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Abstract 

We used a database of 4139 Taiwanese HCC patients to take a new approach (Network 

Phenotyping Strategy) to HCC sub-set identification. Individual parameters for liver function, 

complete blood count, portal vein thrombosis, AFP levels and clinical demographics of age, 

gender and hepatitis or alcohol consumption, were considered within the whole context of 

complete relationships, being networked with to all other parameter levels in the entire 

cohort. We identified 4 multi-parameter patterns for one tumor phenotype of patients and a 

separate 5 multi-parameter patterns to characterize another tumor phenotype of patterns. 

The 2 sub-groups were quite different in their clinical profiles. The means of the tumor mass 

distributions in these phenotype sub-groups were significantly different, one associated 

wither larger (L) and the other with smaller (S) tumor masses. These significant differences 

were seen systematically throughout the tumor mass distributions. Essential and common 

clinical components of L-phenotype patterns included simultaneously high levels of AFP, 

low platelet levels plus presence of portal vein thrombosis. S included higher levels of liver 

inflammatory parameters. The 2 different parameter patterns of L and S-sub-groups 

suggest different mechanisms; L, possibly involving tumor-driven processes and S 

associated more with liver inflammatory processes.  
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Introduction 

The prognosis and choice of treatments in patients who have hepatocellular carcinoma 

(HCC) has long been recognized to depend both on tumor factors as well as liver 

factors and was the basis for the first published classification scheme of Okuda (1). This 

is because HCCs usually arise in a liver that has been chronically diseased (hepatitis or 

cirrhosis from hepatitis or other causes, or both) (2-6). Many more complex 

classification and prognostication schemes have since been published, all of which take 

these 2 broad categories of factors into account, and patients can die either from their 

tumor growth or from their liver failure. However, there are additional layers of 

complexity that need to be taken into consideration. Thus, quite large HCCs can arise in 

surprisingly normal (non-cirrhotic liver). Furthermore, many small HCCs do not seem to 

grow further. Thus, some small HCCs stay small and others are precursors of larger 

HCCs. Since a patient can present at any random part of their HCC disease growth 

process, it is usually difficult to know at what point in their disease process they have 

been diagnosed. Given the suspicion that the diagnosis of HCC carries within it several 

or multiple sub-sets of disease, we recently used a tercile approach, to identify HCC 

sub-sets at the extreme wings of an HCC patient cohort that had been ordered 

according to tumor size and then trichotomized into tumor size terciles (7,8). We found 

that on the extreme terciles, there was a relationship between plasma platelet numbers 

and HCC size. This likely reflected that small HCCs arising in cirrhotic liver for which 

thrombocytopenia is a surrogate (9) with portal hypertension and a larger tumor size 

tercile without thrombocytopenia. However, it still left the central part of the 

tumor/disease continuum uncharacterized and unordered into sub-sets. Furthermore, 

we also showed a relationship between blood alpha-fetoprotein (AFP) levels, a marker 

of HCC growth, and blood total bilirubin levels, in a large part of the cohort (10). This led 

support, as has evidence of others (11-13), that HCC may not only arise and grow in a 

cirrhotic milieu, but may even depend on signals from that micro-environment for its 

growth and other biology. Given this unsatisfactory clinical HCC heterogeneity, it seems 

that ‘one size fits all’ doesn’t work for individual prognostic factors, probably because of 

the absence of significant sub-subset patient separation. In addition, some parameters 

such as AFP can be elevated in either small or large HCCS. 
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We reasoned that attempts to extract new information cannot rely only on standard 

clinical data, but rather upon processing relationships between given data. In this report, 

we have taken a different approach to identify phenotypically different HCC patients 

groups. We first transformed the raw clinical screening data into a new form, 

considering in full the individual parameters within the whole context of complete 

relationships to all other parameter levels. After this transformation, individual 

parameters were not treated as single entries into the analysis, but were each 

considered as a parameter within the whole clinical context (liver function tests,  

presence of cirrhosis or hepatitis, inflammation and different manifestations of tumor 

growth-size, number of tumor nodules, presence of PVT), with considerations of age 

and gender. 

