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Abstract

Thek-domination numberof a graph is the minimum size of a setX such
that every vertex ofG is in distance at mostk from X. We give a linear time
constant-factor approximation algorithm fork-domination number in classes
of graphs with bounded expansion, which include e.g. properminor-closed
graph classes, classes closed on topological minors or classes of graphs that
can be drawn on a fixed surface with bounded number of crossings on each
edge.

The algorithm is based on the following approximate min-maxcharacter-
ization. A subsetA of vertices of a graphG is d-independentif the distance
between each pair of vertices inA is greater thand. Note that the size of the
largest 2k-independent set is a lower bound for thek-domination number. We
show that every graph from a fixed class with bounded expansion contains a
2k-independent setA and ak-dominating setD such that|D| = O(|A|), and
these sets can be found in linear time. For domination number(k = 1) the
assumptions can be relaxed, and the result holds for all graph classes with
arrangeability bounded by a constant.

1 Introduction

For an undirected graphG, a setD ⊆ V(G) is dominatingif every vertexv ∈ V(G)\
D has a neighbor inD. Determining the minimal size dom(G) of a dominating
set inG is NP-complete in general (Karp [7]). Moreover, even approximating it
within factor better thanO(log |V(G)|) is NP-complete (Raz and Safra [12]). On
the other hand, the problem becomes more manageable when restricted to some
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special classes of sparse graphs. For example, there existsa PTAS for dominating
set in planar graphs (Baker [1]).

In this paper, we follow the approach of Böhme and Mohar [2].A subsetA of
vertices of a graphG is d-independentif the distance between each pair of vertices
in A is greater thand. Denote byαd(G) the maximum size of ad-independent set
in G. Clearly, every vertex ofG has at most one neighbor in a 2-independent set;
hence, we have dom(G) ≥ α2(G). In general, it is not possible to give an upper
bound on dom(G) in the terms ofα2(G); see Section 4 for examples of graphs with
α2(G) = 2, but unbounded domination number. However, Böhme and Mohar [2]
proved that for graphs in any proper minor-closed class, dom(G) is bounded by a
linear function ofα2(G).

Theorem 1 (Böhme and Mohar [2], Corollary 1.2). If G does not contain Kq,r as
a minor, then dom(G) ≤ (4r + (q− 1)(r + 1))α2(G) − 3r.

The proof of the theorem is constructive, giving a polynomial-time algorithm
that finds a dominating setD and a 2-independent setA such that|D| ≤ (4r +
(q − 1)(r + 1))|A| − 3r. Since|A| ≤ dom(G), this approximates dom(G) within the
constant factor 4r + (q− 1)(r + 1).

We generalize Theorem 1 by relaxing the assumption on the considered class
of graphs. First, let us introduce several closely related graph parameters. Let
v1, v2, . . . ,vn be an ordering of the vertices of a graphG. A vertexva is weakly k-
accessiblefrom vb if a < b and there exists a pathva = vi0, vi1, . . . , viℓ = vb of length
ℓ ≤ k in G such thata ≤ i j for 0 ≤ j ≤ ℓ. We say thatva is k-accessiblefrom vb

if additionally b ≤ i j for 1 ≤ j ≤ ℓ. For a fixed ordering ofV(G), let Qk(v) denote
the set of vertices that are weaklyk-accessible fromv, Rk(v) the set of vertices
that are weaklyk-accessible fromv and letqk(v) = |Qk(v)| and rk(v) = |Rk(v)|.
Thek-backconnectivity bk(v) of v with respect to the fixed ordering ofV(G) is the
maximum number of paths fromv of length at mostk that intersect only inv, such
that all endvertices of these paths distinct fromv appear beforev in the ordering
(clearly, we can assume that the internal vertices of the paths appear afterv in
the ordering). Note thatbk(v) ≤ rk(v) ≤ qk(v). Theweak k-coloring number, k-
coloring numberandk-admissibilityof the ordering is the maximum of 1+ qk(v),
1 + rk(v) and bk(v), respectively, overv ∈ V(G). The weakk-coloring number
wcolk(G) of G is the minimum of the weakk-coloring numbers over all orderings
of V(G), and thek-coloring number colk(G) andk-admissibility admk(G) of G are
defined analogically.

