

1

Abstract Path Planning for Multiple Robots: A Theoretical Study

Pavel Surynek

Charles University in Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 25, Praha, 118 00, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract. An abstraction of the problem of multi-robot path planning is introduced in this paper. The

basic task is to determine spatial-temporal plan for each robot of a group of robots where each robot

is given its initial position in the environment and it needs to go to the given goal position. Robots

must avoid obstacles and must not collide with each other. The abstraction adopted in this work

models the environment within that robots are moving as an undirected graph. Robots are placed in

vertices of the graph; at most one robot is placed in each vertex and at most one vertex remains un-

occupied .The move is allowed into the unoccupied vertex or into the vertex being vacated by an al-

lowed move supposed that no other robot is entering the same target vertex. The relation of multi-

robot path planning to the problem of pebble motion on a graph (which the most widely known rep-

resentative is 15-puzzle) is discussed.

The optimization variant of the abstract multi-robot path planning is particularly studied. The

task is to find a solution of the makespan as small as possible in the optimization variant. The main

contribution of the paper is the proof of the NP-completeness of the decision version of the optimiza-

tion variant of multi-robot path planning. The reduction of Boolean satisfiability to multi-robot path

planning is used in the proof.

Keywords: multi-robot, path planning, multi-agent, coordination, sliding puzzle, (n2-1)-puzzle, 15-

puzzle, domain dependent planning, complexity, NP-completeness

1. Introduction and Motivation

This paper is devoted to a problem of path

planning for multiple robots [14, 15, 18].

Consider a group of mobile robots that are

moving in some environment (for example in

the 2-dimensional plane with obstacles). Each

robot of the group is given an initial and a

goal position in the environment. The ques-

tion of interest is how to determine a se-

quence of motions for each robot of the group

such that all the robots reach their goal posi-

tions supposed they started from the given

initial ones by following this sequence. Phys-

ical limitations must be respected by robots:

robots must not collide with each other and

they must avoid obstacles in the environ-

Figure 1. An illustration of shipping con-

tainer rearranging. This problem can be

formulated as path planning for multiple

robots where robots are represented by con-

tainers.

Pavel Surynek

2

ment during their movements.

The problem of multi-robot path planning is motivated by many practical tasks. Vari-

ous problems of navigating a group of mobile robots can be formulated as multi-robot

path planning. However, the primary motivations for the problem are tasks of moving

certain entities within an environment with a limited free space. Hence, the formulation

of the problem is not restricted to the case where robots are actually represented by mo-

bile robots. Such real-life examples include rearranging of shipping containers in ware-

houses (a robot is represented by a shipping container - see Figure 1) or coordination of

vehicles in dense traffic (robot = vehicle). Moreover, the reasoning about these rear-

rangement/coordination tasks should not be limited to physical entities only. A robot may

be represented by a virtual entity or by a piece of commodity as well. Thus, many tasks

such as planning of data transfer between communication nodes with limited storage

capacity (robot = data packet), commodity transportation in the commodity transportation

network (robot = certain amount of commodity), or even the motion planning of large

groups of virtual agents in the computer-generated imagery can be expressed as an in-

stance of the problem of multi-robot path planning.

The primary aim of this paper is to study theoretical aspects of the problem, namely

computational complexity of the abstract formulation of the problem. The abstraction

consists in modeling the environment, where robots are moving, as an undirected graph.

Vertices of the graph represent locations within the environment and edges represent

possibility of going from one location to the neighboring location. Robots are placed in

vertices of the graph and they are allowed to move into neighboring vertex if it is unoc-

cupied or currently being vacated by an allowed move supposed that no other robot is

entering the same target vertex.

There is variety of ways how to create an abstract instance of a given specific real-life

multi-robot path planning instance. It is necessary to make decisions how to sample loca-

tions in the original environment in order to make the abstract instance to model the real-

life situation as precisely as needed. Nevertheless, these issues are out of scope of this

work. Here, the principal question about the complexity of solving instances of the ab-

stract formulation itself is studied.

The main contribution of this paper is the proof of NP-completeness [6] of the opti-

mization variant of multi-robot path planning. This result has been already previewed in

the short conference paper [22]. However, only the sketch of the proof fitted into the

short paper. This paper should be regarded as the full version of the proof where all the

details are rigorously treated and illustrated. The technical report from that this paper is

coming out is available as [23].

In the context of multi-robot path planning, works on problems of motion planning

over graphs must be mentioned [11, 12, 13, 32] since they are closely related. Namely,

works on so called problems of pebble motion on graphs (which the most widely known

representative is the 15-puzzle) [11, 13, 32] represents almost the same problem as multi-

robot path planning. The difference lays in the condition on the dynamicity in the prob-

lem - moves are allowed into currently unoccupied vertices only (and no other pebble is

 Abstract Path Planning for Multiple Robots: A Theoretical Study

3

entering the same target vertex) in the problem of pebble motion on a graph. Many theo-

retical results are known for pebble motion on a graph - it is known that the problem can

be solved in polynomial time (in for modeling the environment) with

solution consisting of polynomial number of moves (again moves) [11, 32].

Moreover, it is known that the decision version of the optimization variant of pebble

motion on a graph is NP-complete [13] (this has been actually shown for generalized

variant of the 15-puzzle). Hence, a natural question how situation will change in the case

of multi-robot path planning arose and this paper gives the answer.

The secondary aim of this paper is to clarify terminology, since many papers actual-

ly use the term multi-robot path planning for pebble motion on a graph, which evokes an

impression that these problems are different. This aspect is discussed in details along with

definitions of problems.

The organization of the paper is as follows: the formal definition of the problem of

pebble motion on a graph is recalled and the definition of the abstraction of multi-robot

path planning is given in Section 3. Some basic properties of problems and their corres-

pondence is discussed in this section too. Section 3 represents the core of the paper -

several techniques for polynomial transformation of Boolean satisfiability to the problem

of multi-robot path planning are described in this section. The last section - Section 4 - is

devoted to related works and to concluding remarks.

2. Pebble Motion on a Graph and Multi-robot Path Planning

Problems of pebble motion on a graph and multi-robot path planning are formally de-

fined in this section. A relation of both problems is discussed and their basic theoretical

properties are summarized.

The primary problem studied in this paper is the problem of multi-robot path plan-

ning. It is almost the same problem as the problem of pebble motion on a graph [11, 32].

The problem of pebble motion on a graph has been already studied in the literature and

many theoretical results are known for this problem. The problem of multi-robot path

planning represents a relaxation of pebble motion with respect to the dynamicity.

Consider an environment in which a group of mobile robots is moving. The robots are

all identical (that is, they are all of the same size and have the same moving abilities).

Each robot starts at a given initial position and it needs to reach a given goal position. The

problem being addressed consists in finding a spatial-temporal path for each robot so that

it can reach its goal by following this path. Robots must not collide with each other and

they must avoid obstacles in the environment.

A relatively strong abstraction is adopted in this work. The environment with ob-

stacles within that the robots are moving is modeled as an undirected graph. The vertic-

es of this graph represent locations in the environment and the edges model an unblocked

way from one location to the neighboring location. The time is discrete in this abstrac-

tion; it is an infinite linearly ordered set isomorphic to the set of natural numbers where

each element is called a time step (time steps are numbered starting with). At each time

Pavel Surynek

4

step, each robot is located in a vertex. A motion of a robot is an instantaneous event. That

is, if the robot is placed in a vertex at a given time step then the result of the motion is the

situation where the robot is placed in the same or in the neighboring vertex at the follow-

ing time step.

The problem of pebble motion on a graph works with pebbles instead of robots.

Moreover, a condition on the allowed motions of pebbles is more restrictive than in the

case of robots in multi-robot path planning.

2.1. Formal Definitions of Motion Problems

The following two definitions formalize a problem of pebble motion on a graph (also

called a pebble motion puzzle, sliding box puzzle; special variants are known as the 15-

puzzle and -puzzle) [1, 21] and the related problem of multi-robot path planning

[14, 15 18]. Both problems and their solutions are illustrated in Figure 2.

Definition 1 (problem of pebble motion on a graph). Let be an undirected

graph. Next, let where be a set of pebbles. The graph models

an environment in which the pebbles are moving. An initial arrangement of the pebbles

is defined by a uniquely invertible function
 (that is,

 for every

 with). A goal arrangement of the pebbles is defined by another unique-

ly invertible function
 (that is,

 for every with).

A problem of pebble motion on a graph is the task to find a number and a sequence

 where

 is a uniquely invertible function for every

 . Additionally, the following conditions must hold for the sequence :

(i)

 ; that is, all the pebble reaches their destination vertices.

