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Abstract

Let G be a graph of order n. Let lpt(G) be the minimum cardinality of a set X of
vertices of G such that X intersects every longest path of G and define lct(G) analogously
for cycles instead of paths. We prove that

• lpt(G) 6
⌈
n
4 −

n2/3

90

⌉
, if G is connected,

• lct(G) 6
⌈
n
3 −

n2/3

36

⌉
, if G is 2-connected, and

• lpt(G) 6 3, if G is a connected circular arc graph.
Our bound on lct(G) improves an earlier result of Thomassen and our bound for circular
arc graphs relates to an earlier statement of Balister et al. the argument of which contains
a gap. Furthermore, we prove upper bounds on lpt(G) for planar graphs and graphs of
bounded tree-width.
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1 Introduction
It is well known that every two longest paths in a connected graph as well as every two longest
cycles in a 2-connected graph intersect. While these observations are easy exercises, it is an
open problem, originating from a question posed by Gallai [2], to determine the largest value of
k such that for every connected graph and every k longest paths in that graph, there is a vertex
that belongs to all of these k paths. The above remark along with examples constructed by
Skupień [5] ensure that 2 6 k 6 6.

We consider only simple, finite, and undirected graphs and use standard terminology. For
a graph G, we define P(G) to be the collection of all longest paths of G and a longest path
transversal of G to be a set of vertices that intersects every longest path of G. Let lpt(G) be
the minimum cardinality of a longest path transversal of G. We define C(G), a longest cycle
transversal, and the parameter lct(G) analogously for cycles instead of paths.

The intersections of longest paths and cycles have been studied in detail and Zamfirescu [8]
gave a short survey. In the present paper we prove upper bounds on lpt(G) and lct(G). Our
bound on lct(G) for a 2-connected graph G improves an earlier result of Thomassen [6]. Balister
et al. [1] showed that for every connected interval graph, there is a vertex that belongs to every
longest path. Furthermore, their work [1] contains the statement that for every connected
circular arc graph, there is a vertex that belongs to every longest path. Unfortunately, we
believe that the argument they provide has a gap. We shall explain the approach of Balister et
al., the problem with their argument, and give a proof of a weaker result, specifically that every
connected circular arc graph contains a longest path transversal of order at most 3.

2 Results
We start by proving a lemma that allows us to exploit the structure of some particular matchings
to find long paths and cycles.

Lemma 1. If G = (P ∪ Q) + M where P : u1 . . . uτ and Q : v1 . . . vτ are paths and M is a
matching of edges between V (P ) and V (Q) that has a partition M = M1 ∪ . . . ∪Mq such that

(a) |Mi| is either 1 or even for i ∈ [q] and

(b) if ui1vi2 ∈Mi and uj1vj2 ∈Mj for i, j ∈ [q], then

(j1 − i1)(j2 − i2)

< 0, if i = j and
> 0, if i 6= j,

that is, the edges in one of the sets Mi are pairwise “crossing” and the edges in distinct sets
Mi are pairwise “parallel”,

then G contains a path between a vertex in {u1, v1} and a vertex in {uτ , vτ} of order at least
τ + |M |.

Proof. If i0 = 1, i|M |+1 = τ , and ui1 , . . . , ui|M| with 1 6 i1 < . . . < i|M | 6 τ are the vertices
of P that are incident with edges in M , then a subpath of P of the form uij . . . uij+1 with
odd/even j is called an odd/even segment of P , respectively. Odd/even segments of Q are
defined analogously.
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The odd segments of P , M , and the even segments of Q define a path P ′. Similarly, the even
segments of P , M , and the odd segments of Q define a path Q′. See Figure 1 for an illustration.
Since E(P ′)∩E(Q′) = M and E(P ′)∪E(Q′) = E(P )∪E(Q)∪M , the longer of the two paths
satisfies the desired properties.

(P ∪Q) +M

P ′

Q′

Figure 1: The two paths P ′ and Q′ for a set M with |M1| = |M4| = 1, |M2| = 2, and |M3| = 4.

We proceed to our first main result. Note that in the proof of Theorem 2, as well as of Theorem 3
below, we did not try to minimize the factor of n 2

3 . The point of these two results is that lpt(G)
is strictly less than n/4 and lct(G) is strictly less than n/3, respectively.

Theorem 2. If G is a connected graph of order n, then lpt(G) 6
⌈
n
4 −

n2/3

90

⌉
.

