Constant-factor approximation of domination
number in sparse graphs
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Abstract

Thek-domination numbeof a graph is the minimum size of a s€such
that every vertex o is in distance at most from X. We give a linear time
constant-factor approximation algorithm fedomination number in classes
of graphs with bounded expansion, which include e.g. propaor-closed
graph classes, classes closed on topological minors aedad graphs that
can be drawn on a fixed surface with bounded number of crassingeach
edge.

The algorithm is based on the following approximate min-rclaaracter-
ization. A subseA of vertices of a grapks is d-independeni the distance
between each pair of verticesAnis greater thawl. Note that the size of the
largest X-independent set is a lower bound for tadomination number. We
show that every graph from a fixed class with bounded expartsiotains a
2k-independent seA and ak-dominating seD such thaiD| = O(|A|), and
these sets can be found in linear time. For domination nurgiber 1) the
assumptions can be relaxed, and the result holds for alhgelgsses with
arrangeability bounded by a constant.

1 Introduction

For an undirected graph, a setD C V(G) is dominatingif every vertexv € V(G)\

D has a neighbor iD. Determining the minimal size do@j of a dominating
set inG is NP-complete in general (Karp [7]). Moreover, even appnating it
within factor better tharO(log|V(G)|) is NP-complete (Raz and Safra [12]). On
the other hand, the problem becomes more manageable whanteesto some
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special classes of sparse graphs. For example, there @&JAS for dominating
set in planar graphs (Baker [1]).

In this paper, we follow the approach of Bohme and Mohar ffEubsetA of
vertices of a grapks is d-independenif the distance between each pair of vertices
in Alis greater tham. Denote byay(G) the maximum size of d-independent set
in G. Clearly, every vertex o5 has at most one neighbor in a 2-independent set;
hence, we have doB) > a»(G). In general, it is not possible to give an upper
bound on dontg) in the terms ofr»(G); see Section 4 for examples of graphs with
a2(G) = 2, but unbounded domination number. However, Bohme anda¥vi[#]
proved that for graphs in any proper minor-closed class,(@ns bounded by a
linear function ofa,(G).

Theorem 1(Bohme and Mohar [2], Corollary 1.2)f G does not contain  as
a minor, then dorfG) < (4r + (9 — 1)(r + 1))a2(G) — 3r.

The proof of the theorem is constructive, giving a polyndrtirme algorithm
that finds a dominating sdd and a 2-independent sétsuch thatiD| < (4r +
(q—1)(r + 1))IAl — 3r. Since|Al < dom(@G), this approximates dor@) within the
constant factor &+ (g — 1)(r + 1).

We generalize Theorem 1 by relaxing the assumption on theidered class
of graphs. First, let us introduce several closely relatexply parameters. Let
Vi, V2, ..., Vy be an ordering of the vertices of a gra@gh A vertexv;, is weakly k-
accessibldrom v, if a < band there exists a path = vi,, Vi, . . ., Vi, = Vp of length
¢ < kinGsuchthata < ijfor 0 < j < ¢. We say thats, is k-accessibldrom v,
if additionally b <'i; for 1 < j < ¢. For a fixed ordering o¥/(G), let Q«(v) denote
the set of vertices that are wealtyaccessible fronv, R¢(v) the set of vertices
that are weaklyk-accessible fronv and letgk(v) = |Qk(V)] andry(v) = |R«(V)|.
Thek-backconnectivity d§v) of v with respect to the fixed ordering ®(G) is the
maximum number of paths fromof length at mosk that intersect only iv, such
that all endvertices of these paths distinct frerappear before in the ordering
(clearly, we can assume that the internal vertices of thaspappear aftey in
the ordering). Note thabc(v) < re(v) < ak(v). Theweak k-coloring numbeik-
coloring numberandk-admissibilityof the ordering is the maximum of 4 gx(Vv),

1 + rk(v) andbg(v), respectively, over € V(G). The weakk-coloring number
wcol(G) of G is the minimum of the weak-coloring humbers over all orderings
of V(G), and thek-coloring number c@(G) andk-admissibility adm(G) of G are
defined analogically.

Obviously, adm(G) < colk(G) < wcol(G). Conversely, it is easy to see that
wcol(G) < colf(G) (Kierstead and Yang [9]) and that ¢(B) < adnf(G) + 1
(Lemma 5 in Section 3). Let us remark that wg@) — 1 = col,(G) — 1 = admy(G)

Is equal to the degeneracy@f and that cal(G) — 1 and adm(G) are known as the
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arrangeability andadmissibilityof G, respectively, in the literature (see e.g. [13],
[3] or [8]). For the domination number, our main result carstaed as follows.

Theorem 2. If G satisfies wceG) < ¢, then dor(G) < c%a»(G).

The proof gives a linear-time algorithm to find the correspong dominating
and 2-independent sets, assuming that the ordering of thlieasgeofG with weak
2-coloring number at mostis given. We discuss the algorithmic and complexity
aspects of obtaining such an ordering in Section 3. To rdlaerem 2 to The-
orem 1, we use the following characterization. For an intége 0 and a graph
G, let sd(G) denote the graph obtained fragby subdividing each edge exactly
times.

Theorem 3(Dvorak [4], Theorem Q)Let G be a graph and d an integer.dfH) <
d for every H such that K G or sdi(H) € G, then co}(G) < 4d?(4d + 5) + 1.

Conversely, let us note thatd{H) = d, then cob(sdi(H)) > adnmp(sdi(H)) >
d, which is easy to see by considering the last vertex of degrdeastd in the
optimal ordering for 2-admissibility. Consider now a propeinor-closed graph
classg. There exists a constantsuch that all graphs igr have minimum degree
less tharc (Kostochka [10]). Now, if sg(H) € G for a graphG € G, thenH is a
minor of G and belongs tg; as well, and thug(H) < c. Theorem 3 thus implies
that cop(G) = O(c®) and we can apply Theorem 2 f@&. Therefore, we indeed
generalize Theorem 1, although the multiplicative cortstarour result may be
greater. More generally, the same argument shows that &merapplies to all
graph classes closed on topological subgraphs.

Bohme and Mohar [2] in fact proved a more general result eomng dis-
tance domination. A seD C V(G) is k-dominatingif the distance from any
vertex of G to D is at mostk; thus, 1-dominating sets are precisely dominating
sets. Let do(G) denote the size of the smalldstominating set irG. Clearly,
dom(G) > ax(G). Theorem 1.1 of [2] shows that in any proper minor-closed
class of graphs, dog{G) = O(am(G)), for anym < %(k + 1). We strengthen this
result by considering less restricted classes of graphshasvincreasingnto the
natural bound:

Theorem 4. If 1 < m < 2k + 1 and G satisfies wcg(G) < c, then dom(G) <
c?am(G). Furthermore, if an ordering of ¥G) such that g(v) < c for every ve
V(G) is given, then a k-dominating set D and an m-independent seichA that
ID| < ¢|A| can be found in @? maxk, m)|V(G))) time.

The bound R+1 onminstead of R may seem surprising at first. Itis caused by
the following parity reason: suppose thats a x-independent set anda vertex
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such that for every pair of verticesy € T, the shortest path betweenandy
passes throughh SinceT is Zk-independent, at most one vertexTofs in distance
at mostk from v. Therefore,T contains a (R + 1)-independent subset of size at
least|T| — 1.

For which graph classes can Theorem 4 be applied for dvery0? l.e., for
what graph classes does there exist a funcfimuch that wcgh(G) < f(m) for
every graplG in the class? By Zhu [14], these are precisely the graphetasgh
bounded expansiofsee Nesetfil and Ossona de Mendez [11] for various elgunta
definitions and properties of such graph classes). Let us th@it most classes
of “structurally sparse” graphs have bounded expansiariuaing proper graph
classes closed on topological minors and graphs that caraiaadh a fixed surface
with bounded number of crossings on each edge.

2 Proof of the main result

Theorem 2 is a special case of Theorem 4 Wwith 1 andm = 2, thus it stifices
to prove the latter. We defer the discussion of the algorithaspects to Section 3,
and prove here just the existence of the §&ndA with the required properties.

Proof of Theorem 4Letvs, ..., v, be an ordering of vertices & such thatgy(v) <
c — 1 for everyv € V(G). We construct setB andA’ using Algorithm 1. Clearly,
D is ak-dominating set irG and|D| < c|A].

e initialize D := 0, A’ .= 0 andR:= V(G)
e while Ris nonempty, repeat:

— letv be the first vertex oR in the ordering

— setA’ = A U {v}

— setD := D U {v} U Qm(V)

— remove fromR all vertices whose distance frofw} U Qm (V) is at mosk

Algorithm 1: Finding the dominating set

For eachw € A, let T\, be the set of vertices € A’ such thawv € {a;} U Qk(&).
Let H be the graph with vertex sé& such thauv € E(H) iff the distance between
uandvin G is at mostm. Letay, ay, ..., as be the vertices oH in the order
consistent with the ordering &f(G).

Consider verticesy,a; € V(H) such thatj < i andG contains a pathP of
length at mostn betweeng; anda;. Letz be the first vertex oP according to the
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ordering ofV(G). Observe that € Qm(a;) N ({aj} U Qm(a;)). By the construction
of A, the distance o from {aj} U Qm(a;) is at leask + 1, and thus the length of
the subpath oP betweena; andzis at mostm- k — 1 < k. Therefore, we have
aj € T,. Itfollows that if a; is 1-accessible froma; in H, thenaj € Uweq,(a) Tw-
On the other hand, we hayg,| < 1 for everyw € A’, since ifx € Ty, then all the
vertices whose distance fromis at mostk were removed fronik when we added
x to A’. Therefore, the number of vertices ldfthat are 1-accessible from is at
mostgm(a) < c- 1.

We conclude that ce(H) < c. Since coi(H) > y(H), the graphH has an
independent seA of size at leastA’|/c. By the definition ofH, the setA is m
independent i1, and we havéD| < ¢JA’| < ¢?|A| as required. O

3 Algorithmic aspects

Let G be a graph om vertices such that wcg(G) < c. First, assume that we are
given an ordering oV (G) such thaign(v) < c for everyv € V(G). Sincem > 1,
this implies thatG is c-degenerate, and thus it has at mosedges.

For eachi < mandv € V(G), we determine the se®;(v) (whose size is
bounded byc) using the following algorithm: For = 1, Q(v) is the set of
neighbors ofv that appear before it in the ordering, which can be deterhine
by enumerating all the edges incident with Fori > 1, Q;(v) is the subset of
Q1(V) U Uuwer(e) Qi-1(u) consisting of the vertices beforein the ordering. Note
that Q;(v) can be determined i®(c(deg{) + 1)), assuming tha;_, was already
computed before. Therefore, eah can be computed for all vertices &f in
O(c?n), and in total we spend tim@(c?mn) to determineQ,(Vv) for every vertex of
G.

With this information, we can implement Algorithm 1 in tin@(c(k + 1)n).
The only nontrivial part is the removal of the vertices fr&nFor each vertex of
V(G) we maintain the valug(v) = min(k + 1, d(v)), whered(v) is the distance of
from D. In each step, we hawee Riff p(v) = k+ 1 andv € D iff p(v) = 0. When
a vertexv is added tdD, we decreas@(v) to 0. For each vertew, whenever the
value of p(w) decreases, we recursively propagate this change to tgbbwes of
w: if uw e E(G) andp(u) > p(w) + 1, then we decreaggu) to p(w) + 1. Clearly,
the value ofp(w) decreases at mos ¢ 1) times during the run of the algorithm,
and we spend tim®((k + 1) deg{)) by updating it and propagating the decrease
to the neighbors. Therefore, the total time for maintairtimg setR is bounded by
O(c(k + 1)n).

For the final part of the algorithm, we need to determine tlgesdfH. First
we compute the séf,, for each vertexv € V(G): we initialize these sets 1 and



then for eaclta € A’, we addato T, for eachw € {a} U Qk(a). A supergrapid’ of
H with col;(H”) < cis then obtained by joining eaghe A’ with all the elements
of Uweoy(a Tw that precede in the ordering. We find a proper coloring Bf by
at mostc colors using the standard greedy algorithm, and ch@oas the largest
color class in this coloring. The time for this phas®©iEn).

Therefore, the total complexity of the algorithm@$c? max(mn, k)n). The space
complexity is bounded by the space needed to repr&deahdQ,,, and thus it is
O(cn).

Let us now turn our attention to the problem of finding a sudatrdering
of vertices. We were not able to find a polynomial-time altjon to determine
wcolny(G) for m > 2, and we conjecture that the problem is NP-complete. Horyveve
determining adm(G) appears to be easier, and the corresponding orderingsas al
bounded weakn-coloring number.

Lemma 5. Let G be a graph andyy v, ..., W an ordering of its vertices with
m-admissibility at most ¢c. Then the m-coloring number ofdttering is at most
clc-1)™1+1.

Proof. Consider a vertex € V(G). There exists a tre€ C G rooted inv such that
Rm(V) is the set of leaves oF, every path oflT starting inv has length at mosn
and all non-leaf vertices af distinct fromv appear aftev in the ordering. Observe
that every non-leaf verten € V(T) has degree at mostin T, as otherwise there
would exist at least + 1 paths inG from u of length at most intersecting only
in u and ending befora (in {v} U Ryn(V)), contradicting the assumption that the
m-backconnectivity ofi is at mostc. We conclude thaT has at most(c — 1)™?
leaves, and thusy(v) < c(c — 1)™ 2. Since this holds for every vertaxe V(G),
the claim of the lemma follows. O

Together with the observation of Kierstead and Yang [9F tmplies that the
weak m-coloring number of the ordering is at mos{d — 1)™* + 1)™. For a
setS C V(G) andv € S, let by(S, V) be the maximum number of paths from
v; of length at mosim intersecting only inv; whose internal vertices belong to
V(G) \ S and endvertices belong & The ordering oV (G) with the smallestm-
admissibility can be found using Algorithm 2. Clearly, tlesulting ordering has
mradmissibility maxps, ..., pn), and it is easy to see that this is equal to aG):
Suppose that there exists an orderkgf V(G) with mradmissibility at mostp,
and consider an arbitrary s8tC V(G). Letv be the last vertex o according
to the orderingX. Thenby(S,v) < p, since all vertices of are beforev in the
orderingX and them-backconnectivity o in X is at mostp. Therefore, we have
pi < pfor1<i < ninthe algorithm.



e initialize S = V(G)
e fOori=nn-1,...,1:

— choosey; € S minimizing p; = bm(S, vi)
— setS := S\ {vj}

Algorithm 2: Determiningm-admissibility

A bit problematic step in the algorithm is finding the vertex S minimizing
bm(S, V), since form > 5, determiningbn(S, v) is NP-complete in general (ltai,
Perl and Shiloach [6]). Nevertheleds,(S,Vv) can be approximated within factor
of m, by repeatedly taking any path fromo S of length at mosmwith all internal
vertices inV(G) \ S and removing its vertices distinct from(each such removal
can interrupt at most paths in the optimal solution, hence we will be able to pick
at leastby(S, v)/m paths this way). A straightforward implementation gives an
O(mr?) algorithm to approximate adpiG) within factor ofm.

When them-admissibility of G is bounded by a constam; we can obtain a
polynomial-time algorithm to determine agji@) exactly. To test whethdg,(S, v) <
p, we simply enumerate all sets of at m@st 1 paths of length at mosh starting
in v. A straightforward implementation gives an algorithm withhe complexity
O(nMP*™2)  This time complexity can be improved significantly if thensidered
class of graphg has bounded expansion. Dvorak et al. [5] described a tiaie s
ture to represent a graph in such a class and answer first-gueees for it in a
constant time. In particular, suppose théx) is a first-order formula with one free
variable x using a binary predicate and a unary predicate This data structure
can be used to represent a graplziand a subseb of its vertices, so that

e the data structure can be initialized in linear time,
e We can add a vertex t8 or remove it fromS in constant time, and

e we can find in constant time a vertex V(G) such thatp(v) holds, withe
interpreted as the adjacency@and s as the membership i8, or decide
that no such vertex exists.

For the purpose of the algorithm foradmissibility, to test whethds,(S, vi) <
p, we apply the data structure for the property

e = S(X) A= |@y1) .- AW Y1, - Ym(ps1) |



wherey is the formula describing that the subgraph inducedy;, .. ., Ymp+1)}
containsp + 1 paths fromx of length at mostn, intersecting only inx, and with
endvertices satisfyingand internal vertices not satisfyirgy

Using this data structure, we repeatedly find S such thab(S, x) < pand
remove it from taS, thus obtaining an ordering &(G) with admissibility at most
p or determining that adp{(G) > pin linear time. By Zhu [14], for each clagz
with bounded expansion, there exists a functfosuch that adm(G) < f(m) for
eachG € G. Therefore, we can determine the exact value ohtkeedmissibility by
applying this testfop =1,..., f(m).

Theorem 6. LetG be a class of graphs with bounded expansion ar fran inte-
ger. There exists a linear-time algorithm that for eacle@ determines adi(G)
and outputs the corresponding ordering aiG).

By combining this algorithm with Theorem 4, we obtain thddaling result.

Theorem 7. Let G be a class of graphs with bounded expansion and H a
constant. There exists an algorithm that for eack G returns a k-dominating set
D and a(2k + 1)-independent set A such th&t = O(JA]). The algorithm runs in
time |V (G))).

4 Lower bound

Let us now explore the limits for the possible extensionslwédrem 4. Fon > 3,

let G, = sthk-1(Kp), let X be the set of the middle vertices of the paths correspond-
ing to the edges oK, in G;, and letY be the set of vertices @, of degreen — 1.

Let G, be the graph obtained fro@, by adding a new vertex adjacent to all the
vertices ofX.

The distance between any two vertices\{s,) \ Y is at most R, since all
these vertices are in distance at miofitom v. Furthermore, the distance between
any two vertices ofY is most X, since they are joined by a path of lengtk 2
corresponding to an edge &f,. Therefore,ax(Gn) < 2. On the other hand, for
anyw € V(Gy) \ X, there is at most one vertex ¥fwhose distance fromw is at
mostk, and each vertex of has distance at moktfrom exactly two vertices oY.
Therefore, do(G,,) > n/2. Thereforek-domination number cannot be bounded
by a function of X-independence number on any class of graphs that contains
{Gj:i=3.

Let us consider the following ordering of the verticesGyf the first vertex is
v, followed byY in an arbitrary order, followed by the rest of verticesGyf in an
arbitrary order. Since the distance between any two vertééy is 2k, we have
Ook-1(W) < 1 forw € Y, and similarlygo-1(w) < 2k + 1 forw € V(Gy) \ Y.

8



Therefore, weak_1(Gn) < 2k + 2 for everyn > 3. It follows that at least in the
case tham = 2k, it is not suficient to restrict wcgk_1(G) in Theorem 4.

Another possible extension, bounding dd@) by a function ofao,;2(G), is
impossible even for trees [2], as the grapk(kd ) demonstrates.
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