
THE EXTREMAL FUNCTION FOR PARTIAL

BIPARTITE TILINGSCODRUT� GROSU AND JAN HLADK�YAbstrat. For a �xed bipartite graph H and given � 2 (0; 1)we determine the threshold TH(�) whih guarantees that any n-vertex graph with at least TH(�)�n2� edges ontains (1�o(1)) �v(H)nvertex-disjoint opies of H.1. IntrodutionThe Tur�an Theorem [12℄, the single most important result in Ex-tremal Graph Theory, gives a sharp threshold, denoted ex(n;Kr), forthe maximum number of edges of an n-vertex graph with no opy ofKr. Even though the Tur�an Theorem applies to any pair of valuesn and r, the interesting instanes are rather those when n is largeompared to r. Erd}os and Stone [2℄ extended the result by deter-mining the asymptoti behaviour of the funtion ex(n;H) for a �xednon-bipartite graph H. The same problem in the ase that H is a�xed bipartite graph is | despite onsiderable e�ort | wide openfor most graphs H. Let us reall that when H has olour lasses ofsizes s and t, s � t, then the K�ovari-S�os-Tur�an Theorem [8℄ assertsthat ex(n;H) � O(n2�1=s) = o(n2) : (1)On the other hand, a standard random graph argument gives thatex(n;Ks;t) � 
(n2�(s+t�2)=(st�1)).It is natural to extend the above existential questions to tilingquestions. In suh a setting one asks for the maximum number ofedges of an n-vertex graph whih does not ontain ` vertex-disjointopies of a graph H. This quantity denotes ex(n; `�H). Erd}os andGallai [3℄ gave a omplete solution to the problem in the ase whenH = K2.Most of the work was done while JH was aÆliated with TU Munih. JH wouldlike to thank the group of Anush Taraz for nie environment. JH was partiallysupported by Grant Ageny of Charles University, grant GAUK 202-10/258009,and by BAYHOST. 1



2 CODRUT� GROSU AND JAN HLADK�Y
Theorem 1 (Erd}os-Gallai, 1959). Suppose that ` � n=2. Thenex(n; `�K2) = max((`� 1)(n� `+ 1) +  `� 12 !; 2`� 12 !) :Given n; x 2 N, x � n, we de�ne the graph Mn;x as an n-vertexgraph whose vertex set is split into sets A and B, jAj = x; jBj = n�x,A indues a lique, B indues an independent set, and Mn;x[A;B℄ 'Kx;n�x. The graph Ln;x is an n-vertex graph whose edges indue alique of order x. Obviously, e(Mn;`�1) = (`� 1)(n� `+ 1) + �`�12 �,and e(Ln;2`�1) = �2`�12 �. Moreover, it is easy to hek that there arenot ` disjoint edges in either of the graphsMn;`�1, Ln;2`�1. Therefore,when ` < 25n�O(1), the graph Mn;`�1 is (the unique) graph showingthat ex(n; `�K2) � (`� 1)(n� `+ 1) + �`�12 �. The graph Ln;2`�1 isthe unique extremal graph for the problem otherwise.Moon [10℄ started the investigation of ex(n; `�Kr). Allen, B�otther,Hladk�y, and Piguet [1℄ only reently determined the behaviour ofex(n; ` � Kr) for the whole range of ` in the ase r = 3, and theymade a substantial progress for larger values of r. Simonovits [11℄determined the value ex(n; `�H) for a non-bipartite graph H, �xedvalue of ` and large n.Another density parameter whih an be onsidered in the ontextof tiling questions is the minimum degree of the host graph. That is,we ask what is the largest possible minimum degree of an n-vertexgraph whih does not ontain ` vertex-disjoint opies of H. In thease H = Kr the preise answer is given by the Hajnal-Szemer�ediTheorem [4℄. An asymptoti threshold for a general �xed graph Hwas determined by Koml�os [5℄.In the present paper we determine asymptoti behaviour of thefuntion ex(n; `�H) for a �xed bipartite graph. LetH be an arbitrarybipartite graph. Suppose that b : V (H)! [2℄ is a proper oloring ofH whih minimizes jb�1(1)j. We de�ne quantities s(H) := jb�1(1)j,t(H) := jb�1(2)j. Obviously, s(H) � t(H), and s(H) + t(H) = v(H).Further, de�ne V1(H) := b�1(1) and V2(H) := b�1(2). The sets V1(H)and V2(H) are uniquely de�ned provided that H does not ontain abalaned bipartite graph as its omponent; this will always be thease in the rest of the paper.Given s; t 2 N, we de�ne a funtion Ts;t : (0; 1)! (0; 1) by settingTs;t(�) := max( 2s�s+ t  1� s�2(s+ t)! ; �2) ; (2)



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 3for � 2 (0; 1). Note that Ts0;t0 = Ts;t when s0 = ks and t0 = kt. Also,note that Ts;s(�) n2! = ex�n; �n2 �K2�+ o(n2) : (3)Our main result is the following.
