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Abstract

We present a linear-time algorithm for deciding first-order logic
(FOL) properties in classes of graphs with bounded expansion. Many
natural classes of graphs have bounded expansion; for instance, graphs
of bounded tree-width, all proper minor-closed classes of graphs, graphs
of bounded degree, graphs with no subgraph isomorphic to a subdivi-
sion of a fixed graph, and graphs that can be drawn in a fixed surface in
such a way that each edge crosses at most a constant number of other
edges. We also develop an almost linear-time algorithm for deciding
FOL properties in classes of graphs with locally bounded expansion;
those include classes of graphs with locally bounded tree-width or lo-
cally excluding a minor.
More generally, we design a dynamic data structure for graphs

belonging to a class G of graphs of bounded expansion. After a linear-
time initialization the data structure allows us to test an FOL property
in constant time, and the data structure can be updated in constant
time after addition/deletion of an edge, provided the list of possible
edges to be added is known in advance and their addition results in
a graph in G. In addition, we design dynamic data structure for test-
ing Σ1-properties or the existence of short paths between prescribed
vertices in such classes of graphs. All our results hold for relational
structures.
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1 Introduction

A celebrated theorem of Courcelle [2] states that for every integer k ≥ 1 and
every property Π definable in monadic second-order logic (MSOL) there is
a linear-time algorithm to decide whether a graph of tree-width at most k
satisfies Π. While the theorem itself is probably not useful in practice because
of the large constants involved, it does provide an easily verifiable condition
that a certain problem is (in theory) efficiently solvable. Courcelle’s result led
to developing a whole new area of algorithmic results, known as algorithmic
meta-theorems, see the survey [19]. For specific problems there is very often a
more efficient implementation, for instance following the axiomatic approach
of [28].
While the class of graphs of tree-width at most k is fairly large, it does

not include some important graph classes, such as planar graphs or graphs
of bounded degree. Courcelle’s theorem cannot be extended to these classes
unless P=NP, because testing 3-colorability is NP-hard for planar graphs of
maximum degree at most four [14] and yet 3-colorability is expressible in
monadic second order logic.
Thus in the attempt at enlarging the class of input graphs, we have to

restrict to the set of properties we want to test. One of the first result in
this direction was a linear-time algorithm of Eppstein [9, 10] for testing the
existence of a fixed subgraph in planar graphs. He then extended his algo-
rithm to minor-closed classes of graphs with locally bounded tree-width [11].
Testing a fixed subgraph can be defined in a first order logic (FOL) by a
Σ1-sentence and several generalization of Eppstein’s work in this direction
appeared. The most general results include:

• a linear time algorithm of Frick and Grohe [12] for deciding FOL prop-
erties of planar graphs,

• an almost linear-time algorithm of Frick and Grohe [12] for deciding
FOL properties for classes of graphs with locally bounded tree-width,

• a fixed parameter algorithm of Dawar, Grohe and Kreutzer [3] for de-
ciding FOL properties for classes of graphs locally excluding a minor,
and

• a linear-time algorithm of Nešetřil and Ossona de Mendez [22] for de-
ciding Σ1-properties for classes of graphs with bounded expansion.

We generalize all these results in two different ways: we consider classes
of graphs with bounded expansion, which generalize ones appearing in the
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mentioned results, and we also consider dynamic setting where the input
graph can change during computation.

1.1 Classes of sparse graphs

In order to state our results, we need to present the concept of classes of
graphs of bounded expansion, introduced by Nešetřil and Ossona de Mendez
in [20] and in the series of journal papers [21, 22, 23]. Examples of classes
of graphs with bounded expansion include proper minor-closed classes of
graphs, classes of graphs with bounded maximum degree, classes of graphs
excluding a subdivision of a fixed graph, classes of graphs that can be embed-
ded on a fixed surface with bounded number of crossings per each edge and
many others, see [25]. Many structural and algorithmic properties generalize
from proper minor-closed classes of graphs to classes of graphs with bounded
expansion, see [6, 26].
Let us define the graph classes of interest to us. All graphs considered

in this paper are simple and finite. A class of graphs is hereditary if it is
closed under taking subgraphs. An r-shallow minor of a graph G is a graph
that can be obtained from G by removing some of the vertices and edges
of G and then contracting vertex-disjoint subgraphs of radius at most r to
single vertices (removing arising parallel edges to keep the graph simple).
The grad (greatest reduced average density) of rank r of a graph G is equal
to the largest average density of an r-shallow minor of G. The grad of rank
r of G is denoted by ∇r(G). In particular, 2∇0(G) is the maximum average
degree of a subgraph of G. If G is a class of graphs, then the class of r-shallow
minors of graphs contained in G is denoted by G∇r.
A function f : N → R

+ bounds the expansion of a graph G if ∇r(G) ≤
f(r) for every integer r ≥ 0. A class G of graphs has bounded expansion if
there exists a function f : N → R

+ that bounds the expansion of all graphs
in G. We will also say that the function f bounds the expansion of graphs in
G.
If G is a class of graphs and g0 a real-valued function on G, then

lim sup
G∈G

g0(G)

is the supremum of all reals α such that G contains infinitely many graphs
G with g0(G) ≥ α. A class G of graphs is nowhere-dense if

lim
r→∞

lim sup
G∈G∇r

log ||G||

log |G|
≤ 1.

It can be shown that every class of graphs with bounded expansion is nowhere-
dense [24], but the converse is not true.

3



On the other hand, every class of graphs with locally bounded tree-width
or locally excluding a minor is nowhere-dense. Recall that a class G of graphs
has locally bounded tree-width if there exists a function f : N → N such that
the subgraph induced by the r-neighborhood of every vertex v of a graph
G ∈ G has tree-width at most f(r) for every r ≥ 0. A class G locally excludes
a minor if there exist graphs H1, H2, . . . such that no subgraph of any graph
G ∈ G induced by the r-neighborhood of any vertex v of G contains Hr as
a minor. Finally, a class G of graphs has locally bounded expansion if there
exists function f : N × N → R

+ such that the ∇r(G) ≤ f(d, r) for every
graph G that is a subgraph of the d-neighborhhod of a vertex in a graph
from G. Similarly, one can define classes of locally nowhere-dense graphs,
but it turns out that every such class is a class of nowhere-dense graphs, too.
If L is a language (see Subsection 1.3 for the necessary logic theory defi-

nitions), the Gaifman graph of an L-structure A is the undirected graph GA

with vertex set V (GA) = V (A) and an edge between two vertices a, b ∈ V (A)
(a 6= b) iff there exists R ∈ Lr and a tuple (a1, . . . , ar) ∈ RA such that
a, b ∈ {a1, . . . , ar} or there exists a function f ∈ Lf such that b = f(a). We
say that the relational structure A is guarded by a graph G with vertex set
V (G) = V (A) if GA ⊆ G. Observe that if G belongs to a class of graphs
with bounded expansion, then its maximum average degree is bounded and
thus G contains a linear number of complete subgraphs [29]. It follows that
the size |A| of any L-structure A guarded by a graph belonging to a fixed
class of graphs with bounded expansion is O(|V (A)|).

1.2 Our results

We study complexity of deciding properties that can be expressed in terms
of a first-order logic formula for classes of sparse graphs and sparse relational
structures. Our two algorithmic results that unify the results mentioned at
the beginning are the following. Recall that an algorithm is almost linear if
its running time is bounded by O(n1+ε) for every ε > 0, where n is the size
of the input instance.

Theorem 1. Let G be a class of graphs with bounded expansion, L a lan-
guage and ϕ an L-sentence. There exists a linear time algorithm that decides
whether an L-structure guarded by a graph G ∈ G satisfies ϕ.

Theorem 2. Let G be a class of graphs with locally bounded expansion, L a
language and ϕ an L-sentence. There exists an almost linear time algorithm
that decides whether an L-structure guarded by a graph G ∈ G satisfies ϕ.

Our approach differs from the methods used to prove the results from [12,
3] mentioned above and is based on structural results on the existence of low
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tree-depth colorings for graphs with bounded expansion. After we announced
our results in the survey paper [6] in June 2009, we learnt that Dawar and
Kreutzer [4] gave an independent proof of Theorems 1 and 2. In fact, they
proved Theorem 2 for the larger class of nowhere-dense graphs, using a dif-
ferent (more logic-oriented) technique.
In addition to designing algorithms for deciding FOL properties, we also

consider dynamic setting in which relations to structures can be added and
removed. In Sections 5–7, we design the following data structures (the first
can be viewed as a dynamic version of Theorem 1):

• for every class G of graphs with bounded expansion, a language L and
an L-sentence ϕ, a data structure that is initialized with a graph G ∈ G
and an L-structure A guarded by G in time O(n) where n is the number
of vertices of G and that supports the following operations:

– adding a tuple to a relation of A in time O(1) provided A stays
guarded by G,

– removing a tuple from a relation of A in time O(1), and

– answering whether A |= ϕ in time O(1),

• for every class G of graphs with bounded expansion, an integer d0 and a
language L with no function symbols, a data structure that is initialized
with a graph G ∈ G in time O(n) and the empty L-structure A with
V (A) = V (G) where n is the number of vertices of G and that supports
the following operations:

– adding a tuple to a relation of A in time O(1) provided A stays
guarded by G,

– removing a tuple from relation of A in time O(1), and

– answering whether A |= ϕ for any Σ1-L-sentence ϕ with at most d0

variables in time O(|ϕ|) and if so, outputting one of the satisfying
assignments, and

if G is only a class of nowhere-dense graphs, then the data structure
supports

– adding a tuple to a relation of A in time O(nε) provided A stays
guarded by G,

– removing a tuple from a relation of A in time O(nε), and

– answering whether A |= ϕ for any Σ1-L-sentence ϕ with at most
d0 variables in time O(|ϕ| + nε) and if so, outputting one of the
satisfying assignments,
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where ε is any positive real number, and

• for every class G of graphs with bounded expansion and an integer d,
a data structure supporting queries whether two vertices are at dis-
tance at most d provided the input graph stays in G with the following
running times:

– initialization time O(n),

– amortized time O(logd n) for adding an edge, and

– time O(1) for removing an edge,

where n is the order of the stored graph, and, if G is only a class of
nowhere-dense graphs, then the data structure supports

– initialization time O(n1+ε),

– amortized time O(nε) for adding an edge, and

– time O(nε) for removing an edge,

where ε is any positive real number.

