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Abstract

We give a short elementary proof of Tutte and Nash-Williams’
characterization of graphs with k edge-disjoint spanning trees.

We deal with graphs that may have parallel edges and loops; the vertex
and edge sets of a graph H are denoted by V (H) and E(H), respectively.
Let G be a graph. If P is a partition of V (G), we let G/P be the graph on
the set P with an edge joining distinct vertices P1, P2 ∈ P for every edge of
G with one end in P1 and another in P2. Tutte [5] and Nash-Williams [3]
proved the following classical result:

Theorem 1. A graph G contains k pairwise edge-disjoint spanning trees
if and only if for every partition P of V (G), the graph G/P has at least
k(|P| − 1) edges.

An elegant proof of Theorem 1 is based on the matroid union theorem
(see, e.g., [4, Corollary 51.1a]); a relatively short elementary proof appears
in [1, Theorem 2.4.1]. In this paper, we give another elementary proof which
is also short and perhaps somewhat more straightforward. The argument
directly translates to an efficient algorithm to find either k disjoint spanning
trees, or a proof that none exist. To an extent, the method can also be applied
to the packing of structures without the matroidal properties of spanning
trees, as shown, e.g., in the forthcoming paper [2].
Let k ≥ 1 and T = (T1, . . . , Tk) be an ordered partition of G into k

spanning subgraphs ofG. We define the sequence P0, P1, . . . , P∞ of partitions
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of V (G) associated with T as follows. First, P0 = {V (G)}. For i ≥ 0, if there
is c ∈ {1, . . . , k} such that the induced subgraph Tc[P ] is disconnected for
some P ∈ Pi, then ci is defined as the least such c and Pi+1 consists of the
vertex sets of all components of Tci

[Q], where Q ranges over all the classes
of Pi. Otherwise, the process ends by setting P∞ = Pi.
We define the level ℓ(e) of an edge e ∈ E(G) (with respect to T) as the

largest i (possibly ∞) such that both ends of e are contained in one class of
Pi. An edge e ∈ E(Tk) is superfluous (for T) if ℓ(e) < ∞ and e is contained
in some cycle of Tk. We say that an edge leaves P ⊂ V (G) if it has precisely
one end in P .
To keep the notation simple, the symbols Pi and ℓ(e) (as well as P∞ and

ci) will relate to a partition T, while P′

i and ℓ′(e) relate to a partition T′.
Thus, for instance, the level ℓ′(e) of an edge e with respect to T′ is defined
using the partitions P′

i associated with T′.

Proof of Theorem 1. The necessity of the condition is clear. To prove the
sufficiency, we proceed by induction on k. The claim is trivially true for
k = 0, so assume k ≥ 1 and choose an ordered partition T = (T1, . . . , Tk)
of G into spanning subgraphs of G such that T1, . . . , Tk−1 are trees and the
following holds:

(1) the number of components of Tk is as small as possible,

(2) either there is no superfluous edge for T, or the minimum level of a
superfluous edge is as small as possible subject to (1).

If Tk is connected, then we are done. For the sake of a contradiction,
suppose that Tk has at least two components (i.e., |P1| ≥ 2). We prove
that there exists a superfluous edge for T. For all i = 1, . . . , k − 1 and
P ∈ P := P∞, the graph Ti[P ] is connected. Hence Ti/P is a tree and has
exactly |P| − 1 edges. By the assumption on G, the graph Tk/P has at least
k(|P| − 1)− (k− 1)(|P| − 1) = |P| − 1 edges. Since Tk/P has |P| vertices and
is disconnected, it must contain a cycle. But then Tk contains a cycle as each
Tk[P ] is connected for P ∈ P. All the edges of this cycle joining different
classes of P (there are at least two such edges) are superfluous for T.
Let e ∈ E(Tk) be an edge of minimum level that is superfluous for T

and set m = ℓ(e). Let P be the class of Pm containing both ends of e.
Since e joins different components of Tcm

[P ], we have cm 6= k and the unique
cycle C in Tcm

+ e contains an edge leaving P . Thus, for an edge e′ of C of
lowest possible level we have j := ℓ(e′) < ℓ(e) = m. Let Q be the class of
Pj containing both ends of e′; note that (the vertex set of) C is contained
within Q. We will exchange e for e′ in the respective sets Ti to eventually
obtain the desired contradiction.
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Let T′ be the partition obtained from T by replacing Tcm
with T ′

cm
=

Tcm
+ e − e′ and Tk with T ′

k = Tk − e + e′; we set T ′

i = Ti for i /∈ {cm, k}. If
the ends of e′ are in different components of Tk (i.e., j = 0), then Tk−e+e′ has
fewer components than Tk, which is impossible. Thus, all of C is contained
within one class R ∈ P1. Furthermore, since e is superfluous for T, Tk[R]− e
is connected and so e′ is superfluous for T′.

Claim. For all i ≤ j, P′

i = Pi.

The proof is by induction on i, with the i = 0 case being trivial. We
assume that P′

i = Pi and prove that every component of Tc[U ], where U ∈ Pi

and c ≤ ci, has the same vertex set as some component of T
′

c[U ]. This will
clearly imply the Claim.
Let K be the vertex set of a component of Tc[U ]. First of all, T ′

c contains
no edge leaving K, because Tc and T ′

c only differ by edges contained within
Q ∈ Pj , which is either disjoint from K or contained in it. Thus, it suffices to
prove that T ′

c[K] is connected. Furthermore, we may restrict our attention
to c ∈ {cm, k}. Suppose that T ′

c[K] is disconnected; there are two cases.
Case 1: c = k and Tk[K] − e is disconnected. Since e is superfluous, it is

contained in a cycle D of Tk. By the assumption, D is not contained within
K ∈ Pi, so some edge f of D leaves K. However, f is then superfluous for T

and ℓ(f) ≤ i < m, a contradiction.
Case 2: c = cm and Tcm

[K] + e − e′ is disconnected. The class Q ∈ Pj

containing the cycle C is thus contained in K. But then C is a cycle in
Tcm

[K] + e containing e′, so Tcm
[K] + e − e′ cannot be disconnected. This

contradiction concludes the proof of the Claim.
We continue with the proof of the theorem. The above Claim implies that

ℓ′(e′) ≥ j. On the other hand, if cj 6= k, then e′ joins different components of
T ′

cj
[Q] and so we actually have ℓ′(e′) = j < i, a contradiction with the choice

of e since we have seen that e′ is superfluous for T′. Thus, we conclude that
cj = k. Since Tk[R] is connected, the ends of e′ are joined by a path S in
Tk[R]. However, S is not contained within Q as e′ joins different components
of Tk[Q]. Hence, S contains an edge e′′ leaving Q. Observing that ℓ(e′′) < j,
we use the Claim to obtain ℓ′(e′′) = ℓ(e′′) < j < ℓ(e), a final contradiction
with the minimality of e since e′′ is superfluous for T′.
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