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Abstract. An abstraction of the problem of multi-robot path planning is introduced in this paper. The 

basic task is to determine spatial-temporal plan for each robot of a group of robots where each robot 

is given its initial position in the environment and it needs to go to the given goal position. Robots 

must avoid obstacles and must not collide with each other. The abstraction adopted in this work 

models the environment within that robots are moving as an undirected graph. Robots are placed in 

vertices of the graph; at most one robot is placed in each vertex and at most one vertex remains un-

occupied .The move is allowed into the unoccupied vertex or into the vertex being vacated by an al-

lowed move supposed that no other robot is entering the same target vertex. The relation of multi-

robot path planning to the problem of pebble motion on a graph (which the most widely known rep-

resentative is 15-puzzle) is discussed. 

The optimization variant of the abstract multi-robot path planning is particularly studied. The 

task is to find a solution of the makespan as small as possible in the optimization variant. The main 

contribution of the paper is the proof of the NP-completeness of the decision version of the optimiza-

tion variant of multi-robot path planning. The reduction of Boolean satisfiability to multi-robot path 

planning is used in the proof. 

Keywords: multi-robot, path planning, multi-agent, coordination, sliding puzzle, (n2-1)-puzzle, 15-

puzzle, domain dependent planning, complexity, NP-completeness 

1. Introduction and Motivation 

This paper is devoted to a problem of path 

planning for multiple robots [14, 15, 18]. 

Consider a group of mobile robots that are 

moving in some environment (for example in 

the 2-dimensional plane with obstacles). Each 

robot of the group is given an initial and a 

goal position in the environment. The ques-

tion of interest is how to determine a se-

quence of motions for each robot of the group 

such that all the robots reach their goal posi-

tions supposed they started from the given 

initial ones by following this sequence. Phys-

ical limitations must be respected by robots: 

robots must not collide with each other and 

they must avoid obstacles in the environ-

Figure 1. An illustration of shipping con-

tainer rearranging. This problem can be 

formulated as path planning for multiple 

robots where robots are represented by con-

tainers. 
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ment during their movements. 

The problem of multi-robot path planning is motivated by many practical tasks. Vari-

ous problems of navigating a group of mobile robots can be formulated as multi-robot 

path planning. However, the primary motivations for the problem are tasks of moving 

certain entities within an environment with a limited free space. Hence, the formulation 

of the problem is not restricted to the case where robots are actually represented by mo-

bile robots. Such real-life examples include rearranging of shipping containers in ware-

houses (a robot is represented by a shipping container - see Figure 1) or coordination of 

vehicles in dense traffic (robot = vehicle). Moreover, the reasoning about these rear-

rangement/coordination tasks should not be limited to physical entities only. A robot may 

be represented by a virtual entity or by a piece of commodity as well. Thus, many tasks 

such as planning of data transfer between communication nodes with limited storage 

capacity (robot = data packet), commodity transportation in the commodity transportation 

network (robot = certain amount of commodity), or even the motion planning of large 

groups of virtual agents in the computer-generated imagery can be expressed as an in-

stance of the problem of multi-robot path planning. 

The primary aim of this paper is to study theoretical aspects of the problem, namely 

computational complexity of the abstract formulation of the problem. The abstraction 

consists in modeling the environment, where robots are moving, as an undirected graph. 

Vertices of the graph represent locations within the environment and edges represent 

possibility of going from one location to the neighboring location. Robots are placed in 

vertices of the graph and they are allowed to move into neighboring vertex if it is unoc-

cupied or currently being vacated by an allowed move supposed that no other robot is 

entering the same target vertex. 

There is variety of ways how to create an abstract instance of a given specific real-life 

multi-robot path planning instance. It is necessary to make decisions how to sample loca-

tions in the original environment in order to make the abstract instance to model the real-

life situation as precisely as needed. Nevertheless, these issues are out of scope of this 

work. Here, the principal question about the complexity of solving instances of the ab-

stract formulation itself is studied. 

The main contribution of this paper is the proof of NP-completeness [6] of the opti-

mization variant of multi-robot path planning. This result has been already previewed in 

the short conference paper [22]. However, only the sketch of the proof fitted into the 

short paper. This paper should be regarded as the full version of the proof where all the 

details are rigorously treated and illustrated. The technical report from that this paper is 

coming out is available as [23]. 

In the context of multi-robot path planning, works on problems of motion planning 

over graphs must be mentioned [11, 12, 13, 32] since they are closely related. Namely, 

works on so called problems of pebble motion on graphs (which the most widely known 

representative is the 15-puzzle) [11, 13, 32] represents almost the same problem as multi-

robot path planning. The difference lays in the condition on the dynamicity in the prob-

lem - moves are allowed into currently unoccupied vertices only (and no other pebble is 
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entering the same target vertex) in the problem of pebble motion on a graph. Many theo-

retical results are known for pebble motion on a graph - it is known that the problem can 

be solved in polynomial time (in         for         modeling the environment) with 

solution consisting of polynomial number of moves (again         moves) [11, 32]. 

Moreover, it is known that the decision version of the optimization variant of pebble 

motion on a graph is NP-complete [13] (this has been actually shown for generalized 

variant of the 15-puzzle). Hence, a natural question how situation will change in the case 

of multi-robot path planning arose and this paper gives the answer. 

The secondary aim of this paper is to clarify terminology, since many papers actual-

ly use the term multi-robot path planning for pebble motion on a graph, which evokes an 

impression that these problems are different. This aspect is discussed in details along with 

definitions of problems. 

The organization of the paper is as follows: the formal definition of the problem of 

pebble motion on a graph is recalled and the definition of the abstraction of multi-robot 

path planning is given in Section 3. Some basic properties of problems and their corres-

pondence is discussed in this section too. Section 3 represents the core of the paper - 

several techniques for polynomial transformation of Boolean satisfiability to the problem 

of multi-robot path planning are described in this section. The last section - Section 4 - is 

devoted to related works and to concluding remarks. 

2. Pebble Motion on a Graph and Multi-robot Path Planning 

Problems of pebble motion on a graph and multi-robot path planning are formally de-

fined in this section. A relation of both problems is discussed and their basic theoretical 

properties are summarized. 

The primary problem studied in this paper is the problem of multi-robot path plan-

ning. It is almost the same problem as the problem of pebble motion on a graph [11, 32]. 

The problem of pebble motion on a graph has been already studied in the literature and 

many theoretical results are known for this problem. The problem of multi-robot path 

planning represents a relaxation of pebble motion with respect to the dynamicity. 

Consider an environment in which a group of mobile robots is moving. The robots are 

all identical (that is, they are all of the same size and have the same moving abilities). 

Each robot starts at a given initial position and it needs to reach a given goal position. The 

problem being addressed consists in finding a spatial-temporal path for each robot so that 

it can reach its goal by following this path. Robots must not collide with each other and 

they must avoid obstacles in the environment. 

A relatively strong abstraction is adopted in this work. The environment with ob-

stacles within that the robots are moving is modeled as an undirected graph. The vertic-

es of this graph represent locations in the environment and the edges model an unblocked 

way from one location to the neighboring location. The time is discrete in this abstrac-

tion; it is an infinite linearly ordered set isomorphic to the set of natural numbers where 

each element is called a time step (time steps are numbered starting with  ). At each time 
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step, each robot is located in a vertex. A motion of a robot is an instantaneous event. That 

is, if the robot is placed in a vertex at a given time step then the result of the motion is the 

situation where the robot is placed in the same or in the neighboring vertex at the follow-

ing time step. 

The problem of pebble motion on a graph works with pebbles instead of robots. 

Moreover, a condition on the allowed motions of pebbles is more restrictive than in the 

case of robots in multi-robot path planning. 

2.1. Formal Definitions of Motion Problems 

The following two definitions formalize a problem of pebble motion on a graph (also 

called a pebble motion puzzle, sliding box puzzle; special variants are known as the 15-

puzzle and       -puzzle) [1, 21] and the related problem of multi-robot path planning 

[14, 15  18]. Both problems and their solutions are illustrated in Figure 2. 

 

Definition 1 (problem of pebble motion on a graph). Let          be an undirected 

graph. Next, let                   where       be a set of pebbles. The graph models 

an environment in which the pebbles are moving. An initial arrangement of the pebbles 

is defined by a uniquely invertible function   
      (that is,   

       
     for every 

       with    ). A goal arrangement of the pebbles is defined by another unique-

ly invertible function   
      (that is,   

       
     for every       with    ). 