Theorem 2. Suppose that H is a bipartite graph with no isolatedverties, s := s(H); t := t(H). Let � 2 (0; 1) and " > 0. Then thereexists an n0 = n0(s; t; �; ") suh that for any n � n0, any graph Gwith n verties and at least Ts;t(�)�n2� edges ontains more than(1� ") �s+tn vertex-disjoint opies of the graph H.Thus Theorem 2 asserts that ex(n; �n � H) � Ts(H);t(H)(�(s +t))�n2� + "n2 for any bipartite graph H with no isolated verties," > 0 and large n. This asymptotially mathes the lower boundwhih omes | as in Theorem 1 | from graphs Mn;�s(H)n�1 andLn;�(s(H)+t(H))n�1. Note however that for most values of ` the graphsMn;�s(H)n�1 and Ln;�(s(H)+t(H))n�1 are not extremal for the problem.For example, we an replae the independent set in the graphLn;�(s(H)+t(H))n�1by any H-free graph. This suggests that a preise result is not withinthe reah of urrent tehniques.The assumption on H to ontain no isolated verties in Theorem 2is made just for the sake of ompatness of the statement. Indeed, letH 0 be obtained from H by removing all the isolated verties. Thenthere is a very simple relation of the sizes of optimal overings byvertex disjoint opies of H and H 0 in an n-vertex graph G. Let xand x0 be the number of verties overed by a maximum family ofvertex-disjoint opies of H and of H 0 in G, respetively. We havethat x = min(v(H) $ nv(H)% ; x0v(H)v(H 0) ) :Our proof of Theorem 2 borrows ideas from [5℄.If F is a family of graphs, and G is a graph, an F-tiling in Gis a set of vertex-disjoint subgraphs of G, eah of them isomorphito a graph in F . If F = fHg then we simply say H-tiling. V (F )denotes the verties of G overed by an F -tiling F , and jF j = jV (F )jis the size of the tiling F . For n 2 N, we write [n℄ to denote the setf1; 2; : : : ; ng.



4 CODRUT� GROSU AND JAN HLADK�Y2. Tools for the proof of the main resultOur main tool is Szemer�edi's regularity lemma (see [7, 9℄ for sur-veys). To state it we need some more notation.Let G = (V;E) be an n-vertex graph. If A;B are disjoint nonemptysubsets of V (G), the density of the pair (A;B) is d(A;B) = e(A;B)=(jAjjBj). We say that (A;B) is an "-regular pair if jd(X; Y ) �d(A;B)j < " for every X � A; jXj > "jAj and Y � B; jY j > "jBj.The following statement asserts that large subgraphs of regularpairs are also regular.
Lemma 3. Let (A;B) be an "-regular pair with density d, and letA0 � A; jA0j � �jAj; B0 � B; jB0j � �jBj, � � ". Then (A0; B0) is an"0-regular pair with "0 = maxf"=�; 2"g, and for its density d0 wehave jd0 � dj < ".Let " > 0 and d 2 [0; 1℄. An ("; d)-regular partition of G withredued graph R = (V 0; E 0) is a partition V0 _[V1 _[ : : : _[Vk of V withjV0j � "n, jVij = jVjj for any 1 � i < j � k, V (R) = fV1; V2; : : : ; Vkg,suh that (Vi; Vj) is an "-regular pair in G of density greater thand whenever ViVj 2 E(R), and the subgraph G0 � G indued bythe "-regular pairs orresponding to the edges of R has more thane(G) � (d + 3")n2=2 edges. In this ase, we also say that G has an("; d)-redued graph R, and all the sets Vi; 1 � i � k, the lustersof G.The following lemma is a onsequene of the so-alled degree ver-sion of the Regularity Lemma [7, Theorem 1.10℄.
Lemma 4 (Regularity lemma). For every " > 0 and m 2 N thereis an M = M(";m) suh that, if G is any graph with more thanM verties and d 2 [0; 1℄ is any real number, then G has an ("; d)-redued graph R on k verties, with m � k �M .Given four positive numbers a; b; x; y we say that the pair a; b dom-inates the pair x; y, if maxfx; yg=minfx; yg � maxfa; bg=minfa; bg.The following easy lemma states that Ka;b has an almost perfet Ks;t-tiling provided that a; b dominates s; t.
Lemma 5. For any s; t 2 N there exists a onstant C suh thatthe following holds. Suppose that the pair a; b 2 N dominates s; t.Then the graph Ka;b ontains a Ks;t-tiling ontaining all but atmost C verties of Ka;b.Proof. If s = t then neessarily a = b. There obviously exists aKs;t-tiling ontaining all but at most C := 2(s� 1) verties of Ka;b.



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 5With no loss of generality, we may suppose that a � b and s < t.Then as � bt and bs � at. A tiling with b(bt � as)=(t2 � s2) opiesof Ks;t with the s-part of the Ks;t plaed in the a-part of the Ka;band b(at� bs)=(t2 � s2) opies plaed the other way misses at mostC := 2(s+ t� 1) verties of Ka;b. �The next lemmas, versions of the Blow-up Lemma [6℄, assert thatregular pairs have almost as good tiling properties as omplete bipar-tite graphs.
Lemma 6. For every d > 0;  2 (0; 1) and any two graphs R andH, there is an " = "(H; d; ) > 0 suh that the following holdsfor all positive integers s. Let Rs be the graph obtained from Rby replaing every vertex of R by s verties, and every edge of Rby a omplete bipartite graph between the orresponding s-sets.Let G be the graph obtained similarly from R by replaing theedges with "-regular pairs of density at least d. If Rs ontains anH-tiling of size at least v(Rs) then so does G.
Lemma 7. For every bipartite graph H and every ; d > 0 thereexists an " = "(H; d; ) > 0 suh that the following holds. Supposethat there is an H-tiling in Ka;b of size x. Let (A;B) be an arbi-trary "-regular pair with density at least d, jAj = a, jBj = b. Thenthe pair (A;B) ontains an H-tiling of size at least x� (a+ b).Finally, let us state a straightforward orollary of the K�onig Math-ing Theorem.
Fact 8. Let G = (A _[B;E) be a bipartite graph with olor lassesA and B. If G has no mathing with l + 1 edges, then e(G) �lmaxfjAj; jBjg. 3. The proofIn this setion, we �rst state and prove the main tehnial result,Lemma 9. Then, we show how it implies Theorem 2.For s; t 2 N, we set F1 := fKs;t; Ks;t�1, K2g and F2 := fKst;t2,Kst�1;(t�1)t, Kst;(t�1)t; K2g. Let us note that when s < t, the sizes ofthe two olor lasses of any graph from F� := F1 [ F2 dominate sand t.Suppose that F is an Ks;t-tiling in a graph G, s < t. We saythat a pair of mathings E0; E1 � E(G) is an F -augmentation ifE0 � EG[V (G)�V (F ); V1(F )℄, E1 � EG[V2(F )℄ and eah opy of Ks;tin F ontains at most one vertex mathed by E0 and at most onevertex mathed by E1. Moreover, we require that if K 2 F ontains



6 CODRUT� GROSU AND JAN HLADK�Ya vertex mathed by E0, then it also ontains a vertex mathed byE1.The main step in our proof of Theorem 2 is the following lemma.
Lemma 9. Let t > s � 1; � 2 (0; 1) and " > 0. Suppose G is ann-vertex graph with n � h(s; t; �; ") and e(G) � Ts;t(�)�n2�, and Fis a maximum Ks;t-tiling in G with jF j � (1 � ")�n. Then thereexists an "0 = "0(s; t; �; ") > 0 suh that one of the following istrue:(i) there exists an F1-tiling F 0 in G with jF 0j � jF j+ "0n, or(ii) there exists an F -augmentation E0, E1 suh that E0 on-tains at least "0n edges.Proof. Set "0 := 14 min( "�23t+ 1 ; "s�(3t+ 1)(s+ t)) ;and let h(s; t; �; ") be suÆiently large.Suppose for a ontradition that the assertions of the lemma arenot true.Set L := V (G) � V (F ) and m := jLj. Let C := fV1(K) : K 2Fg;D := fV2(K) : K 2 Fg and C := S C; D := SD. We all membersof C lilliputs while members of D are giants. We say that giant V2(K)(K 2 F ) is oupled with lilliput V1(K).As F is a maximum Ks;t-tiling in G, by (1) we have thate(G[L℄) = o(n2) : (4)Let r be the number of opies of Ks;t in F . Then r � (1�")�n=(s+t). Moreover, we have m = n� (s+ t)r : (5)Let us de�ne an auxiliary graph H = (V 0; E 0) as follows. Thevertex-set of H is V 0 := C [ D [ L. For any x 2 L and K 2 Fthe edge xV1(K) belongs to E 0 i� NG(x) \ V1(K) 6= ;. Similarly,the edge xV2(K) belongs to E 0 i� NG(x) \ V2(K) 6= ;. Finally,for any distint K;K 0 2 F the edge V2(K)V2(K 0) belongs to E 0 i�EG(V2(K); V2(K 0)) 6= ;. The verties L and the verties C indue twoindependent sets in H.As (i) does not hold, H[L;D℄ does not ontain a mathing with atleast "0n edges. It follows from Fat 8 thateG(L;D) � "0ntmaxfm; rg : (6)



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 7LetM be a maximummathing in H[L; C℄ with l edges. Obviously,l � r. By Fat 8, we have thateG(L;C) � lsmaxfm; rg : (7)Let C 0 � C be the lilliputs mathed by M . We write D0 � D for thegiants oupled with C 0. Set D0 = SD0.Suppose for a moment that H[D0℄[H[D0;D�D0℄ ontains a math-ing T with at least "0n edges. Let D00 be the giants mathed by Tand M 0 the set of edges in M mathing the lilliputs oupled with D00.Then M 0 and T give rise to an F -augmentation E0, E1 in G withjE0j = jM 0j � jT j � "0n, ontraditing our assumption that (ii) doesnot hold.So H[D0℄[H[D0;D�D0℄ does not ontain a mathing with at least"0n edges. Applying Theorem 1 and passing to the graph G, we gete(G[D0℄ [G[D0; D �D0℄) � t2ex(r; "0n) + r t2! � 2t2"0nr + r t2! :Therefore,e(G[C [D℄) == e(G[D0℄ [G[D0; D �D0℄) + e(G[D �D0℄) + e(G[C℄) + eG(C;D)� 2t2"0nr + r t2!+  r � l2 !t2 +  rs2 !+ r2st (8)Summing up the bounds (4), (6), (7), and (8) we gete(G) = e(G[L℄) + eG(L;D) + eG(L;C) + e(G[C [D℄)� o(n2) + t"0n2 + lsmaxfm; rg+ 2"0nrt2+ r t2!+  r � l2 !t2 + r2st+  rs2 !(5)� o(n2) + 3t"0n2 + r t2!+ r2st+  rs2 !+max( r2!t2; rs(n� (s+ t)r))< max( (s+ t)r2 !; rs2 !+ rs(n� rs))+ (3t+ 1)"0n2< Ts;t(�) n2! ;a ontradition. �



8 CODRUT� GROSU AND JAN HLADK�YSuppose G = (V;E) is a graph and r 2 N. The r-expansion of Gis the graph G0 = (V 0; E 0) de�ned as follows. The vertex set of G0is V � [r℄. For a; b 2 [r℄, an edge ((u; a); (v; b)) belongs to E 0 i� uvbelongs to E. Note that there is a natural projetion �G0 : V 0 ! Vthat maps every vertex (u; a) from G0 to the vertex u in G. We areinterested in the following property of r-expansions. Suppose thatK is a opy of any graph from F� in G. Then ��1G0 (V (K)) ontainsa omplete bipartite graph B with olor lasses of sizes s(K)r andt(K)r. By Lemma 5 we an tile B almost perfetly with opies ofKs;t. If F is an F�-tiling in G, we an apply the above operation oneah member K 2 F and obtain a new tiling F 0 | whih we allretiling | in the graph G0.We are now ready to prove Theorem 2.Proof of Theorem 2. Note that it suÆes to prove the theorem forH ' Ks;t.We �rst deal with the partiular ase t = s. Set �0 := (1� "=4)�.Let "1 := 115(Ts;t(�) � Ts;t(�0)), and "2 be given by Lemma 7 forinput parameters H, d := "1 and  := �"=8. Suppose that k0 issuÆiently large. Let M be the bound from Lemma 4 for preision"R := minf"1; "2g and minimal number of lusters k0. Let C be givenby Lemma 5 for the input parameters s; t. Fix n0 � MC. Supposethat G is an n-vertex graph, n � n0, with at least Ts;t(�)�n2� edges.We apply Lemma 4 on G to obtain an ("R; d)-redued graph R withk lusters, k0 � k �M . We have thate(R) � (Ts;t(�)� d� 3"1) k2!= (Ts;t(�0) + 14(Ts;t(�)� (Ts;t(�0))) k2! (3)> ex k; �0k2 �K2! :Therefore, R ontains at least �0k2 independent edges. These edgesorrespond to regular pairs in G whih an be tiled almost perfetlywith opies of Ks;t, by means of Lemma 5 and Lemma 7. Elementaryalulations give that in this way we get a tiling of size at least (1�")�n.Consequently we may suppose that t > s. We �rst de�ne a handfulof parameters. Set�0 := 6� 4"6� 3"�;  := (1� "=2)�0; d := 25(Ts;t(�)� Ts;t(�0)) :Note that  = (1� 2"=3)�.



THE EXTREMAL FUNCTION FOR PARTIAL BIPARTITE TILINGS 9Let "R be given by Lemma 6 for input graph Ks;t, density d=2 andapproximation parameter . We may suppose that "R is suÆientlysmall suh that (1� "R) > (1� ")� and "R < d=2. Let C be givenby Lemma 5 for input s; t. Further, let "0 and h be given by Lemma 9for input parameters �0 and "=4. Setp := t2 �4C"0 � ; q := �2t"0 �Let M be the upper bound on the number of lusters given byLemma 4 for input parameters h (for the minimal number of lusters)and "Rp�q=2 (for the preision). Let n0 > Mpq be suÆiently large.Suppose now that G is a graph with n > n0 verties and at leastTs;t(�)�n2� edges. We �rst apply Lemma 4 to G with parameters"Rp�q=2 and h. In this way we obtain an ("Rp�q=2; d)-redued graphR with at least h verties.Let us now de�ne a sequene of graphs R(i) by setting R(0) = Rand letting R(i) be the p-expansion of R(i�1); i = 1; 2; : : : ; q. Note thate(R(i)) � Ts;t(�0)�v(R(i))2 � for every i 2 f0; 1; : : : ; qg.Let F (i) be a maximum Ks;t-tiling in R(i) for i = 0; 1; : : : ; q. Welaim that jF (i)j � min(i"0v(R(i))2t ;�1� "2��0v(R(i))) : (9)To this end it suÆes to show that for any i � 1,(C1) if jF i�1j > (1 � "=4)�0v(R(i�1)), then jF (i)jv(R(i)) � jF (i�1)jv(R(i�1)) � "�04 ,and(C2) if jF i�1j � (1� "=4)�0v(R(i�1)), then jF (i)jv(R(i)) � jF (i�1)jv(R(i�1)) + "02t .In the ase (C1), the retiling of F (i�1) in R(i) has size at least(1� "=2)�0v(R(i)), thus proving the statement.Consequently we may suppose that we are in ase (C2). ApplyLemma 9 to the graph R(i�1) and the tiling F (i�1), with parameters�0 and "=4.Suppose �rst that assertion (i) of the lemma holds. Then R(i�1)ontains an F1-tiling F with jF jv(R(i�1)) � jF (i�1)jv(R(i�1))+"0. By retiling F , weget a Ks;t-tiling in R(i) with size at least jF j(p�C) > i"0v(R(i))=(2t),thus proving the statement.Suppose now that assertion (ii) of Lemma 9 is true. Then R(i�1)ontains an F (i�1)-augmentation E0, E1 with jE0j � "0v(R(i�1)). Letr = p=t. We shall denote by T the t-expansion of R(i�1) and by T 0the r-expansion of T . Note that T 0 is isomorphi to R(i).



10 CODRUT� GROSU AND JAN HLADK�YLet us build an F2-tiling in T in the following way.For every edge e = (u; v) 2 E0 with u 2 V (F (i�1)) we hoose anedge e0 = (u0; v0) in T with �T (u0) = u and �T (v0) = v . We shalldenote by we the vertex u0 orresponding to u.For every edge e = (u; v) 2 E1 we hoose a set Se of t independentedges in ��1T (e).For every K 2 F (i�1) we shall also hoose a subgraph K 0 of T . Wedistinguish the following ases. If K has no vertex mathed by E0or E1, then we let K 0 := T [��1T (K)℄. If K has a vertex u mathedby E1 but no vertex mathed by E0, we let K 0 := T [��1T (K � u)℄.Then K 0 ' Kst;(t�1)t. Finally, if K has a vertex u mathed by anedge e 2 E0 and a vertex v mathed by an edge in E1, we let K 0 :=T [��1T (K � v)℄� we. Note that in this last ase K 0 ' Kst�1;(t�1)t.It is easy to see thatF := fe0 : e 2 E0g [ fK 0 : K 2 F (i�1)g [ 0� [e2E1 Se1Ais an F2-tiling in T . Moreover, we have that jF jv(T ) � jF (i�1)jv(R(i�1)) + "0t . Sothe retiling of F in T 0 has size at least jF j(r � C) � i"0v(R(i))=(2t).This proves (C2) and also (9).Using Lemma 3, we may subdivide every luster orrespondingto a vertex of R into pq equal-sized parts, by disarding some ver-ties if neessary. This gives us an ("R; d=2)-redued graph R0. Byonstrution R0 ' R(q). By (9), there is a Ks;t-tiling F in R0 withsize at least (1 � "=2)�0v(R0). Let G0 be the subgraph of G in-dued by the lusters orresponding to the verties of R0. By ap-plying Lemma 6 to R0, we see that G0 has a Ks;t-tiling of size at leastv(G0) � (1� "R)v(G) > (1� ")�v(G), and so does G.This �nishes the proof of Theorem 2. �Referenes1. P. Allen, J. B�otther, J. Hladk�y, and D. Piguet, A density Hajnal-Szemer�editheorem, manusript.2. P. Erd}os and A. H. Stone, On the struture of linear graphs, Bulletin of theAmerian Mathematial Soiety 52 (1946), 1087{1091.3. P. Erd}os and T. Gallai,On maximal paths and iruits of graphs, Ata Math.Aad. Si. Hungar 10 (1959), 337{356 (unbound insert).4. A. Hajnal and E. Szemer�edi, Proof of a onjeture of P. Erd}os, Combi-natorial theory and its appliations, II (Pro. Colloq., Balatonf�ured, 1969),North-Holland, Amsterdam, 1970, pp. 601{623.5. J. Koml�os, Tiling Tur�an theorems, Combinatoria 20 (2000), no. 2, 203{218.
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