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Abstract: The facial parity edge colouring of a connected bridgeless plane
graph is such an edge colouring in which no two face-adjacent edges receive
the same colour; in addition, for each face α and each colour c, no edge or an
odd number of edges incident with α are coloured by c. From the Vizing’s
theorem it follows that every simple 3-connected plane graph has a such
colouring with at most ∆∗ + 1 colours, where ∆∗ is the size of the largest
face. In this paper we prove that any connected bridgeless plane graph has
a facial parity edge colouring with at most 92 colours.
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1 Introduction

One of the motivations for this paper has come from recent papers of Bunde
at al. [1, 2] who introduced parity edge colourings of graphs. Studying
the parity of the usage of colours along walks suggested two edge colouring
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parameters that have interesting properties and applications. A parity walk
in an edge colouring of a graph is a walk along which each colour is used
an even number of times. Bunde et al. [2] introduced two parameters. Let
p(G) be the minimum number of colours in an edge colouring of G having
no parity path (a parity edge colouring). Let p̂(G) be the minimum number
of colours in an edge colouring of G in which every parity walk is closed (a
strong parity edge colouring). Since incident edges of the same colour would
form a parity path of length 2, every parity edge colouring is a proper edge
colouring, and hence p(G) ≥ χ′(G), where χ′(G) is the edge chromatic index
of G. Since a path is an open walk, any strong parity edge colouring has
no parity path. Hence, every strong parity edge colouring is a parity edge
colouring and p̂(G) ≥ p(G) for every graph G. Although there are graphs
G with p̂(G) > p(G) [2], it remains unknown how large p̂(G) can be when
p(G) = k. Elementary results on these parameters appear in [2]. In [1] it
is proved that p̂(Kn) = 2⌈log(n)⌉ − 1 for all n. Moreover, the optimal strong
parity edge colouring of the complete n-vertex graph Kn is unique when n is
a power of 2. The authors of [2] mentioned that computing p(G) or p̂(G) is
NP-hard even when G is a tree. Clearly, the parity edge colouring is such a
colouring that each path uses at least one colour an odd number of times.
The vertex version of this problem (strong parity vertex colouring) with

some restrictions was introduced in [3]. The authors of [3] conjectured that
there is a constant K such that the vertices of any 2-connected plane graph
can be coloured with at most K colours in such a way that for each face α
and each colour c, no vertex or an odd number of vertices incident with α is
coloured by c. This conjecture was proved by Kaiser et al. [4], they showed
that K ≤ 300, moreover, their colouring is proper.
Another motivation for this work has came from the papers of Pyber [6]

and Mátrai [5]. A graph is called odd if the degree of its vertices is odd or zero.
Pyber raises the problem of edge covering with odd subgraphs in [6] as the
counterpart of even subgraph covering problems. He proved that the edges of
every finite simple graph can be covered by at most 4 disjoint odd subgraphs;
moreover, if the number of vertices is even then 3 colours are sufficient. For
not necessarily disjoint coverings we have the following question: Is it true
that every graph can be covered by at most 3 odd subgraphs? Mátrai in [5]
showed that every finite simple graph can be covered by 3 odd subgraphs and
he found an infinite sequence of finite simple connected graphs not coverable
by three edge disjoint odd subgraphs.
Pyber’s result implies the following: The edges of any 3-connected plane

G graph can be coloured by at most 4 colours in such a way that for each
face α and each colour c, no edge or an odd number of edges incident with
α is coloured by c. It is sufficient to consider the dual G∗ of G and its edge
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cover with at most 4 disjoint odd subgraphs. This cover induces the required
colouring of G.
If we add a requirement that such a colouring must be proper then it is

not clear whether there exits such a colouring with K colours, where K is
an absolute constant. From Vizing’s theorem [7] it follows that every simple
3-connected plane graph G has such a colouring which uses at most ∆∗ + 1
colours, where ∆∗ is the size of the largest face. Consider the dual graph G∗

and its proper edge colouring. This colouring induces a colouring of G in the
natural way. It is such a colouring in which, for each face α of G, all the
edges in the boundary of α have distinct colours.
From the result of Kaiser et al. [4] follows that each connected bridgeless

plane graph has an edge colouring with at most 300 colours such that any
two consecutive edges of a facial walk of any face α receive distinct colours
and if a colour c appears on a α then it appears an odd number of times. It is
sufficient to consider the medial graphM(G) of G and its proper strong parity
vertex colouring. The vertices of M(G) correspond to the edges of G; two
vertices M(G) are adjacent in M(G) if and only if the corresponding edges
are face-adjacent in G. For any plane G the medial graph M(G) is plane as
well. Hence, every strong parity vertex colouring ofM(G) corresponds to an
edge colouring of G.
In this paper we show that each connected bridgeless plane graph has

such a colouring with at most 92 colours.