A problem of pebble motion on a graph is the task to find a number   and a sequence 

      
    

      
 
  where   

      is a uniquely invertible function for every 

         . Additionally, the following conditions must hold for the sequence   : 

(i)   
 
   

 ; that is, all the pebble reaches their destination vertices. 

(ii) Either   
       

       or    
       

          for every     and 

           ; that is, a pebble can either stay in a vertex or move into 

the neighboring vertex between each two successive time steps. 

(iii) If   
       

       (that is, the pebble   moves between time steps   and 

   ) then    
       

            such that    ; must hold for every 

     and            ; that is, a pebble can move into an unoccupied 

neighboring vertex only. This condition together with unique invertibility of 

functions forming    implies that no two pebbles can enter the same target 

vertex at the same time step. 

The instance of the problem of pebble motion on a graph is formally a quadruple 

         
    

  . Sometimes, the solution of the problem   will be denoted as       

   
    

      
 
 . □ 

 

The notation with a stripe above the symbol is used to distinguish a constant from a 

variable (for example,     is a variable while     is a constant; sometimes a constant 

parameterized by a variable or by an expression will be used – for example     denotes a 
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constant parameterized by an index    ; the parameterization by an expression will be 

clear from the context). 

When speaking about a move at time step  , it is referred to the time step of com-

mencing the move (exactly, the move is performed between time steps   and    ). 

As it has been mentioned, the term multi-robot path planning has been already used in 

literature for pebble motion on a graph in fact. In the work titled “Exploiting Subgraph 

Structure in Multi-Robot Path Planning” [15] the dynamicity of the problem is described 

as follows: 

 

“Further, we shall assume that the map is constructed so that collisions only oc-

cur when one robot is entering a vertex v at the same time as another robot is oc-

cupying, entering or leaving this vertex.” 

 

In other words, a robot can enter a vertex if and only if it is unoccupied at the time of 

commencing the move and no other robot is entering the same target vertex, which is 

exactly the definition of the dynamicity in the problem of pebble motion on a graph. 

 

 
 

Figure 2. An illustration of problems of pebble motion on a graph and multi-robot path planning. 

Both problems are illustrated on the same graph with the same initial and goal positions. The task is 

to move pebbles/robots from their initial positions specified by   
    

  to the goal positions speci-

fied by   
    

 . A solution of the makespan 6 (   ) is shown for the problem of pebble motion on 

a graph and a solution of the makespan 4 (   ) is shown for the problem of multi-robot path 

planning. Notice the differences in parallelism between both solutions – multi-robot path planning 

allows a higher number of moves to be performed in parallel thanks to weaker requirements on 

solutions. 

 

An alternative supposedly more reasonable definition of multi-robot path planning is 

adopted in this work. A problem of multi-robot path planning is a relaxation of the prob-

lem of pebble motion on a graph. The condition that the target vertex of a pebble/robot 

must be vacated in the previous time step is relaxed. Thus, the motion of a robot entering 

  
    

  

    
 

Solution of the problem of pebble motion 

on a graph   with              
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the target vertex, that is simultaneously vacated by another robot and no other robot is 

trying to enter the same target vertex, is allowed in multi-robot path planning. However, 

there must be some leading robot initiating such chain of moves by moving into an unoc-

cupied vertex (that is, robots can move like a train with the leading robot in front) that is 

not entered by another robot at the same time step. The problem is formalized in the fol-

lowing definition. 

 

Definition 2 (problem of multi-robot path planning). Again, let         be an undi-

rected graph. Now a set of robots                   where       is given instead of the 

set of pebbles. Similarly, the graph models an environment in which the robots are mov-

ing. The initial arrangement of the robots is defined by a uniquely invertible function 

  
      (that is,   

       
     for every       with    ). The goal arrangement 

of the robots is defined by another uniquely invertible function   
      (that is, 

  
       

     for every       with    ). A problem of multi-robot path planning 

is the task to find a number   and a sequence       
    

      
 
  where   

      is a 

uniquely invertible function for every          . The following conditions must hold 

for the sequence   : 

(i)   
 
   

 ; that is, all the robots reaches their destination vertices. 

(ii) Either   
       

       or    
       

          for every     and 

           ; that is, a robot can either stay in a vertex or move to the 

neighboring vertex at each time step. 

(iii) If   
       

       (that is, the robot   moves between time steps   and 

   ) and    
       

            such that     (that is, no other robot 

  occupies the target vertex at time step  ), then the move of   at the time 

step   is called to be allowed (that is, the robot   moves into an unoccupied 

neighboring vertex – a leading robot). If   
       

       and there is 

    such that       
       

         
       

       (that is, the 

robot   moves into a vertex that is being left by the robot  ) and the move of 

  at the time step   is allowed, then the move of   at the time step   is also 

allowed. All the moves of robots at all the time steps must be allowed. 

Analogically, this condition together with the requirement on unique inver-

tibility of functions forming    implies that no two robots can enter the 

same target vertex at the same time step. 

The instance of the problem of multi-robot path planning is formally a quadruple 

         
    

  . The solution of the problem   will be sometimes denoted as       

   
    

      
 
 . □ 

 
The numbers   and   are called makespan of the solution of pebble motion on a 

graph and multi-robot path planning respectively. The makespan need to be distinguished 

from the size of the solution, which is the total number of moves performed by peb-

bles/robots. The makespan is typically less than the size of the solution. In case of the 
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pebble motion on a graph with just single unoccupied vertex, the makespan and the size 

of the solution are the same. 

2.2. Known Properties of Motion Problems and Open Question 

Several basic properties of solutions of problems of pebble motion on graphs and multi-

robot path planning are summarized in this section. 

Notice that a solution of an instance of the problem of pebble motion on a graph as 

well as a solution of an instance of the problem of multi-robot path planning allows a 

pebble/robot to stay in a vertex for more than a single time step. It is also possible that a 

pebble/robot visits the same vertex several times within the solution. Hence, a sequence 

of moves for a single pebble/robot does not necessarily form a simple path in the given 

graph. 

 Notice further that both problems intrinsically allow parallel movements of peb-

bles/robots. That is, more than one pebble/robot can perform a move at a single time step. 

However, multi-robot path planning allows higher motion parallelism due to its weaker 

requirements on robot movements (the target vertex is required to be unoccupied only for 

the leading robot in the previous time step – see Figure 2). More than one unoccupied 

vertex is necessary to obtain parallelism in the problem of pebble motion on a graph. On 

the other hand, it is sufficient to have single unoccupied vertex to obtain parallelism with-

in the solution of an instance of the multi-robot path planning problem (consider for ex-

ample robots moving around a cycle). 

 

Proposition 1 (problem correspondence). Let          
    

   be an instance of the  

problem of pebble motion on a graph and let          
    

      
 
  be its solution. 

Then             is a solution of an instance of the problem of path planning for 

multiple robots          
    

  . In other words, the instance of the multi-robot path 

planning problem consists of the same graph, the set of robots is represented by the set of 

pebbles, and the initial/goal positions of robots are the same as in the case of pebbles. 

Then the solution of the instance of the pebble motion problem can be used as a solution 

of the corresponding instance of the multi-robot path planning problem.  

 

Proof. The proof of the statement is straightforward using Definition 1 and Definition 2. 

The condition on sequence of moves required by Definition 2 needs to be checked for 

     . Conditions (i) and (ii) of Definition 2 are trivially satisfied. Condition (iii) is also 

satisfied since it holds that if   
       

       then   
       

            such that 

    is true for every      and            . In other words, all the moves within 

      are allowed.  

 

There is a variety of modifications of the defined problems. A natural additional re-

quirement is to produce solutions with the shortest possible makespan (that is, the num-

bers   or   respectively are required to be as small as possible). Unfortunately, this re-
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quirement makes the problem of pebble motion on a graph intractable. It is shown in 

[13] that the optimization variant of a special case of the problem of pebble motion on a 

graph is   -hard [6]. The restriction forming the special case adopted in [13] works 

with a graph that can be embedded in plane as a square grid and there is a single unoccu-

pied vertex - this case is known as     puzzle (also known as       -puzzle). Hence, 

the general optimization variant of the problem of pebble motion on a graph is also 

  -hard. 

A restriction of both types of problems on bi-connected graphs [30, 31] (for the pre-

cise definitions see Section 0) represents important subclass with respect to the existence 

of a solution. Hence, it is a reasonable question what is the complexity of these classes of 

problems. Since the grid graph forming the mentioned     puzzle is bi-connected as 

well, the immediate answer is that the optimization variant of the problem of pebble mo-

tion on a bi-connected graph with a single unoccupied vertex is again   -hard. 

