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Abstract

It is well known that the spectral radius of a tree whose maximum
degree is∆ cannot exceed 2

√
∆ − 1. Similar upper bound holds for ar-

bitrary planar graphs, whose spectral radius cannot exceed
√

8∆+10,
and more generally, for all d-degenerate graphs, where the correspond-
ing upper bound is

√
4d∆. Following this, we say that a graph G is

spectrally d-degenerate if every subgraph H of G has spectral radius
at most

√

d∆(H). In this paper we derive a rough converse of the
above-mentioned results by proving that each spectrally d-degenerate
graph G contains a vertex whose degree is at most 4d log2(∆(G)/d)
(if ∆(G) ≥ 2d). It is shown that the dependence on ∆ in this upper

∗Supported in part by the grant GA201/09/0197 of Czech Science Foundation.
†Institute for Theoretical Computer Science is supported as project 1M0545 by the

Ministry of Education of the Czech Republic.
‡Supported in part by the Research Grant P1–0297 of ARRS (Slovenia), by an NSERC

Discovery Grant (Canada) and by the Canada Research Chair program.
§On leave from: IMFM & FMF, Department of Mathematics, University of Ljubljana,

Ljubljana, Slovenia.

1



bound cannot be eliminated, as long as the dependence on d is subex-
ponential. It is also proved that the problem of deciding if a graph is
spectrally d-degenerate is co-NP-complete.

1 Introduction

All graphs in this paper are finite and simple, i.e. no loops or multiple edges
are allowed. We use standard terminology and notation. We denote by ∆(G)
and δ(G) the maximum and the minimum degree of G, respectively. If H is a
subgraph of G, we write H ⊆ G. For a graph G, let ρ(G) denote its spectral
radius, the largest eigenvalue of the adjacency matrix of G. More generally,
if M is a square matrix, the spectral radius of M , denoted by ρ(M), is the
maximum modulus |λ| taken over all eigenvalues λ of M .
If T is a tree, then it is a subgraph of the infinite ∆(T )-regular tree. This

observation implies that the spectral radius of T is at most 2
√

∆(T ) − 1.
Similar bounds have been obtained for arbitrary planar graphs and for graphs
of bounded genus [7]. In particular, the following result holds.

Theorem 1.1 (Dvořák and Mohar [7]). If G is a planar graph, then

ρ(G) ≤
√

8∆(G) + 10.

The proof in [7] uses the fact that the edges of every planar graph G
can be partitioned into two trees of maximum degree at most ∆(G)/2 and
a graph whose degree is bounded by a small constant. Similar bound was
obtained earlier by Cao and Vince [3].
Whenever a result can be proved for tree-like graphs and for graphs of

bounded genus, it is natural to ask if it can be extended to a more general
setting of minor-closed families. Indeed, this is possible also in our case, and
a result of Hayes [10] (see Theorem 1.2 below) goes even further.
A graph is said to be d-degenerate if every subgraph of G has a vertex

whose degree is at most d. This condition is equivalent to the requirement
that G can be reduced to the empty graph by successively removing vertices
whose degree is at most d.
A requirement that is similar to degeneracy is existence of an orientation

of the edges of G such that each vertex has indegree at most d. Every such
graph is easily seen to be 2d-degenerate, and conversely, every d-degenerate
graph has an orientation with maximum indegree d.

Theorem 1.2 (Hayes [10]). Any graph G that has an orientation with max-
imum indegree d (hence also any d-degenerate graph) and with ∆ = ∆(G) ≥
2d satisfies

ρ(G) ≤ 2
√

d(∆ − d).
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It is well-known that each planar graph G has an orientation with maxi-
mum indegree 3. Theorem 1.2 thus implies that ρ(G) ≤

√

12(∆ − 3), which
is slightly weaker than the bound of Theorem 1.1 (for large ∆).
The above results suggest the following definitions. We say that a graphG

is spectrally d-degenerate if every subgraphH ofG has spectral radius at most
√

d∆(H). Hayes’ Theorem 1.2 shows that d-degenerate graphs are spectrally
4d-degenerate: The implication is clear for graphs G of maximum degree at
least 2d. On the other hand, if ∆(G) ≤ 2d, then ρ(G) ≤ ∆(G) ≤

√

2d∆(G).
The main result of this paper is a rough converse of this statement:

Theorem 1.3. If G is a spectrally d-degenerate graph, then it contains a
vertex whose degree is at most max{4d, 4d log2(∆(G)/d)}.