Methods 

Patient clinical data. Clinical practice data, recorded within Taiwanese HCC screening 

program, was prospectively collected on newly-diagnosed HCC patients and entered 

into a database that was used for routine patient follow-up. Data included: Baseline 

CAT-scan characteristics of maximum tumor diameter and number, presence or 

absence of PVT; Demographics (gender, age, alcohol history, presence of hepatitis B or 

C); Complete blood counts (hemoglobin, platelets, INR); blood AFP and routine blood 

liver function tests, (total bilirubin, AST and ALT, albumin) –see Table I. The 

retrospective analysis was done under a university IRB-approved analysis of de-

identified HCC patients. 

Patient profiles. We developed a Network Phenotyping strategy (NPS), a graph-theory 

based approach (10), allowing personalized processing of complex phenotypes, with 

explicit consideration of functional parameter correlations and interdependencies. NPS 

was applied here to integrate the data of all 4139 HCC patients.  
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Table I. Demographic and clinical characterization of patients:  

  Number Percent in 
study 

 Number Percent in 
study 

Gender female 1033 24.9% male 3106 75.1% 

Age Younger<55year 1432 34.6% Older>55year 2707 65.4% 

Alcohol  [-] 2950 71.2% [+] 1189 28.7% 

HBV [-] 2010 48.6% [+] 2129 51.4% 

HCV [-] 2520 60.9% [+] 1619 39.1% 

PVT [-] 3187 77% [+] 952 23% 

AFP low<200 2671 64.5% high>200 1468 35.5% 

Bilirubin low<1.2 2618 63.2% high>1.2 1521 36.8% 

ALT low<40 1693 40.9% high>40 2476 59.1% 

AST/ALT low <1.0 1344 32.5% high>1.0 2795 67.5% 

albumin low<3.0 951 23.0% high>3.0 3188 77.0% 

hemoglobin low<13.0 2236 54.0% high>13.0 1903 46.0% 

platelets low<= 125 1603 38.7% high> 125 2536 61.3% 

INR low<1.0 1355 32.7% high>1.0 2784 67.3% 

 

 

Number of 
tumors 

Patients/percent 
of cohort 

Size range [cm] Mean [cm] Median [cm] std. deviation 
[cm] 

1 2147 (51.9%) 1-27.7 4.9 3.2 4.1 

2 575 (13.9%) 1-22.2 4.4 3.3 3.3 

3 178 (4.3%) 1-15 3.9 3.0 2.5 

>3 1239 (30%) 0.9 – 26.0 7.9 8.5 4.3 

 

There were no missing data in this data set. Individual patient profiles were created, in 

which each of 15 parameters was assessed in the context of all the other parameters 

for that same patient and processed by NPS approach. The technical details of NPS are 

presented in the Appendix. Here we summarize the concrete steps and their results: 

Step 1. To reduce the complexity of the relationships that needs to be considered in the 

analysis, we considered correlations between blood liver function and hematological 

parameters. Out of 8 liver function parameters, we found 4 unique pairs that showed the 

most correlated and significant trends in their values. Some of these 4 were also 

strongly correlated in our previous work (10). While the selection of the 4 parameter 

pairs with the strongest correlations amongst all >20,000 possible was done using just a 

maximal cut mathematical algorithm (14), these 4 unique pairs were inter-related 

through established underlying functional processes: total blood bilirubin/prothrombin 
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time (a measure of liver function), SGOT/SGPT (a measure of liver inflammation) and 

AFP and blood platelet counts (reflections of tumor growth) (7). 

Step 2. We continued by transforming the original patient data into a form of “levels”. 

This step unified the demographic (categorical) parameters with liver function (real 

value) parameters needed for consideration of their inter-relationships within directly 

clinically interpretable framework. Considering the established practice in HCC 

diagnostics (15,16), we determined ‘high’ and ‘low’ levels of each individual parameter 

Figure 1. Set of four parameter pairs that have the highly correlated trends. One point 

represents a patient, in gray we show the upper tertile of patients identified with “high” 

levels of both parameters. In black are 2/3 of patients with “low” parameter levels. The 

boundary between the high and low levels is defined by the two threshold values indicated 

in every picture. 
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using a tercile-based dichotomization. For gender, reported alcoholism, evidence for 

hepatitis B and/or C and presence or absence of PVT the dichotomization was natural. 

