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Abstract

We show that every n-vertex cubic graph with girth at least g have
domination number at most 0.299871n + O (n/g) < 3n/10 + O (n/g).

1 Introduction

The notion of a dominating set is a classical notion in graph theory with a
large amount of literature associated with it. For the sake of completeness,
let us recall that a set D of vertices of a graph G is dominating if every vertex
of G is contained in D or has a neighbor in D and the domination number
γ(G) of G is the smallest size of a dominating set of G. In this paper, we
study the domination number of cubic graphs, i.e., graphs where every vertex
has degree three.

In 1996, Reed [9] conjectured that every n-vertex connected cubic graph
has domination number at most dn/3e. Though the conjecture turn out
to be false [4, 3], the conjecture becomes true with additional assumption
that the cubic graph has girth at least g, i.e., it has no cycles of length less
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than g. The first results in this direction are the bounds on the domination

number of
(

1
3

+ 1
3g+3

)

n of Kawarabayashi et al. [2] for bridgeless n-vertex

cubic graphs with girth at least g for g divisible by three and
(

1
3

+ 8
3g2

)

n of

Kostochka and Stodolsky [5] for all n-vertex cubic graphs with girth at least
g. The magic threshold of n/3 was first beaten for cubic graph with large
girth by Löwenstein and Rautenbach [6] who showed that every n-vertex
cubic graph with girth at least g ≥ 5 contains a dominating set of size at

most
(

44
135

+ 82
135g

)

n ≈ 0.325926n+O (n/g) The bound was further improved

by Rautenbach and Reed [8] to 0.321216n + O (n/g).
We further improve these bounds and manage to lower them below the

3n/10 threshold. Our main result is the following:

Theorem 1. Let G be an n-vertex cubic graph with girth at least g. The
domination number of G is at most 0.299871n+O (n/g) ≤ 3n/10+O (n/g).

At this point, we remark that numerical computations involved in our ar-
gument were done using a computer (but the rules given in Figure 3 were
generated by hand) though the whole proof can be easily verified to be correct
without computer assistance.

Before we start the exposition of our proof, let us mention a connection
to random cubic graphs. A random cubic graph almost surely contains only
a bounded number of cycles of length less than g for every fixed integer g and
thus the value of the domination number of a random cubic graph should
indicate how tight our result could be. It is known that the domination
number γ of a random cubic graph is almost surely at least 0.2636n [7] and
at most 0.2794n [1] which should indicate space for further improvements.

2 Proof

We first provide a general overview of our method and illustrate it on a
small example. At the end, we then apply the method in a setting yielding
Theorem 1.

2.1 Overview

In this subsection, we explain main ideas of our method and we later provide
necessary technical details related to it. Fix a cubic bridgeless graph G with
girth at least g and also fix an integer K which determines the number of
levels as defined later. Consider a 2-factor of G (which exists by the Petersen
theorem) and decompose each cycle of the 2-factor into vertex-disjoint paths
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P1, . . . , P` with the number of vertices between g/4K and g/2K (this is
possible since the length of each cycle of the 2-factor is at least g). The
vertices of the paths P1, . . . , P` are considered to be ordered from one end of
the path towards the other; a mate of a vertex v is the neighbor of G not
adjacent to v on the cycle of the 2-factor.

A dominating set D of G will be given by a labeling of vertices of G we
construct. Each vertex of G will be assigned an input label which is one of
the symbols +, ×, • and ◦, and an output label which is one of the symbols
⊕, ⊗ and �. The dominating set D will contain the vertices with input label
+ or output label ⊗ (as well as several others, see the next subsection for an
exhaustive definition). We explain the intuitive meaning of the labels later.

Split the paths P1, . . . , Pk into K sets P1, . . . ,PK including each path to
a single set randomly uniformly and independently of the other paths. The
sets P1, . . . ,PK are referred to as levels and vertices on paths in Pi are said
to be on the level i. First, the vertices contained in paths of P1 are assigned
labels, then those in paths of P2, etc. Let P be a path included in Pi and
assume that the vertices of the paths in P1 ∪ · · · ∪ Pi−1 have already been
labelled. The input label of a vertex of P is:

– the symbol + if its mate is on a path in P1 ∪ · · · ∪ Pi−1 and its output
label is ⊕,

– the symbol × if its mate is on a path in P1 ∪ · · · ∪ Pi−1 and its output
label is ⊗,

– the symbol • if its mate is on a path in P1 ∪ · · · ∪ Pi−1 and its output
label is �,

– the symbol • if its mate is on a path in Pi, and

– the symbol ◦ if its mate is on a path in Pi+1 ∪ · · · ∪ Pk.