However, it is not simply possible to make any similar statement about the complexity 

of the optimization variant of multi-robot path planning based on the above facts. The 

situation there is complicated by the inherent parallelism, which can reduce the makespan 

of the solution significantly. Constructions used for the     puzzle in [13] thus no 

longer apply for this case. 

Observe further that difficult cases of the problem of pebble motion on a graph have a 

single unoccupied vertex. This fact may raise a question how the situation is changed 

when there are more than one unoccupied vertices. The intuition prompts that more 

unoccupied vertices may simplify the problem. Unfortunately, it is not the case. The 

pebble motion problem on a general graph with the fixed number of unoccupied vertices 

is still   -hard since multiple copies of the     puzzle from [13] can be used to add as 

many unoccupied vertices as needed (the resulting graph may be disconnected). 

Without the requirement on the optimality of the makespan of solutions the situation 

is much easier; the problem of pebble motion on a graph is in the P class as it is shown in 

[11, 32]. Due to Proposition 1, the problem of path planning for multiple robots is also in 

the P class. In fact, this result concerns the decision version of the problem, which is the 

question whether there exists a solution for a given instance. Fortunately, it has been 

shown in [11] that a solution of the size of         can be generated for any solvable 

               
    

  . Hence, it provides a polynomial upper bound on size of the 

content of the oracle to guess in non-deterministic model [8]. Thus, it is possible to con-

clude that decision version of optimization variant of pebble motion on a graph is an NP-

complete problem. By the decision version here, it is meant the yes/no question whether 

there is a solution of   of the makespan smaller than the given bound. 

Thus, it seems that pebble motion on a graph and multi-robot path planning problems 

have been already resolved except the case of the complexity of the optimization variant 

of multi-robot path planning. However there is another issue worth studying. Construc-

tions proving the membership of the problem of pebble motion on a graph into the P class 

used in [11, 32] generate solutions that are too long for practical use. As the makespan of 

the solution is of great importance in practice, this fact makes these methods unsuitable 
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when dealing with some real life motion problem abstracted as the problem of pebble 

motion on a graph or multi-robot path planning [19, 20, 21]. Hence, alternative solving 

methods for the problem of multi-robot path planning are of interest [18, 19, 20, 21, 24]. 

3. The Intractability of the Optimization Variant of Multi-robot Path Planning 

Several complexity results for the optimization variant of studied problems will be 

shown in this section. The main result is that the optimization variant is intractable for 

multi-robot path planning. Namely, it is NP-complete. The first sketch of the proof of 

this result has been presented in [22]. A rigorous version of the proof is presented in the 

following paragraphs. All the details that are missing in [22] are supplied here. 

3.1. Reduction Techniques 

A reduction of Boolean satisfiability [1, 6, 10] to the problem of multi-robot path plan-

ning will be used to prove the NP-completeness of the problem. The problem of Boolean 

satisfiability exhibits some characteristics that need to be simulated in multi-robot path 

planning. The first characteristic is so called Boolean consistency, which means that all 

positive and all the negative occurrences of the same variable in the input formula have 

the same Boolean value respectively. The second characteristic is the fact that all the 

clauses of the Boolean formula in CNF [10] need to be satisfied in order to satisfy the 

formula as the whole. This characteristic will be called clause satisfaction. Description of 

techniques how to simulate Boolean consistency and clause satisfaction in multi-robot 

path planning is provided in following paragraphs. 

First, a technique how to prevent robots from entering a given vertex at a given set 

of time steps will be shown. This is the crucial skill used later. The technique works with 

an arbitrary instance of the problem of path planning for multiple robots. An augmenta-

tion of the given instance of the problem can be made so that robots are prevented from 

entering a selected vertex at selected time steps in any optimal solution (the shortest poss-

ible makespan of the solution is required). The augmentation of the problem consists in 

adding new vertices, edges, and robots into the instance. The selection of time steps at 

that the vertex will not be allowed to entering by the original robots is modeled by an 

appropriate setting of the initial and goal positions of the newly added robots. The whole 

construction is formalized in the following proposition and its proof. 

 

Lemma 1 (vertex locking augmentation). Assume the following preconditions: 

(a) Let                
    

   be an instance of multi-robot path planning and 

let     with   
            be a so called locked vertex. 

(b) Next, let                where       (natural numbers including  ) for 

          and            be a set of so called lock time steps. 

Then there exists an instance of the problem of multi-robot path planning        

              
     

   such that         and it never happens that a robot     enters 
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the vertex   at any time step     within any optimal solution    
      (entering the 

vertex   at the time step   means that a robot is located in   at time step  ).  

 

The notation      stands for a restriction of the multi-robot path planning problem on 

the set of vertices  . That is, if                      
     

   and     , then      

       
         

       

   where                          ,         

      
          

       ,    
      

      with    
          

            , and 

   
      

      with    
          

            . In other words, each component of 

the description of the instance is naturally restricted on the smaller set of vertices. 

 

Proof.  Let    be the makespan of any optimal solution of the multi-robot path planning 

instance   (the number    is however difficult to compute as it is shown later). 

 

 
 

Figure 3. An illustration vertex locking augmentation in instance of multi-robot path planning 

problem. Robots    ,     , and     are needed to be prevented from entering the vertex     at time steps 

1 and 3 in any optimal solution. The original instance   with a set of robots                 is 

shown in the upper part of the figure. The makespan of any optimal solution of   is     . The 

augmented instance    is in the lower path of the figure. New vertices    ,    ,    ,    ,    ,    , and 

    and new robots     and     were added. The makespan of any optimal solution of the augmented 

problem is                             . 

 

An augmentation of the graph         will be shown first. The set of vertices   is 

extended with a set of new vertices                                      where 
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          . The new vertices are connected around the locked vertex   in the fol-

lowing way. A set of edges                                                        

                                           is added to the graph with the extended set of 

vertices. Thus, the augmented graph is              
       . 

The idea behind the construction of the augmented graph is that new robots are in-

itially placed in new vertices     for     with     or a new robot is placed in   if 

   . Then the newly added robots are forced to move straight ahead into the vertices 

              through the vertex  . Making robots to move in this way is imposed by the 

condition on the optimality of the solution (otherwise, the robots cannot manage to reach 

their destinations on time). The motion of new robots through the vertex   makes an 

obstruction in this vertex exactly at selected time steps given by  . 

The formal description of the above idea follows. The set of robots is extended with 

set of new robots                   ; that is,        . The initial and goal ar-

rangements of new robots are spread around the locked vertex   in the newly added ver-

tices:    
            if      and    

         if      for          ;    
       

         
 if           and    

         if            for          . For the 

original robots, the initial and the goal arrangements remain the same; that is,    
     

  
     and    

       
         . 

At this point, it is necessary to show that it really never happens that a robot     

enters the vertex   at any time step     within the optimal solution   
     . Any optimal 

solution of the multi-robot path planning instance    has the makespan of    . Moreo-

ver, any solution    
          

     
       

   of the optimal makespan of the instance   , 

must satisfy that    
           ,    

             ,    
             ,…,  

  
          

   ,  
  
         ,  

  
             ,  

  
             ,…,    

                
    

       for 

         . This is ensured by the fact that the shortest path from    
       to    

       in 

   has the length      and it consists of vertices                                        

         
 . Hence, no shorter solution in terms of makespan exists. 

However, it remains to show that the original robots from   manage to reach their 

destinations within the makespan of     . This claim flows from the equality      

     , that is at least for    time steps the vertex   is not obstructed by any motion of 

newly added robots supposed they are moving straight towards their destinations. In any 

optimal solution of the original instance it is sufficient to enter   at most    times (notice 

that no of the original robots need to occupy   at the beginning). Thus, any optimal solu-

tion of the original instance can be simulated in the augmented instance while movements 

of original robots are stopped at time steps when   is obstructed. Hence, the makespan of 

any optimal solution of     is exactly     . 

It has been shown that the vertex   is obstructed at every time step     in any op-

timal solution. Hence no original robot can enter   at any time step    .  

 

The situation from Lemma 1 is illustrated in Figure 3. Notice, that it is not difficult to 

extend the construction from the proof of Lemma 1 on multiple vertices that will be 
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locked at selected time steps (different sets of time steps for locking can be used for dif-

ferent vertices). Another useful property of the augmented problem is summarized in the 

following corollary. 

