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Abstract

A graph homomorphism is an edge preserving vertex mapping be-
tween two graphs. Locally constrained homomorphisms are those that
behave well on the neighborhoods of vertices — if the neighborhood
of any vertex of the source graph is mapped bijectively (injectively,
surjectively) to the neighborhood of its image in the target graph, the
homomorphism is called locally bijective (injective, surjective, respec-
tively). We show that this view unifies issues studied before from dif-
ferent perspectives and under different names, such as graph covers,
distance constrained graph labelings, or role assignments. Our sur-
vey provides an overview of applications, complexity results, related
problems, and historical notes on locally constrained graph homomor-
phisms.

1 Introduction

Homomorphisms are standard mathematical transformations that preserve
given algebraic structures. Stemming from classical algebraic approaches in
the theory of groups, semigroups, modules, etc., the notion of homomor-
phisms (or shortly morphisms) became the cornerstone of the category the-
ory, as well as the core ingredient of modern combinatorics, as a tool used
for the study of relational structures.
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In this paper we focus on graph homomorphisms. A graph is a pair
G = (VG, EG) where VG is the set of vertices of G and EG is a set of pairs of
vertices, referred to as the edges of G. We use a standard graph-theoretical
notation. Namely, the edge containing vertices u and v is denoted by (u, v).
In most cases we consider undirected graphs, and then (u, v) denotes the un-
ordered pair (i.e., two-element set) {u, v}. When considering directed graphs,
(u, v) means an ordered pair, and then we talk about a directed edge starting
in vertex u and ending in vertex v. Graphs are typically displayed graphically
— drawn — in the plane so that vertices are represented by points (or disks
or boxes to allow better distinguishing them) and edges are drawn as simple
curves joining their endvertices. Drawings are also convenient when display-
ing multigraphs, i.e., when multiple edges joining the same pair of vertices
and loops (edges whose endvertices are identical) are allowed. In most of this
paper we deal with simple undirected graphs, and any deviation to directed
graphs or multigraphs is properly announced (and happens mainly in Section
3.5). The number of edges a vertex u is incident with is called the degree of
the vertex (beware — loops are counted twice) and it is denoted by degG(u).
In an undirected graph G, two vertices are called adjacent if (u, v) ∈ EG.
The set of vertices adjacent to u is called the (open) neighborhood of u and it
is denoted by NG(u). A sequence of vertices such that any two consecutive
ones are adjacent is called a walk. A walk is a path if it passes through every
vertex at most once. A closed walk (i.e., the first and last vertices are also
adjacent) which passes through every vertex at most once is called a cycle.
When loops (i.e., edges with identical starting and ending vertices) are al-
lowed, a loop counts as a cycle of length 1. A tree is a connected graph that
contains no cycles. A matching is a disjoint union of edges.

We mostly consider finite graphs, i.e., graphs with finite vertex sets. We
will especially announce when allowing infinite graphs, but often stress the
finiteness requirement when we find this useful to avoid possible confusion.

Graph homomorphisms are mappings between sets of vertices of two
graphs having the following property: If two vertices form an edge of the
source graph then their images form an edge in the target graph (which may
be the same graph). In the paper we mostly keep the symbols so that G
stands for the source graph and H for the target one. Then a mapping
f : VG → VH is a graph homomorphism if and only if (f(u), f(v)) ∈ EH for
all pairs (u, v) ∈ EG. We write G→ H if a graph homomorphism from G to
H exists.

The following two general questions related to graph homomorphisms are
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the leitmotifs of the recent monograph by Hell and Nešetřil [33]:

• the existence of a homomorphism between two graphs and the compu-
tational complexity of the associated decision problem (which could be
parameterized by various restrictions on both graphs),

• the structure of the quasiorder determined by the existence of such
homomorphisms.

In our survey we follow these two major approaches on more specific
graph homomorphisms, namely on locally constrained graph homomorphisms.
The introduction of the following definition is motivated by the fact that
f(NG(u)) ⊆ NH(f(u)) holds for every vertex u ∈ VG whenever f : VG −→ VH
is a homomorphism from G to H (i.e., the image of the neighborhood of a
vertex of the source graph is contained in the neighborhood of the image of
this vertex in the target graph). Thus locally constrained graph homomor-
phisms are those that act well between the neighborhood of every vertex of
the source graph and the neighborhood of its image. We distinguish three
types of locally constrained homomorphisms:

Definition 1. A graph homomorphism f : VG → VH is called locally bijective
if for every vertex u of G, the restriction of the mapping f to the domain
NG(u) and range NH(f(u)) is a bijection.

Analogously, a graph homomorphism is locally injective (locally surjec-
tive) if its restriction to any NG(u) and NH(f(u)) is injective (surjective,
respectively).

In accordance with the notation used for ordinary graph homomorphisms
we write G B−→ H, G I−→ H and G S−→ H when a homomorphism with a partic-
ular local constraint exists. Examples of these three kinds of homomorphisms
are depicted in Fig. 1.

Though the classification of locally constrained homomorphisms looks as
a very natural extension of the theory of graph homomorphisms as a whole, it
is quite interesting to note that all three kinds of them have been intensively
studied under different names and in different connections. Our survey brings
this unifying view, as well as an overview of applications, related problems,
and historical notes.
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Figure 1: Examples of locally constrained homomorphisms. Homomorphisms
are indicated by vertex shapes. E.g., all white circles on the lefthand side
are mapped on the white circle on the righthand side, etc.

2 Genealogy of locally constrained homomor-

phisms

2.1 Locally bijective homomorphisms as graph covers

The concept of locally bijective homomorphisms is well established in com-
binatorial topology. Reidemeister in his classical monograph from 1932 [56,
pages 109–114]1 shows several basic facts about locally bijective homomor-
phisms (called here “Isomorphismus von Streckenkomplex C zu Streckenkom-
plex C∗”). Among others we find the following propositions.

Proposition 2 (Reidemeister [56]). Every locally bijective homomorphism
between two trees is an isomorphism.

Proof. We proceed by a contradiction: If two vertices u and v of the source
tree G had the same image in f : G B−→ H, then the image of the unique path

1See also a more accessible paper by Bodlaender [8].
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from u to v would induce a closed walk in H, i.e. a cycle. This contradicts
the assumption that H is a tree. Hence f is globally injective.

Now take any u from G and consider an arbitrary vertex x of H. Take
preimage of the path from f(u) to x is a path from u to a uniquely determined
vertex v, which moreover satisfies that f(v) = x. Hence f is also globally
surjective, i.e., a bijection between the vertex sets of G and H.

Now, every edge of G has a unique image under f , i.e., the mapping is
an isomorphism.

Note that it suffices to assume either that G is a tree, or that H is a tree
and G is connected to obtain the same result. Note also that the result holds
true even for infinite trees.

Proposition 3 (Reidemeister [56]). If the graph H is connected, then every
graph G allowing a locally bijective homomorphism to H has the property
that the cardinality of VG is a multiple of |VH |.

In this context it is often written that G is a k-fold cover of H, where k
is the (integer) ratio |VG|

|VH |
.

Proof. Let f : G B−→ H and consider an arbitrary edge e = xy of H. Then
the preimage of e induces (in G) a matching between the sets of vertices that
map onto x and those that map onto y. Since H is connected, we get that the
preimage of any vertex has the same cardinality and the claim follows.

Reidemeister gave also a construction of all k-fold covers of a fixed con-
nected graph in terms of permutations over edges not belonging to a span-
ning tree of H. (This construction was independently rediscovered in 1977
by Gross and Tucker [31] in terms of permutation voltage assignments in a
symmetric group of k elements.)

The construction is illustrated in Fig. 2. The preimage of the fixed span-
ning tree of H is a spanning forest of identical trees, each determining a
single layer of G. Every edge e in H outside the spanning tree is assigned
a direction, say xy, and a permutation πxy from the permutation group Sk.
The preimage of such e in G is the bipartite graph of πxy, i.e., the graph
where the i-th copy of x is joined to the π(i)-th copy of y.