The output labels are assigned in blocks using rules. Each rule is a pair of a
sequence of input symbols and the symbol ? which represents a wild-card and
a sequence of output symbols. The lengths of the two sequences will always
be the same. We usually write an arrow between the two sequences, e.g., one
of the rules can be +? → ��. Naturally, the sequence of input symbols and
? is called the left-hand side of the rule and the sequence of output symbols
the right-hand side. Finally, if σ → τ is a rule, we use σi is the i-th symbol
of σ and τi is the i-th symbol of τ . An example of a set of rules is given in
Figure 1.

We look for a rule whose left-hand side matches the input labels of vertices
at the beginning of P . All the considered rule sets will have the property
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+ ? → �� • ◦ ? → �⊗�
× → � ◦ + ? → ���
• + ? → ��� ◦× → ⊕�
•× ? → �⊗� ◦ • ? → �⊗�
• • ? → �⊗� ◦ ◦ ? → �⊗�

Figure 1: An example of a (correct) set of rules.

that such a rule is unique. The right-hand side of the rule then determine the
output labels. We then move after the vertices with output labels assigned
and again look for a rule whose left-hand side matches the input labels of
vertices without output labels. After finding a suitable rule, the next group
of vertices is assigned output labels, we move after them and continue in this
way until we reach the end of the path P . Note that it can happen that
we are left with few vertices without output labels at the end of the path
P—this will be handled in the next subsection.

The meaning of output labels is the following: if a vertex v is labelled
with ⊗, then v should be included to D. If a vertex v is labelled with ⊕, then
its mate should be included to D (this output label can only be assigned to
vertices with input labels ◦, i.e., with mates on higher levels). Finally, if v is
labelled with �, then it is dominated by one of its neighbors on its path or
by its mate on a lower level. The input labels can be interpreted as follows:
the label + represents that v is included to D, the label × represents that its
mate on a lower label is included, the label • represents that neither v nor
its mate has yet not been included to D and the mate is on a lower or the
same level and the label ◦ represents that a mate is on a higher level.

A set of rules is called correct if for every rule σ → τ the following holds:

– if σi is • or ◦ and neither σi−1 nor σi+1 (if they exist) is +, then τi is ⊕
or one of the symbols τi−1, τi and τi+1 is ⊗, and

– if τi is ⊕, then σi is ◦.

Intuitively, if a set of rules is correct, then the set D containing the vertices
with input label + or output label ⊗ is always dominating and the label ⊕
can be only assigned to vertices with mates on higher levels. The set of rules
given in Figure 1 is correct.
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2.2 Analysis and adjustments

In this subsection, we provide further details on the labeling procedure and
analyze it. The first thing to cope with is the fact that a cubic graph need
not to have a 2-factor. This is handled in a way analogous to that used in [8].
For a collection of vertex-disjoint paths, a vertex is covered if it is contained
in one of the paths.

Lemma 2. For every K ≥ 2, g and n-vertex cubic graph G with girth at
least g, there exists a collection of at most 3+8K

2g
n vertex disjoint paths in G

with the number of vertices less than g/2K that covers at least n − O (n/g)
vertices of G. Moreover, all vertices on the paths can be grouped into pairs
of vertices adjacent through an edge not contained in the paths.

Proof. We only sketch the proof as it essentially follows the lines of the argu-
ment in [8]. Let S be a set of vertices of G. The number of odd components
of G \ S with a single edge to S is at most n/g (since each such component
contains a cycle; in fact their number can be bounded by n/2Θ(g), but we do
not need this finer estimate here). Hence, the Tutte-Berge formula implies
that G has a matching M covering all but at most n/g vertices of G. Remove
the vertices not covered by M and the edges of M . In this way, we obtain
a collection of at most 3n/2g paths and cycles, each of them with length at
least g.

We split the cycles into paths with the number of vertices at least g/4K
and less than g/2K. This is clearly possible. Similarly, the paths with at
least g/2K vertices are split. Paths with less than g/2K are preserved and
there is at most 3n/2g such paths. Altogether, the final collection of paths
consists of at most 4Kn/g new paths (as each of them has at least g/4K
vertices) and at most 3n/2g paths of the original collection.

