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Department of Applied Mathematics and DIMATIA, Charles University,
Malostranské nám. 25, 118 00 Prague, Czech Republic

{fiala,tesar}@kam.mff.cuni.cz

Abstract. We show that the problem whether a given simple graph G
admits a quasi-covering to a fixed connected graph H is solvable in poly-
nomial time if H has at most two vertices and that it is NP-complete
otherwise.
As a byproduct we show constructions of regular quasi-covers and
of multi-quasi-covers that might be of independent interest.
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1 Introduction

A homomorphism between two graphs G and H is an edge preserving mapping
f : V (G)→ V (H). We focus on homomorphisms f that satisfy local constraints.
For instance it might be required for each vertex u of G that all neighbors of
its image f(u), are used when the mapping f is restricted on the neighborhood
of u, formally |f−1(v) ∩ NG(u)| ≥ 1 for each v ∈ NH(f(u)). In other words f
should act surjectively between NG(u) and NH(f(u)) for each u ∈ V (G). In such
a situation we say that f is a locally surjective homomorphism.

We focus in a particular case of locally surjective homomorphisms, called
quasi-coverings. These satisfy that for every vertex u of G there exists a positive
integer c such that |f−1(v) ∩ NG(u)| = c for every v ∈ NH(f(u)) — in such a
case we say that f |NG(u) is c-fold between NG(u) and NH(f(u)). Note that the
constant c may vary for different vertices of G. If such a quasi-covering projection
from G to H exists, we say that G quasi-covers H or that G is a quasi-cover of
H.

Locally surjective homomorhisms and quasi-covers are closely related to
homomorphisms that are locally injective (bijective, resp.), i.e. those edge-
preserving mappings satisfying that for every vertex u it holds that NG(u) is
mapped to NH(f(u)) injectively (bijectively, resp.). Locally bijective homomor-
phisms are also known as covering projections. Similarly, locally injective ho-
momorphisms are sometimes called partial covering projections, while locally
surjective homomorphisms are also known as role assignments.
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Covering — primal embedding Quasi-covering — dual embedding

G

H H̃

G̃

SH = sphere

SG = torus

Fig. 1. Example of obtaining a quasi-covering from G = Q3 that covers H = K4.
The mappings are indicated by vertex colors.

Covers and quasi-covers are discrete variants of the corresponding notions
in algebraic topology. To obtain a quasi-cover consider a 2-cell embedding of
a graph H in an orientable surface SH and a graph G covering H via f (see
Figure 1 for an example). By using an 2-cell embedding of G where every vertex
u uses the same neighbor ordering as f(u), we obtain a surface SG with the
following property: the covering f extends to a mapping between SG and SH
which respects edges and faces of both embeddings. In addition this mapping
is a local homeomorphism except of those faces whose length is a multiple of
the length of its image (the length is measured in the number of vertices on the
face). The mapping on these faces contains singularity of degree being equal to
the ratio of the two face lengths.

We construct duals G̃ and H̃ from the two 2-cell embeddings ofG andH in SG
and SH , resp. and factor the mapping between SG and SH to a homomorphism
between G̃ and H̃. Moreover, as the boundary of each face of G (in SG) must
be mapped homeomorphically onto the boundary of the appropriate face of H
(in SH), we get that the resulting mapping between duals G̃ and H̃ is c-fold on
the neighborhood of any vertex of G̃.

We follow the usual scenario for the question whether a graph G admits a
possibly specific homomorphism to H. Since such tests allow no simple criterion,
we define several classes of decision problems: H-Hom, H-QCover, H-LIHom,
H-LSHom, and H-LBHom, resp. In all of them H is a fixed target graph and
the query is whether a graph G on the input admits a homomorphism to H
of the appropriate constraint: being a homomorphism, a quasi-covering, locally
injective, locally surjective, and locally bijective, resp.

The computational complexity of H-Hom was fully determined by Hell and
Nešetřil [11]. They show that the problem is solvable in polynomial time only
for bipartite H and that it is NP-complete otherwise.
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The study of H-LSHom was initiated by Kristiansen and Telle [16] and a
full dichotomy was completed by Fiala and Paulusma [9]. For connected H they
showed that H-LSHom is NP-complete whenever H has at least three vertices;
for disconnected H the condition is more elaborate.