Proof. Let G be a connected graph of order n. Let ε = 1
90n
− 1

3 and τ =
⌈(

1
4 − ε

)
n
⌉
. For a

contradiction, we assume that lpt(G) > τ . Let P : u1 . . . u` be a longest path of G. Since V (P )
as well as every set of n− `+ 1 vertices of G are longest path transversals, we obtain(1

4 − ε
)
n 6 τ < ` < n− τ + 1 6

(3
4 + ε

)
n+ 1. (1)

Let p =
⌈
`−τ

2

⌉
. Since the set T = {ui : p+ 1 6 i 6 p+ τ} is too small to be a longest path

transversal of G, there is a path P ′ : v1 . . . v` in G− T . Since G is connected, the paths P and
P ′ intersect.

If V (P ) ∩ V (P ′) ⊆ {u1, . . . , up}, then let vx = ur ∈ V (P ) ∩ V (P ′) be such that r is
maximum. We may assume that x > `+1

2 . Now v1 . . . vxur+1 . . . u` is a path of order at
least x + ` − p > `+1

2 + ` − `−τ+1
2 = ` + τ

2 > `, which is a contradiction. Hence P and P ′

intersect in a vertex in {u1, . . . , up} as well as a vertex in {up+τ+1, . . . , u`}. Let vx = ur be in
V (P ′) ∩ {u1, . . . , up} such that r is maximum and vy = us be in V (P ′) ∩ {up+τ+1, . . . , u`} such
that s is minimum. We may assume that x < y.

Since v1 . . . vxur+1 . . . us−1vy . . . v` is a path of order at least `− (y − x− 1) + τ , we obtain
y − x− 1 > τ . Since us−1 . . . ur+1vx . . . v` is a path of order at least τ + `− (x− 1), we obtain
x− 1 > τ . Since ur+1 . . . us−1vy . . . v1 is a path of order at least τ + y, we obtain `− y > τ .

Choosing four vertex-disjoint paths A : a1 . . . aτ , B : b1 . . . bτ , C : c1 . . . cτ , and D : d1 . . . dτ
as subpaths of the four paths P ′[{v1, . . . , vx−1}], P [{ur+1, . . . , us−1}], P ′[{vx+1, . . . , vy−1}], and
P ′[{vy+1, . . . , v`}], respectively, we obtain the existence of two vertex-disjoint sets X and Y in
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V (G) \ (V (A) ∪ V (B) ∪ V (C) ∪ V (D)) with |X ∪ Y | 6 n− 4τ 6 4εn such that X contains a
path between some neighbors of any two of the vertices a1, b1, and c1, and Y contains a path
between some neighbors of any two of the vertices bτ , cτ , and d1. See Figure 2 for an illustration.

aτ a1A
X

b1

c1
dτd1 D

Y

bτB

cτC

Figure 2: The paths A, B, C, and D and the two sets X and Y .

If aibj is an edge of G with j > i, then the path aτ . . . aibj . . . b1, a path in X between neighbors
of b1 and c1, the path C, a path in Y between neighbors of cτ and d1, and the path D form a
path of order at least 3τ + (j − i+ 1) + 2. By (1), this implies that

j − i 6 d4εne − 3. (2)

Our goal is now to prove the existence of a vertex cover TA,B of small order for the bipartite
graph GA,B with bipartition V (A) and V (B) formed by the edges between these two sets. First,
note that if 4εn 6 2, then (2) implies that this bipartite graph is edgeless, so it is enough to set
TA,B = ∅.
Assume now that 4εn > 2. Let N be a maximum matching of GA,B. Let I =

[⌈
τ

2(d4εne−3)

⌉]
. For

i ∈ I, let Ni be the set of edges in N that are incident with a vertex in

{aj : 2(d4εne − 3)(i− 1) + 1 6 j 6 min{τ, 2(d4εne − 3)i}} .

By (2), if ai1bi2 ∈ Ni and aj1bj2 ∈ Nj with j − i > 2, then (j1 − i1)(j2 − i2) > 0, that is, the two
edges are parallel in the sense of Lemma 1. Without loss of generality, we may assume that⋃
i ∈ I : i odd Ni contains at least half the edges of N . Since N is a matching, |Ni| 6 2(d4εne − 3)

for every i ∈ I. Since permutation graphs are perfect [3, Chapter 7], each Ni contains a set of
at least

√
|Ni| > |Ni|√

2(d4εne−3)
edges that are either all pairwise parallel or all pairwise crossing

in the sense of Lemma 1. This implies that N contains a subset M0 that satisfies condition
(b) from Lemma 1 with |M0| >

∑
i ∈ I : i odd

|Ni|√
2(d4εne−3)

> 1
2
√

2(d4εne−3)
|N |. By removing a set of

at most |M0| /3 edges from M0, we obtain a matching M that satisfies both conditions from
Lemma 1 with |M | > 2

3 |M0| > 1
3
√

2(d4εne−3)
|N |.