The second of these data structures is needed in our linear-time algorithm
for 3-coloring triangle-free graphs on surfaces [8], also see [7], and we describe
its use in more detail in Section 8. The last one is inspired by a data structure
of Kowalik and Kurowski [16, 18] for deciding whether two vertices of a planar
graph are connected by a path of length at most k, where k is a fixed constant.

1.3 Logic theory definitions

In this subsection, we provide additional definitions needed in our exposition,
mostly from logic theory. A language L consists of a disjoint union of a finite
set Lr of relation symbols and a finite set Lf of function symbols. Each
relation symbol R ∈ Lr is associated with an integer a(R) ≥ 0 called the
arity of R. For our purposes, we will assume that all function symbols have
arity one.
If L is a language, then an L-structure A is a triple (V, (RA)R∈Lr , (fA)f∈Lf )

consisting of a finite set V and for each m-ary relation symbol R ∈ Lr a set
RA ⊆ V m, the interpretation of R in A, and for each function symbol f ∈ Lf

a function fA : V → V of one variable, the interpretation of f in A. We
define V (A) := V . For example, graphs may be regarded as L-structures A,
where L is the language consisting of a single binary relation representing
the edges with V (A) being their vertex sets. We define the size |A| of A to
be |V (A)| +

∑

R∈Lr |RA| + |Lf ||V (A)|.
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Assume that we have an infinite set of variables. An L-term is defined as
follows:

1. each variable is an L-term, and

2. if f ∈ Lf and t is an L-term, then f(t) is an L-term.

Each L-term is obtained by a finite number of applications of these two rules.
We say that an L-term is simple if it is a variable or is of the from f(x) where
f ∈ Lf and x is a variable. A term t appears in a term t′ if either t = t′ or
t′ = f(t′′) for some f ∈ Lf and t appears in t′′.
An atomic L-formula ϕ is either the symbol ⊤ (which represents a tau-

tology), its negation ⊥, R(t1, . . . , tm) where R is an m-ary relation symbol of
L and t1, . . . , tm are L-terms or t1 = t2 where t1 and t2 are L-terms. A term
t appears in ϕ if it appears in one of the terms t1, . . . , tm. An L-formula is
defined recursively as follows: every atomic L-formula is an L-formula, and
if ϕ1 and ϕ2 are L-formulas and x is a variable, then ¬ϕ1, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2,
∃x ϕ1 and ∀x ϕ1 are L-formulas. Every L-formula is obtained by a finite
application of these rules. We write t1 6= t2 as a shortcut for ¬(t1 = t2).
A term t appears in an L-formula ϕ1 ∨ ϕ2 if it appears in ϕ1 or ϕ2, and

we define appearance for the other cases analogously. An L-formula is simple
if all terms appearing in it are simple. A variable x appears freely in an L-
formula ϕ if either ϕ is atomic and x appears in ϕ, ϕ = ϕ1∨ϕ2 or ϕ = ϕ1∧ϕ2

and x appears freely in at least one of the formulas ϕ1 and ϕ2, or ϕ = ∃y ϕ′

or ϕ = ∀y ϕ′, x is distinct from y and x appears freely in ϕ′. Occurences of
x in the formula ϕ not inside the scope of a quantifier bounding x, i.e., those
that witness that x appears freely in ϕ, are called free and the variables that
appear freely in ϕ are also referred to as free variables. If ϕ is a formula, then
the notation ϕ(x1, . . . , xn) indicates that all variables that appear freely in ϕ
are among x1, . . . , xn. An L-sentence is an L-formula such that no variable
appears freely in it. If ϕ(x1, . . . , xn) is an L-formula and A is an L-structure,
then for v1, . . . , vn ∈ V (A), we define A |= ϕ(v1, . . . , vn) in the usual way.

2 Classes of graphs with bounded expansion

In this section, we survey results on classes of graphs with bounded expansion
and classes of nowhere-dense graphs that we need in the paper. A rooted
forest F is a forest there every tree is an out-branching. The depth of F is
the number of vertices of the longest oriented path in F . A closure of F is
the undirected graph obtained from F by adding all edges between vertices
joined by a directed path and forgetting the orientation of all the edges. The
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tree-depth of an (undirected) graph G is the smallest integer d such that G is
a subgraph of the closure of a rooted forest of depth d. A vertex coloring of
a graph G is a low tree-depth coloring of order K if the union of any s color
classes, s ≤ K, induces a subgraph of G with tree-depth at most s.
The existence of low tree-depth colorings with bounded numbers of colors

is one of major structural results for graphs with bounded expansion. Before
we state this result formally, we have to introduce more definitions.
Consider an orientation of G. Let G′ be the graph obtained from G by

adding all edges xy such that:

• there exists a vertex z such that G contains an edge oriented from x to
z and an edge oriented from z to y (transitivity), or

• there exists a vertex z such that G contains an edge oriented from x to
z and an edge oriented from y to z (fraternality).

We call G′ the augmentation of the orientation of G. The following was
shown by Nešetřil and Ossona de Mendez [21]:

Theorem 3. There exist functions f1 and f2 with the following property.
Let G be a graph with expansion bounded by g. Consider an orientation of G
such that each vertex has in-degree at most D, and let G′ be the augmentation
of this orientation of G. Then the expansion of G′ is bounded by a function
g′(r) = f1(g(f2(r)), D).

Let G be a graph from a class G with bounded expansion. Consider the
following series of graphs: G0 is obtained from G by orienting edges in such
a way that the maximum in-degree of G0 is at most 2∇0(G). Let G1 be the
augmentation of this orientation of G0, and orient G1 so that the maximum
in-degree of G1 is at most 2∇0(G1); the edges present in G0 do not necessarily
have to preserve their orientation. In general, Gk is the augmentation of an
orientation of Gk−1 with maximum in-degree 2∇0(Gk−1). A greedy algorithm
can be used to find such an orientation of Gk−1. The graph Gk is referred to
as a k-th augmentation of G. By Theorem 3, the class Gk consisting of the
graphs Gk obtained in the described way from the graphs in G has bounded
expansion. It follows that 2∇0(Gk) ≤ d for some constant d depending
only on the class G and k, and thus Gk is d-degenerate. In particular, the
chromatic number of a k-th augmentation of a graph G ∈ G is bounded by a
constant that depends on G only.
If G is an orientation of a graph, then any proper coloring of its (3d2 +1)-

th augmentation G′ of G is a low tree-depth coloring of order d [21], also
see [6] for further details. Moreover, the subgraph H of G′ induced by the
vertices of any s ≤ d color classes contains a rooted forest F with depth
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at most s such that H is a subgraph of the closure of F . We refer to this
property of the augmentation as depth-certifying and call F a depth-certifying
forest. The next theorem from [21] follows.

Theorem 4. Let G be a class of graphs with bounded expansion and d an
integer. There exists k such that any proper coloring of a k-th augmentation
of a graph G ∈ G is a low tree-depth coloring of order d and the k-th augmen-
tation is depth-certifying. In particular, G has a low tree-depth coloring of
order d with at most K colors where K depends on G and d only. Moreover,
such a coloring of G ∈ G and corresponding depth-certifying forests can be
found in linear time.

Similarly, for classes of nowhere dense graphs, we obtain [24]:

Theorem 5. Let G be a class of nowhere-dense graphs and d an integer.
There exists k such that any proper coloring of a k-th augmentation of a
graph G ∈ G is a low tree-depth coloring of order d and the k-th augmentation
is depth-certifying. In particular, G has a low tree-depth coloring of order
d with at most O(nε) colors for every ε > 0. Moreover, such a coloring
of G ∈ G and corresponding depth-certifying forests can be found in almost
linear time.

3 Deciding FOL properties in linear time

In this section, we prove Theorem 1. We start with a lemma which allows
us to remove quantifiers from a FOL formula (Lemma 9). However, we need
more definitions. Let X be a set of L-terms. An X-template T is a rooted
forest with vertex set V (T ) equipped with a mapping αT : X → V (T ) such
that α−1

T (w) 6= ∅ for every vertex w of T with no descendants. If ϕ is a
quantifier-free L-formula, then a ϕ-template is an X-template where X is
the set of all terms appearing in ϕ. The depth of T is the maximum depth
of a tree of T . Two X-templates T and T ′ are isomorphic if there exists a
bijection f : V (T ) → V (T ′) such that

• f is an isomorphism of T and T ′ as rooted forests, in particular, w is a
root of T if and only if f(w) is a root of T ′, and

• f(αT (t)) = αT ′(t) for every L-term t ∈ X.

The number of X-templates with a given depth is finite as stated in the
next proposition. The proof is straightforward and is left to the reader.
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Proposition 6. For every finite set of terms X and every integer d, there
exist only finitely many non-isomorphic X-templates of depth at most d.

Let X be a set of terms with variables {x1, . . . , xn}. An embedding of
an X-template T in a rooted forest F is a mapping ν : V (T ) → V (F )
such that ν(r) is a root of F for every root r of a tree of T and ν is an
isomorphism of T and the subforest of F induced by ν(V (T )). Let S be an
L-structure guarded by the closure of F , and v1, . . . , vn ∈ V (S). We say that
the embedding ν is (v1, . . . , vn)-admissible for S if for every term t ∈ X, we
have ν(αT (t)) = t(v1, . . . , vn) where t(v1, . . . , vn) denotes the element of V (S)
obtained by substituing vi for xi in the term t and evaluating the functions
forming the term t (in particular, if xi ∈ X, then ν(xi) = vi). Note that ν is
uniquely determined by S and the values v1, . . . , vn.
If F is a rooted forest, then the function p : V (F ) → V (F ) is the F -

predecessor function if p(v) is the parent of v unless v is a root of F ; if v is
a root of F , p(v) is set to be equal to v.
We now show that it can be tested by a quantifier-formula whether an

embedding is admissible.