(ii) Either

 or

 for every and

 ; that is, a pebble can either stay in a vertex or move into

the neighboring vertex between each two successive time steps.

(iii) If

 (that is, the pebble moves between time steps and

) then

 such that ; must hold for every

 and ; that is, a pebble can move into an unoccupied

neighboring vertex only. This condition together with unique invertibility of

functions forming implies that no two pebbles can enter the same target

vertex at the same time step.

The instance of the problem of pebble motion on a graph is formally a quadruple

 . Sometimes, the solution of the problem will be denoted as

 . □

The notation with a stripe above the symbol is used to distinguish a constant from a

variable (for example, is a variable while is a constant; sometimes a constant

parameterized by a variable or by an expression will be used – for example denotes a

 Abstract Path Planning for Multiple Robots: A Theoretical Study

5

constant parameterized by an index ; the parameterization by an expression will be

clear from the context).

When speaking about a move at time step , it is referred to the time step of com-

mencing the move (exactly, the move is performed between time steps and).

As it has been mentioned, the term multi-robot path planning has been already used in

literature for pebble motion on a graph in fact. In the work titled “Exploiting Subgraph

Structure in Multi-Robot Path Planning” [15] the dynamicity of the problem is described

as follows:

“Further, we shall assume that the map is constructed so that collisions only oc-

cur when one robot is entering a vertex v at the same time as another robot is oc-

cupying, entering or leaving this vertex.”

In other words, a robot can enter a vertex if and only if it is unoccupied at the time of

commencing the move and no other robot is entering the same target vertex, which is

exactly the definition of the dynamicity in the problem of pebble motion on a graph.

Figure 2. An illustration of problems of pebble motion on a graph and multi-robot path planning.

Both problems are illustrated on the same graph with the same initial and goal positions. The task is

to move pebbles/robots from their initial positions specified by

 to the goal positions speci-

fied by

 . A solution of the makespan 6 () is shown for the problem of pebble motion on

a graph and a solution of the makespan 4 () is shown for the problem of multi-robot path

planning. Notice the differences in parallelism between both solutions – multi-robot path planning

allows a higher number of moves to be performed in parallel thanks to weaker requirements on

solutions.

An alternative supposedly more reasonable definition of multi-robot path planning is

adopted in this work. A problem of multi-robot path planning is a relaxation of the prob-

lem of pebble motion on a graph. The condition that the target vertex of a pebble/robot

must be vacated in the previous time step is relaxed. Thus, the motion of a robot entering

Solution of the problem of pebble motion

on a graph with

Solution of the problem of path planning for

multiple robots with

Pavel Surynek

6

the target vertex, that is simultaneously vacated by another robot and no other robot is

trying to enter the same target vertex, is allowed in multi-robot path planning. However,

there must be some leading robot initiating such chain of moves by moving into an unoc-

cupied vertex (that is, robots can move like a train with the leading robot in front) that is

not entered by another robot at the same time step. The problem is formalized in the fol-

lowing definition.

Definition 2 (problem of multi-robot path planning). Again, let be an undi-

rected graph. Now a set of robots where is given instead of the

set of pebbles. Similarly, the graph models an environment in which the robots are mov-

ing. The initial arrangement of the robots is defined by a uniquely invertible function

 (that is,

 for every with). The goal arrangement

of the robots is defined by another uniquely invertible function
 (that is,

 for every with). A problem of multi-robot path planning

is the task to find a number and a sequence

 where

 is a

uniquely invertible function for every . The following conditions must hold

for the sequence :

(i)

 ; that is, all the robots reaches their destination vertices.

(ii) Either

 or

 for every and

 ; that is, a robot can either stay in a vertex or move to the

neighboring vertex at each time step.

(iii) If

 (that is, the robot moves between time steps and

) and

 such that (that is, no other robot

 occupies the target vertex at time step), then the move of at the time

step is called to be allowed (that is, the robot moves into an unoccupied

neighboring vertex – a leading robot). If

 and there is

 such that

 (that is, the

robot moves into a vertex that is being left by the robot) and the move of

 at the time step is allowed, then the move of at the time step is also

allowed. All the moves of robots at all the time steps must be allowed.

Analogically, this condition together with the requirement on unique inver-

tibility of functions forming implies that no two robots can enter the

same target vertex at the same time step.

The instance of the problem of multi-robot path planning is formally a quadruple

 . The solution of the problem will be sometimes denoted as

 . □

The numbers and are called makespan of the solution of pebble motion on a

graph and multi-robot path planning respectively. The makespan need to be distinguished

from the size of the solution, which is the total number of moves performed by peb-

bles/robots. The makespan is typically less than the size of the solution. In case of the

 Abstract Path Planning for Multiple Robots: A Theoretical Study

7

pebble motion on a graph with just single unoccupied vertex, the makespan and the size

of the solution are the same.

2.2. Known Properties of Motion Problems and Open Question

Several basic properties of solutions of problems of pebble motion on graphs and multi-

robot path planning are summarized in this section.

Notice that a solution of an instance of the problem of pebble motion on a graph as

well as a solution of an instance of the problem of multi-robot path planning allows a

pebble/robot to stay in a vertex for more than a single time step. It is also possible that a

pebble/robot visits the same vertex several times within the solution. Hence, a sequence

of moves for a single pebble/robot does not necessarily form a simple path in the given

graph.

 Notice further that both problems intrinsically allow parallel movements of peb-

bles/robots. That is, more than one pebble/robot can perform a move at a single time step.

However, multi-robot path planning allows higher motion parallelism due to its weaker

requirements on robot movements (the target vertex is required to be unoccupied only for

the leading robot in the previous time step – see Figure 2). More than one unoccupied

vertex is necessary to obtain parallelism in the problem of pebble motion on a graph. On

the other hand, it is sufficient to have single unoccupied vertex to obtain parallelism with-

in the solution of an instance of the multi-robot path planning problem (consider for ex-

ample robots moving around a cycle).

Proposition 1 (problem correspondence). Let

 be an instance of the

problem of pebble motion on a graph and let

 be its solution.

Then is a solution of an instance of the problem of path planning for

multiple robots

 . In other words, the instance of the multi-robot path

planning problem consists of the same graph, the set of robots is represented by the set of

pebbles, and the initial/goal positions of robots are the same as in the case of pebbles.

Then the solution of the instance of the pebble motion problem can be used as a solution

of the corresponding instance of the multi-robot path planning problem.

Proof. The proof of the statement is straightforward using Definition 1 and Definition 2.

The condition on sequence of moves required by Definition 2 needs to be checked for

 . Conditions (i) and (ii) of Definition 2 are trivially satisfied. Condition (iii) is also

satisfied since it holds that if

 then

 such that

 is true for every and . In other words, all the moves within

 are allowed.

There is a variety of modifications of the defined problems. A natural additional re-

quirement is to produce solutions with the shortest possible makespan (that is, the num-

bers or respectively are required to be as small as possible). Unfortunately, this re-

Pavel Surynek

8

quirement makes the problem of pebble motion on a graph intractable. It is shown in

[13] that the optimization variant of a special case of the problem of pebble motion on a

graph is -hard [6]. The restriction forming the special case adopted in [13] works

with a graph that can be embedded in plane as a square grid and there is a single unoccu-

pied vertex - this case is known as puzzle (also known as -puzzle). Hence,

the general optimization variant of the problem of pebble motion on a graph is also

 -hard.

A restriction of both types of problems on bi-connected graphs [30, 31] (for the pre-

cise definitions see Section 0) represents important subclass with respect to the existence

of a solution. Hence, it is a reasonable question what is the complexity of these classes of

problems. Since the grid graph forming the mentioned puzzle is bi-connected as

well, the immediate answer is that the optimization variant of the problem of pebble mo-

tion on a bi-connected graph with a single unoccupied vertex is again -hard.

However, it is not simply possible to make any similar statement about the complexity

of the optimization variant of multi-robot path planning based on the above facts. The

situation there is complicated by the inherent parallelism, which can reduce the makespan

of the solution significantly. Constructions used for the puzzle in [13] thus no

longer apply for this case.

Observe further that difficult cases of the problem of pebble motion on a graph have a

single unoccupied vertex. This fact may raise a question how the situation is changed

when there are more than one unoccupied vertices. The intuition prompts that more

unoccupied vertices may simplify the problem. Unfortunately, it is not the case. The

pebble motion problem on a general graph with the fixed number of unoccupied vertices

is still -hard since multiple copies of the puzzle from [13] can be used to add as

many unoccupied vertices as needed (the resulting graph may be disconnected).