If N has order at least (4εn − 1)3
√

2(d4εne − 3), then N contains a matching M as in
Lemma 1 of order at least 4εn − 1. Thus by Lemma 1, the graph (A ∪ B) + M contains a
path Q between {a1, b1} and {aτ , bτ} of order at least τ + |M |. Now the path Q, a path in X
between neighbors of a vertex in {a1, b1} and c1, the path C, a path in Y between neighbors
of cτ and d1, and the path D form a path of order at least 3τ + |M | + 2 >

(
3
4 + ε

)
n + 1,

which contradicts (1). Hence the bipartite graph GA,B has no matching of order at least
(4εn− 1)3

√
2(d4εne − 3). Now König’s theorem [4] implies that GA,B has a vertex cover TA,B of

order less than (4εn− 1)3
√

2(d4εne − 3).
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Similar arguments yield that for every two distinct paths Q,R ∈ {A,B,C,D}, the bipartite
graph GQ,R with bipartition V (Q) and V (R) formed by the edges between these two sets has a
vertex cover TQ,R of order less than (4εn− 1)3

√
2(d4εne − 3) if 4εn > 2 and of order 0 otherwise.

(If, for instance, aidj is an edge of G with j > i, then the path aτ . . . aidj . . . d1, a path in Y
between neighbors of d1 and bτ , the path B, a path in X between neighbors of b1 and c1, and
the path C again form a path of order at least 3τ + (j − i+ 1) + 2 and we can argue as above.)

Let T ′ = X ∪Y ∪⋃{Q,R}∈({A,B,C,D}
2 ) TQ,R. Since every component of G−T ′ has order at most

τ , the set T ′ is a longest path transversal of G of order less than 4εn+ 6(4εn−1)3
√

2(d4εne − 3)
if 4εn > 2 and of order at most 4εn otherwise. For ε = 1

90n
− 1

3 , it follows that |T ′| 6
(

1
4 − ε

)
n,

which yields the final contradiction.

For the fractional version of the longest path transversal problem, a much stronger result is
possible. In fact, for every connected graph G, there is a function t : V (G)→ [0, 1] such that∑

u∈V (G)
t(u) 6

√
n and

∑
u∈V (P )

t(u) > 1 for every P ∈ P(G).

Indeed, if the largest order of the paths in P(G) is at most
√
n, then let t be the characteristic

function of V (P ) for some P ∈ P(G), otherwise let t be the constant function of value 1√
n
.

Confirming a conjecture by Zamfirescu [7], Thomassen [6] proved that lct(G) 6
⌈
|V (G)|

3

⌉
for

every graph G, which is best possible for the class of connected graphs in view of a disjoint
union of cycles of length 3 to which bridges are added. For 2-connected graphs, though, this
bound can be improved as follows.

Theorem 3. If G is a 2-connected graph of order n, then lct(G) 6
⌈
n
3 −

n2/3

36

⌉
.

Proof. Let G be a 2-connected graph of order n. Let ε = 1
36n
− 1

3 and τ =
⌈(

1
3 − ε

)
n
⌉
. For a

contradiction, we assume that lct(G) > τ . Let C : u0 . . . u`−1u0 be a longest cycle of G. Since
V (C) as well as every set of n− `+ 1 vertices of G are longest cycle transversals, we obtain(1

3 − ε
)
n 6 τ < ` < n− τ + 1 6

(2
3 + ε

)
n+ 1. (3)

Since the set T = {u0, . . . , uτ−1} is too small to be a longest cycle transversal of G, there is a
cycle C ′ : v0 . . . v`−1v0 in G − T . Since G is 2-connected, the cycles C and C ′ intersect in at
least two vertices. We may assume that v0 = ur is the first and vk = us is the last common
vertex of C and C ′ following the path C − T from uτ to u`−1, that is r < s.

Since v0 . . . vkus+1 . . . u`−1u0 . . . ur−1 is a cycle of length at least k+1+τ , we obtain `−k−1 > τ .
Since vk+1 . . . v`−1ur . . . u0u`−1 . . . us is a cycle of length at least `−(k−1)+τ , we obtain k−1 > τ .