Lemma 7 (Testing admissibility). Let d ≥ 0 be an integer, L a language
including a function symbol p and X a finite set of terms with variables
x1, . . ., xn. If T is an X-template of depth at most d, then there exists
a quantifier-free formula ξT (x1, . . . , xn) such that for every rooted forest F
and every L-structure S guarded by the closure of F such that pS is the
F -predecessor function in S, and for every n-tuple v1, . . . , vn ∈ V (S), the
L-structure S satisfies ξT (v1, . . . , vn) if and only if there exists a (v1, . . . , vn)-
admissible embedding of T in the forest F for S.

Proof. Let q : V (T ) → V (T ) be the T -predecessor function. Set ξT (x1, . . . , xn)
to the conjuction of all formulas

• pk(t) = pk′

(t′) if qk(αT (t)) = qk′

(αT (t′)), and

• pk(t) 6= pk′

(t′) if qk(αT (t)) 6= qk′

(αT (t′)),

for all pairs of not necessarily distinct terms t, t′ ∈ X and all pairs of integers
k and k′, 0 ≤ k, k′ ≤ d + 1 (note that including the formulas with t = t′

allows for testing the depth of t in F ).
It is straightforward to show that for v1, . . . , vn ∈ V (S), an (v1, . . . , vn)-

admissible embedding of T in F for S exists if and only if S |= ξT (v1, . . . , vn).

The following lemma will be extremely useful in the proof of Lemma 9.
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Lemma 8. Let d ≥ 0 be an integer, L a language, ϕ(x0, . . . , xn) a simple
quantifier-free L-formula that is a conjuction of atomic formulas and their
negations, and T a ϕ-template. There exists an integer K and an L-formula
ϕT such that the following holds:

• L is the language with L
r

= Lr∪{U1, . . . , Uk} and L
f

= Lf ∪{p} where
U1, . . . , Uk are new nullary or unary relations, k ≤ K,

• ϕT is quantifier-free and the variables x1, . . . , xn are the only variables
that appear in ϕT , but ϕT need not be simple, and

• for every rooted forest F with depth at most d and every L-structure S
guarded by the closure of F , there exists an L-structure S with V (S) =
V (S) such that for every v1, . . . , vn ∈ V (S),

S |= ϕ(v0, v1, . . . , vn) for some v0 ∈ V (S) such that there exists a
(v0, . . . , vn)-admissible embedding of T in F for S if and only if

S |= ϕT (v1, . . . , vn)

where pS is the F -predecessor function and the relations US
1 , . . . , U

S
k

can be computed (by listing the singletons they contain) in linear time
given F and S. The interpretation of other symbols of L is preserved
in S.

Proof. Fix a ϕ-template T and let q be the T -predecessor function. Let X
be the set of all terms appearing in ϕ. Let ξT be the formula from Lemma 7.
Finally, let K = max(∆, c) + 1 where ∆ is the maximum degree of T and c
is the number of components of T .
Let t = f(xi) be a term appearing in ϕ, for some function symbol f ∈ Lf

and a variable xi with 0 ≤ i ≤ n. If αT (t) is neither an ancestor nor a
descendant of αT (xi), then for any choice of v1, . . . , vn ∈ V (S), there is
no (v0, . . . , vn)-admissible embedding of T for S because vi and f

S(vi) are
adjacent in the Gaifmann graph of S; in particular, one is a descendent of
the other in F . Hence, we can set ϕT to ⊥. So, we can assume the following:

The images under αT of all function images of each variable xi

are ancestors or descendants of αT (xi).
(1)

If αT (x0) is an ancestor of a vertex αT (t), say qk(αT (t)) = αT (x0) for
k ≥ 0, where t is a term such that x0 does not appear in t, then ϕT will be
the formula obtained from ϕ ∧ ξT by replacing each x0 with the term pk(t).
Clearly, S |= ϕT (v1, . . . , vn) if and only if there is a choice of v0 in V (F ) such
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that S |= ϕ(v0, . . . , vn) and there is a (v0, . . . , vn)-admissible embedding of T
in F for S. In the rest, we can assume the following: So, we can assume the
following:

Every term t such that αT (t) is contained in the subtree of T
rooted at αT (x0) is a function image of x0.

(2)

We now define an auxiliary formula ϕ′ to be the formula obtained from
ϕ by replacing all subformulas of the form:

• t = t′ where t and t′ are terms such that αT (t) 6= αT (t′),

• t 6= t′ where t and t′ are terms such that αT (t) = αT (t′), or

• R(t1, . . . , tm) such that αT (t1), . . . , αT (tm) are not vertices of a clique
in the closure of T ,

with ⊥ since such a subformula is not satisfied for any choice of v0 for which
there exists a (v0, . . . , vn)-admissible embedding of T in F for S. It follows
that for every v0 such that there is a (v0, . . . , vn)-admissible embedding of T
in F for S, S |= ϕ(v0, . . . , vn) if and only if S |= ϕ′(v0, . . . , vn).
Suppose first that the tree of T containing the vertex αT (x0) also contains

an αT -image of another variable. Let v be the nearest ancestor of αT (x0) in
T such that there exists a term tv ∈ X such that x0 does not appear in tv
and v is an ancestor of αT (tv). Note that v 6= αT (x0) by (2). Let dv be the
depth of v in T , dx0

the depth of αT (x0) and m the number of children of v in
T . Let t1, . . . , tm−1 be terms such that αT (ti), 1 ≤ i ≤ m− 1, are vertices of
different subtrees rooted at a child of v and not containing αT (x0). Observe
that the variable x0 does not appear in t1, . . . , tm−1 by (1).
Let X0 be the subset ofX consisting of terms in which x0 appears, and let

T0 be the X0-template obtained from T by taking the minimal rooted subtree
containing αT (X0) and the root of the tree containing αT (x0), and restricting
the function αT toX0. Further, letX

′
0 be the subset ofX consisting ofX0 and

the terms t such that αT (t) lies on the path between the root and αT (x0), and
let X ′′

0 be the subset of X0 consisting of the terms mapped to a descendant
of v.
We define a unary relation U1(w) to be the set of elements w of F at

depth dv +1 such that the subtree of w in F contains an element v0 at depth
dx0
(in F ) with the following properties:

• there is a (v0)-admissible embedding of the template T0 in F for S, and

• all clauses appearing in the conjuction ϕ′ with terms from X ′
0 only and

with at least one term from X ′′
0 are true with x0 = v0 and the terms

t ∈ X ′
0 \X0, say αT (t) = qk(αT (x0)), replaced with p

S,k(v0).
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The relation U1(w) can be computed as follows: for every element v0 ∈ V (S)
at depth dx0

of F , evaluate all terms in X0 test whether the tree T0 and
the rooted subtree of F containing the values of the terms are isomorphic
as rooted trees (this can be done in time linear in the size of T0 which is
constant). If they are isomorphic, evaluate the clauses in the conjuction ϕ′

with terms from X ′
0 only and with at least one term from X ′′

0 with the terms

in X ′
0 \X0 replaced with p

S,k(v0). If all of them are true, add the predecessor
w of v0 at depth dv + 1 in F to U1. Since the time spent by checking every
vertex v0 at depth dx0

of F is constant, the time needed to compute U1 is
linear.
We further define a unary relation Ui(w), 2 ≤ i ≤ m+ 1, to be the set of

elements w of F at depth dv such that U1(w
′) for at least i − 1 children w′

of w. Clearly, the relations Ui(w), 2 ≤ i ≤ m+ 1, can be computed in linear
time when the relation U1 has been determined.
Let ϕ′′ be the formula obtained from ϕ′ by removing all clauses with

terms from X ′
0 only that contain at least one term from X ′′

0 . Observe that if
t is a term in ϕ′′ such that x0 appears in t, i.e., t ∈ X0 \X ′′

0 , then αT (t) lies
on the path between v and the root. Let ϕ′′′ be the formula obtained from
ϕ′′ by replacing every term t, in which x0 appears, with p

k(tv), where k is
the integer such that αT (t) = qk(αT (tv)). Let T

′ be the (X \X0)-template
obtained from T by taking the minimal rooted subtree containing αT (X \X0)
and restricting the function αT to X \X0. The formula ϕT will then be the
conjuction of the following formulas:

• the formula ϕ′′′(x1, . . . , xn),

• the formula ξT ′ from Lemma 7 for the (X \X0)-template T
′, and

• the formulas
(

∧

i∈Y

U1(p
ki−1(ti))

)

⇒ U|Y |+2(p
k(tv))

for all subsets Y of the set {1, . . . , m− 1} where k is the integer such
that qk(αT (tv)) = v and ki, i = 1, . . . , m− 1, are the integers such that
qki(αT (ti)) = v.

If S |= ϕT (v1, . . . , vn), then there is a (v1, . . . , vn)-admissible embedding
of T ′ in F and the vertex v = pk(tv) has a son w such that U1(w) and the
subtree of F rooted in w does not contain the value of any term appearing
in X \X0 (this is guaranteed by the last type of formulas in the definition of
ϕT ). In particular, the subtree rooted in w contains a vertex v0 such that the
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(v1, . . . , vn)-admissible embedding of T ′ can be extended to a (v0, . . . , vn)-
admissible embedding of T in F for S and all clauses in the conjuction of ϕ′

containing terms fromX ′
0 are satisfied with x0 = v0. Since S |= ϕ′(v1, . . . , vn),

it follows that S |= ϕ(v0, . . . , vn). The argument that the existence of v0

such that S |= ϕ(v0, . . . , vn) and the existence of a (v0, . . . , vn)-admissible
embedding of T in F for S implies that S |= ϕT (v1, . . . , vn) follows the same
lines.
The case that the tree of T that contains the vertex αT (x0) does not

contain αT -image of another variable is handled similarly. In this case, the
predicate U1 is defined for the roots of the trees of F , and the predicates U2,
. . . , Um+1 (where m is the number of components of T ) are nullary predicates
such that Ui is true if U1 is satisfied for at least i − 1 roots of the trees in
F .