Without the requirement on the optimality of the makespan of solutions the situation

is much easier; the problem of pebble motion on a graph is in the P class as it is shown in

[11, 32]. Due to Proposition 1, the problem of path planning for multiple robots is also in

the P class. In fact, this result concerns the decision version of the problem, which is the

question whether there exists a solution for a given instance. Fortunately, it has been

shown in [11] that a solution of the size of can be generated for any solvable

 . Hence, it provides a polynomial upper bound on size of the

content of the oracle to guess in non-deterministic model [8]. Thus, it is possible to con-

clude that decision version of optimization variant of pebble motion on a graph is an NP-

complete problem. By the decision version here, it is meant the yes/no question whether

there is a solution of of the makespan smaller than the given bound.

Thus, it seems that pebble motion on a graph and multi-robot path planning problems

have been already resolved except the case of the complexity of the optimization variant

of multi-robot path planning. However there is another issue worth studying. Construc-

tions proving the membership of the problem of pebble motion on a graph into the P class

used in [11, 32] generate solutions that are too long for practical use. As the makespan of

the solution is of great importance in practice, this fact makes these methods unsuitable

 Abstract Path Planning for Multiple Robots: A Theoretical Study

9

when dealing with some real life motion problem abstracted as the problem of pebble

motion on a graph or multi-robot path planning [19, 20, 21]. Hence, alternative solving

methods for the problem of multi-robot path planning are of interest [18, 19, 20, 21, 24].

3. The Intractability of the Optimization Variant of Multi-robot Path Planning

Several complexity results for the optimization variant of studied problems will be

shown in this section. The main result is that the optimization variant is intractable for

multi-robot path planning. Namely, it is NP-complete. The first sketch of the proof of

this result has been presented in [22]. A rigorous version of the proof is presented in the

following paragraphs. All the details that are missing in [22] are supplied here.

3.1. Reduction Techniques

A reduction of Boolean satisfiability [1, 6, 10] to the problem of multi-robot path plan-

ning will be used to prove the NP-completeness of the problem. The problem of Boolean

satisfiability exhibits some characteristics that need to be simulated in multi-robot path

planning. The first characteristic is so called Boolean consistency, which means that all

positive and all the negative occurrences of the same variable in the input formula have

the same Boolean value respectively. The second characteristic is the fact that all the

clauses of the Boolean formula in CNF [10] need to be satisfied in order to satisfy the

formula as the whole. This characteristic will be called clause satisfaction. Description of

techniques how to simulate Boolean consistency and clause satisfaction in multi-robot

path planning is provided in following paragraphs.

First, a technique how to prevent robots from entering a given vertex at a given set

of time steps will be shown. This is the crucial skill used later. The technique works with

an arbitrary instance of the problem of path planning for multiple robots. An augmenta-

tion of the given instance of the problem can be made so that robots are prevented from

entering a selected vertex at selected time steps in any optimal solution (the shortest poss-

ible makespan of the solution is required). The augmentation of the problem consists in

adding new vertices, edges, and robots into the instance. The selection of time steps at

that the vertex will not be allowed to entering by the original robots is modeled by an

appropriate setting of the initial and goal positions of the newly added robots. The whole

construction is formalized in the following proposition and its proof.

Lemma 1 (vertex locking augmentation). Assume the following preconditions:

(a) Let

 be an instance of multi-robot path planning and

let with
 be a so called locked vertex.

(b) Next, let where (natural numbers including) for

 and be a set of so called lock time steps.

Then there exists an instance of the problem of multi-robot path planning

 such that and it never happens that a robot enters

Pavel Surynek

10

the vertex at any time step within any optimal solution
 (entering the

vertex at the time step means that a robot is located in at time step).

The notation stands for a restriction of the multi-robot path planning problem on

the set of vertices . That is, if

 and , then

 where ,

 ,

 with

 , and

 with

 . In other words, each component of

the description of the instance is naturally restricted on the smaller set of vertices.

Proof. Let be the makespan of any optimal solution of the multi-robot path planning

instance (the number is however difficult to compute as it is shown later).

Figure 3. An illustration vertex locking augmentation in instance of multi-robot path planning

problem. Robots , , and are needed to be prevented from entering the vertex at time steps

1 and 3 in any optimal solution. The original instance with a set of robots is

shown in the upper part of the figure. The makespan of any optimal solution of is . The

augmented instance is in the lower path of the figure. New vertices , , , , , , and

 and new robots and were added. The makespan of any optimal solution of the augmented

problem is .

An augmentation of the graph will be shown first. The set of vertices is

extended with a set of new vertices where

v v

v v

 Abstract Path Planning for Multiple Robots: A Theoretical Study

11

 . The new vertices are connected around the locked vertex in the fol-

lowing way. A set of edges

 is added to the graph with the extended set of

vertices. Thus, the augmented graph is
 .

The idea behind the construction of the augmented graph is that new robots are in-

itially placed in new vertices for with or a new robot is placed in if

 . Then the newly added robots are forced to move straight ahead into the vertices

 through the vertex . Making robots to move in this way is imposed by the

condition on the optimality of the solution (otherwise, the robots cannot manage to reach

their destinations on time). The motion of new robots through the vertex makes an

obstruction in this vertex exactly at selected time steps given by .

The formal description of the above idea follows. The set of robots is extended with

set of new robots ; that is, . The initial and goal ar-

rangements of new robots are spread around the locked vertex in the newly added ver-

tices:
 if and

 if for ;

 if and

 if for . For the

original robots, the initial and the goal arrangements remain the same; that is,

 and

 .

At this point, it is necessary to show that it really never happens that a robot

enters the vertex at any time step within the optimal solution
 . Any optimal

solution of the multi-robot path planning instance has the makespan of . Moreo-

ver, any solution

 of the optimal makespan of the instance ,

must satisfy that
 ,

 ,
 ,…,

 ,

 ,

 ,

 ,…,

 for

 . This is ensured by the fact that the shortest path from
 to

 in

 has the length and it consists of vertices

 . Hence, no shorter solution in terms of makespan exists.

However, it remains to show that the original robots from manage to reach their

destinations within the makespan of . This claim flows from the equality

 , that is at least for time steps the vertex is not obstructed by any motion of

newly added robots supposed they are moving straight towards their destinations. In any

optimal solution of the original instance it is sufficient to enter at most times (notice

that no of the original robots need to occupy at the beginning). Thus, any optimal solu-

tion of the original instance can be simulated in the augmented instance while movements

of original robots are stopped at time steps when is obstructed. Hence, the makespan of

any optimal solution of is exactly .

It has been shown that the vertex is obstructed at every time step in any op-

timal solution. Hence no original robot can enter at any time step .

The situation from Lemma 1 is illustrated in Figure 3. Notice, that it is not difficult to

extend the construction from the proof of Lemma 1 on multiple vertices that will be

Pavel Surynek

12

locked at selected time steps (different sets of time steps for locking can be used for dif-

ferent vertices). Another useful property of the augmented problem is summarized in the

following corollary.

Corollary 1 (makespan preserving vertex locking). Assume preconditions (a) and (b)

together with the following preconditions:

(c) There exists a solution of the instance

 of the

makespan where .

(d) Let the locked vertex is entered by a robot within at time steps

 where for and and

it holds that .

Then there exists an instance

 such that and

it never happens that a robot enters the vertex at any time step within any

optimal solution
 ; moreover the makespan of any optimal solution of is

again .

Proof. The construction of is almost the same as in the proof of Lemma 1 only the

parameter is now set to . Then, the makespan of of any optimal solution of is

ensured by the construction.

The makespan is at least since the newly added robots must go along the newly

added path towards its end which cannot be carried out in any smaller makespan. On the

other hand, there exists a solution of the makespan of the augmented instance . The

vertex needs to be occupied only at time steps by the newly added robots

that do not interfere with time steps at which the vertex is entered within the solution

 by the original robots (this is due to). Altogether, the makespan of any

optimal solution of the augmented instance is .

Lemma 1 as well as Corollary 1 can be generalized for locking a given number of ver-

tices of a selected subset of vertices at a selected set of time steps . Neverthe-

less, only a special variant of this generalization, where just one vertex of the selected

subset of vertices is to be locked at selected time steps, will be actually used in further

reasoning. To be more precise, at least one vertex in is required not to be occupied by

a robot from the original set of robots at any time step . An extension analogical to

Corollary 1 that preserves makespan additionally assumes the existence of a solution of

the original instance where at least one vertex of is unoccupied at any time step .

These statements, which are merely a technical extension of Lemma 1 and Corollary 1,

are formalized as Lemma 2 and Corollary 2.

Lemma 2 (set locking augmentation). Let the following preconditions hold:

(aa)

 is an instance of multi-robot path planning and

 with
 be a so called set of locked vertices.