Fix a cubic graph G and a collection of vertex disjoint paths P1, . . . , Pk as
described in Lemma 2. We say that a vertex w is 1-close to another vertex
v if w lies on the same path as the mate of v (in particular, w can be the
mate of v). Note that the relation of being “1-close” is not symmetric. For
i > 1, we say that w is i-close to v if w is 1-close to v or w is (i− 1)-close to
a vertex w′ where w′ is not the mate of v but lies on the same path as the
mate of v. Observe that if w is i-close to v, then the distance between v and
w is less than gi/2K. Because of this, there is no vertex w that is K-close to
two different vertices v and v′ lying on the same path (if such w existed, then
the paths from v and v′ to w witnessing that w is K-close and the subpath
between v and v′ would form a cycle of length less than g). The notion of
being K-close will play a crucial role in our argument that certain events are
independent later in the proof.
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For each path P among P1, . . . , Pk, choose randomly uniformly and inde-
pendently of other paths an integer i, 1 ≤ i ≤ K, and include P in the set Pi.
We now recursively define the probabilities pi(+), pi(×), pi(•) and pi(◦) which
represent probabilities that a vertex of a path in Pi has a certain input label,
the probabilities qi(⊕), qi(⊗) and qi(�) that it has a certain output label
and q◦i (⊕), q◦i (⊗) and q◦i (�) that it has a certain output label conditioned
on input label being equal to ◦. These numbers represent the probabilities
in the “ideal” case, which includes the assumption that all the labels are
“independent” of each other and all the paths in Pi are infinite, and we will
have to argue that they can also be applied to our labeling procedure.

Let us start with estimating the input probabilities. A mate of a vertex
v of a path in Pi is on a path of the lower level or the same level with
probability i/K, thus

pi(◦) = 1 −
i

K
. (1)

Since the mate is on a path of any fixed level with the same probability equal
to 1/K, we also obtain

pi(+) =

i−1
∑

j=1

1

K
q◦j (⊕) (2)

pi(×) =

i−1
∑

j=1

1

K
q◦j (⊗) (3)

pi(•) =
1

K
+

i−1
∑

j=1

1

K
q◦j (�) (4)

Note that if i = 1, then pi(+) = 0, pi(×) = 0 and pi(•) = 1/K.
Once we have determined the probabilities of input labels, we can com-

pute the probabilities of output labels (assuming that all input labels on a
single path are independent of each other). If R is a set of rules and σ → τ
is one of the rules, we use |σ| for the length of σ, |τ | for the length of τ
(which are the same in each individual rule) and στ(x, y) for the number of
symbols y in τ on positions of symbols x in σ (with x = ? or y = ? being the
wild-card), e.g., if σ = ◦ • + and τ = �⊗�, then |σ| = |τ | = 3, στ(?,�) = 2
and στ(◦,�) = 1. If σ is a sequence of input symbols, then pi(σ) denotes
the probality that the sequence σ appears on |σ| consecutive vertices as their
input symbols, i.e.,

pi(σ) =

|σ|
∏

j=1

pi(σj) .
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Finally, ‖R‖ is the maximum length of a rule in R and R is the expansion
of R, the set of rules obtained from R by replacing each rule containing the
wild-card symbol(s) ? with rules for all possible choices of the value of ?, e.g.,
a rule containing two symbols ? is replaced with 16 rules.

The probabilities of output labels of vertices are then given by the fol-
lowing formulas:

qi(⊕) =
∑

σ→τ∈R

pi(σ)

Qi

στ(?,⊕) (5)

qi(⊗) =
∑

σ→τ∈R

pi(σ)

Qi

στ(?,⊗) (6)

qi(�) =
∑

σ→τ∈R

pi(σ)

Qi

στ(?,�) (7)

where
Qi =

∑

σ→τ∈R

|σ|pi(σ) .

Let us derive (5)–(7) formally. Consider a path of length L on level i. Let E
be the expected number of rules of R matched and Eσ the expected number
of times the rule σ → τ is matched. In the analysis that follows, it is
convenient to think of the considered path as a sufficiently long part of an
infinite path which is consistent with our arguments presented later. When
we start matching, the probability that the rule σ → τ is matched is equal
to pi(σ). Hence, the expected number of times Eσ the rule σ → τ is matched
is pi(σ)E. By the linearity of expectations, we also have that

∑

σ→τ∈R

Eσ|σ| = L .