We now prove the lemma that forms the core of our first algorithm.

Lemma 9 (Quantifier elimination lemma). Let d ≥ 0 be an integer, L a
language and ϕ a simple L-formula of the form ∃x0 ϕ′ such that ϕ′ is a
quantifier-free L-formula with free variables x0, . . . , xn. There exists an inte-
ger K and an L-formula ϕ such that the following holds:

• L is the language with L
r

= Lr∪{U1, . . . , Uk} and L
f

= Lf ∪{p} where
U1, . . . , Uk are new nullary or unary relations and k ≤ K,

• ϕ is quantifier-free and the variables x1, . . . , xn are the only variables
that appear in ϕ, but ϕ need not be simple, and

• for every rooted forest F with depth at most d and every L-structure S
guarded by the closure of F , there exists an L-structure S with V (S) =
V (S) such that for every v1, . . . , vn ∈ V (S),

S |= ϕ(v1, . . . , vn) if and only if S |= ϕ(v1, . . . , vn)

where pS is the F -predecessor function and the relations US
1 , . . . , U

S
K

can be computed (by listing the singletons they contain) in linear time
given F and S. The interpretation of other symbols of L is preserved
in S.

Proof. Let d, L and ϕ′ be fixed. We assume without loss of generality that the
formula ϕ′ is in the disjunctive normal form and all the variables x0, . . . , xn

appear in ϕ′. If n = 0, set K = 1, enhance L with a nullary relation U1 and
set ϕ = U1. The truth value of ϕ can be determined in linear time by testing
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all possible choices for x0 among the elements of V (S) and this determines
whether the relation U1 is true or not.
Hence, we assume n ≥ 1 in the rest. The proof proceeds by induction

on the length of ϕ′. If ϕ′ is a disjunction of two or more conjuctions, i.e.,
ϕ′ = ϕ1 ∨ ϕ2, we apply induction to the formulas ∃x0ϕ1 and ∃x0ϕ2. We
obtain integers K1 and K2, languages L1 and L2, an L1-formula ϕ1 and an
L2-formula ϕ2. We assume that the new unary relation symbols of L1 and L2

are distinct and set K = K1 +K2, L
r

= Lr
1 ∪ L

r
2, L

f
= L

f
1 = L

f
2 = Lf ∪ {p}

and ϕ = ϕ1 ∨ ϕ2.
In the rest, we assume that ϕ′ is a conjunction. By Lemma 8, for every

ϕ′-template T of depth at most d, there exists a quantifier-free L-formula ϕT

such that for every v1, . . . , vn ∈ V (S), S |= ϕT (v1, . . . , vn) if and only if there
exists v0 such that there is a (v0, v1, . . . , vn)-admissible embedding of T in
F for S and S |= ϕ′(v0, v1, . . . , vn). The desired formula ϕ is then obtained
as the disjunction of the L-formulas ϕT where the disjunction runs over all
choices of ϕ′-templates T . Note that the number of choices of T is finite by
Proposition 6.

In order to apply Lemma 9, the formula needs to be simple but the lemma
produces a formula that need not be simple. The following lemma copes with
this issue:

Lemma 10. Let L be a language and ϕ(x1, . . . , xn) an L-formula with q
quantifiers. There exists a language L′ that extends L, a simple L′-formula
ϕ′(x1, . . . , xn) with q quantifiers and an integer k with the following prop-
erties. For every L-structure A guarded by a graph G, there exists an L′-
structure A′ guarded by a k-th augmentation G(k) of the orientation of G
containing an arc from u to v for every u, v ∈ V (A) and f ∈ Lf with
u = fA(v) such that A |= ϕ(v1, . . . , vn) if and only if A

′ |= ϕ′(v1, . . . , vn) for
any v1, . . . , vn ∈ V (A) = V (A′). Moreover, the L′-structure can be computed
in linear time in the size of G(k).

Proof. Let k be the maximum number of compositions of unary functions
appearing in ϕ. For every composition of unary functions appearing in ϕ,
define a new unary function, extend the vocabulary by this function and
replace the composition in ϕ by this new unary function. Let L′ be the
resulting language and ϕ′ the resulting L′-formula. In this way, we obtain a
simple L′-formula ϕ′ with q quantifiers where only variables x1, . . . , xn appear
freely. The L′-structure A′ is the extension of A obtained by defining the
values of new function symbols to correspond to the compositions of original
functions. Finally, the L′-structure A′ is guarded by a k-th augmentation
G(k).
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We are now ready to prove Theorem 1; we prove it in a stronger form
needed in Section 4.

Theorem 11. Let G be a class of graphs with bounded expansion, L a lan-
guage and ϕ(x1, . . . , xn) an L-formula. There exists a language L′, an integer
m and a linear-time algorithm that given an L-structure A guarded by G ∈ G
computes an L′-structure A′ guarded by an m-th augmentation G(m) of G,
and a quantifier-free L′-formula ϕ′(x1, . . . , xn) such that

A |= ϕ(v1, . . . , vn) if and only if A′ |= ϕ′(v1, . . . , vn) for every n-tuple
v1, . . . , vn ∈ V (A) = V (A′).

In particular, if n = 0, the algorithm decides whether A |= ϕ.

Proof of Theorems 1 and 11. The proof proceeds by induction on the num-
ber of quantifiers contained in ϕ. If ϕ is quantifier-free, then there is noth-
ing to prove. Hence, assume that ϕ contains at least one quantifier. By
Lemma 10, we can also assume that ϕ is simple. Indeed, an edge oriented
from u to v to the graph G for every u, v ∈ V (A) such that u = fA(v);
since the number of function symbols f is bounded, the maximum in-degree
is increased by a constant only. Lemma 10 then yields an integer k and a
simple formula, which is used in what follows, guarded by a graph H = G(k).
Since ∀x ψ is equivalent to ¬∃x ¬ψ, we can assume that ϕ contains a sub-

formula of the form ∃x0ψ, where ψ is a formula with variables x0, x1, . . . , xN ,
N ≥ n, and with no quantifiers. Let N0 be the number N + 1 increased by
the number of distinct function images of x0, x1, . . . , xN appearing in ψ. Let
K = 3N2

0 + 1 and consider a coloring of a K-th augmentation H(K) of H ;
this coloring is a depth-certifying low-tree-depth coloring of H of order N0

(see the discussion before Theorem 4). Let K0 be the number of colors used
by this coloring and Ci, i = 1, . . . , K0, a unary relation containing vertices
with the i-th color. Note that K0 is bounded by a constant depending on
G and K only. Clearly, computing the augmentation and determining the
coloring can be performed in linear time.
For each function symbol f ∈ Lf and i = 1, . . . , K0, let C

f
i be the predi-

cate defined so that Cf
i (v) is true for v ∈ V (A) if and only if the color of f(v)

is i. The colors of the variables and their function images appearing in ψ can
be described by an N0-tuple α of numbers between 1 and K0. For such an
N0-tuple α, let ϕα be the conjuction of the terms of form Cαi

(xi) and C
f
αj

(xi)
that verifies that the assignment of the colors of the values of x0, . . . , xN and
their function images are consistent with α. Clearly, ∃x0ψ is equivalent to
the disjunction of the formulas ∃x0(ψ ∧ ϕα) where the disjunction ranges
through all choices of α.
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For each function symbol f ∈ Lf , we introduce a new function symbol
fα defined by fα(v) = f(v) if both v and f(v) have a color in α and by
fα(v) = v otherwise. For each relation symbol R ∈ Lr of arity greater than
one, let Rα be defined by restricting R to the vertices with color α. Let Aα

be the corresponding relational structure. Let ϕ′′
α be the formula obtained

from ∃x0(ψ∧ϕα) by replacing each function symbol f by fα and each relation
symbol R of arity greater than one by Rα. For a fixed N0-tuple α, the formula
∃x0(ψ ∧ ϕα) is true for A if and only if ϕ′′

α is true for Aα. Note that Aα is
guarded by the graph Hα obtained from H by removing the edges incident
with the colors not in α. Since N0 ≤ K, H(K) contains an out-branching Fα

of depth at most N0 whose closure contains Hα.
Apply Lemma 9 to the formula ϕ′′

α and Fα, obtaining a formula ψα and
a structure A′

α. We claim that for any choice of x1, . . . , xN , the formula
A′

α |= ψα is satisifed in A
′
α if and only if the formula ∃x0(ψ ∧ ϕα) is satisfied

in A. If the colors x1, . . . , xN or the colors of their function images do not
agree with α, then both formulas are not satisfied. Otherwise, all the values
of x1, . . . , xN correspond to the vertices of Fα and the formula ψα is in A

′
α

satisfied if and only if ∃x0(ψ ∧ ϕα) is satisfied in A as stated in Lemma 9.
Note that the application of Lemma 9 for each N0-tuple α extends the

language L by a single unary function, which is determined by Fα, and several
nullary and unary relations, in addition to the new symbols defined in Aα.
Since the number of choices of α is bounded by a function of N0 and K0,
the number of new functional and relational symbols depends only on the
formula ψ and the class G.
Replace now the subformula ∃x0ψ in ϕ by the disjunction of the formulas

ψα for all choices of α. The resulting formula is guarded by a graph H
(K) =

G(k+K), and because it contains one less quantifier than ϕ, we can apply
induction to it.
Since each application of Lemmas 9 and 10 in the induction can be per-

formed in linear time and the number of their applications is bounded by a
function depending on ϕ and G only, the reduction of ϕ to ϕ′ and computing
A′ can be done in linear time.