2 Notation

Let us introduce the notation used in this paper. A graph which can be
embedded in the plane is called planar graph; a fixed embedding of a planar
graph is called plane graph.
A bridge is an edge whose removal increases the number of components.

A graph which contains no bridge is said to be bridgeless. In this paper
we consider connected bridgeless plane graphs, multiple edges and loops are
allowed.
Let G = (V,E, F ) be a connected plane graph with the vertex set V , the

edge set E, and the face set F . The degree of a vertex v, denoted by deg(v),
is the number of edges incident with v, each loop counting as two edges. For
a face α, the size of α, deg(α), is defined to be the length of its facial walk,
i.e. the shortest closed walk containing all edges from the boundary of α.
We often say k-face for a face of size k.
Given a graph G and one of its edge e = uv, (the vertices u and v do not

have be different), the contraction of e, denoted by G%e, consist of replacing
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u and v by a new vertex adjacent to all the former neighbours of u and
v, and removing the loop corresponding to the edge e. (We keep multiple
edges if arisen). Analogously we define the contraction of the set of edges
H = {e1, . . . , ek} and we denote it by G%{e1, . . . ek} or G%H .
Let H be a subgraph of G. Then the graph G \H is defined as a graph

obtained from G by deleting the vertices in V (H) together their incident
edges.
Two faces are adjacent if they share an edge. Two (distinct) edges are

face-adjacent if they are consecutive edges of a facial walk of some face α.
An edge k-colouring of a graph G is a mapping ϕ : E(G) → {1, . . . , k}.

The facial parity edge (FPE) colouring of a connected bridgeless plane graph
is such an edge colouring that no two face-adjacent edges receive the same
colour; for each face α and each colour c, no edge or an odd number of edges
incident with α are coloured by c.

Question 1 What is the minimum number of colours χ′
fp(G) that a con-

nected bridgeless plane graph G has a facial parity edge colouring with at
most χ′

fp(G) colours?

The number χ′
fp(G) is called the facial parity chromatic index of G.

3 Results

Theorem 3.1 Let G be a connected bridgeless plane graph. Then

χ′
fp(G) ≤ 92.

The proof uses the method of discharging. Let G be the counterexample
with minimal number of edges, then minimal number of 1-faces, then minimal
number of 2-faces. If G is a single cycle of length d, d ≤ 5, we use exactly d
colours. We consider this to be the first step of induction and call this case
trivial.
First, we prove several structural properties of G.
We say that a face α is small if 1 ≤ deg(α) ≤ 44 and a face β is big if

deg(β) ≥ 45.

3.1 Reducible configurations

We find such (forbidden) subgraphs H of G that the facial parity edge colour-
ing of G\H or G%H using at most 92 colours can be extended to a required
colouring of G using at most 92 colours, which is a contradiction to G being
a counterexample. In the sequel, whenever we speak about a FPE colouring,
we always mean a FPE colouring using at most 92 colours.
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3.1.1 1-faces

Claim 1 Each vertex of G is incident with at most one 1-face.

Proof
Let v be a vertex incident with at least two 1-faces α1 and α2. If we split v
into two vertices v1 and v2 in such a way that α1 and α2 become a 2-face α,
we obtain a graph G′, see Figure 1. It has the same number of edges than
G, but less 1-faces. Thus, it is not a counterexample and we can find a FPE
colouring ϕ′ of G′. It induces an edge colouring ϕ of G in a natural way. It
is easy to see that ϕ is a FPE colouring. �

v

α1 α2 −→ α

v1

v2

γ
α

v

−→ α′

Figure 1: A vertex incident with at least two 1-faces can be split into two
vertices, reducing the number of 1-faces. Similarly, one can reduce a 1-face
and a d-face (2 ≤ d ≤ 4) incident with the same vertex.

Claim 2 Each vertex of G incident with a 1-face is not incident with any
d-face for 2 ≤ d ≤ 4.

Proof
We use the same reduction as in the proof of Claim 1. We split the vertex
v incident with a 1-face γ and a d-face α (2 ≤ d ≤ 4) in such a way that
the faces α and γ become a (d + 1)-face α′, see Figure 1 for illustration.
Let the reduced graph be G′. It has less 1-faces than G, therefore, it has a
FPE colouring ϕ′. The face α′ has size at most five, therefore, its edges are
coloured using d + 1 different colours. Thus, the colouring ϕ of G induced
by the colouring ϕ′ of G′ is a FPE colouring, too. �

Claim 3 Each vertex of G incident with a 2-face is not incident with any
d-face for 2 ≤ d ≤ 3.