For the other parameters, we tested several alternatives (50%:50%, quartiles) but found 

that tercile dichotomization with 2/3 of patients with the lowest parameter levels 

designated as “Low” phenotype and 1/3 of patients with the highest parameter levels 

designated as “High” phenotype was optimal for further processing. For age the “old” 

tercile was separated from the lower 2 “young” terciles by 55 years (17) . For the four 

significantly correlated parameter pairs, we used the two-thresholds that separate High 

from Low phenotypes, as shown in Fig. 1. This resulted in clinically familiar value 

cutoffs, such as bilirubin of 1.5 mg/dl, AST 200 IU/l and ALT 105 IU/l.  

Step 3. Using actual data for each patient, an individual clinical profile was created by 

connecting all the actual parameter high, low, + and - levels (Fig. 2) into a 

representation of their complete networked relationships. In Fig.2 example, profiled 

Figure 2. Example of 10-partite individual clinical profile of a patient. F=female, M=male, 

O=age>55, Y age<55 years, +/- presence/absence of indicated parameter. H/L – correlated 

parameter pair levels, shown in Fig. 1. The patient’s clinical profile is recovered from this 

scheme by following the black line. BILI = bilirubin, Alb=albumin, Hemo=hemoglobin 
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patient is an older female, reporting alcoholism, diagnosed with HCV but not HBV, with 

AST<105 and ALT<80 IU/l, albumin > 4.0g/l, hemoglobin >15, bilirubin >1.5mg/dl, INR 

>1.2, platelets >200 x 10-9/l, AFP>29,000 ng/ml and presence of PVT. All these 4139 

individual profiles were unified into a single schema (Appendix), that carries new 

information about co-occurrence frequencies of all parameter levels.  

Step 4. We found a simpler structure in the networked HCC clinical data for this cohort. 

The schema was completely decomposed into only 19 reference profiles C1-C19 

(Appendix). These reference clinical profiles had to have identical co-occurrence 

frequencies between all the parameter levels. This ensured the independency of the 

results on the parameter ordering in the clinical profile: re-arranging the sections in 

Figure 1 will generate identical data for subsequent steps. C1-C19 collect the information 

about the most frequent relationship co-occurrences of various parameter levels. C1-C19 

thus serve as idealized clinical statuses.  

Step 5: The 4139 individual profiles were then compared in turn to each of the 19 

reference profiles and the total number (0-10) of mismatches in the relationships they 

describe were recorded as differences d1-d19 between the profiles.  

Step 6. We next used logistic multiple regression (18) with variable selection algorithm 

(SigmaPlot11), using patient’s 19 differences d1-d19 as independent variables, to predict 

whether an individual had a tumor mass (product of maximum tumor diameter and 

number of tumor nodules) smaller than 5.5 (1826 individuals, 44%) of larger (2313 

subjects, 56%).  
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Results 

Only the differences between patient actual clinical profiles and 9 reference clinical 

profiles out of 19 contributed significantly to the tumor mass classification. Of these, 

small differences (<6) from the 5 reference clinical profiles (C1,C3,C6,C8 and C16) 

resulted in high odds for a S-phenotype tumor mass and small differences (<6) from the 

4 reference clinical profiles (C5,C9,C12 and C18) resulted in the high odds for L-

phenotype tumor mass. This logistic regression model correctly predicted 70% of the 

tumor mass categories in a 10-fold cross-validation (ROC area 0.78). We used the 

logistic regression equation to identify 2034 patients as S-sub-group and 2105 patients 

as L-sub-group. The distributions of tumor mass in these 2 sub-groups had their means, 