 

Corollary 1 (makespan preserving vertex locking). Assume preconditions (a) and (b) 

together with the following preconditions: 

(c) There exists a solution       of the instance                
    

   of the 

makespan   where     . 

(d) Let the locked vertex     is entered by a robot within       at time steps 

               where       for           and            and 

it holds that      . 

Then there exists an instance                      
     

   such that         and 

it never happens that a robot     enters the vertex   at any time step     within any 

optimal solution    
     ; moreover the makespan of any optimal solution of    is 

again  .  

 

Proof. The construction of    is almost the same as in the proof of Lemma 1 only the 

parameter   is now set to     . Then, the makespan of   of any optimal solution of    is 

ensured by the construction. 

The makespan is at least   since the newly added robots must go along the newly 

added path towards its end which cannot be carried out in any smaller makespan. On the 

other hand, there exists a solution of the makespan   of the augmented instance   . The 

vertex   needs to be occupied only at time steps            by the newly added robots 

that do not interfere with time steps at which the vertex   is entered within the solution 

      by the original robots (this is due to      ). Altogether, the makespan of any 

optimal solution of the augmented instance    is  .  

 

Lemma 1 as well as Corollary 1 can be generalized for locking a given number of ver-

tices of a selected subset of vertices     at a selected set of time steps  . Neverthe-

less, only a special variant of this generalization, where just one vertex of the selected 

subset of vertices   is to be locked at selected time steps, will be actually used in further 

reasoning. To be more precise, at least one vertex in   is required not to be occupied by 

a robot from the original set of robots at any time step    . An extension analogical to 

Corollary 1 that preserves makespan additionally assumes the existence of a solution of 

the original instance where at least one vertex of   is unoccupied at any time step    . 

These statements, which are merely a technical extension of Lemma 1 and Corollary 1, 

are formalized as Lemma 2 and Corollary 2. 

 

Lemma 2 (set locking augmentation). Let the following preconditions hold: 

(aa)                
    

   is an instance of multi-robot path planning and 

    with   
            be a so called set of locked vertices. 
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(bb) Next, let                where       (natural numbers including  ) for 

          and            be a set of lock time steps. 

Then there exists an instance of the problem of multi-robot path planning        

              
     

   such that         and it never happens that all the vertices of the 

set   are occupied by robots from the set   at any time step     within any optimal 

solution         (that is, at least one vertex from   is not occupied by a robot from   at 

any time step    ).  

 

Proof. The instance   is augmented in a way that a new robot is forced to visit exactly 

one vertex of the set   at each time step    . The technique is almost the same as in 

the case of Lemma 1. A path of new vertices is added around the set of locked vertices. 

The path branches into all the vertices of   at both connection points. Formally, the 

augmentation is as follows. 

Let    be the makespan of any optimal solution of the multi-robot path planning in-

stance  . The set of vertices   is extended with a set of new vertices 

                                     where           . A set of edges    

                                                                                         

                     is added to the graph with the extended set of vertices. 

Thus, the augmented graph is              
       . 

 

 
 

Figure 4. An illustration of the vertex set locking augmentation in an instance of a multi-robot path 

planning problem. At least one vertex of the set                 must not be occupied by any of 

the original robots    ,    , and     at time steps 1 and 3 in any optimal solution. The original instance 

  with the set of robots                 is taken from Figure 3. The augmentation is made by adding 

a new path consisting of vertices        ,    ,    ,    ,    , and     around the set   and by adding 

new robots     and    . The makespan of any optimal solution of the augmented instance    is 

               . 

          
        
                

     

                  

                            

             
     

      
  

    

W 
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The set of robots is extended with set of new robots                   ; that is, 

       . The initial and goal arrangements of new robots are spread around the set 

of locked vertices in the newly added vertices as follows:    
            if      and 

   
         for some      if      for          ;    

                
 if      

     and    
         for some     if           for          . For the 

original robots, the initial and the goal arrangements remain the same; that is,    
     

  
     and    

       
         . 

The makespan of any optimal solution of    is at least      since the shortest path 

from    
       to    

       in    has the length of      for any          . On the other 

hand, since           , no vertex of   is occupied by any new robot at least for    

time steps supposed the new robots are moving straight towards their destinations. To-

gether with the fact that in any optimal solution of the original instance   it is sufficient to 

occupy   for at most    time steps, the makespan of any optimal solution of     is exact-

ly     .  

 

The construction of the augmentation from the proof of the above lemma is shown in 

Figure 4. Observe, that the construction can be easily extended for locking multiple sets 

of locked vertices while for each locked set a different lock time steps may be used. 

 

Corollary 2 (makespan preserving set locking). Assume that preconditions (aa) and (bb) 

hold; in addition assume that the following preconditions hold as well: 

(cc) There exists a solution       of the instance                
    

   of the 

ma makespan   where     . 

(dd) There is at least one unoccupied vertex in the selected set     at all the time 

steps within       except time steps                with       for 

          and            and it holds that      . 

Then there exists an instance                      
     

   such that         and 

it never happens that all the vertices of   are occupied by the original robots from the 

set   at any time step     within any optimal solution    
     ; moreover the makespan 

of any optimal solution of    is again  .  

 

Proof. The construction of    is almost the same as in the proof of Corollary 1. The dif-

ference is that the parameter   is now set to     . The construction then ensures that the 

makespan any optimal solution of    is  . 

The makespan of any optimal solution is at least   since the newly added robots must 

go to the end of the newly added path. On the other hand, all the vertices of the set   

needs to be occupied by the original robots within the solution       only at time steps 

           that does not interfere with time steps            (since      ) at 

which the newly added robots need to occupy at least one vertex of   (supposed they are 

going directly to their destinations along the newly added path). Hence, there exists a 
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solution of the makespan   of the augmented instance   . Altogether, any optimal solu-

tion of    has the makespan  .  

 

Observe that original robots are allowed to enter the newly added vertices in all the 

above augmentations. This may help the original robots to reach their destinations faster 

(the newly added vertices may be used as additional “parking place” for robots). If this 

behavior needs to be ruled out, a slight adaptation of the technique must be used. 

Some additional notations are needed to express the requirement on not using the 

newly added vertices by the original robots formally. Let    
          

     
     

  
 
  be 

an optimal solution of the multi-robot path planning instance    over the graph    

        and let     . Then the restriction of the solution    
      on the set of vertices 

  is denoted as    
            

       
       

  
 
   , where    

           with 

   
          

             for          . Next, let              
         

      is 

an optimal solution of    , then                
            

               , and let 

                     is a solution (not necessarily optimal) of   . An augmentation    

of the instance   where added vertices are never used can be expresses by the condition 

                 . 

 

Proposition 2 (two-stage vertex locking). Assume preconditions (a) and (b). Then there 

exists an instance of the problem of multi-robot path planning 

                     
     

   such that         where it never happens that a 

robot     enters the vertex   at any time step     within any optimal solution 

        and                   (that is, original robots cannot use any added vertex 

in any optimal solution).  

 

Notice, that Proposition 2 is almost the same as Lemma 1 except the additionally re-

quired condition                  . 

 

Proof. The basic construction from the proof of Lemma 1 will be adopted; then some 

further augmentations will be made by successive applications of Corollary 1 to enforce 

the condition                  . 

Let    denotes be the makespan of optimal solutions of the multi-robot path planning 

instance  . In the first stage, the graph    is extended exactly as in the previous case. 

That is, the set of vertices                                      where            

and the set of edges                                                                  

                                    are added to the graph; that is          

    
       . The set of robots is extended with                   ; that is, 

        and the initial and goal arrangements of new robots are posed again in the 

same way:    
            if      and    

         if      for          ;    
       

         
  if           and    

         if            for          . As it 
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has been shown, this construction suffices for satisfying almost all the requirements ex-

cept                  . 

 

 
 
Figure 5. An illustration of two-stage vertex locking in an instance of multi-robot path planning 

problem. Robots    ,    , and     are needed to be prevented from entering a vertex     at time steps 1 

and 3. Additionally no vertex added by the augmentation can be entered by the original robots    , 

   , and    . These requirements are ensured by two stage locking. First,     is locked at time steps 1 

and 3 using a path of new vertices    ,    ,    ,    ,         , and     (this stage corresponds to Figure 

3). Then     and     are locked at time steps                and              respectively by the 

same technique. The makespan of any optimal solution of    is 5 (the same as of   ). 