The proof is given in Section 3. If it weren’t for the annoying factor
of log(∆), this would imply f(d)-degeneracy, which was our initial hope.
However, in Section 4 we construct examples showing that the ratio between
degeneracy and spectral degeneracy may be as large as (almost) log log ∆(G).
In the last section, we consider computational complexity questions re-

lated to spectral degeneracy. First we prove that for every integer d ≥ 3, it is
NP-hard to decide if the spectral degeneracy of a given graph G of maximum
degree d + 1 is at least d. Next we show that the problem of deciding if a
graph is spectrally d-degenerate is co-NP-complete.

2 Spectral radius

We refer to [1, 6, 9] for basic results about the spectra of finite graphs and
to [11] for results concerning the spectral radius of (nonnegative) matrices.
Let us review only the most basic facts that will be used in this paper. The
spectral radius is monotone and subadditive. Formally this is stated in the
following lemma.

Lemma 2.1. (a) If H ⊆ G, then ρ(H) ≤ ρ(G).
(b) If G = K ∪ L, then ρ(G) ≤ ρ(K) + ρ(L).

Application of Lemma 2.1(a) to the subgraph of G consisting of a vertex
of degree ∆(G) together with all its incident edges gives a lower bound on
the spectral radius in terms of the maximum degree.

Lemma 2.2.
√

∆(G) ≤ ρ(G) ≤ ∆(G).

A partition V (G) = V1 ∪ · · · ∪ Vk of the vertex set of G is called an
equitable partition if for every i, j ∈ {1, . . . , k}, there exists an integer bij
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such that every vertex v ∈ Vi has precisely bij neighbors in Vj. The k × k
matrix B = [bij ] is called the quotient adjacency matrix of G corresponding
to this equitable partition.

Lemma 2.3. Let B be the quotient adjacency matrix corresponding to an
equitable partition of G. Then every eigenvalue of B is also an eigenvalue
of G, and ρ(G) = ρ(B).

Proof. The first claim is well known (see [9] for details). To prove it, one
just lifts an eigenvector y of B to an eigenvector x of G by setting xv = yi

if v ∈ Vi. By the Perron-Frobenius Theorem, the eigenvector corresponding
to the largest eigenvalue of B is positive (if G is connected, which we may
assume), so its lift is also a positive eigenvector of G. This easily implies
(by using the Perron-Frobenius Theorem and orthogonality of eigenvectors
of G) that this is the eigenvector corresponding to the largest eigenvalue of
G. Thus, ρ(G) = ρ(B).

We will need an extension of Lemma 2.3. As above, let V (G) = V1∪· · ·∪Vk

be a partition of V (G), and let ni = |Vi|, 1 ≤ i ≤ k. For every i, j ∈
{1, . . . , k}, let eij denote the number of ordered pairs (u, v) such that u ∈ Vi,
v ∈ Vj and uv ∈ E(G), i.e. eij is the number of edges between Vi and Vj if
i 6= j, and is twice the number of edges between the vertices in Vi if i = j.
Let bij = eij/ni and let B = [bij ] be the corresponding k × k matrix. This is
a generalization from equitable to general partitions, so we say that B is the
quotient adjacency matrix of G also in this case. If a matrix B′ = [b′ij ]

k
i,j=1

satisfies 0 ≤ b′ij ≤ bij for every pair i, j, then we say that B′ is a quotient
sub-adjacency matrix for the partition V1 ∪ · · · ∪ Vk.

Lemma 2.4. If B′ is a quotient sub-adjacency matrix corresponding to a
partition of V (G), then ρ(G) ≥ ρ(B′).

Proof. By the monotonicity of the spectral radius, ρ(B′) ≤ ρ(B), where B
is the quotient adjacency matrix. So we may assume that B′ = B. The
matrix B is element-wise non-negative. By the Perron-Frobenius Theorem,
its spectral radius ρ(B) is equal to the largest eigenvalue of B (which is real
and positive) and the corresponding eigenvector y is non-negative. Let us
define the vector f ∈ R

V (G) by setting fv = yi if v ∈ Vi. Then

‖f‖2 =
∑

v∈V (G)

f 2
v =

k
∑

i=1

niy
2
i .
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Also,

〈f |Af〉 = 2
∑

uv∈E(H)

fufv

=

k
∑

i=1

k
∑

j=1

eijyiyj

=

k
∑

i=1

niyi

k
∑

j=1

bijyj

= ρ(B)

k
∑

i=1

niy
2
i

= ρ(B)‖f‖2.

Since the matrix A is symmetric, ρ(A) is equal to the numerical radius of

A. Thus, it follows from the above calculations that ρ(G) ≥ 〈f |Af〉
‖f‖2 = ρ(B),

which we were to prove.

3 Spectrally degenerate graphs are nearly de-

generate

In this section we prove our main result, Theorem 1.3. For convenience we
state it again (in a slightly different form).

Theorem 3.1. Let G0 be a spectrally d-degenerate graph with r = δ(G0) >
4d. Then r ≤ 4d log2(∆(G0)/d).

Proof. Suppose for a contradiction that r > 4d log(∆(G0)/d) ≥ 4d. Let G
be a subgraph of G0 obtained by successively deleting edges xy for which
deg(x) ≥ deg(y) > r, as long as possible. Then G has the following proper-
ties:

(a) δ(G) = r > 4d log(∆(G0)/d) ≥ 4d log(∆(G)/d).

(b) G is spectrally d-degenerate.

(c) The set of vertices of G whose degree is bigger than r is an independent
vertex set in G.

Our goal is to prove that r ≤ 4d log(∆(G)/d). This will contradict (a) and
henceforth prove the theorem.
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Let us consider the vertex partition into the following vertex sets:

V0 = {v ∈ V (G) | degG(v) = r},

and for i = 1, . . . , l,

Vi = {v ∈ V (G) | 2i−1r < degG(v) ≤ 2ir},

where l = ⌈log(∆(G)/r)⌉ ≤ log(∆(G)/d). Let B = [bij ]
l
i,j=0 be the quotient

adjacency matrix for the partition V0, V1, . . . , Vl of V (G). Since all vertices
in V0 have the same degree r, it follows from the definitions of the entries of
B that r =

∑l
i=0 b0i. Thus it suffices to estimate the entries b0i in order to

bound r.
For i = 0, let H ⊆ G be the induced subgraph of G on V0. Since G is

spectrally d-degenerate, we have that ρ(H) ≤
√

d∆(H) ≤
√

dr ≤
√

r2/4 =
r
2
. On the other hand, since H has average degree b00, we have ρ(H) ≥ b00.

Thus, b00 ≤ r
2
. This shows that

∑l
i=1 b0i = r− b00 ≥ r/2, and thus it suffices

to prove that
l

∑

i=1

b0i ≤ 2d log(∆(G)/d). (1)

From now on we let B′ be the matrix obtained from B by setting the
entry b′00 to be 0. This is the quotient adjacency matrix of the subgraph G′

of G obtained by removing edges between pairs of vertices in V0.
We shall now prove that

t
∑

i=1

2i−1b0i ≤ 2td (2)

for every t = 1, . . . , l. Let us consider the subgraph Gt of G′ induced on
V0 ∪ V1 ∪ · · · ∪ Vt and the corresponding matrix

Bt =



















0 b01 . . . b0t

r 0 . . . 0
2r 0 . . . 0
4r 0 . . . 0
...

...
. . .

...
2t−1r 0 . . . 0



















Let us observe that the entries 2i−1r (i = 1, . . . , t) in the first column of Bt

are smaller than the corresponding entries in B′ because every vertex in Vi

has degree more than 2i−1r. Therefore, Bt is a quotient sub-adjacency matrix
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for the subgraph Gt. By expanding the determinant of the matrix λI − Bt,
it is easy to see that

ρ(Bt)
2 =

t
∑

i=1

2i−1rb0i. (3)

Using Lemma 2.4 and the fact that Gt is spectrally d-degenerate, we see that
ρ(Bt)

2 ≤ ρ(Gt)
2 ≤ d · 2tr. This inequality combined with (3) implies (2).

We shall now prove by induction on s that

s
∑

i=1

b0i ≤ (s + 1)d (4)

for every s = 1, . . . , l. For s = 1, this is the same as the inequality (2) taken
for t = 1. For s ≥ 2, we apply inequalities (2) to get the following estimates:

2s−t
t

∑

i=1

2i−1b0i ≤ 2sd (5)

and henceforth
s

∑

t=1

2s−t
t

∑

i=1

2i−1b0i ≤ s · 2sd. (6)

Finally, inequality (5) (taken with t = s) and (6) imply:

2s
s

∑

i=1

b0i =
s

∑

i=1

(

2i−1 +
s

∑

j=i

2j−1
)

b0i

=

s
∑

i=1

2i−1b0i +

s
∑

t=1

2s−t

t
∑

i=1

2i−1b0i

≤ 2sd + s · 2sd = 2s(s + 1)d.

This proves (4). For s = l, this implies (1) and completes the proof of the
theorem.

4 A lower bound

In this section we show that the log(∆) factor in the bound given by Theo-
rem 1.3 cannot be eliminated entirely.
Let α ∈ R+. We say that a graph G is α-log-sparse, shortly α-LS , if

every subgraph H of G has average degree at most α log(∆(H)). Observe
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that being α-LS is a hereditary property and that every α-LS graph G is
α log(∆(G))-degenerate.
Pyber, Rödl, and Szemerédi [13, Theorem 2] proved that there exists a

constant α0 such that every graphG with average degree at least α0 log(∆(G))
contains a 3-regular subgraph. On the other hand, they proved in the same
paper [13] that there exists a constant β > 0 such that for each n ≥ 1, there
is a bipartite graph of order n with average degree at least β log log n which
does not contain any 3-regular subgraph (and is hence α0-LS). These results
establish the following.

Theorem 4.1 ([13]). There exist constants α0, β0 > 0 such that for every
integer τ > 1 there exists a bipartite graph G with bipartition V (G) = A∪B
with the following properties:

(a) G is α0-LS.

(b) |A| ≥ |B| and every vertex in A has degree τ .

(c) β0 log log |A| ≤ τ .

We will prove that graphs of Theorem 4.1 have small spectral degeneracy.
The proof will use the Chernoff inequality in the following form:

Lemma 4.2. Let X1, . . . , Xn be independent random variables, each of them
attaining value 1 with probability p, and having value 0 otherwise. Let X =
X1 + · · ·+ Xn. Then, for any r > 0,

Prob
[

|X − np| ≥ r
]

< exp
(

− r2

2(np + r/3)

)

.

We can now prove the following lemma, showing that a bipartite graph
whose bipartite parts are “almost” regular cannot be log-sparse.

Lemma 4.3. Let T ≥ 10 and t > 0 be integers such that

6α0 log(20T ) ≤ t ≤ T.

Let H be a bipartite graph of maximum degree ∆ ≥ 2T with bipartition
V (H) = A ∪ B satisfying the following properties:

(a) t ≤ deg v ≤ T for each vertex v ∈ A.

(b) Each vertex v ∈ B has degree at least ∆/2.

Then H is not α0-LS.
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Proof. Choose a subset A′ of A by selecting each element uniformly inde-
pendently with probability p = 2T/∆, and let H ′ be the subgraph of H
induced by A′ ∪ B. The expected size of A′ is a′ = 2T |A|/∆. Note that
T |A| ≥ |E(H)| ≥ |B|∆/2, thus a′ ≥ |B|. Furthermore, |A| ≥ ∆/2, and thus
a′ ≥ T ≥ 10. By Lemma 4.2,

Prob
[

|A′| ≤ 1
2
a′

]

< e−3a′/28 < 1
2
.

Consider a vertex v ∈ B. The expected degree of v in H ′ is between T
and 2T , and the probability that v has degree greater than 2cT is less than
e−cT for any c ≥ 10, by Lemma 4.2. Thus, the expected number of edges of
H ′ incident with vertices of degree greater than 20T is less than

|B|
(

20Te−10T +
∞

∑

i=20T

e−i/2
)

< |B|(20T + 3)e−10T .

By Markov’s inequality, it happens with positive probability that H ′ has less
than 2|B|(20T + 3)e−10T edges incident with vertices of degree greater than
20T and that 2|A′| ≥ |B|.
Let us now fix a subgraph H ′ with these properties. Let H ′′ be the

graph obtained from H ′ by removing the vertices of degree greater than 20T .
Clearly, ∆(H ′′) ≤ 20T . Also, H ′′ has at most 3|A′| vertices and more than

|A′|t − 2|B|(20T + 3)e−10T ≥ |A′|(t − 4(20T + 3)e−10T ) ≥ 1
2
|A′|t

edges, thus the average degree of H ′′ is greater than t/6. Since t/6 ≥
α0 log(20T ), this shows that H is not α0-LS.

Theorem 4.4. Suppose that a bipartite graph G with bipartition V (G) = A∪
B satisfies properties (a)–(c) of Theorem 4.1, where τ ≥ 10 and 6α0 log(20τ) ≤
τ . Then G is spectrally d-degenerate, where

d = 48(3 + 2
√

2)α0 log(20τ).

Proof. Suppose for a contradiction that H is a subgraph of G with maxi-
mum degree D = ∆(H) whose spectral radius violates spectral d-degeneracy
requirement,

ρ(H) >
√

dD. (7)

We may assume that H is chosen so that D is minimum possible. Since G
is α0-LS, the same holds for its subgraph H . In particular, H is α0 log(D)-
degenerate and hence ρ(H) ≤ 2

√

α0 log(D) · D. By (7) we conclude that

4α0 log(D) > d. (8)
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This implies, in particular, that

D ≥ 2τ. (9)

Let γ = (3 − 2
√

2)/8. Let us partition the edges of H into three subgraphs,
H = H0 ∪ H1 ∪ H2, such that the following holds:

(a) Each vertex in V (H0) ∩ B has degree in H0 at least D/2.

(b) Each vertex in V (H0) ∩ A has degree in H0 at least γd.

(c) H1 is γd-degenerate.

(d) ∆(H2) ≤ D/2.

Such a partition can be obtained as follows. Let H0 be a minimal induced
subgraph of H such that E(H) \ E(H0) can be partitioned into graphs H1

and H2 satisfying the conditions (c) and (d) and V (H0) ∩ V (H1) ∩ A = ∅.
We claim that H0 satisfies (a) and (b). Indeed, suppose that H0 violates (a).
Then, there exists a vertex v ∈ V (H0) ∩B of degree at most D/2. Consider
the graph H ′

2 obtained from H2 by adding all edges of H0 incident with v.
Clearly, ∆(H ′

2) ≤ D/2, since v has degree at most D/2 and all vertices in
A∩V (H ′

2) have degree at most τ ≤ D/2 by (9). Thus, there exists a partition
of E(H)\E(H0−v) satisfying (c) and (d), which contradicts the minimality
of H0. Similarly, suppose that H0 violates (b), so there exists v ∈ V (H0)∩A
of degree at most γd. Since V (H0) ∩ V (H1) ∩ A = ∅, v 6∈ V (H1), and thus
the graph H ′

1 obtained from H1 by adding all edges of H0 incident with v is
γd-degenerate. Furthermore, V (H0−v)∩V (H ′

1)∩A = ∅, so we again obtain
a contradiction with the minimality of H0.
Suppose that H0 6= ∅. Then we use properties (a)–(b) of H0 and apply

Lemma 4.3 to conclude thatH0 is not α0-LS. This contradicts our assumption
that G is α0-LS and shows that H0 must be empty.
Thus, H = H1∪H2. Since H was selected as a subgraph violating spectral

degeneracy with its maximum degree smallest possible, we conclude that H2

is spectrally d-degenerate. By applying Lemma 2.1(b) and using Theorem
1.2 on H1, we obtain

ρ(H) ≤ ρ(H1) + ρ(H2)

≤
√

4γd∆(H1) +
√

d∆(H2)

≤
√

4γdD +
√

dD/2

≤
(
√

4γ +
√

1/2
)

√
dD =

√
dD.

This contradicts (7) and completes our proof.
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By Theorem 4.1, there exist constants β and n0 such that we can ap-
ply Theorem 4.4 to graphs on n vertices with τ ≥ β log log n, for any n ≥
n0. Then, d = O(log log log n), and thus the ratio between the degen-
eracy and the spectral degeneracy is at least Ω(log log n/ log log log n) ≥
Ω(log log ∆/ log log log ∆).
Let us however remark that this does not exclude the possibility that the

degeneracy is bounded by a function of the spectral degeneracy; thus, the
following problem remains open.

Problem 1. Is there a function f : R → N such that every spectrally d-
degenerate graph is f(d)-degenerate?

Graphs from Theorem 4.4 show that the function f in Problem 1 would
need to be at least exponential.

5 Computational complexity remarks

Our results raise the problem of how hard it is to verify spectral degeneracy
of a graph.

Spectral Degeneracy Problem

Input: A graph G and a positive rational number d.
Task: Decide if G is spectrally d-degenerate.

Below we prove that this problem is co-NP-complete. To demonstrate this,
we need some preliminary results. For a polynomial p(x) =

∑k
i=0 aix

i with
integer coefficients, let a(p) = log max0≤i≤k |ai|.

Lemma 5.1. Let p(x) be an integer polynomial of degree k. If p(u) = p(v) =
0 and u 6= v, then log |u − v| = −O(k3(a(p) + log k)).

Proof. Mahler [12] proved that if y and z are two roots of a polynomial
s(x) of degree d, then log |y − z| = −O(− log |D| + d log d + da(s)), where
D is the discriminant of s. To apply this result, we need to eliminate the
roots of p with multiplicity greater than one. By Brown [2], there exists an
integer polynomial q(x) that is a greatest common divisor of p(x) and p′(x)
such that a(q) = O(k(a(p) + log k)). Let c be the leading coefficient of q
and let r(x) = ckp(x)/q(x). Note that r(x) is an integer polynomial, all of
whose roots are simple, r(u) = r(v) = 0, and a(r) = O(k2(a(p) + log k)).
Since r is an integer polynomial with simple roots, the absolute value of its
discriminant is at least 1. Using the afore-mentioned result of Mahler [12],
we conclude that log |u − v| = −O(k3(a(p) + log k)).
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Cheah and Corneil [4] showed the following.

Theorem 5.2. For any fixed integer d ≥ 3, determining whether a graph of
maximum degree d + 1 has a d-regular subgraph is NP-complete.

We need an estimate on the spectral radius of graphs where the vertices
of maximum degree are far apart.

Lemma 5.3. Let G be a graph of maximum degree d+1 such that the distance
between every pair of vertices of degree d + 1 is at least three. Then

ρ(G) ≤ 3

√

(d + 1)(d2 + 1).

Proof. We may assume that G is connected, since the spectral radius of a
graph is the maximum of the spectral radii of its components. We use the
fact that ρ(G) = lim supn→∞

n

√
cn, where cn is the number of closed walks of

length n starting at an arbitrary vertex v of G. For any vertex z of degree
d + 1, G contains at most (d + 1)[(d− 1)d + (d + 1)] = (d + 1)(d2 + 1) walks
of length 3 starting at z, including those whose second vertex is z as well.
Similarly, the number of walks of length 3 from a vertex of degree at most d

is at most (d + 1)d2. We conclude that cn ≤ [(d + 1)(d2 + 1)]
⌈n/3⌉
, and the

claim follows.

We will also use the following result which shows that the spectral radius
of a connected non-regular graph of maximum degree d cannot be arbitrarily
close to d.

Lemma 5.4 (Cioabă [5]). Let G be a connected graph of maximum degree d
and with diameter D. If G has a vertex of degree less than d, then

ρ(G) < d − 1

D|V (G)| .

We can now proceed with examining the complexity of spectral degener-
acy computation.

Lemma 5.5. The Spectral Degeneracy Problem is in co-NP.