4 Deciding FOL properties in graphs with lo-

cally bounded expansion

In this section, we prove Theorem 11. To do so, we will have to exploit
locality of FOL formulas which is stated in the next theorem by Gaifman [13].
We need one more definition. If ϕ is an FOL formula, then ϕ〈x〉r is the

17



formula obtained from ϕ by relativizing all quantifiers to the r-neighborhood
of x in the Gaifman graph, i.e., by restricting every universal and existential
quantifier to the elements of the r-neighborhood of x.

Theorem 12. Every first-order L-sentence is equivalent to a Boolean com-
bination of sentence of the form

∃x1, . . . , xk

(

∧

1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

ψ〈xi〉r

)

for suitable integers k and r where d(xi, xj) is the distance between xi and
xj in the Gaifman graph and ψ is a FOL L-formula.

The r-neighborhood Nr(v) of a vertex v in a graph G is the set of all of
vertices of G at distance at most r from v. An (r, s)-neighborhood cover of a
graph G is a collection N of vertex subsets of V (G) such that every A ∈ N
is contained in an s-neighborhood of a vertex of G and the r-neighborhood
of every vertex of G is contained in some A ∈ N . The size ||N || of the
neighborhood cover N is the sum of the cardinalities of its sets. The next
lemma due to Peleg [27] says that every graph has a neighborhood cover of
small size.

Lemma 13. Let k ≥ 1. There is an algorithm that for a graph G and
r ≥ 1 computes an (r, 2kr)-neighborhood cover N of G of size at most
O(|V (G)|1+1/k and its running time is bounded by O(

∑

A∈N ||G[A]||). More-
over, every vertex v is associated with A ∈ N such that Nr(v) ⊆ A.

An immediate corollary of Lemma 13 is the following:

Lemma 14. Let G be a class of nowhere-dense graphs. For every k ≥ 1 and
every r ≥ 1, there exists an algorithm that computes an (r, 2kr)-neighborhood
cover N of a graph G ∈ G in time O(|V (G)|1+2/k) such that the size of N is
at most O(|V (G)|1+1/k). Moreover, the algorithm associates every vertex of
G with A ∈ N such that Nr(v) ⊆ A.

We now follow the lines of arguments from [12]. Let us start with estab-
lishing the following.

Lemma 15. Let L be a language, ψ an L-sentence, r an integer and G a class
of graphs with locally bounded expansion. There exists an almost linear time
algorithm that, given an L-structure S guarded by a graph G ∈ G, computes
the set W of elements w ∈ V (S) such that ψ〈w〉r.
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Proof. Let k be an integer whose value is determined later. Apply Lemma 14
to get an (r, 2kr)-neighborhood cover N of G. Let SA be the substructure of
L induced by A ∈ N and GA the subgraph of G induced by A. The subgraph
GA has expansion bounded by a function depending only on k and r.
Extend the language L to Lℓ by introducing a new binary relation and

extend SA to Sℓ by setting the new binary relation to represent the edges
of GA. Let ψℓ(x0) be the formula ψ where for each variable xi appearing
in ψ a subformula expressing that the distance of xi from x0 is at most r is
added in the scope where xi is quantified (note that this can be expressed by
a Σ1-formula, in particular, ψℓ(x0) is a FOL formula). Clearly, SA |= ψ〈w〉r
if and only if Sℓ |= ψℓ(w).
By Theorem 11, there exist an integer kℓ and an extension L

′
ℓ of the

language Lℓ with the following property: in linear time, the Lℓ-structure Sℓ

can be extended to an L′
ℓ-structure S

′
ℓ guarded by an augmentation G

(kℓ)
A of

GA and a quantifier-free L
′-formula ψ′(x0) can be computed such that

Sℓ |= ψℓ(w) if and only if S ′
ℓ |= ψ′

ℓ(w)

for every element w ∈ V (SA) = V (Sℓ) = V (S ′
ℓ). Consequently, it is possible

to list all elements w ∈ A such that SA |= ψ〈w〉r in linear time (if k is fixed).
The set W then contains the elements w such that w is associated with

A ∈ N (in the sense of Lemma 14) and SA |= ψ〈w〉r. If k is chosen to be the
value of a function growing to infinity with |V (S)| sufficiently slowly that the
algorithm for listing w ∈ W given the (r, 2kr)-neighborhood cover is almost
linear, we obtain an almost linear time algorithm.

We are now ready to prove Theorem 2.

Proof of Theorem 2. By Theorem 12, it is enough to show that the truth of
every L-sentence of the form

∃x1, . . . , xk

(

∧

1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

ψ〈xi〉r

)

(3)

can be decided in almost linear time for L-structures guarded by a graph
from G.
Fix k, r and ψ and assume that an L-structure S guarded by G ∈ G is

given. By Lemma 15, it is possible in almost linear time to list all elements
w ∈ V (S) such that S |= ψ〈w〉r. Let W be the set of all such elements.
Choose w1 ∈ W arbitrarily. Then, choose w2 arbitrary in W \ N2r(w1), w3

in W \ (N2r(w1) ∪ N2r(w2)), until W \ (N2r(w1) ∪ · · · ∪ N2r(wℓ)) becomes
empty. If ℓ ≥ k, the formula is true (set wi = xi, i = 1, . . . , k). If ℓ < k,
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then all elements of W are at distance at most 2r from one of the elements
w1, . . . , wℓ.
LetW ′ be the elements w′ ∈ V (S) such that d(w′, w) ≤ r for some w ∈W ,

and let S ′ be the L-substructure of S induced by W ′. Since every vertex of
W is at distance at most 2r from one of the elements w1, . . . , wℓ, it holds
that W ′ ⊆ N3r(w1) ∪ · · · ∪ N3r(wℓ). Consequently, every component of the
subgraph G′ of G induced by W ′ is contained in the 3rℓ-neigborhood of one
of the vertices w1, . . . , wℓ (the bound can be tight since the 3r-neighborhoods
of w1, . . . , wℓ need not be disjoint). Observe that G

′ guards S ′.
Since G is a class of graphs with locally bounded expansion, G′ has

bounded expansion (with bounds on grads depending only on k and r). By
Theorem 1, the first order sentence

∃x1, . . . , xk

(

∧

1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

xi ∈W

)

(4)

can be decided in linear time for S ′. Since two vertices x and x′ are at
distance at most 2r in G if and only if their distance in G′ is at most 2r, the
sentence (3) is true in S if and only if the sentence (4) is true in S ′. This
concludes the proof.

5 Dynamic data structures for Σ1-queries

In this section, we provide a data structure for answering Σ1-queries. The
update time is constant but the price we have to pay is that the graph that
guards the relational structure must be fixed before the computation starts.
Before we start our exposition, we need to introduce more definitions.
Let L be a language with no function symbols. For an integer k, a k-

labelled L-structure is an L-structure S with a partial injective mapping
α : [1, k] → V (S), i.e., α need not be defined for all integers between 1 and
k. In our further consideration, we will also allow k to be equal to zero.
The trunk of a k-labelled L-structure S is the L-structure obtained from

S by removing all relations with elements only from α([1, k]). A k-labelled
L-structure S is hollow if S is equal to its trunk. Two k-labelled L-structures
S1 and S2 are k-isomorphic if their trunks are isomorphic through an isomor-
phism commuting with mappings α1 and α2. In particular, every k-labelled
L-structure is k-isomorphic to its trunk.
Suppose now that an L-structure S is guarded by the closure of a rooted

tree T . For a vertex v of T at depth d, let PT (v) denote the path from the
root of T to v and T 〈v〉 the elements the subtree of v (including v itself).
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Then, S〈v〉 denotes the set of all d-labelled L-structures S ′ such that S ′ is an
induced substructure of S with elements only in PT (v) ∪ T 〈v〉 and α(i) = w

for every vertex w ∈ PT (v) ∩ V (S ′) at depth i − 1. If a vertex of PT (v) at
depth i− 1 is not contained in S ′, then α(i) is not defined.
We are now ready to prove a lemma that contains a core of our data

structure.

Lemma 16. Let L be a language with no function symbols, d0 a fixed integer
and F a rooted forest of depth at most d0. There exists a data structure
representing an L-structure S guarded by the closure of F such that

• the data structure is initialized in linear time,

• the data structure representing an L-structure S can be changed to the
one representing an L-structure S ′ by adding or removing a tuple from
one of the relations in constant time provided that both S and S ′ are
guarded by the closure of F , and

• the data structure decides in time bounded by O(|ϕ|) whether a given
Σ1-L-sentence ϕ with at most d0 variables is satisfied by S, and if so,
it outputs one of the satisfying assignments.

Proof. For every vertex v of F at depth d, we will store the following two
lists:

• the list of all relations from S that contain v and all their elements are
in PF (v), and

• the list of all (non-d-isomorphic) d-labelled hollow L-structures with
at most d0 elements that are d-isomorphic to a d-labelled L-structure
contained in S〈v〉.

Since there are only finitely many non-d-isomorphic d-labelled L-structures
with at most d0 elements for every d ≤ d0, the length of each list of the
second type is bounded by a constant depending only on d0 and L. If v is a
non-leaf vertex of F , there will be a third list associated with v:

• the list of all (non-isomorphic) (d + 1)-labelled hollow L-structures S ′

with at most d0 elements that appear in the second list of at least one
child of v; for each such S ′, there will be stored the list of all children
of v whose second list contains S ′.

In addition, there will be a global list of all (non-isomorphic) L-structures
with at most d0 elements that appear as induced L-substructures in S.
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Let us describe how all these lists are initialized. The initialization of the
first type of lists is trivial: just put each relation to the list of its element
that is farthest from the root. This can clearly be done in constant time per
relation.
Initialization of other types of lists is more difficult. Fix a tree T of F .