 

Now, it is necessary to prevent original robots from the set   from entering any of the 

added vertices   . Observe that it is sufficient to lock vertices     and     to fulfill this 

requirement since the newly added vertices forms a path around   and this is the only 

vertex through which the path is connected to the original graph (neighboring vertices of 

  are     and    ). Vertices     and     need to be locked for all the time steps except time 
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steps at which robots from the set    go through them in an optimal solution – this will 

be the second stage locking. More precisely, the vertex     needs to be locked for time 

steps from the set                                    (where              

                    ) and the vertex     needs to be locked for time steps from 

the set                                   . Notice, that                as 

well as               . Moreover, the construction of sets       and      ensures that 

vertices     and     respectively will be locked for time steps at which they are not entered 

within some solution (which is known to be an optimal solution). Hence, Corollary 1 

applies for   , the locked vertex    , and the set of lock time steps     ; that is, optimal 

makespan is preserved. In other words, the just made vertex locking is synchronized 

with the vertex locking from the first stage. Then Corollary 1 is applied once more for the 

resulting instance, the locked vertex    , and the set of lock time steps     . Let    

                  
     

   denotes the final instance, then                  .  

 

The construction from Proposition 2 is illustrated in Figure 5. It is a further augmenta-

tion of the instance from Figure 3 in fact. 

The important property is that the size of all the augmented instances of the problem 

is                        where    is the optimal makespan (that is, asymptotically 

as many as           ) vertices and robots are added). Consequently, if an augmented 

instance is needed to be kept small (with respect to        ), the numbers    and    

must be small as well. 

 

Corollary 3 (makespan preserving two-stage vertex locking). Assume preconditions (a), 

(b), (c) and (dd. Then there exists an instance                      
     

   such 

that         and it never happens that a robot     enters the locked vertex   at any 

time step     within any optimal solution    
      and                   (that is, 

original robots cannot use any added vertex in any optimal solution); moreover the ma-

kespan of any optimal solution of    is again  .  

 

Proof. The construction from the proof of Proposition 2 can be adopted with a minor 

change. In the first stage of the construction of    where the construction from the proof 

of Lemma 1 has been applied, Corollary 1 is applied instead. This ensures that the inter-

mediate instance after the first stage locking preserves the makespan of  . The rest of the 

proof can be applied without any change.  

 

Again it is not difficult to generalize the construction for locking a subset of certain 

size of a selected set of vertices at given time steps where the original robots can move 

only in the original vertices. These merely technical extensions of Proposition 2 and Co-

rollary 3 are listed as Proposition 3 and Corollary 4. 

 



Pavel Surynek 
 

 

18 

Proposition 3 (two-stage set locking). Assume that preconditions (aa) and (bb) hold. 

Then there exists an instance of the problem of multi-robot path planning        

              
     

   such that         where it never happens that all the vertices 

of   are occupied by the original robots from the set   at any time step     within any 

optimal solution    
      and                    (that is, original robots cannot use 

any added vertex in any optimal solution).  

 

Proof. The proof will partially adopt the basic idea of the construction from the proof of 

Proposition 2. The vertex set locking will be done in two stages by a successive applica-

tions of Corollary 1 to enforce the condition                   . 

Let    denotes be the makespan of optimal solutions of the multi-robot path planning 

instance  . The first stage of the augmentation will be done as in the case of of Proposi-

tion 2. A set of vertices                                      where            

and a set of edges                                                                      

                                             are added to the graph; that is 

             
       . The set of robots is extended with a set of new robots 

                  ; that is,         and the initial and goal arrangements of new 

robots are:    
            if      and    

         for some     if      for 

         ;    
                

 if           and    
         for some     if 

          for          . 

To prevent original robots from the set   from entering any of the added vertices    

second stage vertex locking must be done. It is sufficient to lock vertices    and    since 

these two vertices are the only connection points of the original graph with the newly 

added parts. Vertices    and    need to be locked for all the time steps except time steps 

at which robots from the set    go through them in an optimal solution. More precisely, 

the vertex     needs to be locked for time steps from the set                   

                 and the vertex     needs to be locked for time steps from the set 

                                  . Since                (as well as 

              ) and vertex     is to be locked for time steps at which it is not entered 

within some (known to be optimal) solution, Corollary 1 applies for   , the locked vertex 

   , and the set of lock time steps     . That is, optimal makespan is preserved. In other 

words, the just made vertex locking is synchronized with the vertex locking from the 

first stage. Then Corollary 1 is applied once more on the resulting instance, the locked 

vertex    , and the set of lock time steps     . Let                      
     

   

denotes the final instance, then                  .  

 

The construction of the two-stage vertex locking from the above proof is shown in 

Figure 6. As in the case of locking a single vertex, the size of all the augmented instances 

of the problem is                        where    is the optimal makespan of the 

original instance. 
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Figure 6. An illustration of two-stage vertex set locking in an instance of multi-robot path planning 

problem. At least one vertex of the set                 must not be occupied by any of the original 

robots    ,    , and     at time steps 1 and 3. Additionally, no vertex added by the augmentation can be 

entered by any original of the robots. These requirements are ensured by two stage set locking. 

First, the set   is locked at time steps 1 and 3 by adding a path of new vertices    ,    ,    ,    ,      
   , and     (this stage corresponds to Figure 4). Then     and     are locked at time steps      
          and              respectively by vertex locking technique. The makespan of any optim-

al solution of    is 5 (the same as of    from Figure 4). 

 

Corollary 4 (makespan preserving two-stage set locking). Assume that preconditions 

(aa), (bb), (cc), and (dd) hold. Then there exists an instance 

                     
     

   such that         and it never happens that all 

the vertices of   are occupied by the original robots from the set   at any time step     

within any optimal solution    
     ; moreover the makespan of any optimal solution of 
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   is again   and and                   (that is, original robots cannot use any added 

vertex in any optimal solution).  

 

Proof. The construction of    from the proof of Proposition 3 can be adopted with a 

minor change. Instead of using the construction from the proof of Lemma 1 in the first 

stage, Corollary 1 is applied instead. This ensures that the intermediate instance after the 

first stage locking preserves the makespan of  . The rest of the proof can be applied with-

out any change.  

 

Consider a group of robots that has to go between two parts of the graph that are con-

nected by disjoint branches. The aim is to force all the robots of the group to go through 

just one of these connecting branches. That is, the behavior when the part of the group of 

robots goes through one branch and the rest of the group goes through the other branch is 

unwanted. This behavior will be later used to simulate Boolean consistency of a valua-

tion of some Boolean literals (positive and negative literals of the same Boolean variable 

should have complementary values). The required behavior of robots will be enforced 

by a so called conjugation technique which will be described below. 

Let                   be a set of robots that are to be conjugated. Formally the con-

jugation means that there is an instance of the problem of path planning for multiple 

robots                  
     

  , where              ;   ,   ,  ,    are 

pair-wise disjoint,              ,     ,    
        (image of the set by    

  is 

defined naturally:    
                 

       ),    
       , and there exists a 

time step   such that within any optimal solution    
         

     
       

 
  either 

    
          

            
           or     

          
            

          . To rule out 

trivial cases of   a requirement that     
        

         
     

  
 
      

         

   
              and     

        
         

       
 
      

            
            

  should be taken into account. The task is now to build such an instance of the multi-

robot path planning problem. 

The main idea of the construction is to order the robots from the set   into the queue 

that starts with an additional robot called a leading robot. There is a branching in the 

graph and two leading robots prepared. The destination for the leading robots is tempora-

rily closed by the construction from Corollary 1. This prevents the leading robots from 

escaping before fulfilling their task. The destination for the robots from the set   is ac-

cessible from both branches symmetrically. The leading robots have no other choice than 

to lead the group of robots to their destination. However, finally the leading robot has to 

go out of the way. If the group of robots from the set   is split between both branches, 

then the leading robots inevitably block each other and then there is no chance to reach 

destinations in time. Hence, the robot must go into one of the branches together (they 

must conjugate). Below is the formal description of the construction. 

The graph         consists of the following sets of vertices: 

         
     

       
    

(called initial vertices), 
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(called left vertices), 

         
       

       
    

(called right vertices), 

       
    

    
    

   

(called destination vertices), with 

  
      

      
      

     
    

 (called left part of destination vertices) 

  
      

     
      

      
    

 (called right part of destination vertices) 

    
      

     
       

    

(called gate part of destination vertices) and 

    
        

       
         

       
       

         
           

       
         

   

(called array part of destination vertices), 

where   is a parameter determining the length of a solution; it is required that       . 