Locally bijective homomorphisms are a natural discrete variant of the
notion of covering spaces in topology. In topological terms, a covering pro-
jection is a mapping that is continuous and also bijective on a suitable small
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Figure 2: A construction of a 3-fold cover of the graph K4. The spanning
tree of K4 and its preimage in G are indicated by dashed edges.

neighborhood of any point of the domain set. A prime example of a cov-
ering projection is the mapping that identifies the antipodal points of the
two-dimensional sphere — the resulting space is the projective plane.

Intuitively, any graph can be viewed as the set of points of its drawing
with no edge crossing. Observe that in such a point set the vertices of degree
two are topologically irrelevant — they cannot be distinguished from the
inner edge points, because their surroundings are topologically identical. In
contrary, the other vertices can be easily identified in the point set as well as
their degrees.

Moreover, any covering projection between point sets of two graphs with-
out vertices of degree two translates straightforwardly to a locally bijective
homomorphism between the same graphs — it is enough to restrict the map-
ping only onto vertices. In the opposite direction, any locally bijective ho-
momorphism transforms to many covering projections — there are uncount-
ably many ways to define the mapping along curves representing edges, even
though these mappings are homeomorphically equivalent.

Boldi and Vigna [9] traced the first occurrence of locally bijective homo-
morphisms to Grothendieck [32], who — under the name of graph fibration
— in late 1950’s translated the notion of fibration in homotopy theory to
categorical terms.

Sachs [58] established in 1964 the notion of graph divisor. In our current
terminology G B−→ H is equivalent with Sachs’s definition of H being a divisor
ofG. The name was chosen to reflect the property of division of the associated
characteristic polynomials:

Theorem 4 (Sachs [58]). If H is a divisor of G, then the characteristic
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polynomial of H divides the characteristic polynomial of G.

Idea of the proof. Recall that the characteristic polynomial of a graph G is
the characteristic polynomial of its adjacency matrix AG.

The idea is to transform an eigenvector y of AH to an eigenvector x of
AG as follows: Let us denote the vertices of G by u1, . . . un and those of H by
v1, . . . vk. If ui maps onto vj in G B−→ H, then we set xi = yj. The dependency
between these eigenvectors of AG is the same as between the original ones
for AH , which implies the statement for characteristic polynomials. See e.g.
a textbook of Godsil and Royle [29, page 197] for a formal proof.

The concept of graph divisors was then intensively used in the study of
characteristic polynomials of various graph classes, see e.g. a monograph of
Cvetković, Doob and Sachs [14].

Another occurrence of the notion of locally bijective homomorphisms can
be found in the monograph of Biggs [7, page 130]. Here he credits Conway for
a construction of an infinite family of connected 5-transitive cubic graphs. In
1974 Djoković [15] extended this construction and obtained an infinite class
of finite 4-regular 7-arc-transitive graphs. In the same year Gardiner [28] used
a similar approach involving locally bijective homomorphisms to construct
antipodal distance-regular graphs.

2.2 Negami’s conjecture

An interesting role of locally bijective homomorphisms appeared in a clas-
sification of projective planar graphs. A graph G is called projective planar
if it can be drawn in the projective plane with no edge-crossings. With a
little help of the definition of the projective plane mentioned earlier we get
an alternative description: projective planar graphs are the graphs that can
be drawn in the plane in such a way that the only edge-crossings appear in a
single disc and every pair of edges that pass through this disc cross exactly
once. Such a disc is called a crosscap.

In 1988, Negami [53] observed that for every projective planar graph it
is possible to construct a 2-fold cover which itself is a planar graph. He then
conjectured that the corresponding two graph classes are equal:

Conjecture 5 (Negami [53]). A finite graph H can be embedded in the pro-
jective plane if and only if it has a finite planar cover, i.e., if there exists a
finite planar graph G such that G B−→ H.
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Figure 3: The icosahedron as a 2-fold cover of the Petersen graph. On the
righthand side the dashed circle indicates the crosscap. On the lefthand side
it marks the circle where the outer parts of two Petersen graphs are glued
together.

For example, Mohar and Thomassen [52, page 201] pointed out that both
the Petersen graph and K6, the complete graph on six vertices, have planar
covers. These are e.g. the icosahedron and the dodecahedron. The locally
bijective homomorphism from the icosahedron to the Petersen graph is de-
picted in Fig. 3. Note that this particular homomorphism has the property
that it identifies the antipodal pairs of vertices; an analogous mapping on
the dodecahedron gives K6. Hence, according to Negami’s conjecture, the
Petersen graph as well as K6 should be projective planar, and they indeed
are.

The inclusion

{H is projective planar} ⊆ {H has a finite planar cover}

is simple. It suffices to take two drawings of the projective planar graph,
remove both crosscaps, invert one copy inside the disc of the crosscap and
finally glue these two parts along the boundary of the crosscap as indicated
in Fig. 3 for the Petersen graph.

The opposite inclusion seems difficult, and is still not settled. However,
the theory of graph minors and minor closed graph classes gives a promising
approach2. The class of projective planar graphs is minor closed, as any class

2A graph H is a minor of a graph G if an isomorphic copy of H can be obtained from
a subgraph of G by a sequence of edge-contractions. A class of graphs is minor closed if it
contains all minors of all of its graphs. In their Graph Minor project [57], Robertson and
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Figure 4: The unresolved forbidden graph K1,2,2,2.

of graphs embeddable in a fixed surface. For the other class we get the same
property:

Proposition 6. The class of graphs with finite planar covers is minor closed.

Proof. IfH allows a finite k-fold planar coverG B−→ H, it is enough to consider
whether this property is maintained for H ◦ e, i.e., for the graph obtained
from H by the contraction of some edge e.

In G we contract k edges in the preimage of e. If e was contained in no
triangle, then the resulting graph G′ is a planar cover of H ◦ e.

In the other case, we identify all vertices z adjacent to both endpoints of
the edge e = xy in H and for each such z we proceed as follows: Observe
that the preimage of the triangle x, y, z induces in G a disjoint union of
cycles, and the length of every cycle is divisible by three. Consequently, in
G′ every third edge of these cycles was contracted, so now the cycles have
even length. When we remove every second edge from the contracted cycles,
we get a matching (a set of disjoint edges) of size k. By repeating this
procedure for all z we obtain the desired finite planar cover of H ◦ e.

Hence to prove Negami’s conjecture it is possible to involve the Robertson-
Seymour theory of graph minors. Archdeacon showed in 1981 that the class
of projective planar graphs can be characterized by 35 forbidden minors [4].
Hence it would be enough to show that none of these 35 forbidden graphs
has a finite planar cover.

Following this idea, a joint effort of Negami [53], Fellows [18], and
Archdeacon [5] led in 1989 to a proof that 33 of the forbidden minors for

Seymour proved the so called Wagner conjecture, stating that every minor closed class of
graphs can be described by a finite number of non-isomorphic minor-minimal forbidden
graphs.
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the class of projective planar graphs have no planar cover (though the re-
sults of Archdeacon have only been published in 2002). Hence, it remained
to verify this property for only two graphs, namely for K4,4 − e and K1,2,2,2.

Hliněný found an affirmative argument for K4,4 − e in 1998 [34]. Since
then, only a single forbidden minor — namely the graph K1,2,2,2 — resists
to be shown that it allows no planar cover. As the conjecture is not proved
yet, Hliněný and Thomas [35] showed in 2004 that the conjecture can allow
at most 16 possible counterexamples (upto obvious constructions).

If Negami’s conjecture is proved, it will provide an alternative definition
of projective planar graphs as those graphs that have a 2-fold planar cover.

2.3 Distributed networks and common covers

Locally bijective homomorphisms have several applications in computer sci-
ence.

The first one appeared in early 1980’s in the problem of recognizing
uniform synchronous computer networks. In such networks, computers are
placed on the nodes of the network and all are of the same type. It means
that they execute the same algorithm in a synchronized way. Communication
between computers is done along the edges of the network. The recognition
problem asks, whether there exists an algorithm, that — if run on the nodes
of the network — recognizes the topology of the network, i.e., determines the
underlying graph.