Obviously, admk(G) < colk(G) ≤ wcolk(G). Conversely, it is easy to see that
wcolk(G) ≤ colkk(G) (Kierstead and Yang [9]) and that colk(G) ≤ admk

k(G) + 1
(Lemma 5 in Section 3). Let us remark that wcol1(G)−1 = col1(G)−1 = adm1(G)
is equal to the degeneracy ofG, and that col2(G)−1 and adm2(G) are known as the
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arrangeabilityandadmissibilityof G, respectively, in the literature (see e.g. [13],
[3] or [8]). For the domination number, our main result can bestated as follows.

Theorem 2. If G satisfies wcol2(G) ≤ c, then dom(G) ≤ c2α2(G).

The proof gives a linear-time algorithm to find the corresponding dominating
and 2-independent sets, assuming that the ordering of the vertices ofG with weak
2-coloring number at mostc is given. We discuss the algorithmic and complexity
aspects of obtaining such an ordering in Section 3. To relateTheorem 2 to The-
orem 1, we use the following characterization. For an integer t ≥ 0 and a graph
G, let sdt(G) denote the graph obtained fromG by subdividing each edge exactlyt
times.

Theorem 3(Dvořák [4], Theorem 9). Let G be a graph and d an integer. Ifδ(H) <
d for every H such that H⊆ G or sd1(H) ⊆ G, then col2(G) ≤ 4d2(4d + 5)+ 1.

Conversely, let us note that ifδ(H) = d, then col2(sd1(H)) ≥ adm2(sd1(H)) ≥
d, which is easy to see by considering the last vertex of degreeat leastd in the
optimal ordering for 2-admissibility. Consider now a proper minor-closed graph
classG. There exists a constantc such that all graphs inG have minimum degree
less thanc (Kostochka [10]). Now, if sd1(H) ⊆ G for a graphG ∈ G, thenH is a
minor of G and belongs toG as well, and thusδ(H) ≤ c. Theorem 3 thus implies
that col2(G) = O(c3) and we can apply Theorem 2 forG. Therefore, we indeed
generalize Theorem 1, although the multiplicative constant in our result may be
greater. More generally, the same argument shows that Theorem 2 applies to all
graph classes closed on topological subgraphs.

Böhme and Mohar [2] in fact proved a more general result concerning dis-
tance domination. A setD ⊆ V(G) is k-dominatingif the distance from any
vertex ofG to D is at mostk; thus, 1-dominating sets are precisely dominating
sets. Let domk(G) denote the size of the smallestk-dominating set inG. Clearly,
domk(G) ≥ α2k(G). Theorem 1.1 of [2] shows that in any proper minor-closed
class of graphs, domk(G) = O(αm(G)), for anym < 5

4(k + 1). We strengthen this
result by considering less restricted classes of graphs as well as increasingm to the
natural bound:

Theorem 4. If 1 ≤ m ≤ 2k + 1 and G satisfies wcolm(G) ≤ c, then domk(G) ≤
c2αm(G). Furthermore, if an ordering of V(G) such that qm(v) < c for every v∈
V(G) is given, then a k-dominating set D and an m-independent set Asuch that
|D| ≤ c2|A| can be found in O(c2 max(k,m)|V(G)|) time.

The bound 2k+1 onm instead of 2k may seem surprising at first. It is caused by
the following parity reason: suppose thatT is a 2k-independent set andv a vertex
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such that for every pair of verticesx, y ∈ T, the shortest path betweenx and y
passes throughv. SinceT is 2k-independent, at most one vertex ofT is in distance
at mostk from v. Therefore,T contains a (2k + 1)-independent subset of size at
least|T | − 1.

For which graph classes can Theorem 4 be applied for everyk ≥ 0? I.e., for
what graph classes does there exist a functionf such that wcolm(G) ≤ f (m) for
every graphG in the class? By Zhu [14], these are precisely the graph classes with
bounded expansion(see Nešetřil and Ossona de Mendez [11] for various equivalent
definitions and properties of such graph classes). Let us note that most classes
of “structurally sparse” graphs have bounded expansion, including proper graph
classes closed on topological minors and graphs that can be drawn in a fixed surface
with bounded number of crossings on each edge.

2 Proof of the main result

Theorem 2 is a special case of Theorem 4 withk = 1 andm = 2, thus it suffices
to prove the latter. We defer the discussion of the algorithmic aspects to Section 3,
and prove here just the existence of the setsD andA with the required properties.