The complexity of locally bijective homomorphisms was first studied by Bod-
laender [3] and by Abello et al. [1]. Despite the subsequent effort of several au-
thors (see e.g. papers by Kratochv́ıl et al. [13,14,15] or a survey by Fiala and
Kratochv́ıl [8]) the complete characterization has not been settled yet.

The dichotomy for the computational complexity of the H-LIHom problem
is also not known. Some partial results can be found in [4,5,6,17,2]. It might be of
independent interest that locally injective homomorphisms generalize the notion
of L(2, 1)-labelings, which are motivated by the frequency assignment problem.
Fiala and Kratochv́ıl [7] also considered the list version of the H-LIHom problem
and provided here a dichotomy.

In our paper we show that the H-QCover problem yields for connected
graphs H the same dichotomy as the H-LSHom problem:

Theorem 1. Let H be a connected graph. If H has at least three vertices, then
the H-QCover problem is NP-complete. Otherwise, it is solvable in linear time.

This is in contrast with the well known fact that testing the existence of
a covering between two embedded graphs that locally extends to a homeomor-
phism of the embedding admits a straightforward quadratic-time algorithm: if
the mapping is determined for any edge, it has a unique extension to adjacent
edges given by the ordering of the edges around a vertex in the embedding.
Therefore also the corresponding problem for the quasi-coverings between the
associated duals is polynomially solvable with the same time complexity.

2 Preliminaries

In this paper we consider only simple and connected graphs. We denote the set of
vertices of a graph G by V (G) and its edge set by E(G). We denote the degree of
a vertex v in G by degG(v) and the set of all neighbors of v — the neighborhood
of v — by NG(v). In a d-regular graph all vertices are of the same degree d.

For the definition of other standard graph theoretic terms (like paths, com-
plete bipartite graphs), see e.g. a monograph by Nešetřil and Matoušek [18].

We call a mapping f : X → Y between two sets c-fold if for all y ∈ Y it
holds that |f−1(y)| = c.

Recall that a homomorphism f : G→ H is a quasi-covering if for each vertex
v ∈ V (G) there exists an integer c such that f |NG(v) is c-fold between NG(v)
and NH(f(v)). Note that quasi-covering which is 1-fold on every vertex of G is
indeed a covering projection.

Observe that the composition of a c-fold and a d-fold mapping is a cd-fold
mapping. Hence a composition of two quasi-coverings is also a quasi-covering.
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We use this fact also in the case when one of these two mappings is a covering
projection or an automorphism.

By a boundary δH of an induced subgraph H of a graph G we mean the set
of vertices of H that are adjacent to a vertex outside H.

The symbol lcmd(G) stands for the least common multiple of degrees of all
non-isolated vertices in G.

Fig. 2. Construction of the graph H ′ for a graph H with d = 4. Copies of vertices
of graph H are in horizontal lines

Proposition 1. For every graph H there exists a regular connected graph H ′

such that H ′ quasi-covers H.

Proof. Without loss of generality assume that E(H) is not empty, as otherwise H
itself is 0-regular and H ′ could be chosen to consist of a single isolated vertex. Let
d = lcmd(H). We construct a d-regular graph H ′ and quasi-covering h : H ′ → H
as follows.

For every vertex x ∈ V (H) we insert into V (H ′) vertices x1, x2, . . . , xd degH(x).
All these ddegH(x) vertices are mapped onto x by h (see Figure 2). For every
edge xy ∈ E(H) we add d2 edges between sets h−1(x) and h−1(y) in such a way
that every xi ∈ h−1(x) is incident with d

degH(x) of these d2 edges. Analogously

every yi ∈ h−1(y) is incident with d
degH(y) of them. This can be done e.g. by

using degH(x) degH(y) copies of the complete bipartite graph K d
degH (y)

, d
degH (x)

.

If H ′ is not connected, we restrict H ′ to any of its connected component
containing at least one edge. The obtained graph H ′ is d-regular since for every
xi ∈ V (H ′) it holds that degH′(xi) = degH(x) d

degH(x) = d.

By the construction, for every neighbor v of h(xi) = x in H we have that
|h−1(v) ∩NH′(xi)| = d

degH(x) . Therefore, h is d
degH(x) -fold between NH′(xi) and

NH(x), i.e. a quasi-covering as required. ut
Kratochv́ıl, Proskurowski, and Telle [13] proved existence of a cover with

a special property, which we also use in our paper.