Proof
We use the same reduction as in the proof of Claims 1 and 2. We omit the
details. �
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3.1.2 Small faces

Claim 4 There are no two small faces adjacent to each other in G.

Proof
Let α1 and α2 be two small faces adjacent to each other in G.
If both α1 and α2 are 1-faces, the graph consists of a single vertex and a

loop; it has a FPE colouring using 1 colour. We disregard this trivial case.
Let α1 be a 1-face and α2 be a d-face, d ≥ 2; let e be the loop they share,

see Figure 2. Then the graph G′ = G%e has less edges than G, therefore, it
has a FPE colouring ϕ′. Let α′ be a face in G′ corresponding to α1 and α2 in
G. Since α2 is a small face, at most 43 colours occur on the edges incident
with α′. To extend the colouring ϕ′ of G′ to a FPE colouring of G, it suffices
to colour the edge e with any colour that does not occur on α′.
Let α1 and α2 be two small faces of size at least 2 and let e be the

edge they share, see Figure 2. The graph G′ = G%e has less edges than
G, therefore, it has a FPE colouring ϕ′. Let α′

1 and α
′
2 be the faces of G

′

corresponding to the faces α1 and α2 in G. (Since α1 and α2 are small faces
of size at least 2, the size of α′

1 and α
′
2 is at least 1.)

Consider the set of colours different from the colours occurring on the
edges of α′

1 and α
′
2 (the colours admissible for the edge e). Since α1 and α2

are small, at most 2 · (44−1) = 86 colours occur on their edges. Hence, there
is an admissible colour c. We can extend ϕ′ to a FPE colouring ϕ of G by
setting ϕ(e) = c. �

α1 α2

e

−→ α′ α1 α2e −→

α′

1
α′

2

Figure 2: Two adjacent small faces form a reducible configuration: one can
contract the edge they share.

Claim 5 Let β be a big face adjacent to two small faces α1 and α2. Let ei be
an edge incident with β and αi, i = 1, 2. Then e1 and e2 are face-adjacent.
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Proof
Let e1 and e2 not be face-adjacent. See Figure 3 for illustration. The graph
G′ = G%{e1, e2} has less edges than G, therefore, it has a FPE colouring ϕ′.
Let α′

1, α
′
2, β

′ be the faces of G′ corresponding to the faces α1, α2, β in G,
respectively.

α1 α2βe1 e2 −→

α′

1
α′

2β′

Figure 3: A big face β adjacent to two different small faces α1 and α2 forms
a reducible configuration unless the edges e1 and e2 are face-adjacent.

We extend the colouring ϕ′ of G′ to a FPE colouring of G in the following
way: Consider the set of colours different from the colours occurring on the
edges of α′

1 and α
′
2; also different from the colours occurring on the edges of

G′ corresponding to the edges of G face-adjacent to e1 and e2. There are at
least 92 − 2 · (44 − 1) − 4 = 2 such colours, say c1 and c2. If at least one
of them, say ci, already occurs on β ′, we set ϕ(e1) = ϕ(e2) = ci. If none of
them occurs on β ′, we set ϕ(ei) = ci, i = 1, 2. �

Claim 6 Each big face is adjacent to at most one 1-face.

Proof
It follows from Claims 1 and 5. �

Claim 7 Each big face is adjacent to at most two small faces.

Proof
Let a big face β be adjacent to small faces α1, α2, and α3. Consider the edges
that β shares with αi, i = 1, 2, 3. It is easy to see that there must be a pair
of edges ei and ej , incident to αi and αj , respectively (i 6= j), which are not
face-adjacent. It is a contradiction with Claim 5. �
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3.1.3 Chains of 2-vertices

Claim 8 There is no chain consisting of at least 5 consecutive 2-vertices in
G.

Proof
Let v0e0v1e1 . . . vpepvp+1 be a chain consisting of p vertices of degree 2, (v1, . . . , vp),
where p ≥ 5. The graph G′ = G%{e1, e2, e3, e4} has a FPE colouring ϕ′. Let
e′0 and e

′
5 be the edges in G

′ corresponding to the edges e0 and e5 in G. Let
ϕ′(e′0) = c1 and ϕ′(e′5) = c2. The FPE colouring ϕ′ of G′ can be extended to a
FPE colouring ϕ of G by setting ϕ(e2) = ϕ(e4) = c1 and ϕ(e1) = ϕ(e3) = c2,
see Figure 4. �

e0 e1 e2 e3 e4 e5
−→

e′
0

e′
5

c1 c2

−→

e0 e1 e2 e3 e4 e5

c1 c2 c1 c2 c1 c2

Figure 4: A chain of (at least) five 2-vertices is a reducible configuration.