We proceed from the leaves towards the root of T . Let v be a vertex of T
at depth d. If v is a leaf of T at depth d, then the second list of v contains
only those hollow d-labelled L-structures S ′ that are formed by vertices on
P (v) such that if v ∈ V (S ′), then S ′ contains precisely all unary relations of
S containing v, and if v 6∈ V (S ′), then S ′ contains no relations at all.
Suppose now that v is not a leaf of T . The third list associated with v

can be initialized by merging the second type of lists of children of v. We
describe how it can be decided whether a d-labelled hollow L-structure S ′

should be contained in the list of v of the second type. Assume that S〈v〉
contains a d-labelled hollow L-structure S ′′ that is d-isomorphic to S ′.
Then, V (S ′′) can be decomposed into disjoint subsets V0, V1, . . . , Vm such

that V0 = V (S ′′) ∩ P (v), each of the sets Vi, i = 1, . . . , m, is fully contained
in a subtree of a child vi of v, and different subsets V1, . . . , Vm are contained
in different substrees. Observe that every relation of S ′′ must be contained
in V0∪Vi for some i = 1, . . . , m. Moreover, the only relations of S ′′ contained
in V0 are those that contain v.
Hence, the existence of S ′′ can be tested by considering all partitions

of V (S ′) into disjoint subsets V0, V1, . . . , Vm such that α([1, d]) ⊆ V0, |V0 \
α([1, d])| ≤ 1 and every relation of S ′ is contained in V0 ∪ Vi for some
i = 1, . . . , m, and then testing the existence of children v1, . . . , vm such that
the second list of vi contains a (d + 1)-labelled hollow L-structure (d + 1)-
isomorphic to the (d+1)-labelled hollow L-structure of S ′ induced by V0∪Vi;
if |V0 \ α([1, d])| = 1, then α(d+ 1) is defined to be equal to the unique ele-
ment of V0 \ α([1, d]) and we also test whether the relations of S ′ containing
α(d+ 1) are precisely those relations of S restricted to P (v) that contain v,
i.e., those in the first list of v.
We now describe how to test the existence of children v1, . . . , vm. Let W

be the set of children of v such that: if v has at most m children with their
second list containing a (d+1)-labelled hollow L-structure (d+1)-isomoprhic
to the substructure of S ′ induced by V0∪Vi, thenW contains all such children
of v. If v has more than m such children, then W contains arbitrary m of
these children. Clearly, |W | ≤ m2 ≤ d2

0. In order to test the existence of
such children v1, . . . , vm of v, we form an auxiliary bipartite subgraph B: one
part of B is formed by numbers 1, . . . , m and the other part by children of
v contained in W . A child w ∈ W is joined to a number i if the second list
of w contains a (d+ 1)-labelled hollow L-structure (d+ 1)-isomoprhic to the
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substructure of S ′ induced by V0 ∪ Vi.
If B has a matching of size m, then this matching determines the choice

of children v1, . . . , vm. On the other hand, if such children exist, B contains
a matching of size m: indeed, if vi 6∈W , then v has at least m children whose
second lists contains (d + 1)-labelled hollow L-structure (d + 1)-isomoprhic
to the substructure of S ′ induced by V0 ∪ Vi, and we can change vi to one of
these m children that is different from vi′ for i

′ 6= i. Hence, we can assume
that vi ∈ W for every i = 1, . . . , m which implies that B has a matching of
size m.
Since the order of B is at most m2 +m and the number of disjoint non-

empty partitions of V (S ′) to V0, . . . , Vm is bounded, testing the existence of
a d-labelled hollow L-structure S ′′ can be performed in constant time for v.
It remains to construct the global list containing L-structures S0 with at

most d0 elements that appear in S as induced substructures. We proceed
similarly as when determining the lists of inner elements of the forest F . For
every L-structures S ′ with at most d0 elements, we compute the list of trees
of F that contain S ′, i.e., S ′ is contained in the second list of the root of F .
Now, S0 is an induced substructure of S

′ if and only if there exist element-
disjoint L-structures S1, . . . , Sm such that S0 = S1 ∪ · · · ∪Sm and S1, . . . , Sm

appear in m mutually distinct trees of F . For each such partition of S0 into
S1, . . . , Sm, we can test whether S1, . . . , Sm appear in the list of roots of m
distinct trees of F using the auxiliary bipartite graph described earlier. Since
all structures involved contain at most d0 elements, this phase requires time
linear in the number of trees of F .
We have shown that the data structure can be initialized in linear time.

Let us now focus on updating the structure and answering queries. Consider
a tuple (v1, . . . , vk) that is added to a relation R or removed from a relation
R. Let r be the root of a tree in F that contains all the elements v1, . . . , vk

and assume that v1, . . . , vk appear in this order on a path from r. By the
definition, the only lists affected by the change are those associated with
vertices on the path P (vk). Recomputing each of these lists requires constant
time (we proceed in the same way as in the initialization phase except we
do not have to swap through the children of the vertices on the path to
determine which of them contain particular k-labelled hollow L-substructure
S ′ in their lists). Since the number of vertices on the path P (vk) is at most
d0, updating the data structure requires constant time only.
It remains to describe how queries are answered. Let ϕ be a Σ1-sentence

with d ≤ d0 variables. We generate all possible L-structures S0 with d
variables and check whether they satisfy the formula ϕ. Let SS0 be the set
of those satisfying ϕ. The set SS0 can be generated in time O(|ϕ|) since L
and d0 are fixed.
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Observe that S satisfies ϕ if and only if it has an induced substructure
isomorphic to a structure in SS0. This can be tested in constant time by
inspecting the global list. Providing the satisfying assignment can be done
in constant time if during the computation for each substructure a certifi-
cate why it was included in the list is stored (which requires constant time
overhead only).

The following two theorems immediately follow from Lemma 16. We only
prove the first one since the proof of the second one is analogous.

Theorem 17. Let L be a language with no function symbols, d0 a fixed
integer and G a class of graphs with bounded expansion. There exists a data
structure representing a L-structure S such that

• given a graph G ∈ G, the data structure is initialized in linear time with
S being initially empty,

• the data structure representing an L-structure S can be changed to the
one representing an L-structure S ′ by adding or removing a tuple from
one of the relations in constant time provided that both S and S ′ are
guarded by G, and

• the data structure decides in time bounded by O(|ϕ|) whether a given
Σ1-L-sentence ϕ with at most d0 variables is satisfied by S, and if so,
it outputs one of the satisfying assignments.

Proof. By Theorem 4, there exists a constant K (depending on G only) such
that it is possible to find in linear time a low-tree-depth coloring of order
d0 of any graph G ∈ G together with forests witnessing the low tree depth.
For every d0 color classes of G, we apply Lemma 16. Since K is a constant,
the number of data structures we maintain is bounded by a constant which
depends on G only. If the given sentence ϕ is satisfied, it is also satisfied
in one of the unions of color classes. This is tested using the data structure
from Lemma 16. If ϕ is not satisfied in any of the auxiliary data structures,
it is not satisfied in S either and we report that.

Theorem 18. Let L be a language with no function symbols, k0 a fixed
integer, ε a positive real and G a class of nowhere-dense graphs. There exists
a data structure representing an L-structure S such that

• given a graph G ∈ G, the data structure is initialized in time O(n1+ε)
with S being initially empty,
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• the data structure representing an L-structure S can be changed to the
one representing an L-structure S ′ by adding or removing a tuple from
one of the relations in time O(nε) provided that both S and S ′ are
guarded by G, and

• the data structure decides in time bounded by O(|ϕ| + nε) whether a
given Σ1-L-sentence ϕ with at most k0 variables is satisfied by S, and
if so, it outputs one of the satisfying assignments.

6 Dynamic data structure for FOL-properties

In this section, we present our dynamic data structure for testing FOL prop-
erties. The main result of this section reads as follows:

Theorem 19. Let G be a class of graphs with bounded expansion, L a lan-
guage and ϕ an L-sentence. There exists a data structure that is initialized
with an n-vertex graph G ∈ G and an L-structure A guarded by G in time
O(n) and supports the following operations:

• adding a tuple to a relation of A in constant time provided A stays
guarded by G,

• removing a tuple from a relation of A in constant time, and

• it answers in constant time whether A |= ϕ.

Note that in Theorem 19, we do not allow to change function values of
functions from L to simplify our exposition; this does not present a loss of
generality as one can model functions as binary relations.
Theorem 19 follows from a dynamized version of Theorem 11 (we state

the theorem in the variant with no free variables for simplicity).

Theorem 20. Let G be a class of graphs with bounded expansion, L a lan-
guage and ϕ an L-sentence. There exists a language L′ and a quantifier-free
L′-sentence ϕ′ and a data structure representing an L′-structure A′ that can
be initialized with an n-vertex graph G ∈ G and an L-structure A guarded by
G in time O(n), V (A) = V (A′), and that satisfies:

• A |= ϕ if and only if A′ |= ϕ′, in particular, testing whether A |= ϕ can
be performed in constant time,

• adding a tuple to a relation of A can be done in constant time provided
A stays guarded by G, and
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• removing a tuple from a relation of A can be done in constant time.

In order to prove Theorem 20, we first establish a dynamized version of
Lemma 8.

Lemma 21. Let d ≥ 0 be an integer, L a language, ϕ(x0, . . . , xn) a simple
quantifier-free L-formula that is a conjuction of atomic formulas and their
negations, and T a ϕ-template. There exists an integer K and an L-formula
ϕT such that the following holds:

• L is the language with L
r

= Lr∪{U1, . . . , Uk} and L
f

= Lf ∪{p} where
U1, . . . , Uk are new nullary or unary relations, k ≤ K,

• ϕT is quantifier-free and the variables x1, . . . , xn are the only variables
that appear freely in ϕT , but ϕT need not be simple, and

• for every rooted forest F with depth at most d and every L-structure S
guarded by the closure of F , there exists an L-structure S with V (S) =
V (S) such that for every v1, . . . , vn ∈ V (S)

S |= ϕ(v0, v1, . . . , vn) for some v0 ∈ V (S) such that there exists a
(v0, . . . , vn)-admissible embedding of T in F for S if and only if

S |= ϕT (v1, . . . , vn)

where pS is the F -predecessor function and the relations US
1 , . . . , U

S
k

can be computed (by listing the singletons they contain) in linear time
given F and S. The interpretation of other symbols of L is preserved
in S, and

• adding or removing a tuple to a relation of S results in adding and
removing a constant number of singletons from unary relations among
US

1 , . . . , U
S
k , and the changes to all relations U

S
1 , . . . , U

S
k can be com-

puted in constant time, provided S stays guarded by the closure of F .