(13.0 for L and 4.4 for S) significantly statistically different, p = 10-240 , t-test. The 

significant differences were also seen systematically throughout the L and S tumor 

mass distributions. The Kaplan-Meier formalism (Fig. 3) have shown with strong 

statistical significance that patients in the L-sub-group had a 2-4 fold greater odds of 

having a larger tumor. Equivalently, once the patient has been categorized in S or L-

Figure 3. Modified Kaplan-Meier characterization of odds for a given the tumor mass in S- and 

L-subgroups. The dotted lines are 95% confidence intervals for respective odds curves. Double 

arrow in a) is 3-fold odds difference. Note different scales for the largest tumor masses in b). 
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sub-group, then the odds of finding a given tumor mass were ~3 fold higher in the L-

sub-group, compared with S-phenotype patients. This indicated that our findings are 

independent of specific choice of tumor mass threshold in optimization of the logistic 

regression classification model. The main result thus far was that liver function tests and 

patient demographic descriptors identified S and L-phenotypic groups with strongly 

statistically significant separation of their tumor masse distributions. 

Logistic regression identified L-phenotype-associated reference profiles C5, C9, C12 and 

C18, having in common high platelets/high AFP levels, accompanied by the presence of 

PVT and self-reported chronic alcohol consumption. The S-phenotype had 2 associated  

sub-groups of reference clinical profiles: C1, C3 and C6 and C8 and C16. The former had 

in common: low platelets/low AFP and absence of PVT. The latter had in common low 

AST/low ALT, high albumin/high hemoglobin, low bilirubin/low INR and high 

platelets/high AFP. 

 

Table 1. Summary of S- and L-associated networks of reference parameter levels  

Table legend: Top two panels: columns P1-P10 correspond to 10 parts of the clinical profile 
shown in Fig.2. The two sub-columns indicate one of the two levels for the respective 
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parameters. The actual levels for given reference clinical profile are shown by “1” in black field. 
Left columns: Reference profile ID and coefficient in the classification logistic regression model. 
Top: reference clinical profiles associated to L-subgroup, bottom: reference clinical profiles 
associated to S-subgroup. Bottom two panels: percentage of commonality of all reference 
clinical profile levels in respective sections P1-P10.   
 

L-phenotype associated reference profiles (C5,C9) were male-related and C12,C18 were 

female-related. C9 described younger and C5 described older (>55 years) patients. For 

the female-associated profiles, C12 described younger and C18 older patients. S-

phenotype associated reference profiles C6 (young) and C16 (older) were for female 

patients and C1 (older), C3 and C8 (older) for male patients.  

 

Trends between individual parameters and tumor mass in the S/L- sub-groups. 

The networked characteristic profiles for the L-sub-group are more homogeneous than 

those in the S-sub-group. We examined whether there were significant differences in 

typical parameter values for the same tumor mass that might be found in each of the 

S/L-sub-groups.  

We used a moving average filtering (Fig.3) where any tumor mass is characterized by 

the average of the clinical parameter values of 61 patients with the closest tumor 

masses (9). We examined these trends in AFP (reflective of tumor growth) and platelet 

values and found increasing AFP and platelet counts with increasing tumor mass in S- 

and L-sub-group with different rates and magnitudes (Fig. 3a). L-sub-group displayed a 

pattern of AFP/platelet level oscillations that were not observed in the S- sub-group. 

Importantly, these L-phenotype unique oscillations were characteristic for the same 

tumor masses in both AFP and platelet trends (Fig. 3a).  



12 
 

The analysis of typical tumor-

mass-related bilirubin level 

changes also showed 

differences in the 2 sub-groups 

(Fig. 3b). In the S-sub-group 

there was a shallow bilirubin 

increase as the tumor mass 

increased. In the L-sub-group, 

oscillations were found below 

tumor mass 20, which were not 

seen in the S-sub-group. The 

oscillations in bilirubin levels in 

the L-phenotype cohort 

occurred at the same tumor 

masses as those in AFP and 

platelet values in the L-sub-

group. Additionally, there was 

a steady increase in bilirubin 

levels for increasing tumor 

mass beyond 20.  