A d-face α is hanging on a vertex v, if all vertices incident with α are
2-vertices except for the vertex v. By Claim 8 we have d ≤ 5. (If deg(v) = 2,
the graph G consists of a single cycle of length at most 5, which is the trivial
case).
We colour the vertices of G with black, blue and white colour in the

following way:
Let all 2-vertices be black, all 3-vertices be blue and all k-vertices for

k ≥ 6 be white.
A 4-vertex v is black if there is a face hanging on it, else it is white. See

Figure 5 for illustration of all types of black vertices.
A 5-vertex v is blue, if there is a face hanging on it, else it is white.
Observe that any black 2-vertex v is incident with two faces. We say v is

bad for both faces it is incident with. Any black 4-vertex v is incident with
a small face α of size at most 5 and two other faces. The face β adjacent to
α must be big (see Claim 4); the vertex v occurs twice on the facial walk of
β. The other face γ can be big or small. We say v is bad for the face γ.

Claim 9 For any face α, there is no chain of at least 5 bad consecutive
vertices. Each chain of bad vertices contains at most one bad 4-vertex.
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Figure 5: A vertex is black, if it is a 2-vertex, or a 4-vertex with a hanging
face.

Proof
Let v0e0v1e1v2e2v3e3v4e4v5e5v6 be a subpath of the facial walk of α containing
5 vertices bad for α, (v1, . . . , v5). It is easy to see that all the edges e0, . . . , e5
are incident with the same face β. If at least two of the vertices the vertices
v1, . . . , v5 are bad 4-vertices, we come to a contradiction with Claim 4 or
with Claim 5. If none of them is a 4-vertex, we are in the case of Claim 8. If
precisely one of them is a 4-vertex, say vi, it is incident with a small face γ
of size d ≤ 5.
The graph G′ = G%{e1, e2, e3, e4} has a FPE colouring ϕ′. Let e′0 and e

′
5

be the edges in G′ corresponding to the edges e0 and e5 in G; let α′, β ′, γ′ be
the faces in G′ corresponding to the faces α, β, γ in G; let v′ be the vertex in
G′ corresponding to v1, . . . , v5 in G. Let ϕ′(e′0) = c1 and ϕ′(e′5) = c2. Since
e′0 and e

′
5 are face-adjacent in G

′, c1 6= c2. To extend ϕ′ to a FPE colouring
of G, we proceed in the following way:
If i = 1, 3, or 5, we simply set ϕ(e2) = ϕ(e4) = c1 and ϕ(e1) = ϕ(e3) = c2.
If i = 2 or i = 4, we set ϕ(e2) = ϕ(e4) = c1 and ϕ(e1) = ϕ(e3) = c2

and switch the order of colours of edges incident with γ′, see Figure 6 for
illustration (here the small face γ is a bigon.).

�

Claim 10 Let v be a black vertex bad for a small face α. If v is a 4-vertex,
then the face hanging on it is a 1-face.

Proof
Let v be a black 4-vertex, let γ be the face hanging on v of size at least 2
and let e1 and e2 be the edges of α incident with v. It is easy to see that the
edges e1 and e2 are incident with the same big face, say β.
There is an edge eγ incident with γ and β, which is not face-adjacent to

eα ∈ {e1, e2}, what is a contradiction with Claim 5. �

Claim 11 Let α be a small face sharing at least two bad black vertices with
a big face β. Then all the bad black vertices incident with α and β are
2-vertices.
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e0 e1 e2 e3 e4 e5
−→

e′
0

e′
5

c1 c2

c3 c4

−→

e0 e1 e2 e3 e4 e5

c1 c2 c1 c2 c1 c2

c3 c4

e0 e1 e2 e3 e4 e5
−→

e′
0

e′
5

c1 c2

c3 c4

−→

e0 e1 e2 e3 e4 e5

c1 c2 c1 c2 c1 c2

c4 c3

Figure 6: A chain of (at least) five bad black vertices is a reducible configu-
ration as well.