By the definition of Qi, we obtain that E = L/Qi and Eσ = Lpi(σ)/Qi.
Summing over all rules σ → τ ∈ R, we obtain the expected numbers of
output labels of the vertices of a path, e.g., the expected number of the
output label ⊕ is

∑

σ→τ∈R

Lpi(σ)

Qi

στ(?,⊕) .

The obtained quantities after dividing L represent the corresponding proba-
bilities as given in (5)–(7).
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i pi(+) pi(×) pi(•) pi(◦) qi(⊕) qi(⊗) qi(�) q◦i (⊕) q◦i (⊗) q◦i (�)
1 .0000 .0000 .2000 .8000 .0000 .3333 .6667 .0000 .3333 .6667
2 .0000 .0667 .3333 .6000 .0142 .3160 .6698 .0236 .3302 .6462
3 .0047 .1327 .4626 .4000 .0198 .3009 .6793 .0496 .3222 .6282
4 .0146 .1972 .5882 .2000 .0155 .2889 .6956 .0773 .3089 .6138
5 .0301 .2590 .7110 .0000 .0000 .2812 .7187 - - -

Figure 2: The probabilities given by (1)–(10) for the set of rules from Figure 1
and K = 5.

Similarly, the probabilities conditioned on the appearance of the input
symbol ◦ are given by:

q◦i (⊕) =
∑

σ→τ∈R

pi(σ)

Q◦
i

στ(◦,⊕) (8)

q◦i (⊗) =
∑

σ→τ∈R

pi(σ)

Q◦
i

στ(◦,⊗) (9)

q◦i (�) =
∑

σ→τ∈R

pi(σ)

Q◦
i

στ(◦,�) (10)

where
Q◦

i =
∑

σ→τ∈R

στ(◦, ?)pi(σ) .

The just defined quantities for the set of rules given in Figure 1 and K = 5
are given in Figure 2.

In the ideal case, we understand each of the paths in Pi as an infinite
path where the probability that any particular vertex is matched to the first
symbol in one of the rules of R is the same. This probability, denoted as ri,1,
is equal to

∑

σ→τ∈R

pi(σ)

∑

σ→τ∈R

|σ|pi(σ)
=

1

Qi

.

This formula can be derived by considering a path of sufficiently large length
L and dividing the expected number of rules matched (which we computed
earlier) by L. Similarly, we define ri,j to be the probability that a vertex is
matched to the first symbol of a rule in R conditioned that none of the j − 1
previous vertices has been matched to the first symbol of a rule. Clearly,
ri,j = 0 for j > ‖R‖ = ‖R‖. As an example, observe that r1,1 = 1/3,
r1,2 = 1/2 and r1,3 = 1 for the set of rules from Figure 1.
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We now describe the actual procedure used to label the vertices of paths
and give all details to cope with technical difficulties which we omit in Sub-
section 2.1. The paths are labelled from the first level, i.e., we start with
paths in P1, continue with those in P2, etc. In each set Pi, the paths are
labelled in arbitrary order.

Consider a path P from Pi. The input label of a vertex v is determined
as described in Subsection 2.1. Next choose randomly a number `0 between
1 and ‖R‖ whose value is equal to ` with probability ri,`

∏`−1
j=1(1− ri,j). Add

auxiliary ‖R‖ − `0 vertices at the beginning of P and label each of them
with x with probability pi(x) and add auxiliary ‖R‖ vertices at the end
of P and label each of them with x with probability pi(x). Finally, apply
the labeling procedure as described in Subsection 2.1 (starting with the `0

auxiliary vertices) and when finished, discard the `0 +‖R‖ auxiliary vertices.
In this way, all vertices of P are assigned output labels.

Let us analyze the actual probabilities that a vertex in Pi has a certain
input and output labels. We claim that a vertex of a path P of Pi is assigned
an input label x ∈ {+,×, •, ◦} with probability pi(x) and an output label
x ∈ {⊕,⊗,�} with probability qi(x). Moreover, the probability of a vertex
v getting a certain input label depends only on the labels and the levels of
vertices that are i-close to v (and thus the input labels of vertices on P are
mutually independent random variables). Because of the addition of ‖R‖−`0

auxiliary vertices at the beginning of P , where `0 was chosen as described
earlier, each vertex of P has the same probability of being the first, second,
etc., in a rule of R applied to P . Hence, the probability that its output label
is y ∈ {⊕,⊗,�} is equal to qi(y).