Examination of AST/ALT 

trends showed that they were 

steady in the S-sub-group and 

at higher levels than in the L-

sub-group in the smallest 

tumors of equivalent mass <30 

(Fig.3c). In the L-sub-group, 

there was a steady increase in 

AST/ALT levels as tumor mass 

increased above 30.  

Figure 4. Typical parameter levels as function of tumor 

mass in S- (gray) and L-subgroups (black). Typical 

values are results of moving average processing (see 

Methods) a) AFP, b) platelets, c) bilirubin, d) number of 

tumors.  
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The mechanisms underlying the oscillations did not seem to have an obvious 

explanation from clinical practice. However, possible clues came from analysis of the 

number of tumor nodules typical for the given tumor mass (Fig 3d). We processed the 

data for tumor numbers in the same way as for other parameters and we found that 

(Fig. 3e) oscillations in tumor numbers corresponded to spikes in the parameter trends, 

especially seen for tumor mass <30.  

 

Discussion 

A database was constructed from a large number of newly diagnosed HCC patients, 

was used to characterize patient profiles, from which developed an algorithm that 

classified the patients into S- and L-subgroups. This characterization with significant 

difference in tumor masses was not obtained using raw data. Thus, the added 

information about trends and inter-dependencies of parameter values in a total 

parameter context was crucial for successful classification. The liver function and blood 

parameters were treated in 4 pairs, with unique significant correlations having a direct 

relationship to liver properties. These pairs were intuitively inter-related through 

established underlying functional processes: total blood bilirubin/prothrombin time (a 

measure of liver function), SGOT/SGPT (a measure of liver inflammation) and AFP 

Figure 5. Typical levels of AST/ALT ratio for S- and L-subgroups, rank-ordered by tumor 

mass. a) first 600 patients with tumor masses 1-2.5 in S-subgroup and 1-7 in L-subgroup. b) 

remaining patients with larger tumor masses. Gray – S-subgroup, black – L-subgroup  
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/blood platelet counts (an estimate of tumor growth) (7). We therefore processed 10 

components of the patient profiles (Methods). Decomposition of unified schema of 4139 

profiles into 19 different reference profiles, from which only 9 contributed significantly to 

the assessment of tumor mass outcome revealed simpler structure of HCC clinical 

information. 

Because the 9 reference clinical profiles were idealizations of the S and L-clinical 

phenotypes, an individual patient characterization involved a quantitative description of 

how close the actual pattern of relationships between parameter values were for an 

individual patient from all significant reference clinical profile patterns. In this approach, 

the single value of a parameter cannot change the classification. It was the majority of 

the parameter relationships matching the S or L-associated patterns that determined the 

classification. The patients with either of these 2 clinical profile patterns had 

distributions of their tumor masses with significantly different means. Despite these 

differences in means, each phenotype had a wide range of tumor masses. 

Nevertheless, we have shown (Fig.3) that there were always 2-4 times higher odds for 

larger tumors in L than in S phenotype group. The differences in the tumor mass trends 

in the two sub-groups were significantly separated, showing the efficiency of our 

approach.  

In the 2 phenotype groups, there was much greater homogeneity in the characteristic 

parameter patterns in L than in S. The rate of change for typical parameter values per 

unit change of tumor mass was always significantly higher for L-phenotype patients 

compared to S-phenotype patients, excepting the AST/ALT ratio, which was higher in S 

for tumor masses below 10 than for the same size tumors in L. One possible 

interpretation of these observations is that in S-phenotype patients, small tumors are 

associated with processes producing higher levels of the inflammatory markers, 

AST/ALT. We hypothesize that this might reflect the inter-connectedness of hepatic 

inflammation with tumor growth in the small tumors in this phenotype group. In L-

subgroup, the simplest explanation of parameter levels oscillations might be 

consideration of the number of tumor nodules that composed the tumor mass. A 

relationship between platelet numbers and tumor size was recently reported (7). Low 

platelets were interpreted to be a consequence of the portal hypertension that is 
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secondary to liver fibrosis. We found that most small HCCs in 2 large western cohorts 

occurred in the presence of thrombocytopenia, whereas the largest tumors occurred in 

patients with significantly higher, but normal platelet values.  