Angluin [2] and also Angluin and Gardiner [3] observed that whenever
G B−→ H, then these two graphs can not be recognized by such algorithms.
The intuitive reason is simple — the state of each computer placed on a
vertex u ∈ VG is the same as the state of the computer placed on f(u) in H,
where f is the assumed locally bijective homomorphism. In fact they proved
in a slightly more general setting that classes of graphs closed under taking
covers cannot be recognized with a finite fixed set of processor types. To
prove the complete characterization of graphs which cannot be recognized
in this way, Angluin and Gardiner conjectured that two graphs have a finite
common cover if and only if they have the same degree refinement matrix,
which will be discussed in more detail in the next section.

The conjecture of Angluin and Gardiner was proved by Leighton in 1982
in the affirmative way. As its statement requires further concepts we will
state and discuss it in more detail later in Section 3.4.
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In 1986 Mohar [51] adjusted Leighton’s construction to classify the sur-
faces where the common covers can be embedded (depending on the surfaces
hosting the underlying graphs).

Following the work of Angluin [2], Litovsky, Métivier and Zielonka [45]
showed in 1993 that the families of series parallel graphs and planar graphs
cannot be recognized by means of local computations. Courcelle and Métivier
[13] proved in 1994 that the only nontrivial minor-closed graph classes that
can be recognized by local computations are those that are formed from
graphs with at most one cycle in each component.

Further models of local computations involving also locally injective
and locally surjective homomorphisms were considered by Chalopin and
Paulusma [10] in 2006.

2.4 Locally injective homomorphisms and the Fre-
quency Assignment Problem

The other two kinds of local constraints have also interesting history and
provide a wide spectrum of applications.

Nešetřil [54] showed already in 1971 that every locally injective mapping
G I−→ G of a connected finite graph G to itself is an isomorphism of G.

In his tutorial from 1983, Stallings [59] mentioned that every locally in-
jective homomorphism G I−→ H can be extended to a locally bijective homo-
morphism G′ B−→ H for G′ being a supergraph of G.

Locally injective homomorphisms were applied in a hardness proof for the
existence of distance constrained labelings of graphs [23], a notion stemming
from a highly practical problem of interference-free frequency assignment for
wireless networks. The classical concept of L(p, q)-labeling introduced by
Roberts (according to Griggs and Yeh [30]) asks for an assignment l : VG →
{0, 1, . . . } of labels to the vertices of a given graph G such that:

• if u and v are adjacent then |l(u)− l(v)| ≥ 2,

• if u and v share a common neighbor then l(u) 6= l(v).

The difference between the smallest and the largest label used is the span of
the labeling.

Observe that an L(2, 1)-labeling of span k can be also viewed as a locally
injective homomorphism to the complement of the path of length k, see
Fig. 5 for an example. In particular, the second condition of the definition of
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Figure 5: An L(2, 1)-labeling of span five viewed as a locally injective homo-
morphism G I−→ P5.

the L(2, 1)-labeling forces that the homomorphism is locally injective. This
gives us an opportunity to explore this labeling as well as similar labelings
(e.g., those with circular metric) in the framework of locally constrained
homomorphisms.

This observation also leads to a natural generalization of L(2, 1)-labelings.
If the interference metric in the frequency space can be modeled by a graph,
say H, then an H(2, 1)-labeling of G is a mapping f : VG → VH such that
distH(f(u), f(v)) ≥ 2 whenever (u, v) ∈ EG, and f(u) 6= f(v) whenever
distG(u, v) = 2 (here dist denotes the distance of vertices measured by the
length of a shortest path between them). It is easy to see that an H(2, 1)-
labeling of a graph G is exactly a locally injective homomorphism from G to
H, the complement ofH — if f(u) 6= f(v), then requiring distH(f(u), f(v)) ≥
2 is equivalent to saying that (f(u), f(v)) ∈ EH . Apart from the linear metric
(i.e., L(2, 1)-labelings), circular metric (which is equivalent to locally injective
homomorphisms into complements of cycles) has been considered by Leese
and Noble [42], and by Liu and Zhu [46].

2.5 Locally surjective homomorphisms and the Role
Assignment Problem

Locally surjective homomorphisms were introduced by Everett and Bor-
gatti [16], who called them role colorings. They originated in the theory
of social behavior. The target graph H, called in this case the role graph,
models roles and their relationships in a society. The source graph G rep-
resents relations between particular individuals of some group. The task is
to assign roles to individuals so that each person given a particular role has,
among its neighbors, every role prescribed by the role graph at least once,
while no other roles may appear in the neighborhood.
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For example take the role graph H as the path on three vertices with
roles ”producer”, ”reseller” and ”consumer”. We now ask whether these
three roles can be assigned to the vertices of the source graph such that the
neighbors of each producer and each consumer are only resellers and each
reseller is adjacent to at least one producer and at least one consumer but
to no reseller.

By nature of this motivation it is reasonable to consider also cases when
the role graph contain some loops, while the source graph is usually assumed
to be simple.

From the above description it is clear that role assignments are equivalent
to locally surjective homomorphisms. In addition to classical problems of
asking whether some role assignment exists (when the role graph is known),
a related problem asks whether a given graph G admits a role assignment
using at most k roles (i.e., the role graph has to be determined). Not very
surprisingly both these problems are computationally difficult as it will be
discussed later.

A wider class of role assignments and vertex partitions analogous to equi-
table partitions (e.g., for directed graphs) was considered in 1994 by Everett
and Borgatti for further models in social network theory. A recent survey on
results in this direction was given by Lerner [44] in 2005.

3 Structural aspects

3.1 Degree matrices

Other structural properties can be captured by equitable partitions and de-
gree matrices mentioned already in the previous section.

Similarly as graph isomorphisms, any locally bijective homomorphism
must maintain the degree of a vertex as well as the degrees of its neighbors,
the degrees of neighbors of neighbors, etc. Hence, it is natural to look for an
equivalence relation on the vertex set of a given graph such that the vertices
in the same class cannot be distinguished by their degrees, the degrees of
their neighbors, etc.

Definition 7. A partition of the vertex set of a graph G into disjoint classes
is called an equitable partition if vertices in the same class have the same
numbers of neighbors in all classes of the partition.
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Figure 6: An example of a minimal equitable partition and the corresponding
degree refinement matrix.

Any equitable partition is characterized by the associated degree matrix
whose rows and columns are indexed by the blocks of the partition, and the
entry in the i-th row and j-th column describes how many neighbors a vertex
from the i-th block has in the j-th block.

Every finite graph admits a unique minimal equitable partition. In this
case a canonical ordering can be imposed on the blocks, so the corresponding
degree matrix, called the degree refinement matrix, is also defined uniquely.
See Fig. 6 for an example of a degree refinement matrix obtained from the
minimal equitable partition of a graph.

Corneil introduced the notion of equitable partition in his PhD. thesis in
1968 [12, 11] as a heuristic for the graph isomorphism problem. It is worth
mentioning that it was independently discovered by McKay [49] in 1976 in
his master’s thesis but with giving credits to Hopcroft’s paper [36] from 1971
for the routine for minimizing the number of states of a finite automaton.

The notion of equitable partitions has soon become a folklore, and so it
frequently appears without any reference [2, 43, 38, 29]. It was later imple-
mented by McKay as a subroutine of a graph isomorphism software called
Nauty [50, 48].

It can be decided efficiently whether a given matrix M is a degree matrix
by solving a set of linear equations with variables describing the block sizes.
If some entry satisfies mi,j 6= 0 then also mj,i 6= 0 and the fraction

mi,j

mj,i

determines the ratio of the sizes of the i-th and the j-th blocks. It is enough
to verify whether these conditions allow a nontrivial solution of block sizes.
In the affirmative case a suitable graph can be constructed explicitly.

It is not hard to observe that a single graph may allow several equitable
partitions yielding distinct degree matrices. In particular, any partition of
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Figure 7: Two equitable partitions of the same graph, the left one is finer
than the right one.

the complete graph is an equitable partition, hence complete graphs allow
exponentially many degree matrices.

An equitable partition is said to be finer than another one when every
class of the first partition is a subset of some class of the latter one. E.g.,
the partition into singletons is finer than any other equitable partition of the
same graph.

According to our knowledge, the proof of the fact that the relation “being
finer” defines a lattice on the set of all equitable partitions of a fixed graph
was first published by Everett and Borgatti [16] in 1991. On the other hand,
this has been already mentioned as ‘well known’ by McKay [50] in 1981.
The proof follows a classical approach of forming intersection and union of
algebraic structures.

