
THE EXTREMAL FUNCTION FOR PARTIAL

BIPARTITE TILINGSCODRUT� GROSU AND JAN HLADK�YAbstra
t. For a �xed bipartite graph H and given � 2 (0; 1)we determine the threshold TH(�) whi
h guarantees that any n-vertex graph with at least TH(�)�n2� edges 
ontains (1�o(1)) �v(H)nvertex-disjoint 
opies of H.1. Introdu
tionThe Tur�an Theorem [12℄, the single most important result in Ex-tremal Graph Theory, gives a sharp threshold, denoted ex(n;Kr), forthe maximum number of edges of an n-vertex graph with no 
opy ofKr. Even though the Tur�an Theorem applies to any pair of valuesn and r, the interesting instan
es are rather those when n is large
ompared to r. Erd}os and Stone [2℄ extended the result by deter-mining the asymptoti
 behaviour of the fun
tion ex(n;H) for a �xednon-bipartite graph H. The same problem in the 
ase that H is a�xed bipartite graph is | despite 
onsiderable e�ort | wide openfor most graphs H. Let us re
all that when H has 
olour 
lasses ofsizes s and t, s � t, then the K�ovari-S�os-Tur�an Theorem [8℄ assertsthat ex(n;H) � O(n2�1=s) = o(n2) : (1)On the other hand, a standard random graph argument gives thatex(n;Ks;t) � 
(n2�(s+t�2)=(st�1)).It is natural to extend the above existential questions to tilingquestions. In su
h a setting one asks for the maximum number ofedges of an n-vertex graph whi
h does not 
ontain ` vertex-disjoint
opies of a graph H. This quantity denotes ex(n; `�H). Erd}os andGallai [3℄ gave a 
omplete solution to the problem in the 
ase whenH = K2.Most of the work was done while JH was aÆliated with TU Muni
h. JH wouldlike to thank the group of Anus
h Taraz for ni
e environment. JH was partiallysupported by Grant Agen
y of Charles University, grant GAUK 202-10/258009,and by BAYHOST. 1



2 CODRUT� GROSU AND JAN HLADK�Y
Theorem 1 (Erd}os-Gallai, 1959). Suppose that ` � n=2. Thenex(n; `�K2) = max((`� 1)(n� `+ 1) +  `� 12 !; 2`� 12 !) :Given n; x 2 N, x � n, we de�ne the graph Mn;x as an n-vertexgraph whose vertex set is split into sets A and B, jAj = x; jBj = n�x,A indu
es a 
lique, B indu
es an independent set, and Mn;x[A;B℄ 'Kx;n�x. The graph Ln;x is an n-vertex graph whose edges indu
e a
lique of order x. Obviously, e(Mn;`�1) = (`� 1)(n� `+ 1) + �`�12 �,and e(Ln;2`�1) = �2`�12 �. Moreover, it is easy to 
he
k that there arenot ` disjoint edges in either of the graphsMn;`�1, Ln;2`�1. Therefore,when ` < 25n�O(1), the graph Mn;`�1 is (the unique) graph showingthat ex(n; `�K2) � (`� 1)(n� `+ 1) + �`�12 �. The graph Ln;2`�1 isthe unique extremal graph for the problem otherwise.Moon [10℄ started the investigation of ex(n; `�Kr). Allen, B�ott
her,Hladk�y, and Piguet [1℄ only re
ently determined the behaviour ofex(n; ` � Kr) for the whole range of ` in the 
ase r = 3, and theymade a substantial progress for larger values of r. Simonovits [11℄determined the value ex(n; `�H) for a non-bipartite graph H, �xedvalue of ` and large n.Another density parameter whi
h 
an be 
onsidered in the 
ontextof tiling questions is the minimum degree of the host graph. That is,we ask what is the largest possible minimum degree of an n-vertexgraph whi
h does not 
ontain ` vertex-disjoint 
opies of H. In the
ase H = Kr the pre
ise answer is given by the Hajnal-Szemer�ediTheorem [4℄. An asymptoti
 threshold for a general �xed graph Hwas determined by Koml�os [5℄.In the present paper we determine asymptoti
 behaviour of thefun
tion ex(n; `�H) for a �xed bipartite graph. LetH be an arbitrarybipartite graph. Suppose that b : V (H)! [2℄ is a proper 
oloring ofH whi
h minimizes jb�1(1)j. We de�ne quantities s(H) := jb�1(1)j,t(H) := jb�1(2)j. Obviously, s(H) � t(H), and s(H) + t(H) = v(H).Further, de�ne V1(H) := b�1(1) and V2(H) := b�1(2). The sets V1(H)and V2(H) are uniquely de�ned provided that H does not 
ontain abalan
ed bipartite graph as its 
omponent; this will always be the
ase in the rest of the paper.Given s; t 2 N, we de�ne a fun
tion Ts;t : (0; 1)! (0; 1) by settingTs;t(�) := max( 2s�s+ t  1� s�2(s+ t)! ; �2) ; (2)