Proposition 2 ([13]). For every d-regular conected graph H ′, there exists
a d-regular graph A with a specified vertex a, such that any bijective mapping be-
tween NA(a) and NH′(xi) for arbitrary xi ∈ V (H ′) can be extended to a covering
projection g : A→ H ′ satisfying g(a) = xi.
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We use the Proposition 2 to construct an analogous graph, called multi-quasi-
cover of H as follows:

Lemma 1. Let H be a connected graph and let d = lcmd(H). There exists
a d-regular graph A with specified vertex a, such that for any non-isolated vertex
x ∈ V (H) it holds that any d

degH(x) -fold mapping ϕ : NA(a) → NH(x) can be

extended to a quasi-covering f : A→ H, such that f(a) = x.

A
a

H ′

xi

H
xhg

ϕ

ψ

Fig. 3. Construction of multi-quasi-cover A of H.

Proof. According to Proposition 1 we first construct a d-regular graph H ′ and
a quasi-covering h : H ′ → H. Then we use Proposition 2 for H ′ and obtain
the desired d-regular graph A with a specified vertex a (see Figure 3).

For the given x ∈ V (H) and d
degH(x) -fold mapping ϕ : NA(a) → NH(x) we

choose arbitrarily xi ∈ h−1(x) and determine a bijective mapping ψ : NA(a)→
NH′(xi) such that h◦ψ = ϕ. Such ψ exists since both ϕ and h|NH′ (xi) are d

degH(x) -

fold, hence it suffices to match arbitrarily vertices of ϕ−1(y) and h−1(y)∩NH′(xi)
for each neighbor y of x.

Let g be the extension of ψ according to Proposition 2. Then f = h ◦ g is
a composition of two quasi-coverings, i.e. a quasi-covering as well. Since g|NA(a) =
ψ, we get that f |NA(a) = h ◦ g|NA(a) = h ◦ ψ = ϕ, i.e. f extends ϕ. Finally,
f(a) = h(g(a)) = h(xi) = x as required. ut

We involve arguments already used by Fiala and Paulusma [9].
Let Nd

G(u) be the set of vertices at distance at most d from u in the graph
G. By induction on d one gets:

Observation 1 If f : G→ H is locally surjective homomorphism then f is also
a surjective mapping between sets Nd

G(u) and Nd
H(f(u)) for any u ∈ V (G) and

any d.

Definition 1. We say that x is a maximal distance vertex in a connected graph
H, if there exists a vertex z ∈ V (H) such that the distance between x and z
attains the maximum among distances between all possible pairs of vertices in H.
This maximum distance is called the diameter of H, and is denoted by diam(H).
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Observation 1 provides the following corollaries:

Corollary 1 ([9]). Let H be a graph and let x be a maximal distance vertex
in H. If G contains H as an induced subgraph such that δH = {x}, then any
locally surjective homomorphism f : G → H has the property that f restricted
to H is an automorphism of H.

Corollary 2. Let H be a graph, x be its maximal distance vertex, and let M be
the set of vertices at distance diam(H) from x. If G contains H as an induced
subgraph such that δH ⊆M then any locally surjective homomorphism f : G→
H satisfying that f(x) is a maximal distance vertex, has the property that f
restricted to H is an automorphism of H.

Proof. By the choice of x we get that |Ndiam(H)
G (x)| = |Ndiam(H)

H (f(x))| = |VH |.
A surjective mapping between sets of the same size is a bijection.

3 Coloring gadgets

For the purpose of our NP-hardness reductions we build a specific gadget ac-
cording to the following needs:

Definition 2. Let H be a connected graph and let x be its vertex of degree k ≥ 1.
We say that the graph F = CGH(x,m) with m specified vertices u1, . . . , um is a
coloring gadget for H of size m and for k colors if it has the following properties:

– F allows at least one quasi-covering f : F → H that maps all specified
vertices ui to x,

– whenever a graph G contains F as an induced subgraph with δF ⊆ {u1, . . . ,
um} and whenever f : G→ H is a quasi-covering, then
i) f restricted to F is a quasi-covering projection as well,

ii) degH(f(u1)) = k,
iii) NH(f(ui)) = NH(f(u1)) for each specified vertex ui

In this section we show that a coloring gadget exists for every connected
graph H on at least three vertices.