 Abstract Path Planning for Multiple Robots: A Theoretical Study

13

(bb) Next, let where (natural numbers including) for

 and be a set of lock time steps.

Then there exists an instance of the problem of multi-robot path planning

 such that and it never happens that all the vertices of the

set are occupied by robots from the set at any time step within any optimal

solution (that is, at least one vertex from is not occupied by a robot from at

any time step).

Proof. The instance is augmented in a way that a new robot is forced to visit exactly

one vertex of the set at each time step . The technique is almost the same as in

the case of Lemma 1. A path of new vertices is added around the set of locked vertices.

The path branches into all the vertices of at both connection points. Formally, the

augmentation is as follows.

Let be the makespan of any optimal solution of the multi-robot path planning in-

stance . The set of vertices is extended with a set of new vertices

 where . A set of edges

 is added to the graph with the extended set of vertices.

Thus, the augmented graph is
 .

Figure 4. An illustration of the vertex set locking augmentation in an instance of a multi-robot path

planning problem. At least one vertex of the set must not be occupied by any of

the original robots , , and at time steps 1 and 3 in any optimal solution. The original instance

 with the set of robots is taken from Figure 3. The augmentation is made by adding

a new path consisting of vertices , , , , , and around the set and by adding

new robots and . The makespan of any optimal solution of the augmented instance is

 .

W

W

Pavel Surynek

14

The set of robots is extended with set of new robots ; that is,

 . The initial and goal arrangements of new robots are spread around the set

of locked vertices in the newly added vertices as follows:
 if and

 for some if for ;

 if

 and
 for some if for . For the

original robots, the initial and the goal arrangements remain the same; that is,

 and

 .

The makespan of any optimal solution of is at least since the shortest path

from
 to

 in has the length of for any . On the other

hand, since , no vertex of is occupied by any new robot at least for

time steps supposed the new robots are moving straight towards their destinations. To-

gether with the fact that in any optimal solution of the original instance it is sufficient to

occupy for at most time steps, the makespan of any optimal solution of is exact-

ly .

The construction of the augmentation from the proof of the above lemma is shown in

Figure 4. Observe, that the construction can be easily extended for locking multiple sets

of locked vertices while for each locked set a different lock time steps may be used.

Corollary 2 (makespan preserving set locking). Assume that preconditions (aa) and (bb)

hold; in addition assume that the following preconditions hold as well:

(cc) There exists a solution of the instance

 of the

ma makespan where .

(dd) There is at least one unoccupied vertex in the selected set at all the time

steps within except time steps with for

 and and it holds that .

Then there exists an instance

 such that and

it never happens that all the vertices of are occupied by the original robots from the

set at any time step within any optimal solution
 ; moreover the makespan

of any optimal solution of is again .

Proof. The construction of is almost the same as in the proof of Corollary 1. The dif-

ference is that the parameter is now set to . The construction then ensures that the

makespan any optimal solution of is .

The makespan of any optimal solution is at least since the newly added robots must

go to the end of the newly added path. On the other hand, all the vertices of the set

needs to be occupied by the original robots within the solution only at time steps

 that does not interfere with time steps (since) at

which the newly added robots need to occupy at least one vertex of (supposed they are

going directly to their destinations along the newly added path). Hence, there exists a

 Abstract Path Planning for Multiple Robots: A Theoretical Study

15

solution of the makespan of the augmented instance . Altogether, any optimal solu-

tion of has the makespan .

Observe that original robots are allowed to enter the newly added vertices in all the

above augmentations. This may help the original robots to reach their destinations faster

(the newly added vertices may be used as additional “parking place” for robots). If this

behavior needs to be ruled out, a slight adaptation of the technique must be used.

Some additional notations are needed to express the requirement on not using the

newly added vertices by the original robots formally. Let

 be

an optimal solution of the multi-robot path planning instance over the graph

 and let . Then the restriction of the solution
 on the set of vertices

 is denoted as

 , where

 with

 for . Next, let

 is

an optimal solution of , then

 , and let

 is a solution (not necessarily optimal) of . An augmentation

of the instance where added vertices are never used can be expresses by the condition

 .

Proposition 2 (two-stage vertex locking). Assume preconditions (a) and (b). Then there

exists an instance of the problem of multi-robot path planning

 such that where it never happens that a

robot enters the vertex at any time step within any optimal solution

 and (that is, original robots cannot use any added vertex

in any optimal solution).

Notice, that Proposition 2 is almost the same as Lemma 1 except the additionally re-

quired condition .

Proof. The basic construction from the proof of Lemma 1 will be adopted; then some

further augmentations will be made by successive applications of Corollary 1 to enforce

the condition .

Let denotes be the makespan of optimal solutions of the multi-robot path planning

instance . In the first stage, the graph is extended exactly as in the previous case.

That is, the set of vertices where

and the set of edges

 are added to the graph; that is

 . The set of robots is extended with ; that is,

 and the initial and goal arrangements of new robots are posed again in the

same way:
 if and

 if for ;

 if and

 if for . As it

Pavel Surynek

16

has been shown, this construction suffices for satisfying almost all the requirements ex-

cept .

Figure 5. An illustration of two-stage vertex locking in an instance of multi-robot path planning

problem. Robots , , and are needed to be prevented from entering a vertex at time steps 1

and 3. Additionally no vertex added by the augmentation can be entered by the original robots ,

 , and . These requirements are ensured by two stage locking. First, is locked at time steps 1

and 3 using a path of new vertices , , , , , and (this stage corresponds to Figure

3). Then and are locked at time steps and respectively by the

same technique. The makespan of any optimal solution of is 5 (the same as of).

Now, it is necessary to prevent original robots from the set from entering any of the

added vertices . Observe that it is sufficient to lock vertices and to fulfill this

requirement since the newly added vertices forms a path around and this is the only

vertex through which the path is connected to the original graph (neighboring vertices of

 are and). Vertices and need to be locked for all the time steps except time

v

v

 Abstract Path Planning for Multiple Robots: A Theoretical Study

17

steps at which robots from the set go through them in an optimal solution – this will

be the second stage locking. More precisely, the vertex needs to be locked for time

steps from the set (where

) and the vertex needs to be locked for time steps from

the set . Notice, that as

well as . Moreover, the construction of sets and ensures that

vertices and respectively will be locked for time steps at which they are not entered

within some solution (which is known to be an optimal solution). Hence, Corollary 1

applies for , the locked vertex , and the set of lock time steps ; that is, optimal

makespan is preserved. In other words, the just made vertex locking is synchronized

with the vertex locking from the first stage. Then Corollary 1 is applied once more for the

resulting instance, the locked vertex , and the set of lock time steps . Let

 denotes the final instance, then .

The construction from Proposition 2 is illustrated in Figure 5. It is a further augmenta-

tion of the instance from Figure 3 in fact.

The important property is that the size of all the augmented instances of the problem

is where is the optimal makespan (that is, asymptotically

as many as) vertices and robots are added). Consequently, if an augmented

instance is needed to be kept small (with respect to), the numbers and

must be small as well.

Corollary 3 (makespan preserving two-stage vertex locking). Assume preconditions (a),

(b), (c) and (dd. Then there exists an instance

 such

that and it never happens that a robot enters the locked vertex at any

time step within any optimal solution
 and (that is,

original robots cannot use any added vertex in any optimal solution); moreover the ma-

kespan of any optimal solution of is again .

Proof. The construction from the proof of Proposition 2 can be adopted with a minor

change. In the first stage of the construction of where the construction from the proof

of Lemma 1 has been applied, Corollary 1 is applied instead. This ensures that the inter-

mediate instance after the first stage locking preserves the makespan of . The rest of the

proof can be applied without any change.

Again it is not difficult to generalize the construction for locking a subset of certain

size of a selected set of vertices at given time steps where the original robots can move

only in the original vertices. These merely technical extensions of Proposition 2 and Co-

rollary 3 are listed as Proposition 3 and Corollary 4.

Pavel Surynek

18

Proposition 3 (two-stage set locking). Assume that preconditions (aa) and (bb) hold.

Then there exists an instance of the problem of multi-robot path planning

 such that where it never happens that all the vertices

of are occupied by the original robots from the set at any time step within any

optimal solution
 and (that is, original robots cannot use

any added vertex in any optimal solution).

Proof. The proof will partially adopt the basic idea of the construction from the proof of

Proposition 2. The vertex set locking will be done in two stages by a successive applica-

tions of Corollary 1 to enforce the condition .