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 3for � 2 (0; 1). Note that Ts0;t0 = Ts;t when s0 = ks and t0 = kt. Also,note that Ts;s(�) n2! = ex�n; �n2 �K2�+ o(n2) : (3)Our main result is the following.
Theorem 2. Suppose that H is a bipartite graph with no isolatedverti
es, s := s(H); t := t(H). Let � 2 (0; 1) and " > 0. Then thereexists an n0 = n0(s; t; �; ") su
h that for any n � n0, any graph Gwith n verti
es and at least Ts;t(�)�n2� edges 
ontains more than(1� ") �s+tn vertex-disjoint 
opies of the graph H.Thus Theorem 2 asserts that ex(n; �n � H) � Ts(H);t(H)(�(s +t))�n2� + "n2 for any bipartite graph H with no isolated verti
es," > 0 and large n. This asymptoti
ally mat
hes the lower boundwhi
h 
omes | as in Theorem 1 | from graphs Mn;�s(H)n�1 andLn;�(s(H)+t(H))n�1. Note however that for most values of ` the graphsMn;�s(H)n�1 and Ln;�(s(H)+t(H))n�1 are not extremal for the problem.For example, we 
an repla
e the independent set in the graphLn;�(s(H)+t(H))n�1by any H-free graph. This suggests that a pre
ise result is not withinthe rea
h of 
urrent te
hniques.The assumption on H to 
ontain no isolated verti
es in Theorem 2is made just for the sake of 
ompa
tness of the statement. Indeed, letH 0 be obtained from H by removing all the isolated verti
es. Thenthere is a very simple relation of the sizes of optimal 
overings byvertex disjoint 
opies of H and H 0 in an n-vertex graph G. Let xand x0 be the number of verti
es 
overed by a maximum family ofvertex-disjoint 
opies of H and of H 0 in G, respe
tively. We havethat x = min(v(H) $ nv(H)% ; x0v(H)v(H 0) ) :Our proof of Theorem 2 borrows ideas from [5℄.If F is a family of graphs, and G is a graph, an F-tiling in Gis a set of vertex-disjoint subgraphs of G, ea
h of them isomorphi
to a graph in F . If F = fHg then we simply say H-tiling. V (F )denotes the verti
es of G 
overed by an F -tiling F , and jF j = jV (F )jis the size of the tiling F . For n 2 N, we write [n℄ to denote the setf1; 2; : : : ; ng.