The relation of being finer can be directly translated onto the class of
degree matrices as follows:

Definition 8. For two degree matrices M of order k and N of order l we write
M→ N, and say that M is above N, if there exists a partition R1, . . . , Rl of
the index set {1, 2, . . . , k} such that∑

j∈Rs

mi,j = nr,s

for every i ∈ Rr and for every s = 1, . . . , l.

The meaning is straightforward — vertices in blocks with indices in Rr

cannot be distinguished in the new partition with fewer blocks.
For example, the degree matrices of the partitions from Fig. 7 can be

compared as follows:
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HTH

Figure 8: An example of the universal cover and a locally bijective homo-
morphism TH

B−→ H.

M =


0 1 2 3
1 0 0 3
1 0 0 3
1 1 2 0

 R1,R2=−−−−−−→
{1},{2,3,4}

(
0 6
1 3

)
= N

Besides its natural definition, this matrix order has several interesting
properties closely tied to the existence of locally bijective homomorphisms:

• Every connected component of the matrix order → has exactly one
minimum element, which is a degree refinement matrix.

• The lower ideal consisting of the matrices lying below the adjacency
matrix of a graph H contains all degree matrices of H.

• Only adjacency matrices may occur above the adjacency matrix of a
graph H.

• These matrices are the adjacency matrices of graphs G that allow lo-
cally bijective homomorphisms G B−→ H. In other words this matrix
order contains as a suborder the graph order defined by existence of
locally bijective homomorphisms.

3.2 Universal cover

The notion of universal cover is well established in topology of continuous
spaces. In the discrete case, the universal cover of a graph H is the only
(possibly infinite) tree TH that allows a locally bijective homomorphism to
H: TH

B−→ H. See Fig. 8 for an example.
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The universal cover TH can be constructed explicitly as follows: First,
choose an arbitrary vertex u1 ∈ VH . For the vertex set of TH take the set of
all finite walks starting from u1 that do not traverse the same edge in two
consecutive steps. Two such walks form an edge in TH of one is an extension
of the other by a single edge. Observe that any different choice of the initial
vertex u1 provides an isomorphic tree, hence the universal cover is unique
upto an isomorphism. Note further that the universal cover of a graph can
be straightforwardly constructed from any of its degree matrices.

Obviously, the mapping that assigns every vertex of TH the last vertex of
the corresponding path in H, is a locally bijective homomorphism TH

B−→ H.
More can be seen when such homomorphisms act between different

graphs. When a graph G admits a locally constrained homomorphism f
into a connected graph H, we can lift this homomorphism to a homomor-
phism f ′ acting between the associated universal covers TG and TH : Simply
the image of a walk is the walk formed by the images of the vertices of the
original walk:

f ′(u1, . . . , uk) := (f(u1), . . . , f(uk)).

Moreover, the local constraint of f is maintained by f ′ as well. As locally
constrained homomorphisms between trees provide their inclusion, we get in
particular that:

• if f is locally injective, then the tree TG is a subtree of TH ;

• if f is locally surjective, then TH is a subtree of TG;

• if f is locally bijective, then TG and TH are isomorphic.

3.3 Cantor-Bernstein type theorem

With the help of universal covers one can derive interesting structural proper-
ties of locally constrained homomorphisms. For example, Fiala and Maxová
proved in 2006 an analogue of the classical theorem from the set theory due
to Cantor and Bernstein:

Theorem 9 (Fiala, Maxová [25]). If a graph G admits a locally injective
homomorphism f to a finite and connected graph H as well as a locally sur-
jective homomorphism g to H, then all locally constrained homomorphisms
between G and H are locally bijective.
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Note that this result is not just a direct consequence of Cantor-Bernstein
theorem, since the two assumed locally constrained homomorphisms may act
(injectively/surjectively) between a neighborhood in G but different neigh-
borhoods in H.

Idea of the proof of Theorem 9. Let diam(H) be the diameter of the graph
H, i.e., the maximum distance in H. Assume that the universal cover TH is
initiated in a vertex x chosen such that the first diam(H) + 1 levels of TH
contain as many vertices as possible. Denote by A the set of vertices of the
first diam(H) + 1 levels of TH . In the graph G, pick an arbitrary vertex u
such that g(u) = x and denote by B the vertices of the first diam(H) + 1
levels of TG initiated in the vertex u. Finally let C contain the vertices of
the first diam(H) + 1 levels of TH initiated in f(u).

We get that
|A| ≤ |B| ≤ |C| ≤ |A|.

The first inequality follows from the fact that the derived mapping g′ is
surjective, the second one holds because f ′ is injective, and the last one by
the choice of A.

Hence both f ′ and g′ are bijections and consequently the original map-
pings f and g must be locally bijective.

The statement can be weakened in the way that either f or g might be
assumed to be locally bijective. The proof can be slightly adjusted so that
it suffices to assume that the graphs G and H have the same universal cover
or the same degree (refinement) matrix.

In particular, as a special case we get the following two theorems that
play an important role in the classification of the computational complexity
of locally constrained homomorphisms.

Theorem 10 (Fiala, Kratochv́ıl [21]). If two graphs G and H share the same
degree matrix, then every locally injective homomorphism is locally bijective.

Theorem 11 (Kristiansen, Telle [41]). If two graphs G and H share the
same degree matrix, then every locally surjective homomorphism is locally
bijective.

3.4 Common covers

We have already mentioned the following theorem of Leighton:
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Theorem 12 (Leighton [43]). For connected finite graphs H and H ′, the
following conditions are equivalent:

1. H and H ′ share a common finite cover,

2. H and H ′ have the same universal cover,

3. H and H ′ share a common (possibly infinite) cover,

4. H and H ′ have the same degree refinement matrix.

Idea of the proof. The first three implications are straightforwardly obtained
from the definitions:

1⇒ 2: If G B−→ H, then G and H have the same universal cover.
2⇒ 3: The universal cover is a particular choice of a cover.
3⇒ 4: If G B−→ H, then G and H have the same degree refinement matrix.
The only difficult implication is 4⇒ 1 and it is, indeed, rather technical

for the general case. For illustration we include here a proof for the case
when the graphs H and H ′ are k-regular, i.e., both share the same degree
refinement matrix MG = MG′ = (k) of order one.

Without loss of generality we may assume that both graphs are k-edge
colorable, with the color set {1, 2, . . . , k}. Otherwise we take the categorical
product with a single edge which results in a k-regular bipartite graph H×K2

which is k-edge colorable. The projection to the first coordinate guarantees
that H ×K2

B−→ H.
For the vertex set of the common cover G we take the Cartesian product

VH × VH′ and for the edges we choose the pairs ((u, u′), (v, v′)) such that the
edges (u, v) ∈ EH and (u′, v′) ∈ EH′ are of the same color. In other words,
the edge set of G is the union of k matchings, where the i-th matching is
obtained as the categorical product of the matchings of H and H ′ induced
by the edges of color i.

The projection to the first coordinate witnesses that G B−→ H, while the
projection to the second one implies G B−→ H ′.

For graphs with more complex degree refinement matrices, an analogous
construction for edges between pairs of blocks is presented in [43]. It requires
some more effort to show that these parts can be combined together.
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3.5 Colored directed multigraphs

The notion of locally constrained homomorphisms can be extended to similar
structures: directed graphs, multigraphs or even to hypergraphs. For the
classification of locally bijective homomorphisms, the extension to colored
directed multigraphs plays an important role. A multigraph is a graph which
is allowed to have multiple edges and loops. In a directed one, some edges
are directed, while some may be undirected. The ‘colored’ attribute means
that vertices and edges come with an extra information about their color.
Multigraphs still correspond to simplicial complexes, but for their covering
projections we need an extra information about mapping of the edges. We
formally define locally bijective homomorphisms as vertex mappings that
preserve the colored degrees. Obviously, every covering projection gives rise
to a locally bijective homomorphism. And it is a neat consequence of old and
celebrated Petersen theorems that the converse is also true — every locally
bijective homomorphism can be extended to a covering projection.

To be able to present the arguments in more details, we need to be more
precise with the definitions.