Let denotes be the makespan of optimal solutions of the multi-robot path planning

instance . The first stage of the augmentation will be done as in the case of of Proposi-

tion 2. A set of vertices where

and a set of edges

 are added to the graph; that is

 . The set of robots is extended with a set of new robots

 ; that is, and the initial and goal arrangements of new

robots are:
 if and

 for some if for

 ;

 if and
 for some if

 for .

To prevent original robots from the set from entering any of the added vertices

second stage vertex locking must be done. It is sufficient to lock vertices and since

these two vertices are the only connection points of the original graph with the newly

added parts. Vertices and need to be locked for all the time steps except time steps

at which robots from the set go through them in an optimal solution. More precisely,

the vertex needs to be locked for time steps from the set

 and the vertex needs to be locked for time steps from the set

 . Since (as well as

) and vertex is to be locked for time steps at which it is not entered

within some (known to be optimal) solution, Corollary 1 applies for , the locked vertex

 , and the set of lock time steps . That is, optimal makespan is preserved. In other

words, the just made vertex locking is synchronized with the vertex locking from the

first stage. Then Corollary 1 is applied once more on the resulting instance, the locked

vertex , and the set of lock time steps . Let

denotes the final instance, then .

The construction of the two-stage vertex locking from the above proof is shown in

Figure 6. As in the case of locking a single vertex, the size of all the augmented instances

of the problem is where is the optimal makespan of the

original instance.

 Abstract Path Planning for Multiple Robots: A Theoretical Study

19

Figure 6. An illustration of two-stage vertex set locking in an instance of multi-robot path planning

problem. At least one vertex of the set must not be occupied by any of the original

robots , , and at time steps 1 and 3. Additionally, no vertex added by the augmentation can be

entered by any original of the robots. These requirements are ensured by two stage set locking.

First, the set is locked at time steps 1 and 3 by adding a path of new vertices , , , ,
 , and (this stage corresponds to Figure 4). Then and are locked at time steps
 and respectively by vertex locking technique. The makespan of any optim-

al solution of is 5 (the same as of from Figure 4).

Corollary 4 (makespan preserving two-stage set locking). Assume that preconditions

(aa), (bb), (cc), and (dd) hold. Then there exists an instance

 such that and it never happens that all

the vertices of are occupied by the original robots from the set at any time step

within any optimal solution
 ; moreover the makespan of any optimal solution of

W

W

Pavel Surynek

20

 is again and and (that is, original robots cannot use any added

vertex in any optimal solution).

Proof. The construction of from the proof of Proposition 3 can be adopted with a

minor change. Instead of using the construction from the proof of Lemma 1 in the first

stage, Corollary 1 is applied instead. This ensures that the intermediate instance after the

first stage locking preserves the makespan of . The rest of the proof can be applied with-

out any change.

Consider a group of robots that has to go between two parts of the graph that are con-

nected by disjoint branches. The aim is to force all the robots of the group to go through

just one of these connecting branches. That is, the behavior when the part of the group of

robots goes through one branch and the rest of the group goes through the other branch is

unwanted. This behavior will be later used to simulate Boolean consistency of a valua-

tion of some Boolean literals (positive and negative literals of the same Boolean variable

should have complementary values). The required behavior of robots will be enforced

by a so called conjugation technique which will be described below.

Let be a set of robots that are to be conjugated. Formally the con-

jugation means that there is an instance of the problem of path planning for multiple

robots

 , where ; , , , are

pair-wise disjoint, , ,
 (image of the set by

 is

defined naturally:

),
 , and there exists a

time step such that within any optimal solution

 either

 or

 . To rule out

trivial cases of a requirement that

 and

 should be taken into account. The task is now to build such an instance of the multi-

robot path planning problem.

The main idea of the construction is to order the robots from the set into the queue

that starts with an additional robot called a leading robot. There is a branching in the

graph and two leading robots prepared. The destination for the leading robots is tempora-

rily closed by the construction from Corollary 1. This prevents the leading robots from

escaping before fulfilling their task. The destination for the robots from the set is ac-

cessible from both branches symmetrically. The leading robots have no other choice than

to lead the group of robots to their destination. However, finally the leading robot has to

go out of the way. If the group of robots from the set is split between both branches,

then the leading robots inevitably block each other and then there is no chance to reach

destinations in time. Hence, the robot must go into one of the branches together (they

must conjugate). Below is the formal description of the construction.

The graph consists of the following sets of vertices:

(called initial vertices),

 Abstract Path Planning for Multiple Robots: A Theoretical Study

21

(called left vertices),

(called right vertices),

(called destination vertices), with

 (called left part of destination vertices)

 (called right part of destination vertices)

(called gate part of destination vertices) and

(called array part of destination vertices),

where is a parameter determining the length of a solution; it is required that .

Notice that
 is in fact an array of rows of vertices within . In total, the set of

vertices is .

The edges of the graph are as follows:

(edges for making a connection between initial vertices and left/right vertices),

(edges for connecting the remaining left/right vertices),

(edges for connecting left/right vertices to the gate part of destination vertices),

(edges for connecting the gate part to the array part of destination vertices),

(edges for connecting rows of the array part of destination vertices),

(edges for connecting the last row of the array part in the reversed order);

in total, the set of edges of the graph is

 .

The set of robots is extended with two leading robots and (the left and the right

leading robot); that is, . The initial arrangement of robots is as follows:

 for ;

 and

 . That is, the original

robots are placed into the initial vertices while the leading robots are placed in a way that

original robots can join either of them. The goal arrangement is:

 for

 ;

 and

 ; that is, the original robots should finally

reach the last of the array part of the destination vertices and the leading robots should go

out of the way.

The required conjugation of robots into the left and right vertices at a certain time step

can be satisfied if the robots move in a way that first all the robots from the

Pavel Surynek

22

set of vertices

 move into the set of vertices

 if the left branch is

chosen (or into the set of vertices

 if the right branch is chosen). Without

loss of generality, suppose the left branch has been chosen. Then the robots

together with the leading robot moves into vertices

 . And final-

ly, the robots move towards the last row of the array part of the destination

vertices where their order is eventually reversed (if the right branch has been chosen no

reversing is necessary) and the leading robots return to their goal positions in
 and

 . The described behavior of robots within the optimal solution is ensured by locking

proper vertices at proper time steps. That is, the multi-robot path planning instance is

further extended with additional robots and vertices used for locking vertices as it is

shown in the proof of Corollary 1. However, for sake of simplicity the description below

will be restricted on the original components of the problem

Thus, the optimal solution for the left branch

 should

satisfy that

 ,

 ,

 ,…,

 ,

 ,

 ,

 ,

 ,…,

 ,

 ,

 ,

 ,…,

 ,and

 for ;

 ,

 ,

 ,

 ,…,

 ,

 ,

(the left leading robot is going in front of the queue formed by the sequence of robots

), there is no special requirement on
 ,

 , …,
 ,

indeed

 . Similarly, there is no special requirement on

 for any . The optimal solution for the right branch

 has almost the same form. The only difference is that the final re-

versal of the robots to fit the last row of the array part of destination vertices

is not performed. Observe, that the time step at which conjugation occurs is .

Now, the task is to show that the described behavior is really feasible and no other be-

havior can occur within any optimal solution. In other words, any optimal solution of the

problem has the form of the solution for the left branch or the solution for the right

branch.

The first row of array part of destination vertices, that is, vertices

 , is

locked (closed for entering) for all the time steps except the time step . At this time

step all the robots are entering the array part of destination vertices. Then

they continue towards their goal positions and hence vertices

 can be

locked again for the remaining time steps. The vertices
 and

 are locked for all the

time steps except the time step . Similarly, the initial vertices are locked for all

the time steps except the time step .

At the time of opening the first row of the array part of destination vertices (at the

time step), all the robots must reside in the vertices

(eventually in the reversed order). Otherwise, they have no chance to reach their goal

positions at all. Then, the fastest way to reach their goal positions starting from vertices

 is exact following shortest paths to the last row of the array part of destina-

tion vertices (all these paths are of the same length). Since which is enough

 Abstract Path Planning for Multiple Robots: A Theoretical Study

23

time steps for the leading robots to reach their destination positions; the motion of robots

 within the array part of destination vertices represents the bottleneck.

Figure 7. A conjugation instance of the multi-robot path planning problem. A conjugation instance

 shown in figure is constructed with respect to a set of robots and a parameter

 . The robots are restricted in their movements using vertex locking - namely, the initial ver-

tices
 ,

 ,
 , and

 can be entered only at time step 0; the vertices
 ,

 ,
 , and

 can

be entered only at time step 8; and the vertices
 and

 can be entered only at time step 14.