Proof of Theorem 4.Letv1, . . . ,vn be an ordering of vertices ofG such thatqm(v) ≤
c− 1 for everyv ∈ V(G). We construct setsD andA′ using Algorithm 1. Clearly,
D is ak-dominating set inG and|D| ≤ c|A′|.

• initialize D ≔ ∅, A′ ≔ ∅ andR≔ V(G)

• while R is nonempty, repeat:

– let v be the first vertex ofR in the ordering

– setA′ ≔ A′ ∪ {v}

– setD ≔ D ∪ {v} ∪ Qm(v)

– remove fromRall vertices whose distance from{v}∪Qm(v) is at mostk

Algorithm 1: Finding the dominating set

For eachw ∈ A′, let Tw be the set of verticesat ∈ A′ such thatw ∈ {at}∪Qk(at).
Let H be the graph with vertex setA′ such thatuv ∈ E(H) iff the distance between
u andv in G is at mostm. Let a1, a2, . . . , as be the vertices ofH in the order
consistent with the ordering ofV(G).

Consider verticesai , a j ∈ V(H) such that j < i andG contains a pathP of
length at mostm betweenai anda j . Let z be the first vertex ofP according to the
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ordering ofV(G). Observe thatz ∈ Qm(ai) ∩ ({a j} ∪ Qm(a j )). By the construction
of A′, the distance ofai from {a j} ∪ Qm(a j) is at leastk + 1, and thus the length of
the subpath ofP betweena j andz is at mostm− k − 1 ≤ k. Therefore, we have
a j ∈ Tz. It follows that if a j is 1-accessible fromai in H, thena j ∈

⋃

w∈Qm(ai ) Tw.
On the other hand, we have|Tw| ≤ 1 for everyw ∈ A′, since ifx ∈ Tw, then all the
vertices whose distance fromw is at mostk were removed fromR when we added
x to A′. Therefore, the number of vertices ofH that are 1-accessible fromai is at
mostqm(ai ) ≤ c− 1.

We conclude that col1(H) ≤ c. Since col1(H) ≥ χ(H), the graphH has an
independent setA of size at least|A′|/c. By the definition ofH, the setA is m-
independent inG, and we have|D| ≤ c|A′| ≤ c2|A| as required. �

3 Algorithmic aspects

Let G be a graph onn vertices such that wcolm(G) ≤ c. First, assume that we are
given an ordering ofV(G) such thatqm(v) < c for everyv ∈ V(G). Sincem ≥ 1,
this implies thatG is c-degenerate, and thus it has at mostcn edges.

For eachi ≤ m and v ∈ V(G), we determine the setQi(v) (whose size is
bounded byc) using the following algorithm: Fori = 1, Q1(v) is the set of
neighbors ofv that appear before it in the ordering, which can be determined
by enumerating all the edges incident withv. For i > 1, Qi(v) is the subset of
Q1(v) ∪

⋃

uv∈E(G) Qi−1(u) consisting of the vertices beforev in the ordering. Note
that Qi(v) can be determined inO(c(deg(v) + 1)), assuming thatQi−1 was already
computed before. Therefore, eachQi can be computed for all vertices ofG in
O(c2n), and in total we spend timeO(c2mn) to determineQm(v) for every vertex of
G.

With this information, we can implement Algorithm 1 in timeO(c(k + 1)n).
The only nontrivial part is the removal of the vertices fromR. For each vertexv of
V(G) we maintain the valuep(v) = min(k+ 1, d(v)), whered(v) is the distance ofv
from D. In each step, we havev ∈ R iff p(v) = k + 1 andv ∈ D iff p(v) = 0. When
a vertexv is added toD, we decreasep(v) to 0. For each vertexw, whenever the
value ofp(w) decreases, we recursively propagate this change to the neighbors of
w: if uw ∈ E(G) andp(u) > p(w) + 1, then we decreasep(u) to p(w) + 1. Clearly,
the value ofp(w) decreases at most (k + 1) times during the run of the algorithm,
and we spend timeO((k + 1) deg(v)) by updating it and propagating the decrease
to the neighbors. Therefore, the total time for maintainingthe setR is bounded by
O(c(k + 1)n).