Lemma 2. Let H be a connected graph on at least three vertices whose all max-
imal distance vertices are of degree one. Then, for any neighbor x of a maximal
distance vertex and any positive integer m the CGH(x,m) exists.

In particular, the above lemma applies on every path or a tree on at least
three vertices.

Proof. Let z1 be a maximal distance vertex in H, let x be its neighbor, and let
y be a vertex at the maximal distance from z1. Let z2, . . . , zt be the neighbors
of x other than z1 that are also at the maximal distance from y (see Figure 4).

We take m+2 copies H1, . . . ,Hm+2 of the graph H and merge all copies of y
into a new vertex w. Then, we merge the first m+ 1 copies of each zi into a new
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F

w
v1

u1

u2

um

Hm+2

H1, . . . ,Hm+1

v2
vt

δF

y
z2

H
xz1

zt

Fig. 4. The coloring gadget F for H with all maximal distance vertices of degree
one.

vertex vi, and obtain the coloring gadget F . For specified vertices u1, . . . , um we
choose the first m copies of x.

A quasi-covering F → H can be obtained if we project each Hi onto H.
It means that to show that F is a coloring gadget we only need to prove the
conditions i), ii), and iii) from the Definition 2. Assume that F is an induced
subgraph of G, such that δF ⊆ {u1, . . . , um} and that f : G → H is a quasi-
covering.

Since Hm+2 is an induced subgraph of G with boundary δHm+2 = w, we
apply Corollary 1 and get that f(w) is a maximal distance vertex in H and also
that f |Hm+2

is an isomorphism to H.

We split w back into m+2 vertices w1, . . . , wm+2. Denote the resulting graph
by G′. We also alter f on the new vertices w1, . . . , wm+2, which we map onto
f(w), The resulting mapping is denoted by f ′. Since f(w) is a maximal distance
vertex in H, it has a unique neighbor. Hence f ′ is a 1-fold on each NG′(wi), i.e.
a quasi-covering G′ → H.

We focus on the copy Hm+1 in G′ and apply Corollary 2 with respect to f ′

and obtain that v1, . . . , vt are mapped on maximum distance vertices of H. Since
maximum distance vertices have unique neighbor and f coincides with f ′ on
NG(v1), we get that f(u1) = · · · = f(um) and moreover degH(f(u1)) = degH(x).
This shows that conditions ii) and iii) from the definition of coloring gadget hold.

By the construction of F and by the fact that f(w) and y can be exchanged
by an automorphism of H we get that for each i ∈ {1, . . . ,m} it holds that

|Ndiam(H)−1
G′ (wi)| = |Ndiam(H)−1

H (f(w))|. By Observation 1 we get that both
f ′|Hi

and f |Hi
are bijections between V (Hi) and V (H). This means that neigh-

bors of ui inside the copy Hi must be mapped to degH(x) distinct neighbors of
f(u1) in H. Hence f |Hi

is an isomorphism between Hi and H. Therefore, f |F is
a quasi-covering and the condition i) holds. ut

Lemma 3. Let H be a connected graph with a maximal distance vertex x of
degree at least two. For every positive integer m a coloring gadget CGH(x,m)
exists.

Proof. Let k = degH(x) and d = lcmd(H)
k .
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To construct F = CGH(x,m) we first take (m+ 1)d mutually disjoint copies
of H and denote them Ht

i with i ∈ {1, . . . ,m+1} and t ∈ {1, . . . , d}. Intuitively,
the symbol xti will denote the vertex of Ht

i corresponding to x in H.
Separately we construct a dk-regular multi-quasi-cover A of H with a spec-

ified vertex a according to Lemma 1. Denote the dk neighbors of a in A by wtj
where j ∈ {1, . . . , k} and t ∈ {1, . . . , d}. We now remove the vertex a from A to
obtain the graph B.

In the next step we insert into F the disjoint union of m+ 1 copies B1, . . . ,
Bm+1 of the graph B (see Figure 5). For every j ∈ {1, . . . , k} and t ∈ {1, . . . , d}
we merge all m+ 1 copies of the vertex wtj in B1, . . . , Bm+1 into a single vertex
vtj .