Definition 13. A colored directed multigraph is a triple G = (VG, EG ∪
LG ∪ DG), φG, cG, where VG is the set of vertices, EG is the set of proper
(undirected) edges, LG is the set of (undirected) loops, DG is the set of
directed edges, φG : EG ∪ LG ∪DG −→

(
VG

2

)
∪ VG ∪ VG × VG is the indicator

function (such that φG(EG) ⊆
(
VG

2

)
, φG(LG) ⊆ VG, and φG(DG) ⊆ VG × VG),

and cG : VG ∪ EG ∪ LG ∪ DG −→ C is a coloring of vertices and edges, C
being the set of colors.

The colored degree of a vertex u is

degb−
G (u) = |{e ∈ DG : cG(e) = b, φG(e) = (u, )}| and

degb+
G (u) = |{e ∈ DG : cG(e) = b, φG(e) = ( , u)}|

if b is a color of directed edges, and

degb
G(u) = |{e ∈ EG : cG(e) = b, u ∈ φG(e)}|

+2|{e ∈ LG : cG(e) = b, φG(e) = u}|

when b is a color of undirected edges and loops.

Note that directed loops are simply counted as directed edges with the
same starting and ending vertices. However, undirected loops are distin-
guished, because they contribute by a different amount to the degrees of
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their vertices, but also because of different behavior with respect to covering
projections (as defined below).

Definition 14. (Covering projection) LetG andH be colored directed multi-
graphs with the same set C of colors. A mapping g : VG∪EG∪LG∪DG −→
VH ∪ EH ∪ LH ∪ DH is a cdm-covering projection if g(VG) ⊆ VH , g(EG) ⊆
EH∪LH , g(LG) ⊆ LH , g(DG) ⊆ DH , and the following conditions are fulfilled

• cG(x) = cH(g(x)) for all x ∈ VG ∪ EG ∪ LG ∪DG,

• φH(g(e)) = g(φG(e)) for all e ∈ EG ∪ LG ∪DG,

• the preimage of every proper edge e ∈ EH such that φH(e) = {x, y} is
a matching containing all vertices of G that g maps to x or y,

• the preimage of every undirected loop e ∈ LH such that φH(e) = x is
a disjoint union of cycles containing all vertices of G that g maps to x,

• the preimage of every directed non-loop edge e ∈ DH such that φH(e) =
(x, y) is a matching containing all vertices of G that g maps to x or y,
and

• the preimage of every directed loop e ∈ DH such that φH(e) = (x, x)
is a disjoint union of directed cycles containing all vertices of G that g
maps to x.

Definition 15. (Locally bijective homomorphism) Let G and H be colored
directed multigraphs with the same set C of colors. A mapping f : VG −→ VH
is a locally bijective homomorphism if

• cG(u) = cH(f(u)) for all u ∈ VG,

• |{e ∈ EG : cG(e) = b, φG(e) = {u, x} with f(x) = v}| = |{e ∈ EH :
cH(e) = b, φH(e) = {f(u), v}| for every u ∈ VG, every b ∈ C and all
v ∈ VH , v 6= u,

• |{e ∈ EG : cG(e) = b, φG(e) = {u, x} with f(x) = f(u)}| + 2|{e ∈ LG :
cG(e) = b, φG(e) = u}| = 2|{e ∈ LH : cH(e) = b, φH(e) = f(u)| for
every u ∈ VG and every b ∈ C,

• |{e ∈ DG : cG(e) = b, φG(e) = (u, x) with f(x) = v}| = |{e ∈ DH :
cH(e) = b, φH(e) = (f(u), v)| for every u ∈ VG, every b ∈ C and all
v ∈ VH , and
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• |{e ∈ DG : cG(e) = b, φG(e) = (x, u) with f(x) = v}| = |{e ∈ DH :
cH(e) = b, φH(e) = (v, f(u))| for every u ∈ VG, every b ∈ C and all
v ∈ VH .

Obviously the restriction of a cdm-covering projection to the vertex sets
of the multigraphs is a locally bijective homomorphism in the sense of the
previous definition. This obvious necessary condition is also sufficient, as it
is shown by the following theorem.

Theorem 16 (Kratochv́ıl, Proskurowski, Telle [37]). Let G and H be colored
directed multigraphs with the same set C of colors. Every locally bijective
homomorphism f : VG −→ VH can be extended to a cdm-covering projection
of G to H.

Proof. Suppose f : VG −→ VH is a locally bijective homomorphism. We
define g(x) = f(x) for all vertices x ∈ VG. We need to extend this definition
to edges of G.

Let e ∈ EG be a proper edge of G such that φG(e) = {u, x} and cG(e) = b.
Let k be the number of edges of color b that connect f(u) to f(x) in H, and
assume f(u) 6= f(x). Consider the subgraph of G induced by the vertices
that map onto f(u) or f(x), and by the edges of color b that connect them.
By the assumption, this subgraph is k-regular and bipartite. It follows from
König-Hall theorem (and was proved earlier by Petersen [55] in 1891) that the
edges of this bipartite (multi)-graph can be properly colored by k colors, i.e.,
partitioned into k perfect matchings. Now we map all edges of one matching
onto one of the k edges connecting f(u) and f(x) in H.

If f(u) = f(x) (this covers also the case of e ∈ LG being a loop), the
subgraph of G induced by the vertices that map onto f(u), and by the edges
of color b that connect them is not necessarily bipartite, but it is surely
2k-regular. It follows from Petersen theorem [55] that this subgraph can
be partitioned into 2-factors, i.e., into k collections of disjoint cycles, each
collection covering all of its vertices. Again, map the edges of each collection
to one loop of color b around the vertex f(u) in H.

The arguments for directed edges are similar, even simpler.

Let us now return to simple graphs. Observe that whenever G B−→ H, then
every leaf (i.e., a vertex of degree one) has to be mapped only on a leaf in H.
Hence, it is enough to encode in both graphs the numbers of leaf-neighbors
of the vertices of higher degree and prune all leaves. This process can be
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iterated until there is no leaf in either of the graphs. At the end we get at
each vertex u of G and H an extra information that encodes the structure of
the tree that was attached to the rest of the graph in u and that was removed
during the pruning procedure. We view this code as the color of the vertex.
Clearly, only vertices with the same color can be mapped onto one another
by a locally bijective homomorphism (cf. Theorem 2).

Obviously, locally bijective homomorphisms between the original graphs
are in one-to-one correspondence with the color respecting locally bijective
homomorphisms of the resulting colored graphs (upto automorphisms of the
removed trees).

We can extend this reduction rule to vertices of degree two as follows: Any
path of length k between vertices of degree at least three which contains only
vertices of degree two must be mapped onto a path of the same length and
the same color pattern under any locally bijective homomorphism. Hence
each such path can be replaced by a single edge, with an extra information
about the color pattern. Analogously to the case of vertices, this can be
viewed as a color of the edge. Since the pattern may not be symmetric, the
direction in which the pattern was encoded provides also the direction of the
edge. As some pairs of vertices might be connected by several paths, multiple
edges or loops may appear by this construction. (See Fig. 9.)

Every locally bijective homomorphism between the original graphs trans-
lates to a covering projection between the resulting multigraphs, in the sense
of the definition above, and vice versa. But as we have already seen, the ex-
istence of a covering projection is equivalent to existence of a locally bijective
homomorphism between the resulting colored directed multigraphs. Hence
we have shown:

Proposition 17 (Kratochv́ıl, Proskurowski, Telle [37]). Let G and H be
simple graphs and let G′ and H ′ be colored directed multigraphs obtained
from G and H by the above described procedure. Then G B−→ H if and only if
G′ B−→ H ′.

What we gained by the transformation to colored directed multigraphs
is the fact that both G′ and H ′ have minimum total degree greater than
two. It is hoped that this fact may help avoid simple polynomially solvable
cases and could allow a more concise description of the borderline between
polynomially solvable and NP-complete instances of the problem of testing
existence of locally bijective homomorphisms to fixed parameter graphs.

23



path replacement

leaf elimination

Figure 9: Conversion of a simple graph into a colored directed multigraph of
minimum degree three.