These conditions enforce that the robots , , , and located either in vertices
 ,

 ,
 , and

 or in vertices

 ,
 ,

 , and
 at time step 1 in any optimal solution of

 .

It remains to check the behavior of robots before the time step . Since the initial

vertices are allowed to be occupied only at time step , the robots must enter

the left or the right vertices immediately at the next time step. Between time steps and

 it is not possible to swap robots in the currently accessible part of the graph since

allowed at time step 0

allowed at time step 8

allowed at time step 14

…

…

Pavel Surynek

24

it consists of a single path. Hence, if the robots split between the left and the

right vertices, then they cannot be arranged into vertices

 in the required

order, because they are obstructed by the leading robots and .

The just described instance will be called a conjugation instance of multi-robot path

planning problem. Notice, that the instance is parameterized by a set of robots and an

integer parameter . An instance of the problem corresponding to the given

parameters will be denoted as
 . Notice further, that the makespan of any optimal solu-

tion of
 is .

It is easy to see that the size of the conjugation instance is which is

 . An instance of the conjugation instance of multi-robot path planning problem is

shown in Figure 7.

All the ingredients are now prepared to prove that a decision version of the optimiza-

tion variant of multi-robot path planning is -complete [6]. The membership into

will be checked first. Then a polynomial time reduction of a Boolean satisfiability in-

stance (SAT) [1] to the instance of the decision version of the optimization variant of

multi-robot path planning will be constructed.

Definition 3 (decision version). A decision version of the optimization variant of multi-

robot path planning is a task to decide for a given instance of multi-robot path planning

and a number whether there exists a solution of the makespan no longer

than . A notation will be used for the decision instance. Next, let denotes

the language of positive instances of this problem. □

It is not that easy to see that , since no upper bound on the size of the

solution of has been established so far. Hence, the standard technique of

“guessing and checking” cannot be used immediately. Notice that, decision variants of

several related sliding piece problems [9] such as Sokoban game [3] and Rush-hour

puzzle [5] are proven to be -complete [6, 7] but it is not known whether they are

in . The reason it that the polynomial upper bound on the size of the solution has not

been found so far. Fortunately, this is not the case of . It is possible to establish

the polynomial upper bound on the size of the solution of using results shown

in [11].

Lemma 3. .

Proof. It has been shown in [11] that there exists a solution

 for

any solvable instance of the problem of pebble motion on a graph

 such that (is regarded as a function of here). Since the

solution of an instance of pebble motion on a graph can be used as a solution of the cor-

responding multi-robot path planning instance (Proposition 1) it implies that there exists a

solution

 for any solvable instance of the problem of multi-robot

path planning

 such that (is regarded as a func-

 Abstract Path Planning for Multiple Robots: A Theoretical Study

25

tion of as well). An instance of can be solved on a Turing machine with

oracle [8] in polynomial time as follows. A solution of the size of is generated

first by the oracle. Then, the generated solution is checked whether its makespan is at

most and whether it satisfies Definition 2. This check can be carried out in polynomial

time with respect to the size of .

As it is usual, Boolean formulas in conjunctive normal form (CNF) [10] will be used

in further reasoning. Let denotes the language of satisfiable instances of Boolean

formulas in CNF. It is well known that is -complete. However, a slight technical

adaptation of Boolean satisfiability is necessary to carry out the required reduction. A

restriction on formulas in CNF where positive and negative literals of the same variable

have the same number of occurrences in the formula will be made. Let the language of

satisfiable formulas that comply with this restriction will be denoted as .

Lemma 4. is -complete.

Proof. With respect to membership into , the restriction makes no change; thus

 . Any instance of can be reduced to an instance of by adding

clauses to balance the number of positive and negative literals of the same variable. The

added clauses should preserve equisatisfiability of the resulting formula with the original

one. Let is a formula in CNF and let be a variable with unbalanced positive and

negative occurrences. Let denotes a set of positive occurrences of in and

similarly let denotes a set of negative occurrences of in . Without loss of

generality let . Then a clause

where is a new variable is added to . Now as well as newly added have the same

number of positive and negative occurrences. Clearly, the resulting formula is equisatisfi-

able with since the newly added clause is always satisfied. The described process

should be done for all the unbalanced variables. The length of the resulting formula is at

most twice of , thus the reduction can be done in polynomial time.

Theorem 1. is -complete.

Proof. It remains to prove that is -hard. A polynomial time reduction of

 to will be used. Let be a formula in CNF, that is,

 ,

where
 is th literal of th clause; there are clauses, where th clause has literals.

Assume further that that each variable has the same number of positive and negative

occurrences in . Let denotes the set of Boolean variables of . An instance

 of the decision version of the optimization variant of mul-

ti-robot path planning for will be constructed in the following way. Every occurrence

of a literal in will be associated with a vertex. Thus, a set of vertices

 is constructed (

 is a symbol while
 is a variable standing for a literal); a

Pavel Surynek

26

vertex
 corresponds to an occurrence of a literal

 in th clause as th disjunct. A conju-

gation instance of multi-robot path planning will be associated with each Boolean varia-

ble of while left and right vertices of the conjugation graph will be one-to-one matched

to vertices from that correspond to negative and positive occurrences of the variable

respectively. This is possible since there is the same number of positive and negative

occurrences of each variable in (conjugation graph has also the same number of left

and right vertices).

The idea is to prepare a group of robots of the size for each

Boolean variable . This group of robots will be placed in the initial vertices

of the conjugation subgraph corresponding to . The construction of the conjugation

subgraph will enforce that all the robots must go either into the vertices corresponding to

positive literals or into the vertices corresponding to negative literals. If the movement of

robots in interpreted in the way that literals corresponding to vertices of visited at

time step 1 will be assigned the same Boolean value, then the conjugation technique as-

sures Boolean consistency of the assignment. However, this is not enough to establish

correspondence between an assignment satisfying and a solution of . It is further-

more necessary to make robots to simulate clause satisfaction by any solution which

makespan is at most . This can be done by enforcing robots either to visit at least one

literal/vertex of each clause of (in the case when visited literals/vertices are assigned

the value) or leave at least one literal/vertex of each clause of unoccupied at

time step 1 (in the case when visited literals/vertices are assigned the value).

Since the second option can be easily implemented through the vertex set locking me-

chanism (Proposition 3, Corollary 4), the value will be used for literals corres-

ponding to vertices visited at time step 1.

Nevertheless, some technical details such as exact specification of need to be dis-

cussed. The equality between makespans of optimal solutions over the individual conju-

gation instances needs to be established. Recall that a conjugation instance
 is characte-

rized by two parameters (the set conjugated robots) and (parameter affecting the

makespan of the optimal solution of the instance). Let

 . For a given , the conjugation instance

 will have the

parameters

 and

 . Hence, the makespan of any optimal solution of the conjugation instance

 is .

Matching of left and right vertices of

 to vertices from is as follows:

 and

 . Now, the crucial observation has to be

made. It holds that is satisfiable if and only if there exists a solution of the currently

constructed instance of makespan of such that at time step 1 at least one vertex

from the set of vertices corresponding to each clause remains unoccupied.

 Abstract Path Planning for Multiple Robots: A Theoretical Study

27

Figure 8. A polynomial time reduction of a Boolean formula to a decision instance of multi-robot

path planning. A formula is transformed to a formula in which each variable has the same

number of positive and negative occurrences. Then an instance of the decision version of the prob-

lem of multi-robot path planning is constructed. The conjugation technique is used to simulate

Boolean consistency and the set locking technique is used to simulate clause satisfaction (the

reduction of one variable using the conjugation technique and the reduction of one clause using the

set locking technique are shown). There exists a solution of of the makespan if and only if

the formula is satisfiable.

1 2 3

1 2 3

1 2 3

Pavel Surynek

28

Let be a satisfying valuation of . If ,

then robots

 are placed in

 at time step 1; if

 then they are placed in

 at time step 1. The placement

of robots at time steps other than 1 is straightforward. Since is the satisfying assign-

ment, at least one vertex from the set of vertices corresponding to each clause remains

unoccupied. On the other hand, Corollary 4 can be used to augment the instance to en-

force at least one vertex from the set of vertices that corresponds to literals of a clause is

not occupied by robots from the set within any optimal solution while

the makespan of remains preserved. That is, Corollary 4 is invoked with

 that corresponds to satisfying the th clause of . Let denotes the result-

ing instance. Any solution of the makespan of of satisfies conditions at time

step 1 and hence it induces a satisfying assignment of .

The construction of requires polynomial time in size of ; the size of is also po-

lynomial (the size of each conjugation subgraph is polynomial in size of and the num-

ber of conjugation subgraphs is bounded by the size of). Now, if has a solution of

the makespan then it is ensured that conjugation and clause satisfaction has

been successfully simulated, thus a satisfying valuation of can be easily derived from

this solution. Hence, if and only if . Together with Lemma 3

the claim that is -complete has been obtained.