Notice that   
  is in fact an array of   rows of   vertices within   . In total, the set of 

vertices is              .  

The edges of the graph are as follows: 

         
     

       
     

         
     

         
     

       
       

         
     

    

(edges for making a connection between initial vertices and left/right vertices), 

         
      

        
     

       
     

          
      

        
     

       
     

     

(edges for connecting the remaining left/right vertices), 

        
     

       
     

       
     

       
     

           
     

       
     

       
     

     

(edges for connecting left/right vertices to the gate part of destination vertices), 

  
       

       
       

       
         

       
     

(edges for connecting the gate part to the array part of destination vertices), 

  
         

       
           

       
               

       
             

       
     

(edges for connecting rows of the array part of destination vertices), 

  
           

       
           

         
             

       
     

(edges for connecting the last row of the array part in the reversed order); 

in total, the set of edges of the graph   is              
    

    
 . 

The set of robots is extended with two leading robots     and     (the left and the right 

leading robot); that is,               . The initial arrangement of robots is as follows: 

   
          

  for          ;    
          

  and    
          

 . That is, the original 

robots are placed into the initial vertices while the leading robots are placed in a way that 

original robots can join either of them. The goal arrangement is:    
            

  for 

         ;    
           

  and    
           

 ; that is, the original robots should finally 

reach the last of the array part of the destination vertices and the leading robots should go 

out of the way. 

The required conjugation of robots into the left and right vertices at a certain time step 

can be satisfied if the robots move in a way that first all the robots               from the 
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set of vertices    
     

       
  move into the set of vertices    

     
       

  if the left branch is 

chosen (or into the set of vertices    
     

       
  if the right branch is chosen). Without 

loss of generality, suppose the left branch has been chosen. Then the robots               

together with the leading robot     moves into vertices    
     

       
      

     
  . And final-

ly, the robots               move towards the last row of the array part of the destination 

vertices where their order is eventually reversed (if the right branch has been chosen no 

reversing is necessary) and the leading robots return to their goal positions in     
  and 

    
 . The described behavior of robots within the optimal solution is ensured by locking 

proper vertices at proper time steps. That is, the multi-robot path planning instance   is 

further extended with additional robots and vertices used for locking vertices as it is 

shown in the proof of Corollary 1. However, for sake of simplicity the description below 

will be restricted on the original components of the problem    

Thus, the optimal solution for the left branch      
           

       
         

 
  should 

satisfy that      
          

 ,      
          

 ,     
            

 ,…,      
          

 ,      
         

   
 ,     

            
 ,     

           
 ,     

            
 ,…,     

              
 ,     

                
 , 

     
                  

 ,     
                  

 ,…,     
                      

 ,and      
           

     
     

       for          ;     
          

 ,      
           

     
  ,     

           
     

  , 

     
           

     
  ,…,      

               
     

  ,     
             

     
  ,     

             
     

   

(the left leading robot is going in front of the queue formed by the sequence of robots 

             ), there is no special requirement on      
        ,      

        , …,      
          , 

indeed      
               

     
      . Similarly, there is no special requirement on 

     
       for any          . The optimal solution for the right branch      

     

      
       

         
 

  has almost the same form. The only difference is that the final re-

versal of the robots               to fit the last row of the array part of destination vertices 

is not performed. Observe, that the time step at which conjugation occurs is    . 

Now, the task is to show that the described behavior is really feasible and no other be-

havior can occur within any optimal solution. In other words, any optimal solution of the 

problem has the form of the solution for the left branch or the solution for the right 

branch. 

The first row of array part of destination vertices, that is, vertices      
       

         
 , is 

locked (closed for entering) for all the time steps except the time step    . At this time 

step all the robots               are entering the array part of destination vertices. Then 

they continue towards their goal positions and hence vertices      
       

         
  can be 

locked again for the remaining time steps. The vertices     
  and     

  are locked for all the 

time steps except the time step      . Similarly, the initial vertices are locked for all 

the time steps except the time step  . 

At the time of opening the first row of the array part of destination vertices (at the 

time step    ), all the robots               must reside in the vertices    
     

       
  

(eventually in the reversed order). Otherwise, they have no chance to reach their goal 

positions at all. Then, the fastest way to reach their goal positions starting from vertices 

   
     

       
  is exact following shortest paths to the last row of the array part of destina-

tion vertices (all these paths are of the same length). Since       which is enough 
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time steps for the leading robots to reach their destination positions; the motion of robots 

              within the array part of destination vertices represents the bottleneck. 

 

 
 
Figure 7. A conjugation instance of the multi-robot path planning problem. A conjugation instance 

  
  shown in figure is constructed with respect to a set of robots                     and a parameter 

   . The robots are restricted in their movements using vertex locking - namely, the initial ver-

tices    
 ,    

 ,    
 , and    

  can be entered only at time step 0; the vertices      
 ,      

 ,      
 , and      

  can 

be entered only at time step 8; and the vertices     
  and     

  can be entered only at time step 14. 

These conditions enforce that the robots    ,    ,    , and     located either in vertices    
 ,    

 ,    
 , and 

   
  or in vertices    

 ,    
 ,    

 , and    
  at time step 1 in any optimal solution of   

 . 

 

It remains to check the behavior of robots before the time step    . Since the initial 

vertices are allowed to be occupied only at time step  , the robots               must enter 

the left or the right vertices immediately at the next time step. Between time steps   and 

    it is not possible to swap robots in the currently accessible part of the graph since 
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it consists of a single path. Hence, if the robots               split between the left and the 

right vertices, then they cannot be arranged into vertices    
     

       
  in the required 

order, because they are obstructed by the leading robots     and    . 

The just described instance will be called a conjugation instance of multi-robot path 

planning problem. Notice, that the instance is parameterized by a set of robots   and an 

integer parameter        . An instance of the problem corresponding to the given 

parameters will be denoted as   
 . Notice further, that the makespan of any optimal solu-

tion of   
  is               . 

It is easy to see that the size of the conjugation instance is            which is 

       . An instance of the conjugation instance of multi-robot path planning problem is 

shown in Figure 7. 

All the ingredients are now prepared to prove that a decision version of the optimiza-

tion variant of multi-robot path planning is   -complete [6]. The membership into    

will be checked first. Then a polynomial time reduction of a Boolean satisfiability in-

stance (SAT) [1] to the instance of the decision version of the optimization variant of 

multi-robot path planning will be constructed. 

 

Definition 3 (decision version).  A decision version of the optimization variant of multi-

robot path planning is a task to decide for a given instance of multi-robot path planning   

and a number      whether there exists a solution       of the makespan no longer 

than  . A notation     will be used for the decision instance. Next, let         denotes 

the language of positive instances of this problem. □ 
 

It is not that easy to see that           , since no upper bound on the size of the 

solution of         has been established so far. Hence, the standard technique of 

“guessing and checking” cannot be used immediately. Notice that, decision variants of 

several related sliding piece problems [9] such as Sokoban game [3] and Rush-hour 

puzzle [5] are proven to be       -complete [6, 7] but it is not known whether they are 

in   . The reason it that the polynomial upper bound on the size of the solution has not 

been found so far. Fortunately, this is not the case of        . It is possible to establish 

the polynomial upper bound on the size of the solution of         using results shown 

in [11]. 

 

Lemma 3.           .  

 

Proof. It has been shown in [11] that there exists a solution          
    

      
 
  for 

any solvable instance of the problem of pebble motion on a graph      

          
    

   such that           (  is regarded as a function of   here). Since the 

solution of an instance of pebble motion on a graph can be used as a solution of the cor-

responding multi-robot path planning instance (Proposition 1) it implies that there exists a 

solution          
    

      
 
  for any solvable instance of the problem of multi-robot 

path planning                
    

   such that           (  is regarded as a func-
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tion of   as well). An instance of             can be solved on a Turing machine with 

oracle [8] in polynomial time as follows. A solution of the size         of   is generated 

first by the oracle. Then, the generated solution is checked whether its makespan is at 

most   and whether it satisfies Definition 2. This check can be carried out in polynomial 

time with respect to the size of    .  

 

As it is usual, Boolean formulas in conjunctive normal form (CNF) [10] will be used 

in further reasoning. Let     denotes the language of satisfiable instances of Boolean 

formulas in CNF. It is well known that     is   -complete. However, a slight technical 

adaptation of Boolean satisfiability is necessary to carry out the required reduction. A 

restriction on formulas in CNF where positive and negative literals of the same variable 

have the same number of occurrences in the formula will be made. Let the language of 

satisfiable formulas that comply with this restriction will be denoted as     . 