4 CODRUT� GROSU AND JAN HLADK�Y2. Tools for the proof of the main resultOur main tool is Szemer�edi's regularity lemma (see [7, 9℄ for sur-veys). To state it we need some more notation.Let G = (V;E) be an n-vertex graph. If A;B are disjoint nonemptysubsets of V (G), the density of the pair (A;B) is d(A;B) = e(A;B)=(jAjjBj). We say that (A;B) is an "-regular pair if jd(X; Y ) �d(A;B)j < " for every X � A; jXj > "jAj and Y � B; jY j > "jBj.The following statement asserts that large subgraphs of regularpairs are also regular.
Lemma 3. Let (A;B) be an "-regular pair with density d, and letA0 � A; jA0j � �jAj; B0 � B; jB0j � �jBj, � � ". Then (A0; B0) is an"0-regular pair with "0 = maxf"=�; 2"g, and for its density d0 wehave jd0 � dj < ".Let " > 0 and d 2 [0; 1℄. An ("; d)-regular partition of G withredu
ed graph R = (V 0; E 0) is a partition V0 _[V1 _[ : : : _[Vk of V withjV0j � "n, jVij = jVjj for any 1 � i < j � k, V (R) = fV1; V2; : : : ; Vkg,su
h that (Vi; Vj) is an "-regular pair in G of density greater thand whenever ViVj 2 E(R), and the subgraph G0 � G indu
ed bythe "-regular pairs 
orresponding to the edges of R has more thane(G) � (d + 3")n2=2 edges. In this 
ase, we also say that G has an("; d)-redu
ed graph R, and 
all the sets Vi; 1 � i � k, the 
lustersof G.The following lemma is a 
onsequen
e of the so-
alled degree ver-sion of the Regularity Lemma [7, Theorem 1.10℄.
Lemma 4 (Regularity lemma). For every " > 0 and m 2 N thereis an M = M(";m) su
h that, if G is any graph with more thanM verti
es and d 2 [0; 1℄ is any real number, then G has an ("; d)-redu
ed graph R on k verti
es, with m � k �M .Given four positive numbers a; b; x; y we say that the pair a; b dom-inates the pair x; y, if maxfx; yg=minfx; yg � maxfa; bg=minfa; bg.The following easy lemma states that Ka;b has an almost perfe
t Ks;t-tiling provided that a; b dominates s; t.
Lemma 5. For any s; t 2 N there exists a 
onstant C su
h thatthe following holds. Suppose that the pair a; b 2 N dominates s; t.Then the graph Ka;b 
ontains a Ks;t-tiling 
ontaining all but atmost C verti
es of Ka;b.Proof. If s = t then ne
essarily a = b. There obviously exists aKs;t-tiling 
ontaining all but at most C := 2(s� 1) verti
es of Ka;b.



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 5With no loss of generality, we may suppose that a � b and s < t.Then as � bt and bs � at. A tiling with b(bt � as)=(t2 � s2)
 
opiesof Ks;t with the s-part of the Ks;t pla
ed in the a-part of the Ka;band b(at� bs)=(t2 � s2)
 
opies pla
ed the other way misses at mostC := 2(s+ t� 1) verti
es of Ka;b. �The next lemmas, versions of the Blow-up Lemma [6℄, assert thatregular pairs have almost as good tiling properties as 
omplete bipar-tite graphs.
Lemma 6. For every d > 0; 
 2 (0; 1) and any two graphs R andH, there is an " = "(H; d; 
) > 0 su
h that the following holdsfor all positive integers s. Let Rs be the graph obtained from Rby repla
ing every vertex of R by s verti
es, and every edge of Rby a 
omplete bipartite graph between the 
orresponding s-sets.Let G be the graph obtained similarly from R by repla
ing theedges with "-regular pairs of density at least d. If Rs 
ontains anH-tiling of size at least 
v(Rs) then so does G.
Lemma 7. For every bipartite graph H and every 
; d > 0 thereexists an " = "(H; d; 
) > 0 su
h that the following holds. Supposethat there is an H-tiling in Ka;b of size x. Let (A;B) be an arbi-trary "-regular pair with density at least d, jAj = a, jBj = b. Thenthe pair (A;B) 
ontains an H-tiling of size at least x� 
(a+ b).Finally, let us state a straightforward 
orollary of the K�onig Mat
h-ing Theorem.
Fact 8. Let G = (A _[B;E) be a bipartite graph with 
olor 
lassesA and B. If G has no mat
hing with l + 1 edges, then e(G) �lmaxfjAj; jBjg. 3. The proofIn this se
tion, we �rst state and prove the main te
hni
al result,Lemma 9. Then, we show how it implies Theorem 2.For s; t 2 N, we set F1 := fKs;t; Ks;t�1, K2g and F2 := fKst;t2,Kst�1;(t�1)t, Kst;(t�1)t; K2g. Let us note that when s < t, the sizes ofthe two 
olor 
lasses of any graph from F� := F1 [ F2 dominate sand t.Suppose that F is an Ks;t-tiling in a graph G, s < t. We saythat a pair of mat
hings E0; E1 � E(G) is an F -augmentation ifE0 � EG[V (G)�V (F ); V1(F )℄, E1 � EG[V2(F )℄ and ea
h 
opy of Ks;tin F 
ontains at most one vertex mat
hed by E0 and at most onevertex mat
hed by E1. Moreover, we require that if K 2 F 
ontains



