be shortened).

If Cvw is even, the statement follows. Hence, we can assume that Cvw is
odd. Consequently, G 6= Cvw and thus ∆ ≥ 3. As the degree of w in H is
∆ ≥ 3, there is a neighbor x of w not in Cvw. Let P be the shortest path
from x to a vertex z on Cvw avoiding the vertex w. The existence of P follows
from the fact that H is 2-connected. Let P1 and P2 be the two paths of Cvw

delimited by w and z. By symmetry, we can assume that P1 contains v. If
the cycle formed by P1, P and the edge wx is even, it is the desired cycle C

(it contains both v and w). Otherwise, the cycle formed by P2, P and wx is
even. If the vertex z were adjacent to both w and x, then the lengths of P2

and P would be equal to one (by the choice of C and P ) and thus the length
of the cycle formed by P2, P and wx would be three. Hence, the vertex z is
not adjacent to both w and x and the cycle formed by P2, P and wx is the
sought one.

Claim 2. Let C = v1 . . . v` be the shortest cycle with the properties given in

Claim 1. No vertex of C is adjacent to all other vertices on C.

If ` = 4, C has a single chord and the claim follows. Assume that ` ≥ 6.
Suppose that the vertex v1 is adjacent to all the vertices v2, . . . , v`. By the
choice of C, both the cycle v1 . . . v`−2 and v1v4 . . . v` induce complete graphs.
Hence, one of the vertices v2 or v3, say vi, is not adjacent to at least one of
the vertices v`−1 and v`, say vj. However, the cycle v1viv4vj is then a shorter
cycle satisfying the properties of Claim 1.

Claim 3. Let C = v1 . . . v` be the shortest cycle with the properties given in

Claim 1. Each vertex of C is incident with at most one chord.

Assume that v1 is adjacent to vertices va and vb, 3 ≤ a < b ≤ ` − 2. If
b− a is even, the cycle v1va . . . vb is even and thus it must induce a complete
graph in G by the choice of C. In particular, the vertices v1 and va+1 are
adjacent. By Claim 2, v1 is not adjacent to a vertex vi. By symmetry, we
can assume that 3 ≤ i < a. However, either the cycle v1 . . . va or the cycle
v1 . . . va+1 is even, shorter than C and does not induce a complete graph (the
vertices v1 and vi are non-adjacent).

If b − a is odd, then either a − 1 or ` + 1 − b is odd. By symmetry,
we can assume that a − 1 is even. Since the cycle v1 . . . vb is even, it must
induce a complete subgraph of G by the choice of C. Consequently, the cycle
v1vb−1vb . . . v` is an even cycle which does not induce a complete subgraph
(the vertex v1 is not adjacent to at least one of the vertices vb+1, . . . , v`−2).
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Claim 4. Let C = v1 . . . v` be the shortest cycle with the properties given in

Claim 1. The cycle C contains at most one chord.

Suppose that C has at least two chords, say vavb and vcvd. We distinguish
two cases based on the fact whether the two chords cross. If they do not cross,
we can assume without loss of generality that 1 ≤ a < b < c < d ≤ `. If b−a

is odd, then the cycle va . . . vb is a shorter even cycle not inducing a complete
graph (the vertices va and va+2 are not adjacent). Hence, b − a is even, and
similarly d − c is even. Consequently, the cycle v1 . . . vavb . . . vcvd . . . v` is an
even cycle which does not induce a complete graph in G.

Assume now that the two chords cross. By symmetry, we can assume
that 1 ≤ a < c < b < d ≤ `. The vertices va, vb, vc and vd split the cycle C

into four parts; let nxy, x ∈ {a, b} and y ∈ {c, d}, be the number of vertices
of C between vx and vy. If not all nxy have the same parity, then there are
two consecutive parts (viewed in the order they correspond to the parts of
C) with different parities, say the parities of nac and nbc are different. Then,
the cycle va . . . vc . . . vb is an even cycle satisfying the properties of Claim 1
which is shorter than C. Since this is impossible, we can assume that the
parities of all the four numbers nxy are the same. Consider now the even
cycle va . . . vcvd . . . vb. If this cycle induced a complete graph, then all vavc,
vbvc, vavd and vbvd would be edges of C, the length of C would be four and
C would induce a complete graph of order four. Since this is impossible, the
cycle va . . . vcvd . . . vb is the sought even cycle.

3 Main result

Before presenting the algebraic proof of Brooks’ theorem, we need to recall
a simple folklore structural result on ordering vertices of a connected graph.
We include its proof for completeness.

Lemma 3. Let G be a connected graph and v an arbitrary vertex of G. The

vertices of G can be ordered in such a way that every vertex except for v is

preceded by at least one of its neighbors.

Proof. Consider an arbitrary spanning tree T of G and root it at v. The
vertices of G are ordered in the following way: the first vertex is the root
v followed by all its children (vertices of the second level of T ). Then, all
vertices of the third level are listed, then all vertices of the forth level, etc.
Since each vertex except for v is preceded by its parent, the obtained ordering
has the desired property.

We are now ready to give the algebraic proof of Brooks’ theorem.
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Theorem 4. Let G be a connected graph with maximum degree ∆. If G is

neither a complete graph nor an odd cycle, then G is list ∆-colorable.

Proof. Assume first that the graph G has a vertex of degree less than ∆ and
fix an ordering v1, . . . , vn of the vertices of G as in Lemma 3 with v1 being a
vertex of degree less than ∆. Every edge vivj, i < j, is oriented from vj to
vi. Observe that there are at most ∆ − 1 edges coming to v1 as the degree
of v1 is at most ∆ − 1 and there are at most ∆ − 1 edges coming to each
vi, i 6= 1, since at least one neighbor of vi precedes vi in the ordering. Since
the maximum in-degree of the constructed orientation is at most ∆ − 1 and
its only Eulerian subgraph is the empty one, Theorem 1 implies that G is
∆-choosable.

We now consider the case that G is ∆-regular. By Lemma 2, the graph
G contains an even cycle C with at most one chord. Let ` be the length
of C. Contract C to a single vertex w and apply Lemma 3 to the resulting
graph. We obtain an ordering v1, . . . , vn of the vertices of G by replacing w in
the order given by Lemma 3 with the vertices of C, inserted in an arbitrary
order. The edges of C are oriented in a cyclic way. Every edge vivj, i < j,
that is not contained in C, is now oriented from vj to vi (this rule also applies
to the chord of C if it exists). Observe that the maximum in-degree of the
resulting orientation is ∆ − 1.

There are always two even Eulerian subgraphs of the constructed orien-
tation, the empty one and the one formed by the cycle C. If C contains a
chord e, there is also an Eulerian subgraph formed by the chord and one of
the two parts delimited by e, which is either even or odd. Since there are no
other Eulerian subgraphs, the numbers of odd and even Eulerian subgraphs
must differ. Theorem 1 yields the statement.
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