 

Lemma 4.      is   -complete.  

 

Proof. With respect to membership into   , the restriction makes no change; thus 

       . Any instance of     can be reduced to an instance of      by adding 

clauses to balance the number of positive and negative literals of the same variable. The 

added clauses should preserve equisatisfiability of the resulting formula with the original 

one. Let   is a formula in CNF and let   be a variable with unbalanced positive and 

negative occurrences. Let          denotes a set of positive occurrences of   in   and 

similarly let          denotes a set of negative occurrences of   in  . Without loss of 

generality let                      . Then a clause    
                     
          

where   is a new variable is added to  . Now   as well as newly added   have the same 

number of positive and negative occurrences. Clearly, the resulting formula is equisatisfi-

able with   since the newly added clause is always satisfied. The described process 

should be done for all the unbalanced variables. The length of the resulting formula is at 

most twice of  , thus the reduction can be done in polynomial time.  

 

Theorem 1.         is   -complete.  

 

Proof. It remains to prove that         is   -hard. A polynomial time reduction of 

     to         will be used. Let    be a formula in CNF, that is,         
   

   
   , 

where   
  is  th literal of  th clause; there are   clauses, where  th clause has    literals. 

Assume further that that each variable has the same number of positive and negative 

occurrences in   . Let         denotes the set of Boolean variables of   . An instance 

               
    

     of the decision version of the optimization variant of mul-

ti-robot path planning for    will be constructed in the following way. Every occurrence 

of a literal in    will be associated with a vertex. Thus, a set of vertices     

      
  

  
   

 
    is constructed (   

  is a symbol while   
  is a variable standing for a literal); a 
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vertex    
  corresponds to an occurrence of a literal   

  in  th clause as  th disjunct. A conju-

gation instance of multi-robot path planning will be associated with each Boolean varia-

ble of    while left and right vertices of the conjugation graph will be one-to-one matched 

to vertices from     that correspond to negative and positive occurrences of the variable 

respectively. This is possible since there is the same number of positive and negative 

occurrences of each variable in    (conjugation graph has also the same number of left 

and right vertices). 

The idea is to prepare a group of robots of the size                         for each 

Boolean variable          . This group of robots will be placed in the initial vertices 

of the conjugation subgraph corresponding to  . The construction of the conjugation 

subgraph will enforce that all the robots must go either into the vertices corresponding to 

positive literals or into the vertices corresponding to negative literals. If the movement of 

robots in interpreted in the way that literals corresponding to vertices of     visited at 

time step 1 will be assigned the same Boolean value, then the conjugation technique as-

sures Boolean consistency of the assignment. However, this is not enough to establish 

correspondence between an assignment satisfying    and a solution of    . It is further-

more necessary to make robots to simulate clause satisfaction by any solution which 

makespan is at most  . This can be done by enforcing robots either to visit at least one 

literal/vertex of each clause of    (in the case when visited literals/vertices are assigned 

the value     ) or leave at least one literal/vertex of each clause of    unoccupied at 

time step 1 (in the case when visited literals/vertices are assigned the value      ). 

Since the second option can be easily implemented through the vertex set locking me-

chanism (Proposition 3, Corollary 4), the value       will be used for literals corres-

ponding to vertices visited at time step 1. 

Nevertheless, some technical details such as exact specification of   need to be dis-

cussed. The equality between makespans of optimal solutions over the individual conju-

gation instances needs to be established. Recall that a conjugation instance   
  is characte-

rized by two parameters   (the set conjugated robots) and   (parameter affecting the 

makespan of the optimal solution of the instance). Let                            

            . For a given          , the conjugation instance      
    

 will have the 

parameters          
     

                 
   and                       

        . Hence, the makespan of any optimal solution of the conjugation instance 

     
    

 is                   . 

Matching of left and right vertices of      
    

 to vertices from     is as follows: 

    
       

              
         

    
                           and     

       
       

        
         

    
                         . Now, the crucial observation has to be 

made. It holds that    is satisfiable if and only if there exists a solution of the currently 

constructed instance of makespan of      such that at time step 1 at least one vertex 

from the set of vertices corresponding to each clause remains unoccupied. 
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Figure 8. A polynomial time reduction of a Boolean formula to a decision instance of multi-robot 

path planning. A formula   is transformed to a formula    in which each variable has the same 

number of positive and negative occurrences. Then an instance of the decision version of the prob-

lem of multi-robot path planning     is constructed. The conjugation technique is used to simulate 

Boolean consistency and the set locking technique is used to simulate clause satisfaction (the 

reduction of one variable using the conjugation technique and the reduction of one clause using the 

set locking technique are shown). There exists a solution of   of the makespan      if and only if 

the formula   is satisfiable. 
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Let                       be a satisfying valuation of   . If           , 

then robots    
     

                 
  are placed in    

       
               

   
 at time step 1; if 

          then they are placed in    
       

              
   

 at time step 1. The placement 

of robots at time steps other than 1 is straightforward. Since   is the satisfying assign-

ment, at least one vertex from the set of vertices corresponding to each clause remains 

unoccupied. On the other hand, Corollary 4 can be used to augment the instance to en-

force at least one vertex from the set of vertices that corresponds to literals of a clause is 

not occupied by robots from the set                within any optimal solution while 

the makespan of      remains preserved. That is, Corollary 4 is invoked with   

    
     

        
   that corresponds to satisfying the  th clause of   . Let   denotes the result-

ing instance. Any solution of the makespan of      of   satisfies conditions at time 

step 1 and hence it induces a satisfying assignment of   . 

The construction of   requires polynomial time in size of   ; the size of   is also po-

lynomial (the size of each conjugation subgraph is polynomial in size of    and the num-

ber of conjugation subgraphs is bounded by the size of   ). Now, if   has a solution of 

the makespan        then it is ensured that conjugation and clause satisfaction has 

been successfully simulated, thus a satisfying valuation of    can be easily derived from 

this solution. Hence,         if and only if            . Together with Lemma 3 

the claim that         is   -complete has been obtained.  

3.2. The Case with Bi-connected Graphs 

The interesting open question is the complexity of the optimization variant of multi-robot 

path planning when only bi-connected graphs [30, 31] are took into account. As this is 

an important restricted case of the problem with respect to the existence of a solution, it is 

useful to know its complexity. 

With some exceptions it can be briefly stated the following. An instance of the prob-

lem (pebble motion or multi-robot) over a bi-connected graph with single unoccupied 

vertex is always solvable if the goal arrangement of pebbles/robots differs from the ini-

tial one as an even permutation (it is supposed that an unoccupied vertex has the same 

position in the initial and the goal arrangement) [11, 32]. If the goal arrangement differs 

from the initial one as an odd permutation, then there must be an odd cycle in the input 

graph to be able to construct a solution, otherwise there is no solution of the instance 

[11, 32]. The exceptional cases are formed by special bi-connected graphs: the first one is 

a simple cycle and the second one is a bi-connected graph consisting of one handle con-

nected to a cycle. If there are at least two unoccupied vertices in the input bi-connected 

graph other than a simple cycle, then the instance is always solvable [18, 21]. 

Unfortunately, the decision version of the optimization variant of the problem on bi-

connected graphs remains   -complete since all the augmentations of instances used in 

the proof of the   -completeness can be further augmented to preserve bi-connectivity. 
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Definition 4 (connected graph).  An undi-

rected graph         is connected if 

      for any two vertices       such 

that     there is an undirected path 

consisting of edges from   connecting   

and  . □ 
 

Definition 5 (bi-connected graph, non-

trivial).  An undirected graph         

is bi-connected if       and the graph 

          , where          and 

                        , 

is connected for every    . A bi-

connected graph not isomorphic to a cycle 

will be called non-trivial bi-connected 

graph. □ 

 

Observe that, if a graph is bi-

connected, then every two distinct vertices 

are connected by at least two vertex dis-

joint paths (equivalently, there is a cycle 

containing both vertices; only internal 

vertices of paths are considered when speaking about vertex disjoint paths -  vertex dis-

joint paths can intersect at their start points and endpoints). If a graph is not bi-connected 

then it is either disconnected or there exists a vertex which removal partitions the graph 

into at least two connected components – this vertex is called an articulation point. Sev-

eral examples of bi-connected graphs are shown in Figure 9. 