We finalize the construction of the graph F by adding edges xtiv
t
j for all

i ∈ {1, . . . ,m+ 1}, j ∈ {1, . . . , k}, and t ∈ {1, . . . , d}.

x11
. . .

x1m x1m+1 x21
. . .

x2m+1 xd1
. . .

xdm+1

H1
1 H1

m H1
m+1 H2

1 H2
m+1 Hd

1
. . .

Hd
m+1

v11 v1k v21 v2k vd1 vdk. . . . . . . . .

. . .

. . .

F

δF

B1 Bm+1

Fig. 5. Example of the construction of CGH(x,m) for maximal vertex x of
degree k ≥ 2.

For the m specified vertices u1, . . . , um of the coloring gadget we use the
vertices x11, . . . , x

1
m.

To show that F quasi-covers H we define a quasi-covering f : F → H as
follows:

– on every Ht
i let f act as an isomorphism to H, such that f(xti) = x,

– let f act as a bijection between vt1, v
t
2, . . . , v

t
k and NH(x) for each t,

– since the so far defined mapping f is d-fold between each δBi and NH(x)
(and all the neighbors of vertices in δBi out of Bi are mapped to x) we may
extend it to a quasi-covering inside each subgraph Bi according to Lemma 1.

Note that the quasi-covering fA : A → H obtained by Lemma 1 is dk
degH(y) -

fold between NA(wtj) and NH(y), where y = fA(wtj). Hence, the mapping f is
(m+1)dk
degH(y) -fold between NA(vtj) and NH(y), i.e. a quasi-covering.

Assume now that F is an induced subgraph of G that allows a quasi-covering
f : G→ H and such that δF ⊆ {x11, . . . , x1m}. We show that conditions i), ii) and
iii) from the Definition 2 hold. Since x is a maximal distance vertex, Corollary 1
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yields that f restricted to each H1
i is an isomorphism of H1

i and H. Hence
degH(f(x1i )) = degH(x) = k for each i ∈ {1, . . . ,m}, i.e. ii) holds.

Let x′ = f(x1m+1). Observe that the vertex x1m+1 has also exactly k neigh-
bors outside H1

m+1 (in contrast with vertices x11, . . . , x
1
m that might have further

neighbors outside F ), the vertices v11 , . . . , v
1
k must be mapped bijectively onto

the k neighbors of x′. Hence NH(f(x1i )) = NH(x′) for each i, i.e. iii) holds.
Consequently, the restriction of f to F is 2-fold on the vertices x11, . . . , x

1
m,

i.e. a quasi-covering and i) holds as well. This argument concludes the proof that
F with specified vertices u1, . . . , um is a coloring gadget for H. ut

4 The NP-hardness reduction

Recall that for a fixed graph H the problem H-QCover is defined as follows:

Problem: H-QCover
Input: A graph G
Query: Does G allow a quasi-covering to H?

Note that for all graphs H the problem H-QCover belongs to the class NP,
since the properties of a quasi-covering can be verified in polynomial time.

In order to prove Theorem 1 we distinguish several cases according to the
structure of the graph H. We first show an NP-hardness reduction from the
following well-known NP-complete problem [10, problem LO6]:

Problem: 2-in-4 SAT
Input: A formula Φ in CNF where every clause contains exactly four literals
Query: Could Φ be satisfied such that every clause contains exactly two posi-
tively valued literals?

Since 2-in-4 SAT is the only version of SAT problem we use, we reserve the
word satisfiable for formulas which are 2-in-4 satisfiable.

Lemma 4. Let H be a connected graph on at least three vertices. If H has a
maximal distance vertex x ∈ V (H) of degree two or if all maximal vertices of H
are of degree one and some maximal vertex has neighbor x of degree two, then
the H-QCover problem is NP-complete.

Proof. Let Φ be an instance of 2-in-4 SAT. Denote the clauses of Φ by
C1, . . . , Cm and its variables by v1, . . . , vn. We construct a graph GΦ,H as follows:

We start with a disjoint union of a copy of the coloring gadget CGH(x, n)
with specified vertices u1, u2, . . . , un and a copy of CGH(x, 2m) with specified
w1, w

′
1, w2, w

′
2, . . . , wm, w

′
m. The existence of these gadgets is guaranteed by Lem-

mata 2 and 3. Then we include extra 2n new vertices p1, q1, p2, q2, . . . , pn, qn and
connect each vertex ui with vertices pi and qi.