Proof
Let v1 and v2 be black vertices incident with α and β. If v1 is a 4-vertex, it
is bad for α, therefore, there is a small face γ hanging on v1, adjacent to β.
By Claim 10, the face γ is a 1-face. Thus, we can find an edge (a loop) eγ

incident with γ and β and an edge eα incident with α and β, which are not
face-adjacent. It is a contradiction with Claim 5. �

Claim 12 Let v be a black vertex bad for a small d-face α, d ∈ {2, 3, 4}.
Then v is a 2-vertex.

Proof
Let v be a black 4-vertex, let γ be the face hanging on v. By Claim 10, the
face γ is a 1-face. On the other hand, by Claim 2, the face γ cannot be a
1-face, what is a contradiction. �

Claim 13 If a big face β shares a 2-vertex v with a small face α, then β is
not adjacent to any other small face.
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α
v

β

γ
eα

eγ

α
v1 v2

β

γ
eα

eγ

Figure 7: Reducible pairs of edges (eγ and eα). For details see Claims 10 and
11.

Proof
It follows immediately from Claim 5. �

Claim 14 Let γ be a d-face, d ∈ {2, 3, 4, 5}, hanging on a vertex v, adjacent
to a big face β. Then β is not adjacent to any other small face.

Proof
It follows immediately from Claim 13. �

3.2 Discharging rules

Let G be a counterexample. It contains no reducible configuration. Let the
initial charge of each vertex be ψ(v) = deg(v) − 6 and the initial charge of
each face be ψ(α) = 2 deg(α)− 6. From Euler’s formula we can easily derive
that ∑

α∈F

(2 deg(α) − 6) +
∑

v∈V

(deg(v) − 6) = −12.

It is obvious that all the negative charge is in the vertices of degree 2, 3,
4, and 5 and in the faces of size 1 and 2.

Rule 1: Let β be a big face.

• If β is adjacent to a single small face α, it sends 3 units of charge to α.

• If β is adjacent to two small faces α1 and α2, such that deg(α1) ≤
deg(α2), it sends 2 units of charge to α1 and 1 unit of charge to α2. (If
deg(α1) = deg(α2), we do it arbitrarily.)

Rule 2: Let β be a big face.

• It sends 2 units of charge to any black vertex bad for β.

• It sends 1 unit of charge to any other black, blue or white vertex incident
with β. (Multiply incident vertices are considered as different).
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Rule 3: Let α be a small face.

• It sends 2 units of charge to any black vertex bad for α.

• It sends 1 unit of charge to any other black or blue vertex incident with
α.

Rule 4: Let v be a black 4-vertex.

• It sends 2 units of charge to the incident small hanging face γ.

Rule 5: Let v be a blue 5-vertex.

• It sends 2 units of charge to the incident small hanging face γ.

Rule 6: Let v be a k-vertex, k ≥ 6.

• It sends 2 units of charge to any incident small hanging face γ.

3.3 Analysis of the graph

3.3.1 Vertices

Every 2-vertex is bad black for both faces incident with it, hence it receives
2 units of charge from both incident faces (Rules 2 and 3). Its charge is
−4 + 2 + 2 = 0.
Every 3-vertex is blue, hence it receives 1 unit of charge from all the three

incident faces (Rules 2 and 3). Its charge is −3 + 3 · 1 = 0.
Every black 4-vertex v receives 2 units of charge from the face α it is bad

for (Rules 2 and 3) and 2 ·1 units of charge from the doubly-incident big face
β (Rule 2). It sends 2 units of charge to the hanging face γ (Rule 4). The
charge of v is −2 + 2 + 2 · 1 − 2 = 0.
Every white 4-vertex is incident with at least 2 big faces (see Claim 4),

therefore, its charge is at least −2 + 2 · 1 = 0.
Every blue 5-vertex v is incident with a hanging face γ, doubly-incident

with a big face β and incident with two more faces α1 and α2. Therefore, v
receives 4 · 1 units of charge from the incident faces (Rules 2 and 3). It sends
2 units of charge to γ (Rule 5). Therefore, the charge of v is −1+4 ·1−2 = 1.
Every white 5-vertex is incident with at least 3 big faces (see Claim 4),

therefore, its charge is at least −1 + 3 · 1 = 2.
Every (white) k-vertex v, k ≥ 6, has non-negative initial charge. It

receives charge from big faces (Rule 2) and sends charge to the hanging faces
γ1, . . . , γr (Rule 6). For each hanging face γi, the adjacent big face βi is
doubly-incident to v. The faces βi and βj are different for different γi and γj

(see Claims 5 and 6). Therefore, the charge of v is at least r · (2 · 1− 2) = 0.
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3.3.2 1-faces

Let γ be a 1-face. It is adjacent to a big face β and it is hanging on a vertex
v. The face β is adjacent to at most one 1-face (Claim 6). Therefore, it sends
at least 2 units of charge to the face γ (Rule 1).
If the vertex v is a 2-vertex, we get the trivial graph, which was omitted

before. If the vertex v is a 3-vertex, the third edge incident with v is a bridge
in G, which is not allowed. Therefore, deg(v) ≥ 4 and the vertex v sends
2 units of charge to the face γ (Rules 4 – 6). The charge of γ is at least
−4 + 2 + 2 = 0.