For the final part of the algorithm, we need to determine the edges ofH. First
we compute the setTw for each vertexw ∈ V(G): we initialize these sets to∅, and
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then for eacha ∈ A′, we adda to Tw for eachw ∈ {a} ∪Qk(a). A supergraphH′ of
H with col1(H′) ≤ c is then obtained by joining eacha ∈ A′ with all the elements
of
⋃

w∈Qm(a) Tw that precedea in the ordering. We find a proper coloring ofH′ by
at mostc colors using the standard greedy algorithm, and chooseA as the largest
color class in this coloring. The time for this phase isO(cn).

Therefore, the total complexity of the algorithm isO(c2 max(m, k)n). The space
complexity is bounded by the space needed to representQk andQm, and thus it is
O(cn).

Let us now turn our attention to the problem of finding a suitable ordering
of vertices. We were not able to find a polynomial-time algorithm to determine
wcolm(G) for m≥ 2, and we conjecture that the problem is NP-complete. However,
determining admm(G) appears to be easier, and the corresponding ordering has also
bounded weakm-coloring number.

Lemma 5. Let G be a graph and v1, v2, . . . , vn an ordering of its vertices with
m-admissibility at most c. Then the m-coloring number of theordering is at most
c(c− 1)m−1 + 1.

Proof. Consider a vertexv ∈ V(G). There exists a treeT ⊆ G rooted inv such that
Rm(v) is the set of leaves ofT, every path ofT starting inv has length at mostm
and all non-leaf vertices ofT distinct fromv appear afterv in the ordering. Observe
that every non-leaf vertexu ∈ V(T) has degree at mostc in T, as otherwise there
would exist at leastc + 1 paths inG from u of length at mostm intersecting only
in u and ending beforeu (in {v} ∪ Rm(v)), contradicting the assumption that the
m-backconnectivity ofu is at mostc. We conclude thatT has at mostc(c − 1)m−1

leaves, and thusrm(v) ≤ c(c − 1)m−1. Since this holds for every vertexv ∈ V(G),
the claim of the lemma follows. �

Together with the observation of Kierstead and Yang [9], this implies that the
weak m-coloring number of the ordering is at most (c(c − 1)m−1 + 1)m. For a
set S ⊆ V(G) and v ∈ S, let bm(S, v) be the maximum number of paths from
vi of length at mostm intersecting only invi whose internal vertices belong to
V(G) \ S and endvertices belong toS. The ordering ofV(G) with the smallestm-
admissibility can be found using Algorithm 2. Clearly, the resulting ordering has
m-admissibility max(p1, . . . , pn), and it is easy to see that this is equal to admm(G):
Suppose that there exists an orderingX of V(G) with m-admissibility at mostp,
and consider an arbitrary setS ⊆ V(G). Let v be the last vertex ofS according
to the orderingX. Thenbm(S, v) ≤ p, since all vertices ofS are beforev in the
orderingX and them-backconnectivity ofv in X is at mostp. Therefore, we have
pi ≤ p for 1 ≤ i ≤ n in the algorithm.
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• initialize S ≔ V(G)

• for i = n, n− 1, . . . , 1:

– choosevi ∈ S minimizing pi = bm(S, vi)

– setS ≔ S \ {vi}

.
Algorithm 2: Determiningm-admissibility

A bit problematic step in the algorithm is finding the vertexv ∈ S minimizing
bm(S, v), since form ≥ 5, determiningbm(S, v) is NP-complete in general (Itai,
Perl and Shiloach [6]). Nevertheless,bm(S, v) can be approximated within factor
of m, by repeatedly taking any path fromv to S of length at mostmwith all internal
vertices inV(G) \ S and removing its vertices distinct fromv (each such removal
can interrupt at mostmpaths in the optimal solution, hence we will be able to pick
at leastbm(S, v)/m paths this way). A straightforward implementation gives an
O(mn3) algorithm to approximate admm(G) within factor ofm.