Proof. To verify that the spectral degeneracy of G is greater than d, guess
a connected subgraph H of G (on k ≤ |V (G)| vertices) such that ρ(H) >
√

d∆(H) = b. To prove that H has this property, first compute the charac-
teristic polynomial p(x) = det(xI − M), where M is the adjacency matrix
of H . Note that the absolute value of each coefficient of p is at most k! and
that p can be computed in polynomial time using, for example, Le Verrier–
Faddeev’s algorithm [8]. Then, we need to show that p has a real positive
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root greater than b. This is the case if p(b) < 0 and this condition can be
verified in a polynomial time, since b is a square root of a rational number.
Hence, we may assume that p(b) ≥ 0. Let us recall that ρ(H) is a simple
root of p. Hence, if ρ(H) > b, then there exists a root y of p such that
b ≤ y < ρ(H) and p(x) < 0 when y < x < ρ(H). To prove that b < ρ(H),
it suffices to guess a value x > b such that p(x) < 0, say any value between
y and ρ(H). By Lemma 5.1, log(ρ(H) − y) = −O(k4 log k), and thus such a
number x can be expressed in polynomial space.

For the hardness part, let us first consider a related problem of deciding
whether the spectral degeneracy is greater or equal to some given constant.

Theorem 5.6. For any fixed integer d ≥ 3, verifying whether the spectral
degeneracy of a graph is at least d is NP-hard, even when restricted to graphs
of maximum degree d + 1.

Proof. We give a reduction from the problem of finding a d-regular subgraph
in a graph G of maximum degree d + 1, which is NP-hard by Theorem 5.2.
Let G′ be the graph obtained from G by replacing each edge uv by a graph
Guv created from a clique on d + 1 new vertices by removing an edge xy and
adding the edges ux and vy. Consider a connected subgraph H ⊆ G′. If H is
d-regular and z ∈ V (H) belongs to V (Guv)\{u, v}, then Guv ⊆ H . It follows
that G′ contains a d-regular subgraph if and only if G contains a d-regular
subgraph.
Furthermore, if ∆(H) = d + 1, then by Lemma 5.3 we have

ρ(H) ≤ 3

√

(d + 1)(d2 + 1) <
√

d∆(H),

and if ∆(H) ≤ d, then ρ(H) ≤
√

d∆(H), where the equality holds if and
only if H is d-regular. Therefore, G has a d-regular subgraph if and only if
the spectral degeneracy of G′ is at least d. Since the size of G′ is polynomial
in the size of G, this shows that deciding whether the spectral degeneracy of
a graph is at least d is NP-hard.

A small variation of this analysis gives us the desired result.

Theorem 5.7. The Spectral Degeneracy Problem is co-NP-complete.

Proof. By Lemma 5.5, the problem is in co-NP, so it remains to exhibit a
reduction from a co-NP-hard problem.
Consider the graph G′ from the proof of Theorem 5.6 and its connected

subgraph H . If H has maximum degree d + 1, then the spectral radius of H
is at most

√

3

√

(d2 + 1)2

d + 1
∆(H)
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by Lemma 5.3. If H has maximum degree at most d − 1, then

ρ(H) ≤
√

(d − 1)∆(H).

Finally, if ∆(H) = d and H is not d-regular, then

ρ(H) ≤
√

(d − |V (H)|−2)2 ≤
√

(d − |V (H)|−2)∆(H)

by Lemma 5.4.
Let n = |V (G′)|. Let b be a rational number such that

max

{

3

√

(d2 + 1)2

d + 1
, d − 1, d − n−2

}

≤ b < d.

We conclude that either G′ has spectral radius at least d or at most b. Thus,
deciding whether the spectral degeneracy of a graph is at most b (where b is
part of the input) is co-NP-hard.

However, this does not exclude the possibility that the spectral degener-
acy could be approximated efficiently. Let ε > 0 be a constant.

Approximate spectral degeneracy
Input: A graph G and a rational number d.
Task: Either prove that G is spectrally (1 + ε)d-degenerate, or
show that it is not spectrally d-degenerate.

Does there exist ε such that this problem can be solved in a polynomial
time? Or possibly, is it true that this question can be solved in a polynomial
time for every ε > 0? Both of these questions are open.
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