Proof. We need to describe how the relations US
1 , . . . , U

S
k can be updated

in constant time after adding or removing a tuple to a relation of S. Let
us consider in more detail the case analyzed in the proof of Lemma 8 and
leave to the reader the case mentioned at the end of the proof of Lemma 8.
Recall (see the proof of Lemma 8 for notation) that U1(w) is a unary relation
containing elements w of F at depth dv + 1 such that the subtree of w in F
contains an element v0 at depth dx0

(in F ) with the following properties:

• there is a (v0)-admissible embedding of the template T0 in F for S, and

26



• all clauses appearing in the conjuction ϕ′ with terms from X ′
0 only and

with at least one term from X ′′
0 are true with x0 = v0 and the terms

t ∈ X ′
0 \X0, say αT (t) = qk(αT (x0)), replaced with p

S,k(v0).

Since none of the functions of S changes, the first condition cannot change
when adding or removing a tuple to a relation of S. The second one can
change only when a tuple containing a term from X ′′

0 with x0 = v0 is added
or removed from a relation. Since all the values of the terms in X ′′

0 with
x0 = v0 appear only in a subtree of w, only a single element can be added to or
removed from U1. Based on the tuple we add or remove, we can identify which
w can be added or remove to U1 and using the data structure introduced in
the proof of Lemma 16, we can test in constant time the existence of v0

satisfying the second condition (note that the values of all terms from X0

with x0 = v0 are in the subtree of w and the values of the terms in X
′
0 \X0

are on the path from w to the root).
Once the relation U1 is updated, the relations U2, . . . , Uk can be updated

in constant time as well: keep a counter at every vertex at depth dv deter-
mining the number of children in U1.

We are now ready to prove Theorem 20.

Proof of Theorem 20. Note that when the L-sentence ϕ is fixed in Theo-
rem 11, the language L′ and the L′-sentence ϕ′ are also fixed. Hence, the
only object that changes when the relations of A changes are relations in A′;
the functions in A′ stay the same and thus the m-th augmentation of the
graph G from Theorem 11 that guards A′ is independent of A as long as A
stays guarded by G.
We now have to inspect the proofs of Lemma 9 and Theorem 11 in more

detail. Since the graphG and all its augmentations appearing in the inductive
proof of Theorem 11 stay the same, the coloring used in Lemma 9 also does
not change when A gets altered. In particular, at each step of the inductive
proof of Theorem 11, every rooted forest F to which Lemma 9 is applied
stays the same. In the proof of Lemma 9, we replace use of Lemma 21 with
use of Lemma 21 and observe that every change in S results in a constant
number of changes in S and these changes can be identified in constant time.
Hence, in the inductive proof of Theorem 11, a single change in A results
in constantly many changes to the structure obtained in the first inductive
step, which result in constantly many changes to the structure obtained the
second inductive step (each change in the structure obtained in the first
inductive step yields only constantly many changes), etc. Since the time
to update the final L′-structure A′ is constant for each of constantly many
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choices that propagates through the induction from a single change of A, the
overall update time is constant.

7 Dynamic short path data structure

We now present a generalization of the data structure designed by Kowalik
and Kurowski [16, 18]. Similarly to their data structure, we use the fol-
lowing result on maintaining orientations with low in-degree of Brodal and
Fragerberg [1].

Theorem 22. For any integers d > 0 and D > 4d, there exists an algorithm
that maintains an orientation ~G of a d-degenerate n-vertex graph G that
supports adding and deleting edges such that the maximum in-degree of ~G is at
most D (provided, it stays d-degenerate during the whole computation). The

orientation ~G is maintained explicitly, i.e., each vertex stores a list of in- and
out-neighbors. The amortized time of adding an edge is O(logD/2d n) which
includes necessary recomputing of the orientation. Edges can be deleted in
time O(D).

Note that in Theorem 22, if d and D are constants, then the amortized
time of adding an edge is O(logn).
Given an L-structure S, u, v ∈ V (S) and R ∈ Lr a binary relational

symbol, S + R(u, v) denotes the L-structure obtained from S by adding
the pair (u, v) to RS, and S − R(u, v) denotes the L-structure obtained by
removing the pair (u, v) from RS.
Our first theorem in this section reads as follows:

Theorem 23. Let L be a language containing only binary relation symbols, ℓ
an integer, and G a hereditary class of graphs with bounded expansion. There
exists a data structure representing an L-structure S with GS ∈ G such that

• the data structure can be initialized in time O(|S|),

• it can be transformed to represent S + R(u, v), R ∈ Lr, in amortized
time O(logℓ |S|), assuming that GS+R(u,v) ∈ G,

• it can be transformed to represent S − R(u, v), R ∈ Lr, in constant
time, and

• a query whether

(∃x1)(∃x2) . . . (∃xℓ−1)R1(u, x1) ∧ R2(x1, x2) ∧ . . . ∧ Rℓ(xℓ−1, v)
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for a given pair of elements u and v and a given sequence R1, . . . , Rk

can be answered in constant time. Moreover, in the positive case, a
choice of x1, . . . , xℓ−1 that satisfy R1(u, x1)∧R2(x1, x2)∧. . .∧Rℓ(xℓ−1, v)
can also be found in constant time.

Proof. The proof proceeds by induction on ℓ. If ℓ = 1, we set D to be 5d
where d is the degeneracy of graphs in G. The data structure maintains an
orientation ~GS of GS with maximum in-degree at most D using the algorithm
from Theorem 22 with a loop present at every vertex (so, the maximum in-
degree is at most D+1). Moreover, each edge of GS is associated with a list
of binary relations it corresponds to and each loop, say that is incident with
a vertex v, is associated with a list of binary relations R such that R(v, v)
and
The initialization of the data structure can clearly be done in linear time.

Adding a pair (u, v) to a relation R is also easy: if u = v, we just add R to
the list of the loop at u. If u 6= v and the edge uv is present in GS, we add
R(u, v) to the list of the edge uv. If the edge is not present, we add the edge
uv with the list containing R(u, v) to the graph and apply algorithm from
Theorem 22 to reorient the edges to keep the maximum in-degree at most
D + 1.
Removing a pair (u, v) from a relation R is analogous: if u = v, we remove

R from the list of the loop at u, and if u 6= v, we remove R(u, v) from the list
of the edge uv. In the latter case, if the list of the edge uv becomes empty, we
call the algorithm from Theorem 22 to remove the edge uv from the graph.
This requires constant time.
Finally, testing whether R1(u, v) for u, v ∈ V (S) can also be done in

constant time. If u = v, we search the list of the loop at u (which has a
constant size since the number of different types of relations is determined
by L). If u 6= v, we first search the list of in-neighbors of u whether it contains
v and the list of in-neighbors of v whether it contains u. In the negative case,
R1(u, v) is false. In the positive case, we check whether the list of the edge
uv contains R1(u, v). Since the number of in-neighbors of each of u and v is
bounded by D, the whole test requires constant time.
Assume now that ℓ > 1 and the data structure for ℓ− 1 with properties

given in the statement of the theorem has been designed. We will use the
data structure for ℓ−1 and the languge L′ we now define: L′ is the vocabulary
L extended by binary relational symbols QRR′ for all ordered pairs R and R′

of (not necessary distinct) binary relational symbols from L.

As in the case ℓ = 1, we maintain an orientation ~GS of the graph GS with
maximum in-degree at most D + 1 with loops at all vertices such that each
edge is associated with a list of binary relations corresponding to it. The
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L′-structure S ′ will be the extension of the L-structure S defined as:

QRR′(u, v) if and only if ∃xR(u, x) ∧ R′(x, v) ∧ ux, vx ∈ ~GS.

For every QRR′(u, v), the data structure will contain the list of all x such that

R(u, x) ∧ R′(x, v). Note that S ′ is guarded by the augmentation of ~GS and
augmentations of graphs from G have bounded expansion by Theorem 3.
Let us now turn our attention to the implementation of the data struc-

ture. The initialization is easy: we construct an orientation ~GS of GS with
maximum in-degree at most D, add at a loop at each vertex and associate
each edge of GS with lists of binary relations corresponding to it. For every
x ∈ V (S), every in-neighbors u and v of x and every R in the list of ux and
R′ in the list of vx, we include (u, v) to QRR′ and x to the list of QRR′(u, v).

Note that QRR′(u, v) if R(u, v), uv ∈ ~GS and R
′(v, v) since v is an in-neighbor

of itself because of the loop at v. Since the maximum in-degree of ~GS is at
most D, extending S to S ′ requires linear time. Finally, we initialize the data
structure for the L′-structure S ′.
We now desribe removing a pair u, x from a relation R. Assume that the

edge ux is oriented from u to x in ~GS. Remove R from the list of ux and if
the list of ux becomes empty and u 6= x, remove ux from GS. Then, remove
x from the list of QRR(u, u) and if the list becomes empty, remove u, u from
QRR using the appropriate routine of the data structure for S

′. Then, for
every in-neighbor v of x distinct from u and every R′ contained in the list
of the edge vx, remove x from the list of QRR′(u, v). If the list of QRR′(u, v)
becomes empty, remove the pair u, v from QRR′ in S ′. Clearly, removing a
pair from a relation can be done in constant time.
Adding a pair u, x to R is slightly more difficult. If the edge ux is present

in GS, we add R to the list of ux and for every in-neighbor v of x and every
R′ in the list of the edge vx, we add x to the list of QRR′(u, v). If u, v is is
not contained in QRR′ , we add u, v to QRR′ using the appropriate routine of
the data structure for S ′. In particular, x is added to the list of QRR(u, u).
If the edge ux is not present in GS, we first add this edge to GS and

apply the algorithm from Theorem 22 to keep the maximum in-degree of ~GS

bounded. Each time an edge is reoriented, we proceed as follows: if the edge
ab was originally oriented from a to b and becomes oriented from b to a, then
for every in-neighbor a′ of b, every R in the list ab and every R′ in the list of
a′b, remove b from the list of QRR′(a, a′) and if this list become empty, update
S ′. Then, for every in-neighbor b′ of a, every R in the list ba and every R′ in
the list of b′a, add a to the list of QRR′(b, b′) and update S ′ if QRR′(b, b′) was
not present before. Since the amortized number of reorientations is O(logn)
and updating S ′ by adding a new pair to a relation requires amortized time
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O(logℓ−1 n), the amortized time needed for an addition of a pair to a relation
in S is O(logℓ n) as claimed.
Finally, we have to describe how to answer a query of the form

(∃x1)(∃x2) . . . (∃xℓ−1)R1(u, x1) ∧ R2(x1, x2) ∧ . . . ∧ Rℓ(xℓ−1, v)

for a given pair u and v of elements of V (S). First, for every in-neighbor x1

of u such that R1(u, x1), apply S
′ to check whether

(∃x2) . . . (∃xℓ−1)R2(x1, x2) ∧ . . . ∧Rℓ(xℓ−1, v) .