By contrast, in the L-phenotype, the AST/ALT only really increased as the tumor masses 

became quite large. This may reflect the parenchymal liver damage that occurs when a 

large tumor develops and replaces underlying liver. In addition, in the L-phenotype, but not 

in S, several additional liver parameters showed oscillations in their typical values, as the 

tumor mass increased. We found a relationship between these oscillations and the numbers 

of tumors (Fig 3). Given the lesser association of changes in inflammatory markers in the L-

phenotype, we consider that other factors, likely tumor-related, may be more important on 

the growth of these tumors. Such factors likely include genetic drivers of HCC cell growth. 

In the L-phenotype, the observed higher levels of various parameter contributions from 

multiple nodules to the total parameter levels could be additive.  
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Supplementary Material 

Phenotypic categorization and profiles of Small and Large hepatocellular 

carcinomas 

Petr Pancoska1 and Brian Carr2 and Shenh-Nan Lu3 

As there were no missing data in the original dataset, all statistical computations were 

done considering the full set of 4139 data points for all subjects. 

Step 1: In the first step, we considered correlations between clinical (blood liver function 

test and hematological) parameters. This has two important ramifications. First, in a 

formal, statistical sense any significant inter-correlation between individual parameter 

values represents a simplification of the analysis complexity (dimensionality reduction, 

we take into account that any two significantly correlated parameter pairs carry similar 

information). Second, any such significant correlation might indicate a functional 

relationship of the underlying processes. Therefore, building the NPS transformation of 

a study data, which explicitly considers such relationships, allows a simplified and more 

clinically intuitive processing of the extensive patient information such as in this study. 

For logarithmically transformed values of eight plasma hematological and liver test 

parameters (AFP, total bilirubin, ALT, AST, INR, albumin, platelets, hemoglobin) we 

computed all (82-8)/2 = 28 pairwise correlations and characterized the extent of (linear) 

proportionality between all possible parameter pairs by 28 linear regression coefficients. 

These 28 correlation coefficients were arranged into an 8x8 symmetrical correlation 

matrix. This matrix represents at the same time an adjacency matrix, defining a 

complete weighted graph (clique). In this clique, 8 liver test parameters are completely 

connected by strengths of their 28 co-linearities, quantified by the pairwise correlation 

coefficients.  

We then used maximal cut graph theory theorem (1,2), defining a non-parametric 

algorithm, finding in this complete weighted correlation graph the set of 8/2 = four liver 

test parameter pairings, that are unique: all correlations in these pairs are individually 

significant (using the statistical significance test for the correlation coefficient on 0.99 
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significance level.) More importantly, these four selected pairs also had the absolutely 

largest sum of their respective 4 pairwise correlation coefficients out of all possible 20, 

475 selections of such 4 pairs. Because no other information but the complete 

correlation matrix between the full sets of actual parameter values was used in this 

analysis step, the resulting unique pairing represented very important information 

encoded in the actual data set. It was therefore interesting to formulate the possible 

functional mechanisms and factors underlying these four highly significantly co-linear 

parameter pairings. 

Step 2. The next step in the construction of the NPS, was transformation of the original 

patient clinical data and their conversion into a common form of “levels”. This step was 

necessary to be able to unify the demographic (categorical) parameters with liver 

function (real value) parameters and allow for consideration of their inter-relationships 

within a common, explicit, quantitative but still directly clinically interpretable framework. 

Considering the established practice in HCC diagnostic evaluation, we found that a 

common approach to determine levels of each individual parameter can be tercile-

based dichotomization. For gender, reported alcoholism, evidence for hepatitis B and C 

and presence or absence of portal vein thrombosis (PVT) the dichotomization was 

natural. For the rest of parameters, we tested several alternative dichotomizations 

(50%:50%, quartiles) but found that tercile dichotomization with 2/3 of patients with the 

lowest parameter levels designated as “Low” phenotype and 1/3 of patients with the 

highest parameter levels designated as “High” phenotype was optimal for further 

processing (see below). Also, the resulting thresholds, splitting the 4139 patients into 

2759 subjects in “low” sub-group and 1380 patients into a “high” sub-group were 

comparable with values used in established HCC classification schemes. For age the 

“old” tercile was separated from the lower 2 “young” terciles by 55 years. For the four 

parameter pairs that were found as significantly correlated in step 1, we used two-

threshold method, as shown in Fig. 1  

For these pairs, the upper tercile is defined by the 2 individual thresholds of the 

individual parameters that separate High from Low values. This resulted in clinically 

familiar value cutoffs, such as bilirubin of 1.5 mg/dl, AST 200 IU/l and ALT 105 IU/l. 
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Another advantage of this approach, seen in text Fig. 1, is that the outliers from these 

trends, with the very high values, do not impact significantly the values of the tercile-

based thresholds. We have also shown that inclusion or exclusion of these outliers in all 

trends, both individually and simultaneously from analysis did not change the final NPS 

representation of patient’s data and, more importantly, did not affect the essential steps 

in further processing. Thus, our NPS approach is very robust and optimally sensitive to 

coherent as well as insensitive to stochastic components of raw HCC data. 

Step 3. Using actual data for each patient, an individual clinical profile was created by 

connecting the actual parameter high, low, + and - levels for that individual (text Fig. 2). 

We then created an individual patient profile for each of the 4139 patients. All these 

individual profiles were then unified into a single schema. In this unified cohort of 

profiles, each line in each patient’s profile, representing the relationship between the 

actual parameter levels in individual profiles is counted as a contribution of that specific 

individual parameter relationship to collective NPS schema, In this way, we incorporated 

into the study schema the new information about frequencies of co-occurrences of all 

respective parameter levels in a simple intuitive way. The co-occurrence frequencies 

Figure S1. Single schema, generated by unifying all 4139 individual patient clinical profiles 

from the complete database. Line thicknesses are proportional to co-occurrence 

frequencies of various parameter levels. This graph is the simplest possible representation 

of full context network of all parameter level relationships in the study. White dotted line 

follows the most frequent parameter level combination. 
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are represented graphically by the thickness of the line connections between levels of 

each parameter (Fig. S1). Thus, as an illustrative example, we can directly infer from 

Fig. S1 (following the dotted edges) that the majority of the cohort has low platelets, low 

AFP levels and no portal vein thrombus and also have more males than females. The 

full information of text Table 1 is represented by this schema. The next step that we took 

ensured that the data transformation was not dependent on the order in which the 

parameters inter-connected in this unified profile. 

Step 4. Using a greedy algorithm (extracting sequentially the co-occurrence relationship 

profiles that has the highest frequency in the dataset and repeating this process until 

there was no relationship left), the unified profile was decomposed into 19 reference 

Figure S2. Full decomposition of the single schema of all networked context relationships 

in the study data into reference clinical profiles C1-C1. Numbers in rectangles are 

multiplicities of every reference clinical profile in the decomposition. By dividing these 

multiplicities by 4139, the total number of patients in the study, we obtain for each 

reference profile the relative frequencies of its occurrence in the HCC study. 
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profiles, in such a way that all co-occurrence frequencies between all the parameter 

levels in a reference profile were identical. This generated unique, data-determined 

reference clinical profiles with equal frequencies of co-occurrences of all parameter pair 

levels – see Fig. S2.  

The identity of co-occurrence frequencies also ensured that the resulting reference 

profiles and the data transformation, that uses them as “triangulation points” in the 

space of all clinical data relationships, are independent of parameter ordering in the 

scheme. From the statistical point of view, it can be shown that the pair-wise 

relationships that constitute the reference clinical profiles are also unique by being 

independent of each other.  

The 4139 individual profiles were then compared in turn to each of the 19 idealized 

reference profiles and the differences were recorded between the relationships in an 

individual actual patient profile to those in each of the 19 reference profiles. We had 10 

parameters or their pairwise trend constructs in the processed data and also on each 

reference profile (4 liver function blood pairs and 6 other parameters). Therefore, each 

individual profile could differ in 0, 2, 3, 4, 5, 6, 7, 8, 9 or 10 relationships from those, 

recorded in each reference clinical profile. The number of these mismatches between 

an individual patient clinical profile and an idealized reference profile defined the 

“distance” of the actual individual patient’s clinical state from the idealized reference 

clinical state. These 19 distances localized the precise position of each patient in the 

clinical landscape of HCC. This transformation of raw data into 19 distances contained 

information on trends and co-occurrences in terms of their clustering by closeness to 

the reference clinical profiles, serving as the “triangulation points” in the clinical data 

relationship landscape. A formal advantage for further statistical processing was also 

observed: namely, that the distributions of 19 distance vector components for all 

patients were Gaussian, while raw data often exhibited multimodal, nonsymmetrical 

histograms/distributions.  

Step 5. We next used logistic multiple regression, using 19 distances of the individual 

patient’s clinical profiles from each of the 19 reference clinical profiles as independent 

variables, to predict whether an individual had a tumor mass larger or smaller than 5.5. 
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Using the variable selection algorithm for logistic multiple regression (a combination of 

forward and backward variable selection methods (SigmaPlot 11)) revealed that not all 

19 distances were relevant for identifying tumor mass and only 9 of them contributed 

significantly. Of these, small distances from 5 reference clinical profiles (C1,C3,C6,C8 

and C16) resulted in high odds for a ‘S’ phenotype tumor mass, while small distances 

from 4 reference clinical profiles (C5,C9,C12 and C18) resulted in  high odds for ‘L’ 

phenotype tumor mass. This optimal logistic regression model correctly predicted 70% 

of the tumor mass categories in a 10-fold cross-validation (ROC area was 0.78).  

With this ability to recognize two significantly different tumor phenotypes, we used the 

logistic regression equation as a tool to identify these two clinical phenotypes, S and L. 

There were 2034 patients identified by that optimized predictive regression model with 

S-phenotype clinical profiles and 2105 patients as having L-phenotype clinical profiles. 

When the actual distributions of tumor mass in these 2 groups were compared, their 

means (which were 13.0 for L and 4.4 for S) were significantly statistically different 

using the standard t-test on two samples (unequal variances), p = 10-240. As the 

classification of all patients into these two clinical phenotype sub-groups is based on 

closeness to the respective reference clinical profiles in the S and L category, the closer 

an individual patient profile was to all the 5 S-phenotype associated or all the 4 L-

phenotype associated idealized reference clinical profiles, the larger the odds that 

patient’s tumor mass would smaller or larger. 

For more detailed analysis of the tumor mass differences in the two different phenotype 

groups, we used the R-implementation of Kaplan-Meier analysis in the “survival” 

package. The motivation of this approach was that the large number of patients in our 

data set (and in the two S- and L-phenotype sub-categories) allowed us to consider 

their tumor masses as snapshots of the growth of an idealized tumor in different clinical 

contexts. Thus, the respective tumor masses in the two clinical phenotype sub-

categories were considered as independent variables in KM processing. In this model, 

no censoring is required. Results indicated that the odds to find the same tumor masses 

in the S- and L-phenotype groups are significantly different with separation close to 10x 

of the 95% confidence intervals. 
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For moving average processing of the dependencies of the clinical parameters on the 

tumor masses, we used a dedicated program (Maple 12). Patients were rank-ordered 

separately in the S- and L-phenotype subgroups. The first tumor mass that is 

characterized in the presented plots was the tumor mass in the 31st position in these 

rank-orderings. The program retrieved and averaged the clinical parameter values and 

the tumor masses of patients with 30 closest smaller tumor masses and 30 larger tumor 

masses to the mass 31 in the rank ordering. These two typical values were plotted as 

the first point of the processed relationship. The window was then moved to the 32 

tumor mass in the rank ordering and the process continued throughout the respective 

tumor mass intervals in the S- and L-phenotype sub-categories. 
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