If any variable vi is one of the positive literals of Cj , then we join wj with
pi and also w′j with qi . As a counterpart, if ¬vi ∈ Cj then we insert edges wjqi
and w′jpi. This step concludes the construction of GΦ,H (see Figure 6).
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u1 u2 u3 un

p1 q1 p2 q2 p3 q3 pn qn

w1 w
′
1 wj w

′
j wmw

′
m CG(x, 2m)

CG(x, n)

P2t−1

...... ... ...

. . .

. . .. . .

Fig. 6. An example of the construction of the graph G for H = Pt. The edges
depicted are related with the clause Cj = ¬v1 ∨ v2 ∨ ¬v3 ∨ vn. The graph GΦ,Pt

differs from G only by the presence of the paths P2t−1.

Claim. If GΦ,H is an induced subgraph of a quasi-cover G of H such that
δ(GΦ,H) ⊆ {p1, q1, . . . , pn, qn}, then Φ is satisfiable.

Suppose that f : G→ H is a quasi-covering. The properties of both coloring
gadgets yield that the images of both sets of specified vertices are in H of degree
2 — the same as deg(x). Denote the two neighbors of f(u1) by y and z.

Then we know that for all i ∈ {1, . . . , n} it holds that {f(pi), f(qi)} = {y, z}.
Consequently, the vertices y and z are the two neighbors of each f(wj). We
assign vi = true if and only if f(pi) = y (thus vi = false ⇐⇒ f(pi) = z).

As f restricted to each coloring gadget is a quasi-covering, it must be a
quasi-covering also on the subgraph remaining after the removal of both gadgets
except their boundaries. Therefore, two neighbors of each wj are mapped on y
and two of them on z. Since these neighbors correspond to literals in Cj , we
know that there are exactly two positive literals in every clause Cj . Therefore,
we have obtained the desired satisfying assignment and proved the claim.

Now we resume the proof of Lemma 4 and extend GΦ,H into a graph G such
that G quasi-covers H if Φ is satisfiable.

According to Lemma 1 we construct a 2d-regular multi-quasi-cover of H with

a specified vertex a and d = lcmd(H)
2 . Let B be the graph resulting by the deletion

of a from the multi-quasi-cover.
We start the construction of G with d copies of GΦ,H . To obtain G, we then

perform the following steps for each i ∈ {1, . . . , n}:

– First we determine oi to be the number of occurences of vi in Φ.
– Then we insert in the so far constructed graph exactly oi + 1 copies of B.
– Now we identify oi+2 sets, each of size 2d: the first set consists of the copies

of vertices pi and qi while the others are formed by neighbors of the deleted
vertex a in the oi + 1 copies of B.

– On this set system we build 2d disjoint transversals1 and merge vertices of
each transversal into a single vertex. (See Figure 7) In other words, we merge

1 By a transversal of a set system S we mean the range of an injective map ϕ : S →
⋃

S
such that ∀S ∈ S : ϕ(S) ∈ S.
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2d (oi + 2)-tuples of distinct vertices into 2d single vertices, such that the
boundary of each GΦ,H and of each B is preserved.

BB B

d copies of GΦ,H

p1 q1 pn qn
pi qi

GΦ,H GΦ,H GΦ,H

oi + 1 copies of B

Fig. 7. The result of the i-th iteration, when d = 3 and when variable vi has
two occurences.

Suppose now that Φ is satisfiable. Let y and z be the neighbors of x. We
define f : V (G)→ V (H) as follows:

– f(ui) = f(wj) = f(w′j) = x for all i and j in all d copies.
– if vi = true then f(pi) = y and f(ni) = z, otherwise f(pi) = z and f(ni) = y;
– extend the so far defined f to all copies of B by Lemma 1;
– extend f to a quasi-covering of all coloring gadgets of all GΦ,H by Lemma 2

or 3.

The obtained mapping is (oi + 1)-fold on each N(pi) and N(qi), hence a
quasi-covering. ut

Note that for H = Pt the above construction yields d = 1 and B = P2t−1.
Hence the graphG consists from a single copy ofGΦ,H , where each pair of vertices
pi and qi is joined by oi + 1 paths of length 2t− 1, as depicted in Figure 6.