It may seem that introduction of colors, multiedges, loops, and directed
edges is a bit high price for a reduction to (multi)graphs of minimum de-
gree at least three. However, the process can easily be reversed. For every
colored directed multigraph H ′, one can construct a simple graph H so that
the problems of deciding existence of locally bijective homomorphisms onto
H (for simple graphs) and onto H ′ (for colored directed multigraphs) are
polynomially equivalent.

3.6 Locally constrained homomorphisms as CSP

The recently intensively studied Constraint Satisfaction Problem is, in its
general formulation, the question of existence of a homomorphism between
two relational structures of the same type. A famous dichotomy conjecture
of Feder and Vardi [17] states that for every fixed target structure (called
usually the template), the CSP problem is either polynomially solvable or
NP-complete. Similar dichotomy is hoped for in the case of locally con-
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strained homomorphisms, and (mostly partial) results are presented in the
next chapter. In this section we show that two of our three homomorphism
types can be straightforwardly reformulated as CSP.

For locally injective homomorphisms, we can reduce as follows. Given two
graphs G and H, we introduce two binary relations — E and D. We set EH

to be the edges of H (more precisely, for every edge (x, y) of H, we put both
ordered pairs (x, y), (y, x) in the template relation EH), and EG will be the
edges of G. For the other relation, we put in DH all pairs of distinct vertices
of H, and in DG all pairs of vertices of G that share a common neighbor. A
relational homomorphism of these structures then directly corresponds to a
locally injective homomorphism of the graphs — the E relation controls that
edges are mapped onto edges (i.e., that we have a homomorphism), while the
D relation controls the required local injectivity.

For locally bijective homomorphisms, we add d unary relations
B1, . . . , Bd, where d is the maximum degree in H. Then Bi

H will contain
all vertices of degree i in H, and Bi

G will contain all vertices of degree i in G.
Adding these constraints will guarantee that the resulting homomorphism is
degree-preserving, and hence locally bijective.

It is interesting to note that though also locally surjective homomorphisms
can be polynomially reduced to CSP (CSP is NP-complete and existence of
locally surjective homomorphisms is clearly in NP), a simple direct reduction
is not obvious and in fact not known.

It is, however, important to realize that the presented reductions to CSP
do not guarantee dichotomy of the computational complexity. And they
would not guarantee it even if the Feder-Vardi conjecture for CSP were
proved. Only the polynomial cases of CSP would translate, but if the result-
ing CSP problem is NP-complete, we cannot deduce anything for the original
locally constrained homomorphism one. This is because the CSP problem
may be hard on inputs that do not arise from the locally constrained homo-
morphism problem. And indeed, this is the case. The D relation encodes
graph coloring, and so the CSP formulation becomes NP-complete as soon
as H has at least three vertices. However, many larger graphs H allow poly-
nomial time algorithms (both for locally bijective and for locally injective
homomorphisms), as we will see in the next chapter. Somewhat surprisingly
it is the case of locally surjective homomorphisms where dichotomy is known.
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4 Computational complexity

4.1 Locally bijective homomorphisms

Bodlaender [8] proved in 1989 that every cover G of a connected graph H is
a uniform emulation, that means that a parallel algorithm designed for the
processor networkG can be emulated onH where each node ofH corresponds
to a constant number of nodes of G. The same paper provided the complete
characterization of covers of the ring, the grid, the cube, the cube connected
cycles, the tree and the complete graphs. Moreover it is shown there that
the decision problem whether a graph G covers a graph H is at least as hard
as the graph isomorphism problem, even if the ratio |VG|

|VH |
is fixed.

In the concluding remarks Bodlaender asked the computational complex-
ity of the following decision problem:

H-Locally Bijective Homomorphism H-LBiHom
Parameter: A graph H.
Instance: A graph G.
Question: Does G B−→ H hold?

Abello, Fellows and Stillwell [1] showed in 1991 that there are both poly-
nomially solvable and NP-complete cases. Since then a considerable effort
was devoted to the attempts to fully characterize the computational com-
plexity of H-LBiHom, but the goal is still not at sight. Only partial results
have been achieved so far, but we find at least some of them interesting both
for relative generality of the results and for the proof techniques. We will
provide an overview of them in this chapter. Unless stated otherwise, we
assume that all graphs are simple, i.e., without loops or multiple edges.

Proposition 18. The H-LBiHom problem is solvable in polynomial time if
the only degree partition of H is the partition into singletons.

Proof. According to Theorem 12, the graphs G and H must have the same
degree refinement matrix in order to have a chance for the existence of a
locally bijective homomorphism, as this is a necessary condition. Hence we
start by checking this condition.

The degree refinement matrix of the graph G can be constructed in time
O(|VG|4) from the minimum equitable partition obtained by the following
iterative algorithm:
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Algorithm 1: The minimum equitable partition

Input: A graph G.
Output: The minimum equitable partition B of G.
Initialize B1 := (B1,1) = (VG), k1 := 1, t := 1.
repeat

For every u ∈ VG, compute its degree vector d(u) defined by
d(u)i := |N(u) ∩Bi,t| for i ∈ [1, kt].
Increment t := t+ 1.
Sort the degree vectors lexicographically and define the partition
Bt such that each class Bi,t consists of the vertices whose degree
vector is the i-th in the sorted order.
Set kt to be the number of classes of Bt.

until kt = kt−1 ;
return Bt

On the other hand, the equality of the degree refinement matrices is also
a sufficient condition. Any locally bijective homomorphism f : G B−→ H
maps vertices from the i-th block of the partition of G onto the vertices from
the i-th block of H. Hence, the mapping f is uniquely defined when each
block of H consists of only one vertex. In addition, the images of neighbors
of any vertex are determined, hence this mapping f is a locally bijective
homomorphism.

The above proposition can be extended to the case when the target graph
has at most two vertices in each class of the minimum equitable partition [38].
The existence of a locally bijective homomorphism can be expressed by a
Boolean formula with at most two literals in each clause (the 2-SAT problem)
which is well known to be solvable in linear time [6]. The transformation goes
as follows:

For every block of H with two vertices we regard one of them as the true
value and the other as false. For every vertex u in G that should be mapped
onto such pair, we introduce a Boolean variable xu.

If a block of G contains two vertices u and v connected by an edge or if
these two vertices share a common neighbor, we introduce clauses (xu∨xv)∧
(¬xu ∨ ¬xv).

Whenever blocks of size two in H are connected by a matching we in-
troduce for every edge (u, v) ∈ EG between the corresponding two blocks a
collection of clauses according to the following rule:
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• (xu ∨ ¬xv) ∧ (¬xu ∨ xv) if the matching in H connects vertices of the
same value (true–true and false–false),

• (xu ∨ xv) ∧ (¬xu ∨ ¬xv) if vertices of opposite values (true–false and
false–true) are joined in H.

Observe that satisfying evaluations of the formula are in one-to-one corre-
spondence with homomorphisms that are locally bijective: The value of the
variable xu determines which of the two possible vertices shall be used as the
image of u, and the clauses encode both the homomorphism requirements
and the local constraints.

We focus for the moment on the colored directed multigraphs defined
in the previous section. If the resulting multigraph H consists of only a
single vertex, the H-LBiHom problem becomes easily solvable by the same
arguments as were used to prove Proposition 18. The situation becomes
more interesting when H has two vertices. In such a case the complete
characterization is known:

Theorem 19 (Kratochv́ıl, Proskurowski, Telle [37]). If H is a colored di-
rected multigraph on two vertices, then the H-LBiHom problem is NP-
complete if and only if the following conditions are satisfied:

• the two vertices of H form a class of an equitable partition,

• there is a color c such that the two vertices are connected by an edge of
color c and both have a loop of the same color, and if the edges of this
color c are directed, then each of the vertices is incident with at least
three outgoing edges of color c.

In all other cases the H-LBiHom problem for colored directed multigraphs
H on two vertices is solvable in polynomial time.

Proof. If the minimum equitable partition can distinguish the two vertices,
the locally bijective homomorphism is obtained by Proposition 18.

Denote by u and v the two vertices of H. In the remaining polynomial
cases every color c induces either

• only a multiedge between u and v or

• only two multiloops on u and v of the same multiplicity.
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Figure 10: Undirected and directed multigraphs H that present the base
cases in the characterization of Theorem 19. The top one is the smallest
undirected multigraph defining an NP-complete instance, while the bottom
one is largest connected monochromatic directed multigraph that defines a
polynomially solvable variant of the H-LBiHom problem.