6 CODRUT� GROSU AND JAN HLADK�Ya vertex mat
hed by E0, then it also 
ontains a vertex mat
hed byE1.The main step in our proof of Theorem 2 is the following lemma.
Lemma 9. Let t > s � 1; � 2 (0; 1) and " > 0. Suppose G is ann-vertex graph with n � h(s; t; �; ") and e(G) � Ts;t(�)�n2�, and Fis a maximum Ks;t-tiling in G with jF j � (1 � ")�n. Then thereexists an "0 = "0(s; t; �; ") > 0 su
h that one of the following istrue:(i) there exists an F1-tiling F 0 in G with jF 0j � jF j+ "0n, or(ii) there exists an F -augmentation E0, E1 su
h that E0 
on-tains at least "0n edges.Proof. Set "0 := 14 min( "�23t+ 1 ; "s�(3t+ 1)(s+ t)) ;and let h(s; t; �; ") be suÆ
iently large.Suppose for a 
ontradi
tion that the assertions of the lemma arenot true.Set L := V (G) � V (F ) and m := jLj. Let C := fV1(K) : K 2Fg;D := fV2(K) : K 2 Fg and C := S C; D := SD. We 
all membersof C lilliputs while members of D are giants. We say that giant V2(K)(K 2 F ) is 
oupled with lilliput V1(K).As F is a maximum Ks;t-tiling in G, by (1) we have thate(G[L℄) = o(n2) : (4)Let r be the number of 
opies of Ks;t in F . Then r � (1�")�n=(s+t). Moreover, we have m = n� (s+ t)r : (5)Let us de�ne an auxiliary graph H = (V 0; E 0) as follows. Thevertex-set of H is V 0 := C [ D [ L. For any x 2 L and K 2 Fthe edge xV1(K) belongs to E 0 i� NG(x) \ V1(K) 6= ;. Similarly,the edge xV2(K) belongs to E 0 i� NG(x) \ V2(K) 6= ;. Finally,for any distin
t K;K 0 2 F the edge V2(K)V2(K 0) belongs to E 0 i�EG(V2(K); V2(K 0)) 6= ;. The verti
es L and the verti
es C indu
e twoindependent sets in H.As (i) does not hold, H[L;D℄ does not 
ontain a mat
hing with atleast "0n edges. It follows from Fa
t 8 thateG(L;D) � "0ntmaxfm; rg : (6)



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 7LetM be a maximummat
hing in H[L; C℄ with l edges. Obviously,l � r. By Fa
t 8, we have thateG(L;C) � lsmaxfm; rg : (7)Let C 0 � C be the lilliputs mat
hed by M . We write D0 � D for thegiants 
oupled with C 0. Set D0 = SD0.Suppose for a moment that H[D0℄[H[D0;D�D0℄ 
ontains a mat
h-ing T with at least "0n edges. Let D00 be the giants mat
hed by Tand M 0 the set of edges in M mat
hing the lilliputs 
oupled with D00.Then M 0 and T give rise to an F -augmentation E0, E1 in G withjE0j = jM 0j � jT j � "0n, 
ontradi
ting our assumption that (ii) doesnot hold.So H[D0℄[H[D0;D�D0℄ does not 
ontain a mat
hing with at least"0n edges. Applying Theorem 1 and passing to the graph G, we gete(G[D0℄ [G[D0; D �D0℄) � t2ex(r; "0n) + r t2! � 2t2"0nr + r t2! :Therefore,e(G[C [D℄) == e(G[D0℄ [G[D0; D �D0℄) + e(G[D �D0℄) + e(G[C℄) + eG(C;D)� 2t2"0nr + r t2!+  r � l2 !t2 +  rs2 !+ r2st (8)Summing up the bounds (4), (6), (7), and (8) we gete(G) = e(G[L℄) + eG(L;D) + eG(L;C) + e(G[C [D℄)� o(n2) + t"0n2 + lsmaxfm; rg+ 2"0nrt2+ r t2!+  r � l2 !t2 + r2st+  rs2 !(5)� o(n2) + 3t"0n2 + r t2!+ r2st+  rs2 !+max( r2!t2; rs(n� (s+ t)r))< max( (s+ t)r2 !; rs2 !+ rs(n� rs))+ (3t+ 1)"0n2< Ts;t(�) n2! ;a 
ontradi
tion. �



8 CODRUT� GROSU AND JAN HLADK�YSuppose G = (V;E) is a graph and r 2 N. The r-expansion of Gis the graph G0 = (V 0; E 0) de�ned as follows. The vertex set of G0is V � [r℄. For a; b 2 [r℄, an edge ((u; a); (v; b)) belongs to E 0 i� uvbelongs to E. Note that there is a natural proje
tion �G0 : V 0 ! Vthat maps every vertex (u; a) from G0 to the vertex u in G. We areinterested in the following property of r-expansions. Suppose thatK is a 
opy of any graph from F� in G. Then ��1G0 (V (K)) 
ontainsa 
omplete bipartite graph B with 
olor 
lasses of sizes s(K)r andt(K)r. By Lemma 5 we 
an tile B almost perfe
tly with 
opies ofKs;t. If F is an F�-tiling in G, we 
an apply the above operation onea
h member K 2 F and obtain a new tiling F 0 | whi
h we 
allretiling | in the graph G0.We are now ready to prove Theorem 2.Proof of Theorem 2. Note that it suÆ
es to prove the theorem forH ' Ks;t.We �rst deal with the parti
ular 
ase t = s. Set �0 := (1� "=4)�.Let "1 := 115(Ts;t(�) � Ts;t(�0)), and "2 be given by Lemma 7 forinput parameters H, d := "1 and 
 := �"=8. Suppose that k0 issuÆ
iently large. Let M be the bound from Lemma 4 for pre
ision"R := minf"1; "2g and minimal number of 
lusters k0. Let C be givenby Lemma 5 for the input parameters s; t. Fix n0 � MC. Supposethat G is an n-vertex graph, n � n0, with at least Ts;t(�)�n2� edges.We apply Lemma 4 on G to obtain an ("R; d)-redu
ed graph R withk 
lusters, k0 � k �M . We have thate(R) � (Ts;t(�)� d� 3"1) k2!= (Ts;t(�0) + 14(Ts;t(�)� (Ts;t(�0))) k2! (3)> ex k; �0k2 �K2! :Therefore, R 
ontains at least �0k2 independent edges. These edges
orrespond to regular pairs in G whi
h 
an be tiled almost perfe
tlywith 
opies of Ks;t, by means of Lemma 5 and Lemma 7. Elementary
al
ulations give that in this way we get a tiling of size at least (1�")�n.Consequently we may suppose that t > s. We �rst de�ne a handfulof parameters. Set�0 := 6� 4"6� 3"�; 
 := (1� "=2)�0; d := 25(Ts;t(�)� Ts;t(�0)) :Note that 
 = (1� 2"=3)�.