We now analyze probabilities of input and output labels. Let v be a
vertex of a path P in Pi. Since the mate v′ of v is on a higher level with
probability 1− i/K, the input label of v is ◦ with probability 1− i/K. With
probability 1/K, the mate v′ is on the same level and the input label of v is
• in this case. With probability (i − 1)/K, the mate v′ is on a lower level
and the input label of v is determined by the output label of v′ in this case;
the probability that the output label of v′ is y ∈ {⊕,⊗,�} is q◦j (y) where
j is the level of v′. As the output label of v′ depends only on the levels
and labels of vertices (i − 1)-close to other vertices on the path of v ′, the
output label of v′ depends only on the vertices i-close to v (and the level of
its mate). Hence, the input label of v depends only on the labels and the
levels of vertices i-close to v. In particular, input labels of all the vertices
of P are mutually independent. Since the probability of v being the first,
second, etc. in a particular rule of R applied to it is the same because of
padding with `0 auxiliary vertices, the probability that the output label of v
is y ∈ {⊕,⊗,�} is equal to qi(y) and the probability that the output label
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is y conditioned by its input label being ◦ is q◦i (y).
Consider a labeling of the vertices of G constructed in the just described

way. The dominating set D for a graph G is formed by the following vertices:

– vertices not covered by the paths in P1 ∪ · · · ∪ Pk,

– vertices with input label +,

– vertices with output label ⊗, and

– the first and the last vertex of each path in P1 ∪ · · · ∪ Pk.

Let us verify that D is a dominating set: a vertex v not covered by the paths
in P1∪· · ·∪Pk is in D. Vertices on paths P1∪· · ·∪Pk with input label different
from + and output label different from ⊗ are dominated either by their mates
or by their neighbors on paths with auxiliary vertices (assuming the set of
rules is correct). However, since the auxiliary vertices were discarded, the
first and the last vertex of each path may not be dominated in this way—this
has been repaired by adding them to D (regardless their labels).

It remains to estimate the expected size of D. The expected size of D
is equal to the sum of the expected number of vertices with output label ⊗
or ⊕ (note that each vertex with input label + has a mate with output label
⊕), the number of vertices not covered by paths (which is at most O(n/g))
and twice the number of paths because of the inclusion of their first and last
vertices to D (this number is also O(n/g)). The probability that a vertex v

has output label ⊕ is q1(⊕)+···+qK(⊕)
K

as the path containing v is included to
any of the K levels with the same probability. Similarly, its output label is
⊗ with probability q1(⊗)+···+qK(⊗)

K
.

We summarize the results presented in this section in the following lemma:

Lemma 3. Let R be a correct set of rules, K ≥ 2 an integer and qi(⊕) and
qi(⊗) quantities determined using (1)–(10). If the procedure described in this
subsection given by the set of rules R and the integer K is applied to any
cubic n-vertex graph with girth at least g, then it produces a dominating set
with expected size equal to

∑K

i=1(qi(⊕) + qi(⊗))

K
n + O

(

n

g

)

.

Note that already the simple set of rules given in Figure 1 for K = 5
yields by Lemma 3 that the domination number of a cubic graph with girth
at least g is at most 0.313972n + O(n/g), an improvement of the bound of
Rautenbach and Reed from [8].
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2.3 Finale

We apply Lemma 3 for a suitable correct set R of rules. This set of 79 rules
can be found in Figure 3; we have generated this set of rules by hand and
checked both ourselves and by computer that R is correct. For K = 10 000,
we have computed the values given in (1)–(10), see Figure 4, and found out
that

∑K

i=1(qi(⊕) + qi(⊗))

K
= 0.299871 .

Lemma 3 now yields Theorem 1.
We have also constructed (with computer assistance) a correct set of 3607

