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ABSTRACT. It is shown that the familiar description of the com-
pletion of a uniform frame in terms of its Samuel compactification
can be extended to arbitrary nearness frames. This is achieved
by means of the following new notion, a variant of compactness,
for regular frames: such a frame will be called near-compact if it
is complete in some totally bounded nearness. This leads to a
natural concept of the Samuel near-compactification for arbitrary
nearness frames which is then shown to play exactly the same role
in the general setting which the Samuel compactification plays for
uniform frames.
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INTRODUCTION

There are fundamental differences between the descriptions of the
completion of

(1) uniform frames by means of their Samuel compactification ([4]),
and

(2) general nearness frames directly as a quotient of their down-set,
frame ([5], see also [12]).

Most obviously, (1) is a two-stage process, involving, first, a suitable
compactification and then a certain modification of that, while (2),
which presents the completion in terms of certain downsets of the un-
derlying frame, produces the result in one step.
Note. In fact, (1) can be viewed as a three-stage process:
the compactification consists of, first, taking the ideal frame,
which is a quotient of the down-set frame and next the sub-
frame of strongly regular ideals; then one modifies that as
a quotient again. Thus the procedure follows the pattern
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quotient frame > subframe > quotient frame.

In (2) the whole procedure is just taking a quotient, with-
out any subframe construction involved. But this is only a
technical affair, not really important.

A more fundamental and seemingly unsurpassable difference lies in
the use of a compactification, specific for uniformities carried by com-
pletely regular frames. More general nearnesses are carried by general
regular frames for which there is no suitable compactification (for obvi-
ous reasons: representing a regular frame L as a quotient of a compact
regular frame makes L completely regular).

The following account shows, however, that both the above descrip-
tions can be dealt with as one procedure, the first being a special case.
The key to this lies in a natural notion generalizing compactness to
suit mere regular frames. Recall the classical characteristics of com-
pact metric spaces as the complete totally bounded ones (which in a
sense precedes the cover definition). Compact regular frames are in-
deed precisely those that admit a complete totally bounded uniformity:.
If we ask about admitting a complete totally bounded nearness, we
obtain a more general concept which we call near-compactness. Now
each nearness frame has a canonical near-compactification (we call it
the Samuel near-compactification) that can serve as an intermediate
step for a completion of type (2), providing a modification quite analo-
gous to the procedure in (1). Moreover, for uniform frames this Samuel
near-compactification coincides with the Samuel compactification (rep-
resented, by the way, directly as a quotient of the down-set frame,
surpassing also the technical difference mentioned in the Note above).

1. PRELIMINARIES

1.1. Recall that a frame L is a complete lattice satisfying the distri-
bution law

(/A rb=\/{anb|ac A}

forall AC Land b € L. A frame homomorphism h : L — M preserves
all finite meets and all joins. The top of L will be denoted by 1, or
simply by 1, the bottom will be denoted by 0y, resp. O.

We will use the standard notation concerning partially orderd sets
such as Ja ={z | x < a} and |[M = {z | < m for some m € M} In
particular, a set M is called a downset if |M = M. For any frame L
we put DL for the frame of all non-void downsets of L. For any frame
homomorphism, h, : M — L will be its right (Galois) adjoint, that is,
he(a) =\{zx € L| h(x) < a}.
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Factorizing a frame L by a congruence leads to a so called “closure
system”, or the set of saturated elements, S C L that is, in particular,
closed under all meets. Thus we have for each a € L

V(a):/\{SGS\ags}ES.

The mapping v : L — L given by this is usually referred to as the
nucleus associated with the congruence.
For details and more about frames see, e.g., [11, 14].

1.2. A cover of a frame L is a subset A C L such that \/ A = 1. If
A, B are covers we set

ANB={aNnb|ac Abe B},

obviously it is a cover as well.
For a cover A of L and an element b € L set

Ab=\/{a€ A|anb+0}
and if B is another cover we write
AB ={Ab | be B}.