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 9Let "R be given by Lemma 6 for input graph Ks;t, density d=2 andapproximation parameter 
. We may suppose that "R is suÆ
ientlysmall su
h that 
(1� "R) > (1� ")� and "R < d=2. Let C be givenby Lemma 5 for input s; t. Further, let "0 and h be given by Lemma 9for input parameters �0 and "=4. Setp := t2 �4C"0 � ; q := �2t"0 �Let M be the upper bound on the number of 
lusters given byLemma 4 for input parameters h (for the minimal number of 
lusters)and "Rp�q=2 (for the pre
ision). Let n0 > Mpq be suÆ
iently large.Suppose now that G is a graph with n > n0 verti
es and at leastTs;t(�)�n2� edges. We �rst apply Lemma 4 to G with parameters"Rp�q=2 and h. In this way we obtain an ("Rp�q=2; d)-redu
ed graphR with at least h verti
es.Let us now de�ne a sequen
e of graphs R(i) by setting R(0) = Rand letting R(i) be the p-expansion of R(i�1); i = 1; 2; : : : ; q. Note thate(R(i)) � Ts;t(�0)�v(R(i))2 � for every i 2 f0; 1; : : : ; qg.Let F (i) be a maximum Ks;t-tiling in R(i) for i = 0; 1; : : : ; q. We
laim that jF (i)j � min(i"0v(R(i))2t ;�1� "2��0v(R(i))) : (9)To this end it suÆ
es to show that for any i � 1,(C1) if jF i�1j > (1 � "=4)�0v(R(i�1)), then jF (i)jv(R(i)) � jF (i�1)jv(R(i�1)) � "�04 ,and(C2) if jF i�1j � (1� "=4)�0v(R(i�1)), then jF (i)jv(R(i)) � jF (i�1)jv(R(i�1)) + "02t .In the 
ase (C1), the retiling of F (i�1) in R(i) has size at least(1� "=2)�0v(R(i)), thus proving the statement.Consequently we may suppose that we are in 
ase (C2). ApplyLemma 9 to the graph R(i�1) and the tiling F (i�1), with parameters�0 and "=4.Suppose �rst that assertion (i) of the lemma holds. Then R(i�1)
ontains an F1-tiling F with jF jv(R(i�1)) � jF (i�1)jv(R(i�1))+"0. By retiling F , weget a Ks;t-tiling in R(i) with size at least jF j(p�C) > i"0v(R(i))=(2t),thus proving the statement.Suppose now that assertion (ii) of Lemma 9 is true. Then R(i�1)
ontains an F (i�1)-augmentation E0, E1 with jE0j � "0v(R(i�1)). Letr = p=t. We shall denote by T the t-expansion of R(i�1) and by T 0the r-expansion of T . Note that T 0 is isomorphi
 to R(i).



10 CODRUT� GROSU AND JAN HLADK�YLet us build an F2-tiling in T in the following way.For every edge e = (u; v) 2 E0 with u 2 V (F (i�1)) we 
hoose anedge e0 = (u0; v0) in T with �T (u0) = u and �T (v0) = v . We shalldenote by we the vertex u0 
orresponding to u.For every edge e = (u; v) 2 E1 we 
hoose a set Se of t independentedges in ��1T (e).For every K 2 F (i�1) we shall also 
hoose a subgraph K 0 of T . Wedistinguish the following 
ases. If K has no vertex mat
hed by E0or E1, then we let K 0 := T [��1T (K)℄. If K has a vertex u mat
hedby E1 but no vertex mat
hed by E0, we let K 0 := T [��1T (K � u)℄.Then K 0 ' Kst;(t�1)t. Finally, if K has a vertex u mat
hed by anedge e 2 E0 and a vertex v mat
hed by an edge in E1, we let K 0 :=T [��1T (K � v)℄� we. Note that in this last 
ase K 0 ' Kst�1;(t�1)t.It is easy to see thatF := fe0 : e 2 E0g [ fK 0 : K 2 F (i�1)g [ 0� [e2E1 Se1Ais an F2-tiling in T . Moreover, we have that jF jv(T ) � jF (i�1)jv(R(i�1)) + "0t . Sothe retiling of F in T 0 has size at least jF j(r � C) � i"0v(R(i))=(2t).This proves (C2) and also (9).Using Lemma 3, we may subdivide every 
luster 
orrespondingto a vertex of R into pq equal-sized parts, by dis
arding some ver-ti
es if ne
essary. This gives us an ("R; d=2)-redu
ed graph R0. By
onstru
tion R0 ' R(q). By (9), there is a Ks;t-tiling F in R0 withsize at least (1 � "=2)�0v(R0). Let G0 be the subgraph of G in-du
ed by the 
lusters 
orresponding to the verti
es of R0. By ap-plying Lemma 6 to R0, we see that G0 has a Ks;t-tiling of size at least
v(G0) � 
(1� "R)v(G) > (1� ")�v(G), and so does G.This �nishes the proof of Theorem 2. �Referen
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ript.2. P. Erd}os and A. H. Stone, On the stru
ture of linear graphs, Bulletin of theAmeri
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ir
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onje
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