3.2. The Case with Bi-connected Graphs

The interesting open question is the complexity of the optimization variant of multi-robot

path planning when only bi-connected graphs [30, 31] are took into account. As this is

an important restricted case of the problem with respect to the existence of a solution, it is

useful to know its complexity.

With some exceptions it can be briefly stated the following. An instance of the prob-

lem (pebble motion or multi-robot) over a bi-connected graph with single unoccupied

vertex is always solvable if the goal arrangement of pebbles/robots differs from the ini-

tial one as an even permutation (it is supposed that an unoccupied vertex has the same

position in the initial and the goal arrangement) [11, 32]. If the goal arrangement differs

from the initial one as an odd permutation, then there must be an odd cycle in the input

graph to be able to construct a solution, otherwise there is no solution of the instance

[11, 32]. The exceptional cases are formed by special bi-connected graphs: the first one is

a simple cycle and the second one is a bi-connected graph consisting of one handle con-

nected to a cycle. If there are at least two unoccupied vertices in the input bi-connected

graph other than a simple cycle, then the instance is always solvable [18, 21].

Unfortunately, the decision version of the optimization variant of the problem on bi-

connected graphs remains -complete since all the augmentations of instances used in

the proof of the -completeness can be further augmented to preserve bi-connectivity.

 Abstract Path Planning for Multiple Robots: A Theoretical Study

29

Definition 4 (connected graph). An undi-

rected graph is connected if

 for any two vertices such

that there is an undirected path

consisting of edges from connecting

and . □

Definition 5 (bi-connected graph, non-

trivial). An undirected graph

is bi-connected if and the graph

 , where and

 ,

is connected for every . A bi-

connected graph not isomorphic to a cycle

will be called non-trivial bi-connected

graph. □

Observe that, if a graph is bi-

connected, then every two distinct vertices

are connected by at least two vertex dis-

joint paths (equivalently, there is a cycle

containing both vertices; only internal

vertices of paths are considered when speaking about vertex disjoint paths - vertex dis-

joint paths can intersect at their start points and endpoints). If a graph is not bi-connected

then it is either disconnected or there exists a vertex which removal partitions the graph

into at least two connected components – this vertex is called an articulation point. Sev-

eral examples of bi-connected graphs are shown in Figure 9.

Definition 6 (decision version - bi-connected). The optimization variant of multi-robot

path planning can be naturally restricted on bi-connected graphs. A language of positive

instances of the decision version of the optimization variant of multi-robot path planning

on bi-connected graphs will be denoted as
 . □

Lemma 5.
 .

Sketch of proof. The proof of Lemma 3 applies here as well since additional requirement

of bi-connectivity of the graph has does not affect the size of the input instance. Thus,

due to [11] there exists a polynomial sized solution with respect to the size of the input of

any solvable instance restricted on bi-connected graphs. The makespan of such a solution

can be checked against a given bound in polynomial time as well.

Figure 9. Examples of bi-connected graphs.

Three bi-connected graphs , , and .

and are non-trivial bi-connected graphs. is

a trivial one.

Pavel Surynek

30

Theorem 2.
 is -complete.

Proof. It remains to show that
 is -hard. Fortunately, this can be carried out

by reducing to
 as it was done in above sections with additional augmen-

tations to preserve bi-connectivity.

The vertex locking augmentation (Lemma 1) can be modified to preserve bi-

connectivity. That is, if the graph of a multi-robot path planning instance

 is bi-connected, then the graph of the augmented instance

 , where a selected vertex is locked for selected time steps, can

be made bi-connected as well. The following text refers to the symbols defined in the

proof of Lemma 1.

Observe that vertices added within the vertex locking augmentation are connected by

a single path only. Thus, the second vertex disjoint path should be added while the vertex

locking mechanism must be preserved. This can be done by connecting vertices and

 that were added in the vertex locking augmentation with a new path. This ensures that

all the vertices in the graph are connected by at least two disjoint paths. The removal of

any of the added vertices does not disconnect the graph. However, the removal of can

disconnect the newly added cycle around from the rest of the graph. Thus, the cycle

needs to be connected to the rest of the graph by some additional edge to preserve bi-

connectivity.

The new path forming the cycle must be constructed long enough to make robots add-

ed in the augmentation (that is, robots) to move in the same way as

in the original augmentation in any optimal solution. Moreover, the connection edge for

preserving bi-connectivity must be far enough so that newly added robots cannot use it.

The added robots consume time steps before they reach their destina-

tions (they go along the shortest possible path). Thus, it must take more than time

steps to get into destinations if the new alternative path is chosen. Moreover, it must take

more than time steps before the bi-connectivity preserving edge can be reached.

Let
 be new vertices making the new

alternative path. The new vertices are connected into the augmented graph using the fol-

lowing edges: , , …,
 , , , …,

 , , and , where such that . The edge

 is used to preserve bi-connectivity.

Now observe that the robot must travel at least along if it chooses

the alternative path. This however cannot happen in an optimal solution since its makes-

pan should be . Similarly, the robot must travel at least along edges if

it tries to used the bi-connectivity preserving edge. Again, this cannot happen in an op-

timal solution since its makespan should be It holds, that is

 since ; thus the size of the

augmented instance is again as in the original construction.

The second construction where bi-connectivity is needed to be preserved is the con-

jugation instance. The only vertices that are not connected by two vertex disjoint paths

 Abstract Path Planning for Multiple Robots: A Theoretical Study

31

within the conjugation instance are:
 ,

 ,
 , and

 . This can be treated by adding

an edge

 which makes the graph of the conjugation instance bi-connected.

Since vertices
 ,

 ,
 , and

 are accessible at last two time steps only within any

optimal solution, the newly added edge cannot affect the way how robots must move

within the optimal solution. The size of the modified conjugation instance is still

 .

Now, it is possible to construct a decision version of the optimization variant of multi-

robot path planning problem instance with the bi-connected graph for a formula

in CNF where each variable has the same number of positive and negative occurrences

such that if and only if
 . The construction from the proof of

Theorem 1 can be adopted with the modification that all the vertex locking augmentations

and conjugation instances will preserve bi-connectivity as it is described above. The size

of resulting instance is polynomial in the size of . Together with Lemma 5 the

claim that
 is -complete has been obtained.

3.3. Summary on Complexity Results

It has been shown in the above section or in existent works that all the interesting cases of

the optimization variants of multi-robot path planning as well as pebble motion on a

graph are -complete. Thus, unless it holds that which is considered to be

unlikely, optimization variants of these problems can be regarded as intractable. On the

other hand, if the requirement on the optimal makespan is relaxed, all the studied cases

fall into the class.

To provide a complete figure about studied cases of problems of motion on a graph at

one place, all the complexity results from above sections and from existent works are

summarized in Table 1.

Table 1. A summary of complexity results of problems of motion on a graph. Complexity results of

several interesting cases of problems of pebble motion on a graph and multi-robot path planning are

summarized in the table. References to detailed proofs from the above sections or references to

existent works that discuss the listed results are provided.

Pebble motion on a graph Standard variant / Reference Optimization variant / Reference

Pebble motion
on a graph

Arbitrary
graph

 class
[11, 32] +
2.2

 -complete [13] + 2.2

Bi-connected
graph

 class
[11, 32] +
2.2

 -complete [13]

Multi-robot
path planning

Arbitrary
graph

 class
[11, 32] +
2.2

 -complete 3

Bi-connected
graph

 class [11, 18,32] -complete 3

4. Related Works and Conclusion

An abstraction of the problem of multi-robot path planning is introduced in this paper.

The relation to well known problems of pebble motion on a graph is studied. The new

Pavel Surynek

32

result shown in this paper is that the decision version of the optimization variant of the

problem of multi-robot path planning is NP-complete. The parameter with respect to

which the optimization is made is the makespan. The same complexity result has been

obtained for the class of instances restricted on bi-connected graphs only.

The reduction of Boolean satisfiability to multi-robot path planning has been used for

the proof of NP-completeness. Numerous techniques how to simulate Boolean consisten-

cy and clause satisfaction within multi-robot path planning were developed in this work.

These techniques are supposedly generic enough to be used in different context and hence

considered to be interesting itself.