A cover A refines B (notation A < B) if for every a € A there is a
b € B such that a < b. One says that A is a star-refinement of B if
AA < B, and writes A <* B.

If A is a system of covers we set

a <14 b if there is an A € A such that Aa < b;

one speaks of the strong inclusion associated with A.

1.3. A nearness ([8, 5]) A on L is a non-void set of covers such that
(N1) if Ae Aand A < B then B € A,
(N2) if A, B € Athen ANB € A, and
(N3) for each a € L, a = \/{b| b <4 a}.
If, moreover,
(U) for every A € A there is a B € A such that BB < A,
one speaks of a uniformity ([9, 10, 5, 14]). Note that
if A is a uniformity then <4 interpolates.

The pair (L, .A) is then referred to as a nearness resp. uniform frame.
A frame homomorphism f : L — M is a uniform homomorphism
(L, A) — (M, B) if for all A € A, f[A] € B.
We speak of a basis of nearness resp. uniformity Aon Lif {B | B >

A € A} is anearness resp. uniformity. If the nearnesses on L and M are
determined by bases A, B, f is uniform iff VA € A 3B € B, B < f[A].
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For more about uniform and nearness frames see, e.g., [9, 5, 14].

1.4. Recall the notation
a<b for dc, aNc=0&bVc=1,
and
a=<b

if there exist a, for rational r in the unit interval such that
a=ay, b=a;, and r<s = a, < as.
A frame L is reqular resp. completely reqular if
Va € L, a:\/{b|b<a} resp. a:\/{b|b<<a}.
A frame admits a nearness iff it is regular, and in that case in particular
CL={C | C acover of L}

is a nearness on L, referred to as the fine nearness on L.
A frame admits a uniformity iff it is completely regular. Then it has
a largest uniformity

§L = U{A | A a uniformiity on L}
called the fine uniformity on L. Note that FL is not necessarily CL.

Further, it is a well known and simple fact that a <4 b = a < band
if A contains all the two-element covers then <|4== (making <14=—=<
whenever <14 interpolates). Moreover, the fine uniformity contains in
particular all the {a*, b} with a << b where a* is the pseudocomplement
of a (see e.g. [14], 12.2.2), yielding <z, ==<.

1.5. For a nearness A set
tbA={A| A> B e A, B finite}.

If Ax <y with A € Athen B={Az,\/[{a € A|aAx=0}}isin thA
and Bx = Az < y; thus, <iyp4=<4 and hence tb.A satisfies (N3) and is
a nearness again.

A nearness A (or the nearness frame (L,.A) is said to be totally
bounded if tb. A = A.

By Isbell [10] (the proof in the book — 30 on p.23 — is in classical
terms, but it can be obviously modified for the point-free context)

(1.5.1) if A is a uniformity then tbA is a uniformity as well.
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The identity carried (uniform) homomorphisms
(L, tbA) — (L, A)

is the coreflection map from the category of nearness (resp. uniform)
frames to that of totally bounded nearness (resp. uniform) frames.

1.6. Samuel compactification. A compact regular frame L ad-
mits precisely one nearness, namely €L, and it is a uniformity, hence
CL = FL (=tb€L = tbFL). Thus, for such L every frame homomor-
phism M — L is a uniform homomorphism for any (M, .A). Thus the
category of compact regular frames can be viewed as a full subcategory
of the category of uniform frames.

An ideal J in a uniform frame (L, A) is said to be A-regular (briefly,
reqular) if
Va € J, db € J such that a <4 b.

The set R(L, A) of all regular ideals, ordered by inclusion, is a subframe
of the ideal frame of L and hence it is compact. The homomorphisms

vy = (J = \/J) : R(L,A) — (L, A)

are uniform and constitute the coreflection maps from the category of
compact uniform frames to that of uniform frames, called the Samuel
compactification (see [4]).

Note. Compare this with the Stone-Cech compactification as con-
structed in [3]. There, one considers the completely regular ideals J
in the sense that for a € J there is a b € J such that a << b. Since
<< is just <lgr, this means that the Stone-Cech compactification is the
Samuel compactification of (L,§L).

1.7. Recall that a frame homomorphism h is dense if h(a) = 0 im-
plies a = 0. For nearness frames (L, A) and (M, B), a strict surjection
h: (L, A) — (M, B) (dense surjection in [5])) is a dense onto uniform
homomorphism such that

(1) B={h[A] | A€ A}, and
(2) {h.[B] | B € B}, where h, is the right Galois adjoint of h, is a
basis of A.

(Note that (2) is automatic in case of uniform frames.)

A nearness frame (L, A) is complete if every strict surjection (M, B) —
(L, A) is an isomorphism. A completion of (L, A) is a strict surjection
v : C(L,A) — (L, A) where C(L,A) is complete. It exists and is
unique up to isomorphism ([5, 9, 12, 14]).
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1.7.1. The completion of a uniform frame (L, .4) can be constructed
via the Samuel compactification (see [4]). One takes R(L,.A) and con-
siders

C(L, A) = R(L, A)/R

where R is the congruence generated by
{(\/{E(a) |la€ A}, L) | A€ A} where ¢(a) ={x |z <y a}
(that is, one factorizes so as to make the {€(a) | a € A} covers).

1.7.2. If (L, A) is a general nearness frame one can construct a
completion C(L, .A) as ®L/R where ©L is the down-set frame and R
is the congruence on L generated by

{€(a), la) [a € LYU{(\/{la|a€ A},L) | A€ A}
endowed with the nearness Algenerated by {{]la | a € A} | A € A}.

This leads to C(L,.A) consisting of the down-sets U satisfying

(R1) ¢(a) CU = a€U, and
(R2) 3C' € A such that {a} N\CCU = acU.

More precisely, the completion is the strict surjection
Y C(LA) = (L, A)
where vz.4)(U) = VU, with the right Galois adjoint given by
Vi(a) =la.

2. NEAR COMPACTNESS AND SAMUEL NEAR-COMPACTIFICATION

2.1. A regular frame will be called near-compact if it is complete
with respect to some totally bounded nearness. To motivate this ter-
minology recall that for completely regular frames L,

L is compact iff it 1s complete with respect to some totally
bounded uniformaty.

Thus we have a natural concept parallel to compactness suitable for
general regular frames. Note, however, that even a completely regular
frame can be near-compact without being compact — see 2.6 below;
on the other hand, if a regular frame is compact then it is actually
completely regular.

In a different direction one has from [1] that

(2.1.1) the completion of a nearness frame is compact iff the nearness
15 a totally bounded uniformaty

and
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(2.1.2) a complete nearness frame is compact iff it is totally bounded
uniform.

2.2. One cannot expect a very nice behaviour of the class of near-
compact frames, mainly because the completion of general nearness
frames is not functorial ([2], see 3.3 below), a nearness larger than a
complete one is not necessarily complete, and other anomalies of the
non-uniform nearnesses. However, independently of functoriality, com-
pletion of nearness frames generally preserves coproducts ([15]). Con-
sequently, we have the counterpart of the point-free Tychonoff theorem

any coproduct of near-compact frames is near-compact.

2.3. Extending the concept of surjection ([5]) we call an onto uniform
homomorphism h : (M, B) — (L, .A) between two nearness frames with
B totally bounded a tb-surjection if the image of B under A is tb.A. In
this sense we speak of dense tb-surjection and strict tb-surjection (recall
1.7).

Define

S(L, A) =C(L,thA).
Hence we have the strict tb-surjections
O(L,A) - G(L,A) — (L,A)
composing the completion maps v, 14) With the identical embeddings
(L,tbA) — (L, A).

2.3.1. Proposition. Up to isomorphism, o ) : 6(L, A) — (L, A)
is the unique strict tb-surjection h : (M,B) — (L, A) with (M, B)
complete.

Proof. (M, B) is complete and h decomposes as

(M,B) —— (L,tbA) == (L, A).
Now se the unicity of completion for k. [

2.3.2. Note that &(L,.A) is compact uniform whenever (L,.A) is
uniform (see (2.1.1)) so that we have obtained an alternative descrip-
tion of the Samuel compactification of uniform frames ([4], 1.7.1).

Consequently we will refer to o, 4y : 6(L, A) — (L,.A) in the gen-
eral case as the Samuel near-compactification of (L, A).

2.4. An alternative description of Stone-Cech compactifica-
tion. Recall the Stone-Cech compactification from [3]. There, for a
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completely regular frame L, one took the frame KL of completely reg-
ular ideals on L; it turns out that the map vy, = (J — \/J) : KL — L
is a dense onto frame homomorphism, with right adjoint

t,=(a—{z |z <a}): L — RL,

and constitutes the compact coreflection map.

Now consider for a completely regular L the fine uniformity §L
and its totally bounded part tbFL. Then C(L,tb§L) is compact by
(2.1.2) and (1.5.1), and applying the underlying frame functor | - | to
Yerwzr) © C(L,tb§L) — (L,tb§L) we obtain vy, : |C(L,tbFL)| — L,
a homomorphism to L from a compact completely regular frame. Fur-
ther, for any other such h : M — L we have the following commutative
square

C(L,tb§L) —— (L,tbgL)

ﬂ Th

C(M,tb§M) —— (M, tbgM)
Y(M ,tbF M)
where the bottom map is an isomorphism by compacthess. Hence,
acting the functor |- | produces the factorization h = y.h, where h is
unique since vy, is dense, showing that ~, is the coreflection map from
compact completely regular frames.

2.5. For any regular frame L, its fine near-compactification will be
the underlying frame homomorphism of the completion map

V(L,tbQ‘ZL) : C(L,tbQ:L) — (L,tbQ:L),

denoted by 65, : Q1L — L. Note this is characterized as a dense frame
homomorphism h : M — L for which {h,[A] | A € tb€L} generates a
complete nearness on M

2.5.1. Remark. It should be emphasized that the Stone-Cech
compactification of a completely regular L is not necessarily its fine
near-compactification. Take a completely regular L that is not normal,
and v = vy, : AL — L. Because of the standard fact that v[AJv[B] <
v[AB] each cover of L of the form v[A], with A a cover of KL, has a
star-refinement. Since L is not normal there exists a finite cover B of

L that has no star-refinement. Thus, v,[B] cannot be a cover because
v[v.B]] = B.

2.6. Proposition. For any reqular L, if its fine near-compactification
15 normal then L it is normal.
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Proof. If a Vb =11in L then {a,b} is a uniform cover of (L,tb®),
so {la, b} is a cover of ML, hence there exist U,V € ML such that
UNV =]0and (la)VU =|1 =|bV V. Then we have for the completion
map vy : NL = C(L,tb€L) — (L,tb€L) that a Vy(U) =1=0bV y(V),
v(U) Ay(V) =0, showing L is normal. [

Corollary. For a reqular L that is not normal, VL s not compact.
Hence, it is near-compact but not compact.

2.7. Proposition. A near-compact reqular frame is compact iff it
s normal.

Proof. =: Any compact regular frame is normal,

<: Regular and normal implies that < interpolates, hence the finite
cover nearness is a uniformity. Thus L is complete in a totally bounded
uniformity, and therefore compact. [

3. MORE ON 1L, AND COMPARISON OF TWO COMPLETIONS

3.1. The Stone-Cech compactification &L in [3] (see 2.4) was ob-
tained as a subframe of the ideal frame JL. In fact, the 9L is also a
frame of particular ideals, although specified differently. We have

Proposition DML isisomorphic to the frame of the ideals J C L such
that

(%) {r]x<a}CJ = aecl.

Proof. We will prove that the down-sets U C L describing C(L, tbL)
are precisely the mentioned ideals.

First note that <i,er==< (for a < b consider the cover {a*,b} and
the fact that {a*,b}a < b) so that {z | x < a} is the corresponding
t(a). Now let U satisfy (R1) and (R2). Then we have (x) (= (R1));
secondly, if a,b € U and = < a V b then {z*, a,b} is a finite cover and
rAzx*;x Na,x ANb € U so that x € U. Using (*) again we obtain
aVbeU.

On the other hand, if U is an ideal satisfying () then it is a downset
satisfying (R1); further, if C' = {cy,...,¢,} is a finite cover and {a} A
C C U then a =\/{a} NC € U since U is an ideal a A ¢; € U and since
it is a ideal, [

3.1.1. In particular, for a Boolean frame L,
NL =3L =KL

as a < a here.
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3.2. For any completely regular frame L, the general facts about
strong nearness frames and completions supply a uniform homomor-
phism A : KL — NL such that hv, = (v,)° for the completion maps

v: AL —L and v :NL — L

where v, (a) = ¥(a), vi(a) =la, and

(v)°(a) = \{wu(e) | 2 =< a} = \/{lz | © << a} = n(¥(a)),

(notation from [2],2) n being the nucleus (1.1) in JL which determines
MNL.

Proposition. For any L, h is a frame embedding and it is an 1iso-
morphism iff L is normal.
Proof. For any J € JL,

h(J) = \/{n(t(a) |a€ J} = \/{hv.(a) | a € J} =
=\/{t(a) | a € J} =n(J).

Thus, J =]0 whenever h(J) =0, that is, h is dense, and hence one-one
by compactness and regularity.

Further, if A is an isomorphism then 9L is compact and by [1] this
makes the finite cover nearness of L a uniformity which in turn implies
L is normal. Conversely, for normal L, ML is a Stone-Cech compacti-
fication of L and hence h is an isomorphism. [

Note. In particular, for compact (completely) regular L, ML — L
is an isomorphism iff L is normal.

3.3. The Stone-Cech compactification is functorial, indeed the core-
flection from the subcategory of compact regular frames. The same
holds for the Samuel compactification of uniform frames. The ques-
tion naturally arises as to the functoriality of the near-compactification
ML — L. The ansver is negative; the result 3.4 in [2] translates in our
terminology to

Proposition. The correspondence L — NL is not functorial with
vr : NL — L natural.

Proof. We give an alternative proof which fits better into the present
context.

Let N be any regular frame which is extremally disconnected, that
is, with a* vV a*™ = 1 for all a. As is well known, this makes the Boolean
frame

BN ={a€e N |a=a"}
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a bounded sublattice of N so that the map

e=(b—b) (7L)+=(b—1b)
>

BN N NN

is a bounded lattice homomorphism (note that by 3.1, [(bV¢) =]bV |c
in MN); further, such a lattice homomorphism is known to determine
a frame homomorphism k : J(BN) — NN such that k(]b) =|b for all
beBN. Now NNM = JM as noted in 3.1.1, and supposing L — L
is functorial as required we have the following commuting diagram

MN — J(BN)

| Jsos

N —— ‘BN
BN
with Oy(a) = a* and dgn(J) =/ J (in BN). Thus dsnh = Oyoy as

well as k(dpn )« = (0n)«€ and combining these we obtain

dan (0w )« = idsy = Bnve = OnOn(In )« = dsnhk(dmn )«

so that dsy = dsnhk because (dpn)«[BN] generates J(BN). Conse-
quently, hk = id since dny is dense and therefore monic, and as h is
also dense (Oy being dense) this makes it an isomorphism; hence TV
is compact and by 2.7 this makes N normal. However, there do exist
extremally disconnected regular frames which are not normal, such as
the frame of open sets of the Gleason cover X of the Tychonoff plank

7,6). O

3.4. Samuel near-compactifications and completions. We
begin with a general result, to be used as a crucial tool later on.

3.4.1. Lemma. For any nearnesses A and B on a regular frame L
such that B C A and <lg=<4 there exists a unform frame homomor-
phism h : C(L,B) — C(L,.A) such that h(la) =]a and h.(la) =]a.

Proof. For the nuclei 4 and Iz on ® L that determine C(L, .A) resp.
C(L, B) the given condition imply that Iz < [ 4; hence C(L,.A) is the
image of C(L,B) under the action of [4 and we can define h as the
map induced by this, Then, obviously, h(la) =] (a) for all a« € L and
by the definition of the nearness involved it is then clear that h is
a uniform frame homomorphism. Further, h(|a) =] (a) means that
Y,.ah = ey, for the completion maps for (L, A) and (L, B) and
the uniform homomorphism ¢ : (L, B) — (L, .A) mapping L identically.
Consequently (v 4))s = (Vz,B))«E+« Which says that h.(la) =|a for
all a € L, as claimed. [
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3.4.2. For any nearness frame (L,.A), recall from 2.3.2 that its
Samuel near-compactification is

o(L.4) = C(L,tbA) =22 (L tbA) —Ls (L, A).

Note that for uniform (L,.A), this is its Samuel compactification as
introduced in [4]. On the other hand, the Samuel near-compactification
of any nearness frame determines its completion as follows.

3.4.3 Proposition. For any nearness frame (L, A), if

C(L,tbA) = (M, B),

0 =0(L,A) - (M B) (LvA)7

M = M/© for the congruence © on M generated by the pairs

(Vo.lAl 1), Ae A,

v: M — M is the corresponding quotient homomorphism,

o=ov, and

A is the nearness on M generated by {vo.[A] | A € A},

then & : (M, A) — (L, A) is the completion of (L, A).

Proof. To begin with, it is obvious that o factors as stated and the
vo,[A], A € Aare covers of M: o(\/ 0,[A]) =V 00.[A] =\ A =1 and
v(\ 0.[A]) = 1 by the definition of v. Further, A is a nearness on M:
if £ <z a in M so that Bx < a for some B € B then, by the properties
of o, we have 0,[C] < B for some C' € tbA, hence also 0.[Clz < a
which implies vo, [Clv(z) < v(a), therefore v(z) <z v(a), and finally
v(a) = V{v(z) | v(z) <z v(a)} by the properties of B.

Next, o is a strict surjection: it is obviously dense onto, and strict
because 7(vo,.[A]) = A and

vo.[A] = v (F).[A] = (3).[4]

for each A € A. Now it follows from [1] 3.4 that there exists a strict
surjection g : C(L, A) — (M, A) such that 5g = Y(L,4)- On the other
hand, we have h : (M,B) — C(L, A) with v 4)h = o by the lemma,
because<lib4=<14. Now 0, = h(Y(r,.4))« s0 that ho, = (Y(z,4))«, and
hence, for any A € A,

W\ o.[A]) = \/ hou[A] = \/ (vw.0):[4] = 1.

the last step by the properties oNf completions. Next, by the definition
of (M, A), there exists | : (M, A) — C(L,.A) such that [v = h. As a
result,

oglv = ogh = y,ah =0 =ov
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and hence gl = id because ¢ is dense and v isonto. Finally, since ¢
is dense this makes it an isomorphism, showing o is the completion of

(L, A). O

3.4.4. Remarks. 1. It is an open question whether the proposition
can be proved without reference to the existence of the completion of
(L, A); of course this was done in the uniform case ([4]), based on the
properties of compact uniform frames, but whether this is still possible
in the general case is not clear.

2. There is a natural generalization of the initial part of the proposi-
tion as follows. Calling a uniform homomorphism A : (M, B) — (L, .A)
relatively strict if B is generated by the h.h|B], B € B, one readily
obtains the following by the same arguments used in the above proof:
Any dense onto relatively strict homomorphism h : (M,B) — (L,.A)
has a factorization

(M,B) —"— (M, A) —— (L, A),

with the same M , U, 7L, A as before, where h is a strict surjection. This
then applies to any Samuel near-compactification o : (M, B) — (L, .A)

so that one obtains the strict surjection & : (M, A) — (L, A) and

~

then also the required g : C(L, A) — (M, A) with g = y4. Only
the remaining step to show ¢ is an isomorphism requires the particular
properties of tbA C A which make the original lemma applicable.
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