3.3.3 2-faces

Let α be a 2-face. Its initial charge is −2. Let v1 and v2 be the vertices
incident with α. The face α is adjacent to at most 2 faces, which must be
big (see Claim 4). Consider the number of black vertices bad for α. Note
that by Claim 12 each such vertex is a 2-vertex.

1. Let both v1 and v2 be bad black. Then the graph G consists of a single
cycle on 2 vertices, which is not a counterexample.

2. Let v1 be a black 2-vertex. Then α is adjacent to a single big face β.
The big face β is not adjacent to any other small face (see Claim 13).
Therefore, β sends 3 units of charge to α (Rule 1). The face α sends
2 units of charge to v1 and at most 1 unit of charge to v2 (Rule 3).
On the other hand, α is hanging on v2, therefore, it receives 2 units
of charge from v2 (Rules 4 – 6). Note that v2 cannot be a 3-vertex,
otherwise there would be a bridge in G. The charge of α is at least
−2 − 2 − 1 + 2 + 3 = 0.

3. Let none of v1 and v2 be bad black. Consider the number of faces
adjacent to α. If α is adjacent to a single big face β, then β is not
adjacent to any other small face. Therefore, β sends 3 units of charge
to α. Moreover, in this case none of v1 and v2 can be black nor blue.
The charge of α is −2 + 3 = 1.

If α is adjacent to two big faces β1 and β2, the face α sends at most
2 · 1 unit of charge to v1 and v2. The big face βi, i = 1, 2, is not
adjacent to any other small face of size at most 2 (see Claims 5, 2, and
3). Therefore, by Rule 1, the face βi, i = 1, 2, sends at least 2 units of
charge to α. The charge of α is at least −2 − 2 · 1 + 2 · 2 = 0.
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α

v2

v1

β α

v2

v1

β α

v2

v1

β1 β2

Figure 8: Different possible neighbourhoods of a 2-face α.

3.3.4 3-faces

Let α be a 3-face. Its initial charge is 0. Let v1, v2, v3 be the vertices incident
with α. (They do not have to be pairwise different.) Consider the number
of black vertices bad for α. Note that by Claim 12 each such vertex is a
2-vertex.

1. Let all the three vertices v1, v2, v3 be bad black. Then the graph G
consists of a single cycle on 3 vertices, which is not a counterexample.

2. Let v2 and v3 be bad black. Then all the three edges of α are incident
with the same big face β and α is hanging on v1. Then by Claim 14
the face β sends 3 units of charge to α (Rule 1). The face α then sends
2 · 2 units of charge to the 2-vertices v2, v3 and at most 1 unit of charge
to the vertex v1 (Rule 3). If the vertex v1 is a 3-vertex, the third edge
incident with it is a bridge in G. Therefore deg(v1) ≥ 4 and v1 sends 2
units of charge to α (Rules 4 – 6). The charge of α is 3−2·2−1+2 = 0.

3. Let v3 be bad black. Let β1 be the big face incident with the edge v1v2

and β2 be the big face incident with the edges v2v3 and v3v1.

The face β2 sends 3 units of charge to α, β1 sends at least 1 unit of
charge to α. The face α then sends 2 units of charge to v3 and at most 1
unit of charge to v1 and v2. The charge of α is at least 3+1−2−2·1 = 0.

4. Let none of the vertices v1, v2, v3 be bad black. Consider the number
of faces adjacent to α.

If there are three different faces adjacent to α, (they must be big, see
Claim 4), the face α receives at least 1 unit of charge from each of them,
and sends at most 1 unit of charge to each incident vertex. Hence, the
charge of α is at least 0.

If there is a big face β sharing at least two edges with α, these edges
are not face-adjacent in β. Therefore, β is not adjacent to any other
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small face, thus, it sends 3 units of charge to α. The charge of α is
non-negative again.

β

v1

v2v3

α

β2

β1

v1 v2

v3

α

β2

β1β3 v1

v2

v3 α

Figure 9: Different possible neighbourhoods of a 3-face α.

3.3.5 4-faces

Let α be a 4-face. Its initial charge is 2. Let v1, v2, v3, v4 be the vertices
incident with α. (They do not have to be pairwise different.) Consider the
number of black vertices bad for α. Note that by Claim 12 each such vertex
is a 2-vertex.

1. Let all the four vertices v1, v2, v3, v4 be bad black. Then the graph G
consists of a single cycle on 4 vertices, which is not a counterexample.

2. Let v1, v2, and v3 be bad black. Then all the four edges of α are incident
with the same big face β and α is hanging on v4. Hence, β sends 3 units
of charge to α (Rule 1). The face α then sends 3 · 2 units of charge to
the 2-vertices v1, v2, v3 and at most one unit of charge to v4 (Rule 3).
If the vertex v4 is a 3-vertex, the third edge incident with it is a bridge
in G. Therefore, deg(v4) ≥ 4 and v4 sends 2 units of charge to α (Rules
4 – 6). The charge of α is 2 + 3 − 3 · 2 − 1 + 2 = 0.

3. Let v1 and v3 be bad black. Let β1 be the big face incident with v1, let
β2 be the big face incident with v3.

If β1 6= β2, both β1 and β2 send 3 units of charge to α. The face α
then sends 2 units of charge to the vertices v1 and v3 and at most 1
unit of charge to the vertices v2 and v4. The charge of α is at least
2 + 2 · 3− 2 · 2− 2 · 1 = 2. If β1 = β2, then v2 and v4 are not blue, and
the charge of α is at least 2 + 3 − 2 · 2 = 1.

4. Let v1 and v2 be bad black. Let β1 be the big face incident with the
edge v3v4 and β2 be the big face incident with the vertices v1 and v2. If
β1 6= β2, β2 sends 3 units of charge to α and β1 sends at least 1 unit of
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charge to α. The face α then sends 2 units of charge both to v1 and v2

and at most 1 unit of charge to v3 and v4. The charge of α is at least
2 + 3 +1− 2 · 2− 2 · 1 = 0. If β1 = β2, then v3 and v4 are not blue, and
the charge of α is at least 2 + 3 − 2 · 2 = 1.

5. Let v1 be bad black. The big face β1 incident with v1 sends 3 units
of charge to α. The face α then sends 2 units of charge to v1 and at
most 1 unit of charge to v2, v3, and v4. The charge of α is at least
2 + 3 − 2 − 3 · 1 = 0.

6. Let no bad black vertex be incident with α. Then the big faces adjacent
to α send together at least 2 units of charge (if there was only one big
face, it would send 3 units of charge), and α sends at most 1 unit of
charge to each incident vertex. The charge of α is at least 2+2−4 = 0.

v1 v2

v3v4

α
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v2

v3

v4
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β1

β2
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v2

v3

v4

α

β2

β1

v1

v2

v3

v4

α

β1

v1

v2

v3

v4

α

Figure 10: Different possible neighbourhoods of a 4-face α.

3.3.6 5-faces

Let α be a 5-face. Its initial charge is 4. Let v1, v2, v3, v4, v5 be the vertices
incident with α. (They do not have to be pairwise different.) Consider the
number of black vertices bad for α. Note that by Claim 10 each such vertex
is either a 2-vertex or a 4-vertex with a hanging 1-face.

1. Let all the five vertices v1, v2, v3, v4, v5 be bad black. Then the graph
G contains only 5 vertices, hence, it is not a counterexample.

2. Let v1, v2, v3, and v4 be bad black. From Claim 5 follows that none of
them is incident with a 1-face. Then all the five edges of α are incident
with the same big face β and α is hanging on v5. Hence, β sends 3
units of charge to α (Rule 1). The face α then sends 4 · 2 units of
charge to the 2-vertices v1, v2, v3, and v4 (Rule 3) and at most 1 unit
of charge to the vertex v5 (Rule 3). If the vertex v5 is a 3-vertex, the
third edge incident with it is a bridge in G. Therefore deg(v5) ≥ 4
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and v5 sends 2 units of charge to α (Rules 4 – 6). The charge of α is
4 + 3 − 4 · 2 − 1 + 2 = 0.

3. Let v1, v2, and v3 be bad black. Let β1 be the big face incident with the
vertices v1, v2, and v3 and β2 be the big face incident with the edge v4v5.
By Claim 11 v1, v2, and v3 are 2-vertices. If β1 6= β2, β1 sends 3 units of
charge to α and β2 sends at least 1 unit of charge to α. The face α then
sends 2 units of charge to v1, v2, and v3 and at most 1 unit of charge
to v4 and v5. The charge of α is at least 4 + 3 + 1 − 3 · 2 − 2 · 1 = 0.
If β1 = β2, then v4 and v5 are not blue, and the charge of α is at least
4 + 3 − 3 · 2 = 1.