In the next case we reduce the following well known NP-complete problem[12]:

Problem: k-Chromatic Index
Input: A k-regular graph D
Query: Could the edges of D be properly colored with k colors, i.e. colors of
adjacent edges are different?

Lemma 5. Let H be a connected graph on at least three vertices. If H has a
maximal distance vertex x ∈ V (H) of degree k > 2 or if all maximal vertices of
H are of degree one and some maximal vertex has neighbor x of degree k > 2,
then the H-QCover problem is NP-complete.
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B1

B2

w1
2

Fig. 8. Example of the construction of the graph G for a k-regular graph D,
where the vertex v1 is incident with edges e1, e2, . . . , ek and where ek = v1v2.

Proof. We reduce the k-Chromatic Index problem using the neighborhood
of x as the set of colors. Let its instance be a k-regular graph D on vertices

v1, v2, . . . , vn and edges e1, e2, . . . , em. Let also d = lcmd(H)
k .

We take d copies of the graph CGH(x, n) and denote its specified vertices
u11, u

1
2, . . . , u

d
n. We also insert dm new vertices w1

1, . . . , w
d
m and make each wtj

adjacent to uti whenever vi is incident with ej in D.

According to Lemma 1 we construct a kd-regular multi-quasi-cover of H with
a specified vertex a. Let B be the graph resulting by the deletion of a from the
multi-quasi-cover.

For every vertex vi of D we perform the following two steps. We first iden-
tify the neighbors of u1i , . . . , u

d
i among vertices w1

1, . . . , w
d
m. As D is k-regular,

this selection provides a set of size kd. Then we take an extra copy Bi of B,
indentify the kd former neighbors of the deleted vertex a, and merge them in ar-
bitrary bijective manner with the kd vertices selected in the previous step . This
construction leads to G, the instance of the H-QCover problem (see Figure 8).

We claim that G quasi-covers H if and only if the edges of D can be properly
colored with k colors. For the forward implication suppose that f : G → H is
a quasi-covering. The properties of coloring gadget CGH(x, n) imply that all
neighbors of each u1i among w1

1, . . . , w
1
m are mapped by f bijectively to the

neighbors of f(u11). We define a proper edge k-coloring c : E(D) → NH(f(u11))
of the graph D by c(ej) = f(w1

j ).

For the opposite implication suppose that c : E(D) → NH(x) is a proper
k-edge coloring of D. We define a mapping f such that f(uti) = x, and also
f(wtj) = c(ej) for all i, j and t.

We then extend f to a quasi-covering of the whole graph G. The existence
of these extensions is guaranteed by the properties of coloring gadgets (on each
copy of CGH(x, n)), and also by Lemma 1 (on each copy of B). To the latter case
we note that the partial mapping f on any δ(Bi) corresponds to the mapping ϕ
of Lemma 1.
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Consider now any vertex wtj that corresponds to a vertex w of the multi-
quasi-cover. Suppose that the quasi-covering obtained by the extension of ϕ is
c-fold on N(w); in fact c = dk

deg(ϕ(w)) . Then, since wtj is on the boundary of

two copies of B, we get that f is 2c-fold on N(wtj). By this argument we may
conclude that f is a quasi-covering. ut

Lemmas 4 and 5 constitute the NP-hardness part of the proof of Theorem 1.
The polynomial part is straightforward: only edgeless graphs quasi-cover P1;
while a graph quasi-covers P2 if and only if it is bipartite without isolated ver-
tices. Both these classes could be recognized in linear time.

5 Conclusion

We have proved the dichotomy for the computational complexity of H-QCover
problem when the graph H is connected. This can be combined with a con-
struction of Fiala and Paulusma [9, Proposition 5] to get a classification also for
disconnected simple graphs:

Corollary 3. The H-QCover problem is polynomially solvable if either H is
edgeless or if H is bipartite and at least one of its components is isomorphic to
K2. Otherwise, it is NP-complete.

The construction provides a quasi-cover of a chosen component, while it
forbids all locally surjective homomorphisms to other components. Note that
the other constructions presented in that paper do not provide quasi-covers, so
our classification of connected graphs was a key ingredient for Corollary 3.

The classification is open for multigraphs with possible semiedges; these ap-
pear naturally in the topological models.
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18. J. Matoušek and J. Nešetřil: Invitation to Discrete Mathematics, Oxford University
Press, (2008).