• a single directed loop on u and on v together with a pair of oppositely
directed arcs between u and v (See Fig. 10).

Then the 2-SAT technique used above can be employed again. The two
vertices of H encode the values true and false. Every edge of the first type
will give rise to clauses that would ensure that the variables assigned to its
vertices get different values, while every edge of the second type will give rise
to clauses that would ensure the same value for the variables. For edges of
the third type, each vertex of G has two incoming and two outgoing edges of
this color. For the two in-neighbors, as well as for the two out-neighbors, we
add clauses to ensure that the corresponding variables get different values.

For the NP-hardness part assume first that the color c induces in H
unoriented edges and loops. Let k be the multiplicity of the edge between u
and v and l the multiplicity of the two loops.

The idea is to reduce the following BW-(i, j) problem, which has been
proven NP-complete by Kratochv́ıl, Proskurowski and Telle [39] for all pairs
of positive integers i, j such that i+ j ≥ 3.

Black & White (i, j)-coloring BW-i, j
Parameters: Integers i, j.
Instance: An (i+ j)-regular graph G.
Question: Does G allow a coloring by two colors such that
every vertex has i neighbors of the same color and j neighbors
of the other color?

Let G be an instance of the BW-(2l, k) problem. We construct a colored

directed multigraph G̃ as follows: take two disjoint copies of G, call them G′
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and G′′, and give all their edges color c. In the sequel let x′ and x′′ denote
the copies of the vertex x ∈ VG in G′ and G′′, respectively. Let Hc be the
submultigraph of H arising by deleting all edges and loops of color c. Now
for any x ∈ VG we also add into G̃ a copy of Hc such that the two vertices
of Hc are identified with x′ and x′′.

Assume first that a locally bijective homomorphism f : G̃ B−→ H exists.
Then the partition of VG′ determined by f−1(u) and f−1(v) provides a valid
black & white coloring of G as required by the BW-(2l, k) problem.

In the other direction, fix a suitable black & white coloring of G. Define
a mapping f : G̃ → H as follows: If x ∈ VG is white, set f(x′) = u and
f(x′′) = v. If x is black, set f(x′) = v and f(x′′) = u. Straightforwardly, this
f is a locally bijective homomorphism.

In the other case — when the edge color c is assigned to directed edges
— the construction is analogous, but more technical.

First one proves that the H-LBiHomproblem is NP-complete for the
following two graphs:

• H1 — the graph consisting from one digon (two vertices joined by a
pair of arcs directed in opposite ways) with two directed loops at each
vertex, and

• H2 — consisting from a double digon with a single directed loop at
each vertex.

When Hi, i = 1, 2, is a proper subgraph of H, we take two copies of
Gi — a graph that is difficult to decide the existence of a locally bijective
homomorphism to Hi — and join every x′ and x′′ by H \ H1 as in the
undirected case.

A rich family of parameter graphs H that determine computationally
difficult variants of the H-LBiHom problem is described by the following
theorem:

Theorem 20 (Kratochv́ıl, Proskurowski, Telle [39], Fiala [19]). The H-
LBiHom problem is NP-complete for all simple k-regular graphs with k ≥ 3.

In fact this result disproved the conjecture of Abello et al. [1] stating
that graphs H with trivial structure of the automorphism group (namely the
rigid graphs, i.e., those who allow the identity to be the only automorphism)
would provide polynomially solvable cases of the H-LBiHom problem.
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The proof of the theorem itself required as a tool a construction of a graph
that allows many locally bijective homomorphisms to H. A multicover of a
regular graph H is a graph G with a distinguished vertex u, such that for
any vertex v ∈ VH , every bijection f ′ : NG(u) → NH(v) between the neigh-
borhoods of u and v can be extended to a locally bijective homomorphism
f : G B−→ H satisfying f(u) = v. The construction of this multicover G
involves an algebraic method that generalizes the construction of common
covers used by Angluin and Gardiner [3] and Leighton [43].

The first paper of Kratochv́ıl, Proskurowski and Telle [39] provided the
construction of multicovers for k-edge colorable and dk+2

2
e-edge connected k-

regular graphs H and the general NP-hardness reduction from a hypergraph
coloring problem to show that for such graphs the H-LBiHomproblem is NP-
complete. Fiala [19] later observed that by using a double bipartite cover of
H (which is always k-edge colorable) the NP-hardness result can be extended
to all k-regular graphs.

The series of papers by Kratochv́ıl et al. [39, 37, 40, 38] from late 1990’s
exhibits these and also other approaches to establishing the most accurate
boundary between the graphs for which the H-LBiHom problem is polyno-
mially solvable or NP-complete. Besides the cases presented above, several
nontrivial infinite classes of both polynomial and NP-complete instances were
recognized. However, currently there is no plausible conjecture concerning
the characterization of graphs H for which the H-LBiHom problem is poly-
nomially solvable (assuming, of course, P6=NP).

4.2 The other two local constraints

Analogously to the locally bijective homomorphisms, the following two deci-
sion problems arise naturally:

H-Locally Injective Homomorphism H-LInHom
Parameter: A graph H.
Instance: A graph G.
Question: Does G I−→ H hold?

H-Locally Surjective Homomorphism H-LSurHom
Parameter: A graph H.
Instance: A graph G.
Question: Does G S−→ H hold?
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Theorems 10 and 11 have an immediate consequence:

Corollary 21. If for some graph H the problem H-LBiHom is NP-complete,
then both problems H-LInHom and H-LSurHom are NP-complete as well.

In the case of locally surjective homomorphisms the full classification
implying dichotomy on the H-LSurHomproblems is known:

Theorem 22 (Fiala, Paulusma [26]). For a connected simple graph H, the
H-LSurHom problem is solvable in polynomial time if and only if H has at
most two vertices. In all other cases it is NP-complete.

We note here that the dichotomy can be extended to possibly discon-
nected graphs with loops on some vertices, but the description of the poly-
nomial cases is less trivial [26].

Corollary 21 has an interesting computational complexity consequence
for the Frequency Assignment Problem. As it has been shown in Section 2.4,
a graph has a circular C2,1-labeling of span k if and only if it allows a locally
injective homomorphism into Ck, the complement of the cycle of length k.
This complement is a (k − 3)-regular graph, and so for every k ≥ 6, Ck-
LBiHom and hence also Ck-LInHom are NP-complete (cf. Theorem 20).

4.3 Locally injective homomorphisms

No such simple characterization, as for the H-LSurHom problem, is known
for the H-LInHom problem. The current knowledge is far from a full char-
acterization, but the known results undoubtedly show that the H-LInHom
problem provides a much more colorful tapestry of polynomial and NP-
complete instances.

According to Corollary 21 every NP-complete H-LBiHom problem trans-
lates the NP-hardness to the companion H-LInHom problem. The converse
is, however, not true. Hence it is natural to study first those graphs H that
are known to determine polynomially solvable instances of H-LBiHom. Let
us illustrate this on the following two examples.

For positive integers a, b, c, let Θ(a, b, c) be the graph consisting of two ver-
tices of degree three joined by three paths of lengths a, b and c, respectively.
If we reduce the vertices of degree two we get a loopless colored (undirected)
multigraph on two vertices, hence the Θ(a, b, c)-LBiHom problem is solvable
in polynomial time by Theorem 19.
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Figure 11: Example of a mapping of a path of length m = 11 into Θ(1, 3, 5)
according to the pattern 1 + 3 + 1 + 5 + 1 = 11.

On the other hand, the classification of the Θ(a, b, c)-LInHom problems
is surprisingly nontrivial. So far the dichotomy was obtained only in the case
if at least two of the three parameters are the same:

Proposition 23 (Fiala, Kratochv́ıl [20]). For integers a and b, b ≥ 2, the
Θ(a, b, b)-LInHom problem is solvable in polynomial time if a and b are di-
visible by the same power of two. In all other cases the Θ(a, b, b)-LInHom
problem is NP-complete.

Idea of the proof. We may assume that a and b are relatively prime, since
the Θ(a, b, b)-LInHom and Θ(ca, cb, cb)-LInHom problems are polynomially
equivalent for any positive integer c.