4. Let v1, v2, and v4 be bad black. Let β1 be the big face incident with v1

and v2, let β2 be the big face incident with v4. By Claim 11 v1 and v2

are 2-vertices, thus β1 sends 3 units of charge to α.

If β1 6= β2, the face α sends 2 units of charge to the vertices v1, v2, and
v4 and at most 1 unit of charge to the vertices v3 and v5. The charge
of α is at least 4 + 3 + 1 − 3 · 2 − 2 · 1 = 0. If β1 = β2, then v3 and v5

are not blue, and the charge of α is 4 + 3 − 3 · 2 = 1.

5. Let v1 and v2 be bad black. Let β1 be the big face incident with the
vertices v1 and v2. The face β1 sends 3 units of charge to α. The face
α then sends 2 units of charge both to v1 and v2 and at most 1 unit of
charge to v3, v4, and v5. The charge of α is at least 4+3−2·2−3·1 = 0.

6. Let v1 and v3 be bad black. Let β1 be the big face incident with v1, β2

be the big face incident with v3, and β3 be the big face incident with
the edge v4v5. If β1, β2, and β3 are three different faces, the charge of
α is at least 4 + 3 − 2 · 2 − 3 · 1 = 0. If two of them coincide, then at
least one of the vertices v2, v4, and v5 is not blue and the charge of α
is at least 4 + 2 − 2 · 2 − 2 · 1 = 0. If β1 = β2 = β3, then v2, v4, and v5

are not blue and the charge of α is at least 4 + 1 − 2 · 2 = 1.

7. Let v1 be black. Then the big faces adjacent to α send together at least
2 units of charge (if there was only one big face, it would send 3 units
of charge). The charge of α is at least 4 + 2 − 2 − 4 · 1 = 0.

8. Let no black vertex be incident with α. Then the big faces adjacent to
α send together at least 1 unit of charge. The charge of α is at least
4 + 1 − 5 = 0.
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Figure 11: Different possible neighbourhoods of a 5-face α.

3.3.7 Small faces of size at least 6

Let α be a d-face, 6 ≤ d ≤ 44. Its initial charge is 2d − 6. Let v1, . . . , vd

be the vertices incident with α. (They do not have to be pairwise different.)
Consider the black vertices incident with α. Let vi be a black 4-vertex.
It cannot be good for α, since no two small faces are adjacent (see Claim
4). Therefore, each black 4-vertex is bad for α. By Claim 9 at most d − 2
vertices incident with α are bad. Let k ≤ d − 2 be the number of black
vertices incident with α. We can divide the facial walk of α into d − k ≥ 2
parts, each beginning and ending in a blue or white vertex, each incident
with α and a big face βi, i ∈ {1, . . . , d− k}. Each of these big faces sends at
least 1 unit of charge to α. (If βi = βj for some 1 ≤ i < j ≤ d − k, the face
βi cannot be adjacent to other small face than α, therefore, it sends 3 units
to α, which is even more than what two different big faces would send.)
The face α then sends 2 units of charge to each of the k incident black

vertices, and at most 1 unit of charge to each of the other incident vertices.
Together, the charge of α is at least

2d− 6 + (d− k) · 1 − k · 2 − (d− k) · 1 = 2(d− k) − 6.

If d− k ≥ 3, the charge of α is non-negative.
Let d− k = 2. It means there are only two vertices which are not black.

Since d ≥ 6, at least one big face β shares at least 2 black vertices with α,
say v1 and v2. By Claim 9 at least one from v1 and v2 is a 2-vertex, hence, by
Claim 13 the face β sends 3 units of charge to α. The charge of α is therefore
at least

2d− 6 + 3 + 1 − (d− 2) · 2 − 2 · 1 = 0.
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3.3.8 Big faces

Let β be a d-face, d ≥ 45. Its initial charge is 2d − 6. It sends 3 units of
charge to the small faces it is adjacent to (Rule 1). It sends 2 units of charge
to all bad black vertices; 1 unit of charge to all other vertices. Let k be the
number of black vertices bad for β. By Claim 9, k ≤ 4

5
· d. The charge of β

is therefore at least

2d−6−3−k · 2− (d−k) · 1 = d−k−9 ≥ d−
4d

5
−9 =

d

5
−9 =

d− 45

5
≥ 0.

The charge of all elements of the graph is non-negative, but the sum of
all the charge is −12, what is a contradiction.
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