When them-admissibility ofG is bounded by a constantp, we can obtain a
polynomial-time algorithm to determine admm(G) exactly. To test whetherbm(S, v) ≤
p, we simply enumerate all sets of at mostp+ 1 paths of length at mostmstarting
in v. A straightforward implementation gives an algorithm withtime complexity
O(nmp+m+2). This time complexity can be improved significantly if the considered
class of graphsG has bounded expansion. Dvořák et al. [5] described a data struc-
ture to represent a graph in such a class and answer first-order queries for it in a
constant time. In particular, suppose thatϕ(x) is a first-order formula with one free
variablex using a binary predicatee and a unary predicates. This data structure
can be used to represent a graph inG and a subsetS of its vertices, so that

• the data structure can be initialized in linear time,

• we can add a vertex toS or remove it fromS in constant time, and

• we can find in constant time a vertexv ∈ V(G) such thatϕ(v) holds, withe
interpreted as the adjacency inG and s as the membership inS, or decide
that no such vertex exists.

For the purpose of the algorithm form-admissibility, to test whetherbm(S, vi) ≤
p, we apply the data structure for the property

ϕ(x) = s(x) ∧ ¬
[

(∃y1) . . . (∃ym(p+1))ψ(x, y1, . . . , ym(p+1))
]

,
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whereψ is the formula describing that the subgraph induced by{x, y1, . . . , ym(p+1)}

containsp + 1 paths fromx of length at mostm, intersecting only inx, and with
endvertices satisfyingsand internal vertices not satisfyings.

Using this data structure, we repeatedly findx ∈ S such thatbm(S, x) ≤ p and
remove it from toS, thus obtaining an ordering ofV(G) with admissibility at most
p or determining that admm(G) > p in linear time. By Zhu [14], for each classG
with bounded expansion, there exists a functionf such that admm(G) ≤ f (m) for
eachG ∈ G. Therefore, we can determine the exact value of them-admissibility by
applying this test forp = 1, . . . , f (m).

Theorem 6. LetG be a class of graphs with bounded expansion and m≥ 1 an inte-
ger. There exists a linear-time algorithm that for each G∈ G determines admm(G)
and outputs the corresponding ordering of V(G).

By combining this algorithm with Theorem 4, we obtain the following result.

Theorem 7. Let G be a class of graphs with bounded expansion and k≥ 1 a
constant. There exists an algorithm that for each G∈ G returns a k-dominating set
D and a(2k + 1)-independent set A such that|D| = O(|A|). The algorithm runs in
time O(|V(G)|).

4 Lower bound

Let us now explore the limits for the possible extensions of Theorem 4. Forn ≥ 3,
let G′n = sd2k−1(Kn), let X be the set of the middle vertices of the paths correspond-
ing to the edges ofKn in G′n and letY be the set of vertices ofG′n of degreen− 1.
Let Gn be the graph obtained fromG′n by adding a new vertexv adjacent to all the
vertices ofX.

The distance between any two vertices ofV(Gn) \ Y is at most 2k, since all
these vertices are in distance at mostk from v. Furthermore, the distance between
any two vertices ofY is most 2k, since they are joined by a path of length 2k
corresponding to an edge ofKn. Therefore,α2k(Gn) ≤ 2. On the other hand, for
any w ∈ V(Gn) \ X, there is at most one vertex ofY whose distance fromw is at
mostk, and each vertex ofX has distance at mostk from exactly two vertices ofY.
Therefore, domk(Gn) ≥ n/2. Therefore,k-domination number cannot be bounded
by a function of 2k-independence number on any class of graphs that contains
{Gi : i ≥ 3}.

Let us consider the following ordering of the vertices ofGn: the first vertex is
v, followed byY in an arbitrary order, followed by the rest of vertices ofGn in an
arbitrary order. Since the distance between any two vertices of Y is 2k, we have
q2k−1(w) ≤ 1 for w ∈ Y, and similarlyq2k−1(w) ≤ 2k + 1 for w ∈ V(Gn) \ Y.
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Therefore, wcol2k−1(Gn) ≤ 2k + 2 for everyn ≥ 3. It follows that at least in the
case thatm= 2k, it is not sufficient to restrict wcol2k−1(G) in Theorem 4.

Another possible extension, bounding domk(G) by a function ofα2k+2(G), is
impossible even for trees [2], as the graph sdk(K1,n) demonstrates.

Acknowledgements

I would like to thank Bojan Mohar for bringing the problem to my attention and
for useful discussions regarding it.

References

[1] B. Baker, Approximation algorithms for np-complete problems on planar
graphs, Journal of the ACM (JACM), 41 (1994), pp. 153–180.
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