If so, return the found x2, . . . , xℓ−1 together with the in-neighbor x1 of u.
Since the number of in-neighbors of u is at most D + 1, this step requires
constant time only.
Next, for every in-neighbor xℓ−1 of v such that Rℓ−1(xℓ−1, v), apply S

′ to
check whether

(∃x1) . . . (∃xℓ−2)R1(u, x1) ∧ . . . ∧Rℓ−1(xℓ−2, xℓ−1) .

If so, return the found x1, . . . , xℓ−2 together with the in-neighbor xℓ−1 of v.
Again, this step requires constant time only.
If both just described tests fail and there exist x1, . . . , xℓ−1 satisfying the

query, then the edge from ux1 is oriented towards x1 and the edge xℓ−1v is
oriented towards xℓ−1. Consequently, there exists i, 2 ≤ i ≤ ℓ− 2 such that
both the edges xi−1xi and xixi+1 are oriented towards xi. Hence, for each
i = 2, . . . , ℓ− 2, we make the following query in the data structure for S ′:

(∃x1) . . . (∃xi−1)(∃xi+1) . . . (∃xℓ−1)R1(u, x1) ∧ . . . ∧ Ri−1(xi−2, xi−1)∧

QRiRi+1
(xi−1, xi+1) ∧ Ri+2(xi+1, xi+2) ∧ . . . ∧Rℓ(xℓ−1, v) .

If any of these queries is positive, then we return the values x1, . . ., xi−1, xi+1,
. . . , xℓ−1 given by the query together with any xi contained in the list of the
relation QRiRi+1

(xi−1, xi+1). If all the queries are negative, then there is no
choice of x1, . . . , xℓ−1 and we report so. Since ℓ is fixed, the total query time
is constant.

Considering classes of nowhere-dense graphs, one can obtain the following
theorem:

Theorem 24. Let L be a language containing only binary relation symbols,
ℓ an integer, ε a positive real, and G a hereditary class of nowhere-dense
graphs. There exists a data structure representing an L-structure S, where
n = |V (S)|, with GS ∈ G such that
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• the initial data structure representing S can be built in time O(n1+ε),

• it can be transformed to represent S + R(u, v), R ∈ Lr, in amortized
time O(nε), assuming that GS+R(u,v) ∈ G,

• it can be transformed to represent S −R(u, v), R ∈ Lr, in time O(nε),
and

• it answers queries whether

(∃x1)(∃x2) . . . (∃xℓ−1)R1(u, x1) ∧ R2(x1, x2) ∧ . . . ∧ Rℓ(xℓ−1, v)

for a given pair of vertices u and v and a given sequence R1, . . . , Rk

in time O(nε). Moreover, in the positive case, a choice of x1, . . . , xℓ−1

that satisfy R1(u, x1) ∧R2(x1, x2) ∧ . . . ∧ Rℓ(xℓ−1, v) can also be found
in time O(nε).

8 Application

In [8], we prove the following theorem.

Theorem 25. For every surface Σ there is a linear-time algorithm to decide
whether a triangle-free graph drawn in Σ is 3-colorable.

Previously, it was not known whether the problem was polynomial-time
solvable. The question was raised by Thomassen, who obtained a couple of
related and deep theorems. A full exposition of the algorithm is lengthy and
relies on other results not related to the present paper. What is related to
this paper is the following question. Suppose that G is a triangle-free graph
drawn in Σ that is actually 3-colorable. By Theorem 25 we can verify this
in linear time, but can we actually find a 3-coloring in linear time?
We were able to answer this question in the affirmative, using the data

structure of Theorem 17. Since the algorithm uses ingredients from covering
space theory that would distract from the data structure contents, let us
describe our algorithm in the special case when Σ is the sphere. This special
case already illustrates the difficulties that needed to be overcome.
The following is classical theorem of Grötzsch [15].

Theorem 26. Every triangle-free planar graph is 3-colorable.

Thus the algorithm from Theorem 25 is trivial when Σ is the sphere:
always answer “yes”. However, finding a 3-coloring in linear time is chal-
lenging. Here is the difficulty. All known proofs of Theorem 26 proceed by
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collapsing facial 4-cycles. More precisely, let G be a triangle-free plane graph,
let v1v2v3v4 be the boundary of a face of length four, let G13 be the graph
obtained from G by identifying v1 and v3 inside the face v1v2v3v4, and let
G24 be defined analogously. It is easy to see that either G13 or G24 or both
are triangle-free. This can be used for an inductive proof and an algorithm.
Once the number of faces of size four is sublinear in the order of G, another
reduction can be identified and used [8].
Thus all we need to do is to decide in amortized constant time which of

G13 and G24 is triangle-free. That can be done in constant time (after linear-
time initialization) [16, 18] as long as the graph G does not change. But here
the graph changes: in the next iteration we need to check whether a different
graph is triangle-free, and so on. Kowalik [17] was able to modify the data
structure of [16, 18] and to design an O(n logn) algorithm to 3-color planar
graphs. This was improved by Dvořák, Kawarabayashi and Thomas [5] to
linear time using a different method than we present here.
If G13 is triangle-free, then we say that G13 is an elementary reduction

of G. Thus every triangle-free plane graph with at least one face of length
four has an elementary reduction. A graph H is a reduction of a triangle-
free plane graph G if it is obtained from G by repeatedly taking elementary
reductions. If a 3-coloring of a reduction H of G is found, a 3-coloring of G
can be obtained in the obvious way: if vertices u and v of an intermediate
graph J were identified to create a vertex w of an elementary reduction J ′ of
J , then each vertex of J\{u, v} will retain its color from the coloring of J ′,
and u and v will both receive the color of w.
In view of what was said, we need the following theorem to be able to

find a 3-coloring. Each time, Theorem 27 is applied a linear number of faces
of size four disappear and thus the graph eventually reduces in linear time
to a graph with a sublinear number of faces of size four which we can color
using methods from [8].

Theorem 27. There is a linear-time algorithm that given an n-vertex triangle-
free plane graph G with Ω(n) faces of size four outputs a reduction of G with
at most n− Ω(n) vertices.

Proof. For a triangle-free plane graph G, let H(G) be the graph obtained
from G by adding all edges joining all pairs of diagonally opposite vertices
on the boundary of a face of length four. Let G be the class of graphs of the
form H(G) for some triangle-free plane graph G. The class G has bounded
expansion by [25] since every graph from G can be drawn in the plane with
at most one crossing on each edge.
By Theorem 4 there exists an integer K such that every graph H =

H(G) ∈ G has a proper coloring ψ using at most K colors such that the
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union of every two color classes has tree-depth at most two (this type of
coloring is known as a star coloring since every two color classes induce a
star forest). Let F := E(H) − E(G) be the set of new edges of H , and let
ξ : F → {1, 2, . . . ,

(

K
2

)

} be defined by ξ(e) := {ψ(u), ψ(v)}, where u, v are
the ends of e.
We apply Theorem 17 to structures arising from G as follows. There will

be two binary relations: R1 will describe the edges of G, and R2, initialized
to be empty, will describe which edges of H\E(G) have been contracted.
By a chain in such a structure we mean a sequence v1, v2, . . . , vk of vertices
of H such that for all i = 2, 3, . . . , k either R1(vi−1, vi) or R2(vi−1, vi), and
the former (R1(vi−1, vi)) holds either for exactly one or exactly three indices
i ∈ {2, 3, . . . , k}. We say that the chain joins v1 and vk. We will apply
Theorem 17 to the formula φ(x, y) that expresses the existence of a chain of
length at most 11 joining x and y.
Choose i0 to be the largest among the color classes of ξ. For each edge

e ∈ F with ξ(e) = i0 such that the other edge in the 4-face of G, we do the
following. We use Theorem 17 to determine, in constant time, whether the
ends of e are joined by a chain of length at most 11. If they are not, then we
add the ends of e to R2; otherwise we do not. We proceed to the next edge
with color i0.
The choice of ξ implies that at all times during the execution of the

algorithm there do not exist vertices u1, u2, u3, u4 of H such that R2(ui−1, ui)
for all i = 2, 3, 4. Consequently, the chain test from the previous paragraph
correctly determines whether identifying the ends of e creates a loop or a
triangle in G.
After all edges e with ξ(e) = i0 have been exhausted we identify all pairs

of vertices u, v such that R2(u, v) holds, and those pairs of vertices u
′, v′ such

that G has a 4-face with vertices u, u′, v, v′, ξ(uv) = i0 and R2(u, v) does not
hold. The identification can be performed in linear time: we first compute
sets of vertices that should be identified to the same vertex and then using
the drawing of G identify the pairs and rename them.
Since the number of faces of size four is linear in n, the choice of i0 implies

that we have identified Ω(n) pairs of vertices and the order of G has shrunken
by Ω(n).
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