rules such that Lemma 3 applied for K = 1 000 000 yields that every cubic
graph has domination number at most 0.299309 n + O(n/g) but we neither
present nor claim this bound here.
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+ + + ? → ���� ◦ • • • •× → ⊗��⊗��
+ +× → ��� ◦ • • • • • → �⊗��⊗�
+ + • → ��� ◦ • • • • ◦ → �⊗��⊗�
+ + ◦ → ��� ◦ • • • ◦ + ? → ⊕�⊗����
+× → �� ◦ • • • ◦× → ⊗��⊗��
+ • → �� ◦ • • • ◦ • → �⊗��⊗�
+ ◦ → �� ◦ • • • ◦ ◦ → �⊗��⊗�
× → � ◦ • • ◦ + ? → �⊗����
•× + ? → �⊗�� ◦ • • ◦× → ⊕�⊗��
•×× → �⊗� ◦ • • ◦ • + ? → ⊕�⊗����
•× • → �⊗� ◦ • • ◦ •× → ⊗��⊗��
•× ◦ → �⊗� ◦ • • ◦ • • → �⊗��⊗�
• • + ? → �⊗�� ◦ • • ◦ • ◦ → �⊗��⊗�
• •× → �⊗� ◦ • • ◦ ◦ + ? → ⊕�⊗����
• • • → �⊗� ◦ • • ◦ ◦× → ⊗��⊗��
• • ◦ → �⊗� ◦ • • ◦ ◦ • → �⊗��⊗�
• ◦ + ? → �⊗�� ◦ • • ◦ ◦ ◦ → �⊗��⊗�
• ◦× → �⊗� ◦ • ◦ + ? → ⊗����
• ◦ • → �⊗� ◦ • ◦× → �⊗��
• ◦ ◦ → �⊗� ◦ • ◦ • + ? → �⊗����
• + + ? → ���� ◦ • ◦ •× → ⊕�⊗��
• +× → ��� ◦ • ◦ • • + ? → ⊕�⊗����
• + • → ��� ◦ • ◦ • •× → ⊗��⊗��
• + ◦ → ��� ◦ • ◦ • • • → �⊗��⊗�
◦× → ⊕� ◦ • ◦ • • ◦ → �⊗��⊗�
◦ + + ? → ���� ◦ • ◦ • ◦ + ? → ⊕�⊗����
◦ +× → ��� ◦ • ◦ • ◦× → ⊗��⊗��
◦ + • → ��� ◦ • ◦ • ◦ • → �⊗��⊗�
◦ + ◦ → ��� ◦ • ◦ • ◦ ◦ → �⊗��⊗�
◦ ◦ + ? → ⊕��� ◦ • ◦ ◦ + ? → �⊗����
◦ ◦× → ⊕⊕� ◦ • ◦ ◦× → ⊕�⊗��
◦ ◦ • → �⊗� ◦ • ◦ ◦ • + ? → ⊕�⊗����
◦ ◦ ◦ → �⊗� ◦ • ◦ ◦ •× → ⊗��⊗��
◦ • + ? → ⊕��� ◦ • ◦ ◦ • • → �⊗��⊗�
◦ •× → ⊗�� ◦ • ◦ ◦ • ◦ → �⊗��⊗�
◦ • • + ? → ⊗���� ◦ • ◦ ◦ ◦ + ? → ⊕�⊗����
◦ • •× → �⊗�� ◦ • ◦ ◦ ◦× → ⊗��⊗��
◦ • • • + ? → �⊗���� ◦ • ◦ ◦ ◦ • → �⊗��⊗�
◦ • • •× → ⊕�⊗�� ◦ • ◦ ◦ ◦ ◦ → �⊗��⊗�
◦ • • • • + ? → ⊕�⊗����

Figure 3: The set of 79 rules used in the proof of Theorem 1.12



i pi(+) pi(×) pi(•) pi(◦) qi(⊕) qi(⊗) qi(�) q◦i (⊕) q◦i (⊗) q◦i (�)
1 .0000 .0000 .0001 .9999 .0000 .3333 .6667 .0000 .3333 .6667
2 .0000 .0033 .0002 .9998 .0000 .3333 .6667 .0000 .3333 .6666
...

...
...

...
...

...
...

...
...

...
...

2 500 .0094 .0808 .1598 .7500 .0542 .2853 .6605 .0723 .3165 .6112
...

...
...

...
...

...
...

...
...

...
...

5 000 .0352 .1593 .3055 .5000 .0661 .2480 .6859 .1322 .3131 .5547
...

...
...

...
...

...
...

...
...

...
...

7 500 .0744 .2382 .4373 .2500 .0447 .2223 .7329 .1790 .3207 .5003
...

...
...

...
...

...
...

...
...

...
...

9 999 .1222 .3211 .5566 .0001 .0000 .2106 .7894 .1967 .3465 .4568
10 000 .1222 .3211 .5566 .0000 .0000 .2106 .7894 - - -

Figure 4: The numerical values of probabilities given by (1)–(10) for the set
of rules from Figure 3 and K = 10 000.
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