The fact that optimization variant of multi-robot path planning is NP-complete is quite

negative result. Fortunately, if the requirement on the shortest possible makespan of solu-

tions relaxed, the problem becomes tractable. Namely, it belongs to the P class. Howev-

er, the situation is not that straightforward. Although algorithms developed for solving

pebble motion problems [11, 32] can be used for solving multi-robot path planning as

well, this practice is disadvantageous. Solutions generated by these algorithms have

promising theoretical makespan of . However, constants in the asymptotic esti-

mation are too high. The experimental evaluation made within different work has shown

that the makespan of these solutions measured empirically is relatively high as well [24].

Hence, these algorithms are unsuitable for practical use. This issue has been addressed in

details in [19, 20, 21, 24] where alternative solving algorithm for multi-robot path plan-

ning problem producing better solutions (so called BIBOX algorithms) and solution im-

proving techniques were proposed.

The important related work is represented by articles [26, 27, 28, 29]. Authors study

so called multi-agent path planning which is similar to the notion of multi-robot path

planning with some further relaxations (for example a swap of agents along an edge

seems to be allowed). The number of moves is the optimized parameter. Authors define

the tractable class of this optimization problem where graphs are restricted on grids and

there is a relative abundance of unoccupied vertices. The theoretical relation of multi-

agent path planning and multi-robot path planning is an interesting question for future

work particularly in the light of presented complexity results.

In [17] it is claimed that it is possible to solve a similar problem to multi-robot path

planning – so called cooperative path-planning problems - optimally. However, it is little

bit exaggerated claim since author actually shown that instances with up to only mov-

able units in the environment with lot of free space can be solved by the search with sev-

eral heuristic improvements in reasonable runtime.

An interesting question for future work is whether it is tractable to find a solution of

multi-robot path planning instance which is constant time worse that the optimum. Cur-

rently, it is an open question whether such approximation solving algorithm can exist.

The answer to this question will consequently provide the estimation how far from the

optimum are solutions generated by algorithms for the standard case of the problem (not

the optimal one) referred above. Consequently, the estimation what is the makespan of

the optimal solution of large instances would be also available.

 Abstract Path Planning for Multiple Robots: A Theoretical Study

33

Acknowledgments

This work is supported by The Czech Science Foundation (Grantová agentura České

republiky - GAČR) under the contract number 201/09/P318 and by The Ministry of Edu-

cation, Youth and Sports, Czech Republic (Ministerstvo školství, mládeže a tělovýchovy

ČR – MŠMT ČR) under the contract number MSM 0021620838.

References

1. S. A. Cook. The Complexity of Theorem Proving Procedures. Proceedings of the 3rd Annual

ACM Symposium on Theory of Computing (STOC 1971), pp. 151-158, ACM Press, 1971.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(Second edition), MIT Press and McGraw-Hill, 2001, ISBN 0-262-03293-7.

3. J. C. Culberson. Sokoban is PSPACE-complete. Technical Report TR 97-02, Department of

Computing Science, University of Alberta, 1997, http://webdocs.cs.ualberta.ca/~joe/Preprints/

Sokoban/index.html [April 2010].

4. J. D. Dixon and B. Mortimer. Permutation Groups. in Graduate Texts in Mathematics, Vo-

lume 163, Springer, 1996, ISBN 978-0-387-94599-6.

5. G. W. Flake, E. B. Baum. Rush Hour is PSPACE-complete, or "Why you should generously

tip parking lot attendants". Theoretical Computer Science, Volume 270(1-2), pp. 895-911 El-

sevier, 2002.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1979, ISBN: 978-0716710455.

7. R. A. Hearn and E. D. Demaine. PSPACE-completeness of sliding-block puzzles and other

problems through the nondeterministic constraint logic model of computation. Theoretical

Computer Science, Volume 343(1-2), pp. 72-96, Elsevier, 2005.

8. J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, 2000, ISBN: 978-0201441246.

9. E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986, ISBN: 978-0198532040.

10. P. Jackson, D. Sheridan. Clause Form Conversions for Boolean Circuits. Theory and Appli-

cations of Satisfiability Testing, 7th International Conference (SAT 2004), Revised Selected

Papers, pp. 183–198, Lecture Notes in Computer Science 3542, Springer 2005.

11. D. Kornhauser, G. L. Miller, and P. G. Spirakis. Coordinating Pebble Motion on Graphs,

the Diameter of Permutation Groups, and Applications. Proceedings of the 25th Annual Sym-

posium on Foundations of Computer Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

12. C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion Planning on a

Graph. Proceedings of the 35th Annual Symposium on Foundations of Computer Science

(FOCS 1994), pp. 511-520, IEEE Press, 1994.

13. D. Ratner and M. K. Warmuth. Finding a Shortest Solution for the N×N Extension of the

15-PUZZLE Is Intractable. Proceedings of the 5th National Conference on Artificial Intelli-

gence (AAAI 1986), pp. 168-172, Morgan Kaufmann Publishers, 1986.

14. M. R. K. Ryan. Graph Decomposition for Efficient Multi-Robot Path Planning. Proceedings

of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2003-

2008, IJCAI Conference, 2007.

15. M. R. K. Ryan. Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of Ar-

tificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAAI Press, 2008.

16. P. E. Schupp and R. C. Lyndon. Combinatorial group theory. Springer, 2001, ISBN 978-3-

540-41158-1.

http://webdocs.cs.ualberta.ca/~joe/Preprints/%20Sokoban/index.html
http://webdocs.cs.ualberta.ca/~joe/Preprints/%20Sokoban/index.html

Pavel Surynek

34

17. T. Standley. Finding Optimal Solutions to Cooperative Pathfinding Problems. Proceedings of

the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173-178, AAAI Press,

2010.

18. P. Surynek. A Novel Approach to Path Planning for Multiple Robots in Bi-connected Graphs.

Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA

2009), pp. 3613-3619, IEEE Press, 2009.

19. P. Surynek. Towards Shorter Solutions for Problems of Path Planning for Multiple Robots in

-̒like Environments. Proceedings of the 22nd International FLAIRS Conference (FLAIRS

2009), pp. 207-212, AAAI Press, 2009.

20. P. Surynek. Making Solutions of Multi-robot Path Planning Problems Shorter Using Weak

Transpositions and Critical Path Parallelism. Proceedings of the 2009 International Sympo-

sium on Combinatorial Search (SoCS 2009), University of Southern California, 2009,

http://www.search-conference.org/index.php/Main/SOCS09 [July 2009].

21. P. Surynek. An Application of Pebble Motion on Graphs to Abstract Multi-robot Path Plan-

ning. Proceedings of the 21st International Conference on Tools with Artificial Intelligence

(ICTAI 2009), pp. 151-158, IEEE Press, 2009.

22. P. Surynek. An Optimization Variant of Multi-Robot Path Planning is Intractable. Proceed-

ings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261-1263,

AAAI Press, 2010.

23. P. Surynek. Abstract Path Planning for Multiple Robots: A Theoretical Study. Technical Re-

port, http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications, Charles Universi-

ty in Prague, Czech Republic.

24. P. Surynek. Abstract Path Planning for Multiple Robots: An Empirical Study. Technical Re-

port, http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications, Charles Universi-

ty in Prague, Czech Republic.

25. R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Compu-

ting, Volume 1 (2), pp. 146-160, Society for Industrial and Applied Mathematics, 1972.

26. K. C. Wang and A. Botea. Tractable Multi-Agent Path Planning on Grid Maps. Proceedings

of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1870-

1875, IJCAI Conference, 2009.

27. K. C. Wang. Bridging the Gap between Centralised and Decentralised Multi-Agent Pathfind-

ing. Proceedings of the 14th Annual AAAI/SIGART Doctoral Consortium (AAAI-DC 2009),

pp. 23-24, AAAI Press, 2009.

28. K. C. Wang and A. Botea. Fast and Memory-Efficient Multi-Agent Pathfinding. Proceedings

of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS

2008), Australia, pp. 380-387, AAAI Press, 2008, ISBN 978-1-57735-386-7.

29. K. C. Wang and A. Botea. Scalable Multi-Agent Pathfinding on Grid Maps with Tractability

and Completeness Guarantees. Proceedings of the European Conference on Artificial Intelli-

gence (ECAI 2010), IOS Press, 2010.

30. D. B. West. Introduction to Graph Theory. Prentice Hall, 2000, ISBN: 978-0130144003.

31. J. Westbrook, R. E. Tarjan. Maintaining bridge-connected and biconnected components on-

line. Algorithmica, Volume 7, Number 5&6, pp. 433–464, Springer, 1992.

32. R. M. Wilson. Graph Puzzles, Homotopy, and the Alternating Group. Journal of Combina-

torial Theory, Ser. B 16, pp. 86-96, Elsevier, 1974.

http://www.search-conference.org/index.php/Main/SOCS09
http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications
http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications

