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Abstract. It is shown that the familiar description of the com-
pletion of a uniform frame in terms of its Samuel compactification
can be extended to arbitrary nearness frames. This is achieved
by means of the following new notion, a variant of compactness,
for regular frames: such a frame will be called near-compact if it
is complete in some totally bounded nearness. This leads to a
natural concept of the Samuel near-compactification for arbitrary
nearness frames which is then shown to play exactly the same rôle
in the general setting which the Samuel compactification plays for
uniform frames.
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Introduction

There are fundamental differences between the descriptions of the
completion of

(1) uniform frames by means of their Samuel compactification ([4]),
and

(2) general nearness frames directly as a quotient of their down-set
frame ([5], see also [12]).

Most obviously, (1) is a two-stage process, involving, first, a suitable
compactification and then a certain modification of that, while (2),
which presents the completion in terms of certain downsets of the un-
derlying frame, produces the result in one step.

Note. In fact, (1) can be viewed as a three-stage process:
the compactification consists of, first, taking the ideal frame,
which is a quotient of the down-set frame and next the sub-

frame of strongly regular ideals; then one modifies that as
a quotient again. Thus the procedure follows the pattern
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quotient frame > subframe > quotient frame.

In (2) the whole procedure is just taking a quotient, with-
out any subframe construction involved. But this is only a
technical affair, not really important.

A more fundamental and seemingly unsurpassable difference lies in
the use of a compactification, specific for uniformities carried by com-
pletely regular frames. More general nearnesses are carried by general
regular frames for which there is no suitable compactification (for obvi-
ous reasons: representing a regular frame L as a quotient of a compact
regular frame makes L completely regular).

The following account shows, however, that both the above descrip-
tions can be dealt with as one procedure, the first being a special case.
The key to this lies in a natural notion generalizing compactness to
suit mere regular frames. Recall the classical characteristics of com-
pact metric spaces as the complete totally bounded ones (which in a
sense precedes the cover definition). Compact regular frames are in-
deed precisely those that admit a complete totally bounded uniformity.
If we ask about admitting a complete totally bounded nearness, we
obtain a more general concept which we call near-compactness. Now
each nearness frame has a canonical near-compactification (we call it
the Samuel near-compactification) that can serve as an intermediate
step for a completion of type (2), providing a modification quite analo-
gous to the procedure in (1). Moreover, for uniform frames this Samuel
near-compactification coincides with the Samuel compactification (rep-
resented, by the way, directly as a quotient of the down-set frame,
surpassing also the technical difference mentioned in the Note above).

1. Preliminaries

1.1. Recall that a frame L is a complete lattice satisfying the distri-
bution law

(
∨

A) ∧ b =
∨

{a ∧ b | a ∈ A}

for all A ⊆ L and b ∈ L. A frame homomorphism h : L → M preserves
all finite meets and all joins. The top of L will be denoted by 1L or
simply by 1, the bottom will be denoted by 0L resp. 0.

We will use the standard notation concerning partially orderd sets
such as ↓a = {x | x ≤ a} and ↓M = {x | x ≤ m for some m ∈ M} In
particular, a set M is called a downset if ↓M = M . For any frame L
we put DL for the frame of all non-void downsets of L. For any frame
homomorphism, h∗ : M → L will be its right (Galois) adjoint, that is,
h∗(a) =

∨
{x ∈ L | h(x) ≤ a}.
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Factorizing a frame L by a congruence leads to a so called “closure

system”, or the set of saturated elements, S ⊆ L that is, in particular,
closed under all meets. Thus we have for each a ∈ L

ν(a) =
∧

{s ∈ S | a ≤ s} ∈ S.

The mapping ν : L → L given by this is usually referred to as the
nucleus associated with the congruence.

For details and more about frames see, e.g., [11, 14].

1.2. A cover of a frame L is a subset A ⊆ L such that
∨

A = 1. If
A, B are covers we set

A ∧ B = {a ∧ b | a ∈ A, b ∈ B},

obviously it is a cover as well.
For a cover A of L and an element b ∈ L set

Ab =
∨

{a ∈ A | a ∧ b 6= 0}

and if B is another cover we write

AB = {Ab | b ∈ B}.

A cover A refines B (notation A ≤ B) if for every a ∈ A there is a
b ∈ B such that a ≤ b. One says that A is a star-refinement of B if
AA ≤ B, and writes A ≤∗ B.

If A is a system of covers we set

a ⊳A b if there is an A ∈ A such that Aa ≤ b;

one speaks of the strong inclusion associated with A.

1.3. A nearness ([8, 5]) A on L is a non-void set of covers such that

(N1) if A ∈ A and A ≤ B then B ∈ A,
(N2) if A, B ∈ A then A ∧ B ∈ A, and
(N3) for each a ∈ L, a =

∨
{b | b ⊳A a}.

If, moreover,

(U) for every A ∈ A there is a B ∈ A such that BB ≤ A,

one speaks of a uniformity ([9, 10, 5, 14]). Note that

if A is a uniformity then ⊳A interpolates.

The pair (L,A) is then referred to as a nearness resp. uniform frame.
A frame homomorphism f : L → M is a uniform homomorphism

(L,A) → (M,B) if for all A ∈ A, f [A] ∈ B.
We speak of a basis of nearness resp. uniformity A on L if {B | B ≥

A ∈ A} is a nearness resp. uniformity. If the nearnesses on L and M are
determined by bases A,B, f is uniform iff ∀A ∈ A ∃B ∈ B, B ≤ f [A].
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For more about uniform and nearness frames see, e.g., [9, 5, 14].

1.4. Recall the notation

a ≺ b for ∃c, a ∧ c = 0 & b ∨ c = 1,

and

a ≺≺ b

if there exist ar for rational r in the unit interval such that

a = a0, b = a1, and r < s ⇒ ar ≺ as.

A frame L is regular resp. completely regular if

∀a ∈ L, a =
∨

{b | b ≺ a} resp. a =
∨

{b | b ≺≺ a}.

A frame admits a nearness iff it is regular, and in that case in particular

CL = {C | C a cover ofL}

is a nearness on L, referred to as the fine nearness on L.
A frame admits a uniformity iff it is completely regular. Then it has

a largest uniformity

FL =
⋃

{A | A a uniformiity on L}

called the fine uniformity on L. Note that FL is not necessarily CL.

Further, it is a well known and simple fact that a ⊳A b ⇒ a ≺ b and
if A contains all the two-element covers then ⊳A=≺ (making ⊳A=≺≺
whenever ⊳A interpolates). Moreover, the fine uniformity contains in
particular all the {a∗, b} with a ≺≺ b where a∗ is the pseudocomplement
of a (see e.g. [14], 12.2.2), yielding ⊳FL=≺≺.

1.5. For a nearness A set

tbA = {A | A ≥ B ∈ A, B finite}.

If Ax ≤ y with A ∈ A then B = {Ax,
∨
{a ∈ A | a∧ x = 0}} is in tbA

and Bx = Ax ≤ y; thus, ⊳tbA=⊳A and hence tbA satisfies (N3) and is
a nearness again.

A nearness A (or the nearness frame (L,A) is said to be totally

bounded if tbA = A.
By Isbell [10] (the proof in the book – 30 on p.23 – is in classical

terms, but it can be obviously modified for the point-free context)

(1.5.1) if A is a uniformity then tbA is a uniformity as well.
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The identity carried (uniform) homomorphisms

(L, tbA) → (L,A)

is the coreflection map from the category of nearness (resp. uniform)
frames to that of totally bounded nearness (resp. uniform) frames.

1.6. Samuel compactification. A compact regular frame L ad-
mits precisely one nearness, namely CL, and it is a uniformity, hence
CL = FL (=tbCL = tbFL). Thus, for such L every frame homomor-
phism M → L is a uniform homomorphism for any (M,A). Thus the
category of compact regular frames can be viewed as a full subcategory
of the category of uniform frames.

An ideal J in a uniform frame (L,A) is said to be A-regular (briefly,
regular) if

∀a ∈ J, ∃b ∈ J such that a ⊳A b.

The set R(L,A) of all regular ideals, ordered by inclusion, is a subframe
of the ideal frame of L and hence it is compact. The homomorphisms

v(L,A) = (J 7→
∨

J) : R(L,A) → (L,A)

are uniform and constitute the coreflection maps from the category of
compact uniform frames to that of uniform frames, called the Samuel

compactification (see [4]).

Note. Compare this with the Stone-Čech compactification as con-
structed in [3]. There, one considers the completely regular ideals J
in the sense that for a ∈ J there is a b ∈ J such that a ≺≺ b. Since
≺≺ is just ⊳FL, this means that the Stone-Čech compactification is the
Samuel compactification of (L, FL).

1.7. Recall that a frame homomorphism h is dense if h(a) = 0 im-
plies a = 0. For nearness frames (L,A) and (M,B), a strict surjection

h : (L,A) → (M,B) (dense surjection in [5])) is a dense onto uniform
homomorphism such that

(1) B = {h[A] | A ∈ A}, and
(2) {h∗[B] | B ∈ B}, where h∗ is the right Galois adjoint of h, is a

basis of A.

(Note that (2) is automatic in case of uniform frames.)
A nearness frame (L,A) is complete if every strict surjection (M,B)→

(L,A) is an isomorphism. A completion of (L,A) is a strict surjection
γ : C(L,A) → (L,A) where C(L,A) is complete. It exists and is
unique up to isomorphism ([5, 9, 12, 14]).
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1.7.1. The completion of a uniform frame (L,A) can be constructed
via the Samuel compactification (see [4]). One takes R(L,A) and con-
siders

C(L,A) = R(L,A)/R

where R is the congruence generated by

{(
∨

{k(a) | a ∈ A}, L) | A ∈ A} where k(a) = {x | x ⊳A a}

(that is, one factorizes so as to make the {k(a) | a ∈ A} covers).

1.7.2. If (L,A) is a general nearness frame one can construct a
completion C(L,A) as DL/R where DL is the down-set frame and R
is the congruence on L generated by

{k(a), ↓a) | a ∈ L} ∪ {(
∨

{↓a | a ∈ A}, L) | A ∈ A}

endowed with the nearness A↓generated by {{↓a | a ∈ A} | A ∈ A}.
This leads to C(L,A) consisting of the down-sets U satisfying

(R1) k(a) ⊆ U ⇒ a ∈ U , and
(R2) ∃C ∈ A such that {a} ∧ C ⊆ U ⇒ a ∈ U .

More precisely, the completion is the strict surjection

γ(L,A) : C(L,A) → (L,A)

where γ(L.A)(U) =
∨

U , with the right Galois adjoint given by

γ∗(a) =↓a.

2. Near compactness and Samuel near-compactification

2.1. A regular frame will be called near-compact if it is complete
with respect to some totally bounded nearness. To motivate this ter-
minology recall that for completely regular frames L,

L is compact iff it is complete with respect to some totally

bounded uniformity.

Thus we have a natural concept parallel to compactness suitable for
general regular frames. Note, however, that even a completely regular
frame can be near-compact without being compact – see 2.6 below;
on the other hand, if a regular frame is compact then it is actually
completely regular.

In a different direction one has from [1] that

(2.1.1) the completion of a nearness frame is compact iff the nearness

is a totally bounded uniformity

and
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(2.1.2) a complete nearness frame is compact iff it is totally bounded

uniform.

2.2. One cannot expect a very nice behaviour of the class of near-
compact frames, mainly because the completion of general nearness
frames is not functorial ([2], see 3.3 below), a nearness larger than a
complete one is not necessarily complete, and other anomalies of the
non-uniform nearnesses. However, independently of functoriality, com-
pletion of nearness frames generally preserves coproducts ([15]). Con-
sequently, we have the counterpart of the point-free Tychonoff theorem

any coproduct of near-compact frames is near-compact.

2.3. Extending the concept of surjection ([5]) we call an onto uniform
homomorphism h : (M,B) → (L,A) between two nearness frames with
B totally bounded a tb-surjection if the image of B under h is tbA. In
this sense we speak of dense tb-surjection and strict tb-surjection (recall
1.7).

Define

S(L,A) = C(L, tbA).

Hence we have the strict tb-surjections

σ(L,A) : S(L,A) → (L,A)

composing the completion maps γ(L,tbA) with the identical embeddings
(L, tbA) → (L,A).

2.3.1. Proposition. Up to isomorphism, σ(L,A) : S(L,A) → (L,A)
is the unique strict tb-surjection h : (M,B) → (L,A) with (M,B)
complete.

Proof. (M,B) is complete and h decomposes as

(M,B)
k

−−−→ (L, tbA)
idL−−−→ (L,A).

Now se the unicity of completion for k. �

2.3.2. Note that S(L,A) is compact uniform whenever (L,A) is
uniform (see (2.1.1)) so that we have obtained an alternative descrip-
tion of the Samuel compactification of uniform frames ([4], 1.7.1).

Consequently we will refer to σ(L,A) : S(L,A) → (L,A) in the gen-
eral case as the Samuel near-compactification of (L,A).

2.4. An alternative description of Stone-Čech compactifica-

tion. Recall the Stone-Čech compactification from [3]. There, for a
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completely regular frame L, one took the frame KL of completely reg-
ular ideals on L; it turns out that the map vL = (J 7→

∨
J) : KL → L

is a dense onto frame homomorphism, with right adjoint

kL = (a 7→ {x | x ≺≺ a}) : L → KL,

and constitutes the compact coreflection map.
Now consider for a completely regular L the fine uniformity FL

and its totally bounded part tbFL. Then C(L, tbFL) is compact by
(2.1.2) and (1.5.1), and applying the underlying frame functor | · | to
γ(L,tbFL) : C(L, tbFL) → (L, tbFL) we obtain γL : |C(L, tbFL)| → L,
a homomorphism to L from a compact completely regular frame. Fur-
ther, for any other such h : M → L we have the following commutative
square

C(L, tbFL) −−−→ (L, tbFL)

eh

x
xh

C(M, tbFM) −−−−−→
γ(M,tbFM)

(M, tbFM)

where the bottom map is an isomorphism by compacthess. Hence,
acting the functor | · | produces the factorization h = γLh, where h is
unique since γL is dense, showing that γL is the coreflection map from
compact completely regular frames.

2.5. For any regular frame L, its fine near-compactification will be
the underlying frame homomorphism of the completion map

γ(L,tbCL) : C(L, tbCL) → (L, tbCL),

denoted by δL : NL → L. Note this is characterized as a dense frame
homomorphism h : M → L for which {h∗[A] | A ∈ tbCL} generates a
complete nearness on M

2.5.1. Remark. It should be emphasized that the Stone-Čech
compactification of a completely regular L is not necessarily its fine
near-compactification. Take a completely regular L that is not normal,
and v = vL : KL → L. Because of the standard fact that v[A]v[B] ≤
v[AB] each cover of L of the form v[A], with A a cover of KL, has a
star-refinement. Since L is not normal there exists a finite cover B of
L that has no star-refinement. Thus, v∗[B] cannot be a cover because
v[v∗[B]] = B.

2.6. Proposition. For any regular L, if its fine near-compactification

is normal then L it is normal.
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Proof. If a ∨ b = 1 in L then {a, b} is a uniform cover of (L, tbC),
so {↓a, ↓b} is a cover of NL, hence there exist U, V ∈ NL such that
U ∩V =↓0 and (↓a)∨U =↓1 =↓b∨V . Then we have for the completion
map γ : NL = C(L, tbCL) → (L, tbCL) that a ∨ γ(U) = 1 = b ∨ γ(V ),
γ(U) ∧ γ(V ) = 0, showing L is normal. �

Corollary. For a regular L that is not normal, NL is not compact.

Hence, it is near-compact but not compact.

2.7. Proposition. A near-compact regular frame is compact iff it

is normal.

Proof. ⇒: Any compact regular frame is normal,
⇐: Regular and normal implies that ≺ interpolates, hence the finite

cover nearness is a uniformity. Thus L is complete in a totally bounded
uniformity, and therefore compact. �

3. More on NL, and comparison of two completions

3.1. The Stone-Čech compactification KL in [3] (see 2.4) was ob-
tained as a subframe of the ideal frame JL. In fact, the NL is also a
frame of particular ideals, although specified differently. We have

Proposition NL isisomorphic to the frame of the ideals J ⊆ L such

that

(∗) {x | x ≺ a} ⊆ J ⇒ a ∈ L.

Proof. We will prove that the down-sets U ⊆ L describing C(L, tbL)
are precisely the mentioned ideals.

First note that ⊳tbCL=≺ (for a ≺ b consider the cover {a∗, b} and
the fact that {a∗, b}a ≤ b) so that {x | x ≺ a} is the corresponding
k(a). Now let U satisfy (R1) and (R2). Then we have (∗) (≡ (R1));
secondly, if a, b ∈ U and x ≺ a ∨ b then {x∗, a, b} is a finite cover and
x ∧ x∗, x ∧ a, x ∧ b ∈ U so that x ∈ U . Using (∗) again we obtain
a ∨ b ∈ U .

On the other hand, if U is an ideal satisfying (∗) then it is a downset
satisfying (R1); further, if C = {c1, . . . , cn} is a finite cover and {a} ∧
C ⊆ U then a =

∨
{a}∧C ∈ U since U is an ideal a∧ ci ∈ U and since

it is a ideal, �

3.1.1. In particular, for a Boolean frame L,

NL = JL = KL

as a ≺ a here.
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3.2. For any completely regular frame L, the general facts about
strong nearness frames and completions supply a uniform homomor-
phism h : KL → NL such that hv∗ = (ν∗)

◦ for the completion maps

v : KL → L and ν : NL → L

where v∗(a) = k(a), ν∗(a) =↓a, and

(ν∗)
◦(a) =

∨
{ν∗(x) | x ≺≺ a} =

∨
{↓x | x ≺≺ a} = n(k(a)),

(notation from [2],2) n being the nucleus (1.1) in JL which determines
NL.

Proposition. For any L, h is a frame embedding and it is an iso-

morphism iff L is normal.

Proof. For any J ∈ JL,

h(J) =
∨

{h(k(a)) | a ∈ J} =
∨

{hv∗(a) | a ∈ J} =

=
∨

{k(a) | a ∈ J} = n(J).

Thus, J =↓0 whenever h(J) =↓0, that is, h is dense, and hence one-one
by compactness and regularity.

Further, if h is an isomorphism then NL is compact and by [1] this
makes the finite cover nearness of L a uniformity which in turn implies
L is normal. Conversely, for normal L, NL is a Stone-Čech compacti-
fication of L and hence h is an isomorphism. �

Note. In particular, for compact (completely) regular L, NL → L
is an isomorphism iff L is normal.

3.3. The Stone-Čech compactification is functorial, indeed the core-
flection from the subcategory of compact regular frames. The same
holds for the Samuel compactification of uniform frames. The ques-
tion naturally arises as to the functoriality of the near-compactification
NL → L. The ansver is negative; the result 3.4 in [2] translates in our
terminology to

Proposition. The correspondence L 7→ NL is not functorial with

γL : NL → L natural.

Proof. We give an alternative proof which fits better into the present
context.

Let N be any regular frame which is extremally disconnected, that
is, with a∗∨a∗∗ = 1 for all a. As is well known, this makes the Boolean
frame

BN = {a ∈ N | a = a∗∗}
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a bounded sublattice of N so that the map

BN
ε=(b7→b)
−−−−−→ N

(γL)∗=(b7→↓b)
−−−−−−−−→ NN

is a bounded lattice homomorphism (note that by 3.1, ↓(b∨ c) =↓b∨↓c
in NN); further, such a lattice homomorphism is known to determine
a frame homomorphism k : J(BN) → NN such that k(↓b) =↓b for all
b ∈ BN . Now NM = JM as noted in 3.1.1, and supposing L 7→ NL
is functorial as required we have the following commuting diagram

NN
h

−−−→ J(BN)

δN

y
yδBN

N −−−→
βN

BN

with βN(a) = a∗∗ and δBN (J) =
∨

J (in BN). Thus δBNh = βNδN as
well as k(δBN )∗ = (δN )∗ε and combining these we obtain

δBN(δBN)∗ = idBN = βNε = βNδN(δN )∗ε = δBNhk(δBN)∗

so that δBN = δBNhk because (δBN)∗[BN ] generates J(BN). Conse-
quently, hk = id since δBN is dense and therefore monic, and as h is
also dense (βN being dense) this makes it an isomorphism; hence NN
is compact and by 2.7 this makes N normal. However, there do exist
extremally disconnected regular frames which are not normal, such as
the frame of open sets of the Gleason cover X of the Tychonoff plank
[7, 6]). �

3.4. Samuel near-compactifications and completions. We
begin with a general result, to be used as a crucial tool later on.

3.4.1. Lemma. For any nearnesses A and B on a regular frame L
such that B ⊆ A and ⊳B=⊳A there exists a unform frame homomor-

phism h : C(L,B) → C(L,A) such that h(↓a) =↓a and h∗(↓a) =↓a.
Proof. For the nuclei lA and lB on DL that determine C(L,A) resp.

C(L,B) the given condition imply that lB ≤ lA; hence C(L,A) is the
image of C(L,B) under the action of lA and we can define h as the
map induced by this, Then, obviously, h(↓a) =↓(a) for all a ∈ L and
by the definition of the nearness involved it is then clear that h is
a uniform frame homomorphism. Further, h(↓a) =↓ (a) means that
γ(L,A)h = εγ(L,B) for the completion maps for (L,A) and (L,B) and
the uniform homomorphism ε : (L,B) → (L,A) mapping L identically.
Consequently h∗(γ(L,A))∗ = (γ(L,B))∗ε∗ which says that h∗(↓a) =↓a for
all a ∈ L, as claimed. �
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3.4.2. For any nearness frame (L,A), recall from 2.3.2 that its
Samuel near-compactification is

σ(L,A) = C(L, tbA)
γ(L,tbA)
−−−−→ (L, tbA)

idL−−−→ (L,A).

Note that for uniform (L,A), this is its Samuel compactification as
introduced in [4]. On the other hand, the Samuel near-compactification
of any nearness frame determines its completion as follows.

3.4.3 Proposition. For any nearness frame (L,A), if

C(L, tbA) = (M,B),
σ = σ(L,A) : (M,B) → (L,A),

M̃ = M/Θ for the congruence Θ on M generated by the pairs

(
∨

σ∗[A], 1), A ∈ A,

ν : M → M̃ is the corresponding quotient homomorphism,

σ = σ̃ν, and

Ã is the nearness on M̃ generated by {νσ∗[A] | A ∈ A},

then σ̃ : (M̃, Ã) → (L,A) is the completion of (L,A).
Proof. To begin with, it is obvious that σ factors as stated and the

νσ∗[A], A ∈ A are covers of M̃ : σ(
∨

σ∗[A]) =
∨

σσ∗[A] =
∨

A = 1 and

ν(
∨

σ∗[A]) = 1 by the definition of ν. Further, Ã is a nearness on M̃ :
if x ⊳B a in M so that Bx ≤ a for some B ∈ B then, by the properties
of σ, we have σ∗[C] ≤ B for some C ∈ tbA, hence also σ∗[C]x ≤ a
which implies νσ∗[C]ν(x) ≤ ν(a), therefore ν(x) ⊳ eA ν(a), and finally
ν(a) =

∨
{ν(x) | ν(x) ⊳ eA ν(a)} by the properties of B.

Next, σ̃ is a strict surjection: it is obviously dense onto, and strict
because σ̃(νσ∗[A]) = A and

νσ∗[A] = νν∗(σ̃)∗[A] = (σ̃)∗[A]

for each A ∈ A. Now it follows from [1] 3.4 that there exists a strict

surjection g : C(L,A) → (M̃, Ã) such that σ̃g = γ(L,A). On the other
hand, we have h : (M,B) → C(L,A) with γ(L,A)h = σ by the lemma,
because⊳tbA=⊳A. Now σ∗ = h∗(γ(L,A))∗ so that hσ∗ = (γ(L,A))∗, and
hence, for any A ∈ A,

h(
∨

σ∗[A]) =
∨

hσ∗[A] =
∨

(γ(L,A))∗[A] = 1,

the last step by the properties of completions. Next, by the definition

of (M̃, Ã), there exists l : (M̃, Ã) → C(L,A) such that lν = h. As a
result,

σ̃glν = σ̃gh = γ(L,A)h = σ = σ̃ν
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and hence gl = id because σ̃ is dense and ν isonto. Finally, since g
is dense this makes it an isomorphism, showing σ̃ is the completion of
(L,A). �

3.4.4. Remarks. 1. It is an open question whether the proposition
can be proved without reference to the existence of the completion of
(L,A); of course this was done in the uniform case ([4]), based on the
properties of compact uniform frames, but whether this is still possible
in the general case is not clear.

2. There is a natural generalization of the initial part of the proposi-
tion as follows. Calling a uniform homomorphism h : (M,B) → (L,A)
relatively strict if B is generated by the h∗h[B], B ∈ B, one readily
obtains the following by the same arguments used in the above proof:
Any dense onto relatively strict homomorphism h : (M,B) → (L,A)
has a factorization

(M,B)
ν

−−−→ (M̃, Ã)
eh

−−−→ (L,A),

with the same M̃ , ν, h̃, Ã as before, where h̃ is a strict surjection. This
then applies to any Samuel near-compactification σ : (M,B) → (L,A)

so that one obtains the strict surjection σ̃ : (M̃, Ã) → (L,A) and

then also the required g : C(L,A) → (M̃, Ã) with σ̃g = γA. Only
the remaining step to show g is an isomorphism requires the particular
properties of tbA ⊆ A which make the original lemma applicable.
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