The first case is thus when both a and b are odd. Denote by u and v the
two vertices of degree three of H.

Let G be an instance of the Θ(a, b, b)-LInHom problem. Every vertex of
degree three must be mapped either to u or to v, so this decision is one of the
two key tasks to be resolved. Since Θ(a, b, b) is bipartite, so must be G and
the answer for this task is (uniquely upto the automorphism of Θ(a, b, b))
given by the bipartition of G.

Secondly, it is necessary to determine how the paths between the vertices
of degree three in G will be mapped onto walks starting and ending in u or
v. Let m be the length of such a path. If m > ab, than any mapping pattern
starting or ending with a segment traversing along the a-path in Θ(a, b, b) or
by a b-path is feasible, so the paths of such lengths provide no substantial
constraints on the locally injective homomorphism.

However, all shorter paths have to be examined and for every length m ≤
ab, it has to be decided whether there exists a locally injective homomorphism
from the path to Θ(a, b, b) such that
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• it starts and ends traversing along the a-path, or

• it starts along the a-path and ends along the b-path (then the opposite
way is clearly possible as well), or

• it starts and ends along the b-paths.

Note that this is a finite problem as a and b are fixed.
Knowing this information we can reduce the task of path mapping to

finding special kind of a factor graph. The factor will be a set of so called
flags. Flags in this case are pairs (w, e) ∈ VG′ × EG′ where w ∈ e, and G′

is the graph arising from G by contracting all vertices of degree two. The
chosen flags represent those starting segments of paths in G that will be
mapped onto the a-path in H.

There are additional requirements such as:

• Every vertex of degree three should be incident with one flag.

• The possibilities which flags of some edge could be chosen are deter-
mined by the mapping patterns derived from the length m of the path.

This problem of finding such flag factor translates to the question of
finding a factor in a graph with degrees prescribed by intervals which was
studied by Lovász [47, problem 7.19].

The NP-hardness of the Θ(a, b, b)-LInHomproblem when Θ(a, b, b) is not
bipartite is obtained by a reduction from the BW(1,2) problem. Here, the
preimages of the two vertices u and v in any locally injective homomorphism
determine a feasible black & white coloring analogously to the arguments
used in the proof of Theorem 19.

The next proposition summarizes the known NP-hard instances of the
Θ(a, b, c)-LInHom problem.

Proposition 24 (Fiala, Kratochv́ıl, Pór [20, 24]). For integers a, b and c, the
Θ(a, b, c)-LInHom problem is NP-complete if one of the following conditions
holds

• a = 1, b = 2 and c ≥ 3,

• a = 1, b = 3, c ≥ 4 and c is even,

• a+ b divides c,
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• a, b and c are pairwise distinct and all three are odd.

As an immediate consequence of the first case we get that the existence
of an L(2, 1)-labeling of span four is an NP-complete problem. It is enough
to observe that P5 = Θ(1, 2, 3) as is depicted in Fig. 5.

The NP-hardness in all cases is obtained by reductions from the BW(i, j)
coloring problem. Edges of a graph whose coloring is demanded are replaced
by paths of suitable length m which guarantees that every locally injective
homomorphism from the derived graph to Θ(a, b, c) provides a valid coloring.

The suitable length m is described as a solution of a collection of linear
equations with some uniqueness constraints, which is rather a number the-
oretic problem. In the last case of all parameters odd, the value of m was
determined by further geometric arguments [24].

4.4 The list version of the H-LInHom problem

Finally let us focus on the list version of the H-LInHom problem. In this
version, the instance of the problem consists of a graph G together with a
set Lu ⊆ VH for each vertex u ∈ VG. The sets Lu, called the lists, represent
feasible images of the vertices. This is a natural setting from the Constraint
Satisfaction Problem point of view since list represent unary relations on the
domain VG.

List H-Locally Injective Homomorphism
L-H-LInHom

Parameter: A graph H.
Instance: A graph G, lists Lu ⊆ VH for all u ∈ VG.
Question: Does there exist f : G I−→ H such that f(u) ∈ Lu

for every u ∈ VG?

The L-H-LInHom problem is, for every graph H, at least as difficult as
the H-LInHom problem. It means that L-H-LInHom is NP-complete for
more graphs H. It is still a pleasant surprise that at least in this setting a
full dichotomy was proved:

Theorem 25 (Fiala, Kratochv́ıl [22]). The L-H-LInHom problem is solvable
in polynomial time if and only if the graph H has at most one cycle in each
component of connectivity. In all other cases the L-H-LInHom problem is
NP-complete.
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It is of some interest that Θ(a, b, c) graphs were, together with other
two graphs, the core cases of the NP-hardness proof. Also, the following
interesting phenomenon plays an important role:

Lemma 26. Let H be an induced subgraph of H ′. If the L-H-LInHom
problem is NP-complete, then the L-H ′-LInHom problem is NP-complete as
well.

When H is an induced subgraph of H ′, it is easy to derive the result by
assigning Lu := VH to every vertex u ∈ VG.

It would be most desired to obtain an analogous result for the H-LBiHom
and H-LInHom problems. In such setting it is necessary to restrict ourselves
to those pairs of H ⊆ H ′ where the coarsest equitable partition of H is finer
or the same as the coarsest equitable partition of H ′.

5 Conclusion

We hope that we have managed to convince the reader that locally con-
strained homomorphisms provide a realm of interesting interconnections and
intriguing open questions. We would like to conclude by naming those open
problems that we consider as most stimulating.

First of all, the conjecture of Negami on finite planar coverable graphs
stands out as the main structural challenge. The connection to fundamen-
tal topological motivation as well as the names connected with the partial
progress in its solution speak for themselves.

From the computational complexity point of view, the connection to Con-
straint Satisfaction Problem and the Dichotomy Conjecture of Feder and
Vardi justify the hunt for the characterization of computational complexity
of H-LInHom and H-LBiHom problems. The ‘jungle’ of complexity results
on H-LInHom for Theta graphs is particularly annoying, including the fact
that most known NP-completeness reductions are based on numerical char-
acteristics of the path lengths, which – intuitively – should not play such an
important role.

It came as a small suprise that the list version of H-LInHom allows such
a simple characterization (and dichotomy). Again, one would like to see a
similar result for the L-H-LBiHom problem.

Last but not least, not enough attention was paid to planar variants of
these problems. It is known that all generally NP-complete instances of L-H-
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LInHom remain NP-complete for planar inputs as well. It is also known that
the K4-LInHom problem is NP-complete for planar graphs. But these are
isolated results and some unexpected surprises may show up if this direction
of research is pursued.
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[15] Djoković, D. Ž. Automorphisms of graphs and coverings. Journal of
Combinatorial Theory B 16 (1974), 243–247.

[16] Everett, M. G., and Borgatti, S. Role colouring a graph. Math-
ematical Social Sciences 21, 2 (1991), 183–188.

[17] Feder, T., and Vardi, M. Y. The computational structure of momo-
tone monadic SNP and constraint satisfaction: A sudy through datalog
and group theory. SIAM Journal of Computing 1 (1998), 57–104.

[18] Fellows, M. Planar emulators and planar covers. manuscript, 1989.

[19] Fiala, J. Graph covers. Master’s thesis, Charles University, Prague,
1997. in Czech.

[20] Fiala, J., and Kratochv́ıl, J. Complexity of partial covers of
graphs. In ISAAC (2001), P. Eades and T. Takaoka, Eds., vol. 2223
of Lecture Notes in Computer Science, Springer, pp. 537–549.

[21] Fiala, J., and Kratochv́ıl, J. Partial covers of graphs. Discussiones
Mathematicae Graph Theory 22 (2002), 89–99.

[22] Fiala, J., and Kratochv́ıl, J. Locally injective graph homomor-
phism: Lists guarantee dichotomy. In Fomin [27], pp. 15–26.

38



[23] Fiala, J., Kratochv́ıl, J., and Kloks, T. Fixed-parameter com-
plexity of λ-labelings. Discrete Applied Mathematics 113, 1 (2001), 59–
72.

[24] Fiala, J., Kratochv́ıl, J., and Pór, A. On the computational
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