 

Definition 6 (decision version - bi-connected).  The optimization variant of multi-robot 

path planning can be naturally restricted on bi-connected graphs. A language of positive 

instances of the decision version of the optimization variant of multi-robot path planning 

on bi-connected graphs will be denoted as        
  . □ 

 

Lemma 5.        
     .  

 

Sketch of proof. The proof of Lemma 3 applies here as well since additional requirement 

of bi-connectivity of the graph has does not affect the size of the input instance. Thus, 

due to [11] there exists a polynomial sized solution with respect to the size of the input of 

any solvable instance restricted on bi-connected graphs. The makespan of such a solution 

can be checked against a given bound in polynomial time as well.  

 

           

           

           

Figure 9. Examples of bi-connected graphs. 

Three bi-connected graphs   ,    , and   .    

and     are non-trivial bi-connected graphs.    is 

a trivial one. 
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Theorem 2.        
   is   -complete.  

 

Proof. It remains to show that        
   is   -hard. Fortunately, this can be carried out 

by reducing      to        
   as it was done in above sections with additional augmen-

tations to preserve bi-connectivity. 

The vertex locking augmentation (Lemma 1) can be modified to preserve bi-

connectivity. That is, if the graph   of a multi-robot path planning instance      

          
    

   is bi-connected, then the graph    of the augmented instance        

              
     

  , where a selected vertex     is locked for selected time steps, can 

be made bi-connected as well. The following text refers to the symbols defined in the 

proof of Lemma 1. 

Observe that vertices added within the vertex locking augmentation are connected by 

a single path only. Thus, the second vertex disjoint path should be added while the vertex 

locking mechanism must be preserved. This can be done by connecting vertices      and 

    that were added in the vertex locking augmentation with a new path. This ensures that 

all the vertices in the graph are connected by at least two disjoint paths. The removal of 

any of the added vertices does not disconnect the graph. However, the removal of   can 

disconnect the newly added cycle around   from the rest of the graph. Thus, the cycle 

needs to be connected to the rest of the graph by some additional edge to preserve bi-

connectivity. 

The new path forming the cycle must be constructed long enough to make robots add-

ed in the augmentation (that is, robots                   ) to move in the same way as 

in the original augmentation in any optimal solution. Moreover, the connection edge for 

preserving bi-connectivity must be far enough so that newly added robots cannot use it. 

The added robots consume            time steps before they reach their destina-

tions (they go along the shortest possible path). Thus, it must take more than      time 

steps to get into destinations if the new alternative path is chosen. Moreover, it must take 

more than      time steps before the bi-connectivity preserving edge can be reached.  

Let                    
                                be new vertices making the new 

alternative path. The new vertices are connected into the augmented graph using the fol-

lowing edges:           ,          , …,           
  ,               ,                    , …, 

                       ,                , and        , where     such that    . The edge 

        is used to preserve bi-connectivity. 

Now observe that the robot     must travel at least along           if it chooses 

the alternative path. This however cannot happen in an optimal solution since its makes-

pan should be     . Similarly, the robot     must travel at least along        edges if 

it tries to used the bi-connectivity preserving edge. Again, this cannot happen in an op-

timal solution since its makespan should be       It holds, that         is 

               since                               ; thus the size of the 

augmented instance is again                        as in the original construction. 

The second construction where bi-connectivity is needed to be preserved is the con-

jugation instance. The only vertices that are not connected by two vertex disjoint paths 
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within the conjugation instance are:     
 ,     

 ,     
 , and     

 . This can be treated by adding 

an edge      
      

   which makes the graph of the conjugation instance bi-connected. 

Since vertices     
 ,     

 ,     
 , and     

  are accessible at last two time steps only within any 

optimal solution, the newly added edge cannot affect the way how robots must move 

within the optimal solution. The size of the modified conjugation instance is still 

       . 

Now, it is possible to construct a decision version of the optimization variant of multi-

robot path planning problem instance       with the bi-connected graph for a formula    

in CNF where each variable has the same number of positive and negative occurrences 

such that         if and only if              
  . The construction from the proof of 

Theorem 1 can be adopted with the modification that all the vertex locking augmentations 

and conjugation instances will preserve bi-connectivity as it is described above. The size 

of resulting instance     is polynomial in the size of   . Together with Lemma 5 the 

claim that        
   is   -complete has been obtained.  

3.3. Summary on Complexity Results 

It has been shown in the above section or in existent works that all the interesting cases of 

the optimization variants of multi-robot path planning as well as pebble motion on a 

graph are   -complete. Thus, unless it holds that      which is considered to be 

unlikely, optimization variants of these problems can be regarded as intractable. On the 

other hand, if the requirement on the optimal makespan is relaxed, all the studied cases 

fall into the   class. 

To provide a complete figure about studied cases of problems of motion on a graph at 

one place, all the complexity results from above sections and from existent works are 

summarized in Table 1. 
 
Table 1. A summary of complexity results of problems of motion on a graph. Complexity results of 

several interesting cases of problems of pebble motion on a graph and multi-robot path planning are 

summarized in the table. References to detailed proofs from the above sections or references to 

existent works that discuss the listed results are provided. 

 

Pebble motion on a graph Standard variant /  Reference Optimization variant /  Reference 

Pebble motion 
on a graph 

Arbitrary 
graph 

  class 
[11, 32] + 
2.2 

  -complete [13]  + 2.2 

Bi-connected 
graph 

  class 
[11, 32] + 
2.2 

  -complete [13] 

Multi-robot 
path planning 

Arbitrary 
graph 

  class 
[11, 32] + 
2.2 

  -complete 3 

Bi-connected 
graph 

  class [11, 18,32]   -complete 3 

4. Related Works and Conclusion 

An abstraction of the problem of multi-robot path planning is introduced in this paper. 

The relation to well known problems of pebble motion on a graph is studied. The new 



Pavel Surynek 
 

 

32 

result shown in this paper is that the decision version of the optimization variant of the 

problem of multi-robot path planning is NP-complete. The parameter with respect to 

which the optimization is made is the makespan. The same complexity result has been 

obtained for the class of instances restricted on bi-connected graphs only. 

The reduction of Boolean satisfiability to multi-robot path planning has been used for 

the proof of NP-completeness. Numerous techniques how to simulate Boolean consisten-

cy and clause satisfaction within multi-robot path planning were developed in this work. 

These techniques are supposedly generic enough to be used in different context and hence 

considered to be interesting itself. 

The fact that optimization variant of multi-robot path planning is NP-complete is quite 

negative result. Fortunately, if the requirement on the shortest possible makespan of solu-

tions relaxed, the problem becomes tractable. Namely, it belongs to the P class. Howev-

er, the situation is not that straightforward. Although algorithms developed for solving 

pebble motion problems [11, 32] can be used for solving multi-robot path planning as 

well, this practice is disadvantageous. Solutions generated by these algorithms have 

promising theoretical makespan of        . However, constants in the asymptotic esti-

mation are too high. The experimental evaluation made within different work has shown 

that the makespan of these solutions measured empirically is relatively high as well [24]. 

Hence, these algorithms are unsuitable for practical use. This issue has been addressed in 

details in [19, 20, 21, 24] where alternative solving algorithm for multi-robot path plan-

ning problem producing better solutions (so called BIBOX algorithms) and solution im-

proving techniques were proposed. 

The important related work is represented by articles [26, 27, 28, 29]. Authors study 

so called multi-agent path planning which is similar to the notion of multi-robot path 

planning with some further relaxations (for example a swap of agents along an edge 

seems to be allowed). The number of moves is the optimized parameter. Authors define 

the tractable class of this optimization problem where graphs are restricted on grids and 

there is a relative abundance of unoccupied vertices. The theoretical relation of multi-

agent path planning and multi-robot path planning is an interesting question for future 

work particularly in the light of presented complexity results. 

In [17] it is claimed that it is possible to solve a similar problem to multi-robot path 

planning – so called cooperative path-planning problems - optimally. However, it is little 

bit exaggerated claim since author actually shown that instances with up to only    mov-

able units in the environment with lot of free space can be solved by the search with sev-

eral heuristic improvements in reasonable runtime. 

An interesting question for future work is whether it is tractable to find a solution of 

multi-robot path planning instance which is constant time worse that the optimum. Cur-

rently, it is an open question whether such approximation solving algorithm can exist. 

The answer to this question will consequently provide the estimation how far from the 

optimum are solutions generated by algorithms for the standard case  of the problem (not 

the optimal one) referred above. Consequently, the estimation what is the makespan of 

the optimal solution of large instances would be also available. 
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