Choosing three vertex-disjoint paths P : x1 . . . xτ , Q : y1 . . . yτ , and R : z1 . . . zτ as subpaths
of the three paths C[T ], C ′[{v1, . . . , vk−1}], and C ′[{vk+1, . . . , v`−1}], respectively, we obtain
the existence of two vertex-disjoint sets X and Y in V (G) \ (V (P ) ∪ V (Q) ∪ V (R)) with
|X ∪ Y | 6 n− 3τ 6 3εn such that X contains a path between some neighbors of every two of
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the vertices x1, y1, and z1, and Y contains a path between some neighbors of every two of the
vertices xτ , yτ , and zτ . See Figure 3 for an illustration.

y1 yτQ

x1 xτP

z1 zτR

X Y

Figure 3: The paths P , Q, and R and the two sets X and Y .

If xiyj is an edge of G with j > i, then the path y1 . . . yjxi . . . xτ , a path in Y between neighbors
of xτ and zτ the path R, and a path in X between neighbors of y1 and z1 form a cycle of length
at least 2τ + (j − i + 1) + 2. By (3), this implies that j − i 6 d3εne − 3. Using Lemma 1 as
in the proof of Theorem 2, we infer that for every two distinct A,B ∈ {P,Q,R}, the bipartite
graph GA,B with bipartition V (A) and V (B) formed by the edges between these two sets
has a vertex cover TA,B of order less than (3εn − 1)3

√
2(d3εne − 3) if 3εn > 2 and of order 0

otherwise. Since every component of G − (X ∪ Y ∪ TP,Q ∪ TP,R ∪ TQ,R) has order at most τ ,
the set T ′ = X ∪ Y ∪ TP,Q ∪ TP,R ∪ TQ,R is a longest cycle transversal of G of order less than
3εn+ 3(3εn− 1)3

√
2(d3εne − 3) if 3εn > 2 and of order at most 3εn otherwise. For ε = 1

36n
− 1

3 ,
it follows that |T ′| 6

(
1
3 − ε

)
n, which yields the final contradiction.

Since every two longest paths of a connected graph G intersect, it follows that lpt(G) 6
⌈
|P(G)|

2

⌉
.

Similarly, if every k longest paths of a connected graph G would intersect for some k > 3, then
it would follow that lpt(G) 6

⌈
|P(G)|
k

⌉
. The next result shows how to decrease the multiplicative

constant 1/2 in the former bound at the cost of adding a square-root proportion of the total
number of vertices in the graph.

Proposition 4. If G is a connected graph and α > 2, then

lpt(G) 6 |P(G)|
α

+
√
α |V (G)|.

Proof. We proceed by induction on the order n of G, the statement being true if n = 1. Let
n > 2 and assume that the statement holds for all connected graphs of order less than n. Let G
be a connected graph of order n and let ` be the order of the longest paths in G.

We may assume that |P(G)| >
√
αn since otherwise we obtain a longest path transversal of

the desired size by picking one vertex in each longest path of G. Next, since the vertex set of a
longest path in G is a longest path transversal, we may also assume that ` >

√
αn.

For a vertex v ∈ V (G), let pv be the number of paths in P(G) that contain v. We may
assume that pv < α for every vertex v ∈ V (G). Indeed, suppose that v is a vertex such that
pv > α. In particular, pv > 1. If the set {v} is a longest path transversal of G, then G satisfies
the desired property. Otherwise let G′ = G − v and note that G′ contains a path of order
`. Furthermore, |P(G′)| = |P(G)| − pv 6 |P(G)| − α. Note that all paths of order ` in G′

must belong to the same component of G′, since every two longest paths intersect. Let C
be this component; thus P(C) = P(G′). The induction hypothesis applied to C yields that
lpt(G′) 6 |P(G)|

α
−1+

√
α(n− 1). As lpt(G) 6 lpt(G′)+1, we deduce that lpt(G) 6 |P(G)|

α
+
√
αn.
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We now consider the number N of pairs (v, P ) such that P ∈ P(G) and v ∈ V (P ). One
the one hand, since N = ∑

v∈V (G) pv, we deduce from the previous observations that N < αn.
On the other hand, since N = ∑

P∈P(G) |V (P )| = ` |P(G)|, the previous observations also imply
that N > αn. This contradiction concludes the proof.

The minimum sizes of transversals of longest paths can be bounded in classes of graphs with
small separators, such as planar graphs and graphs of bounded tree-width. As before, no effort
is made to minimize the constant multiplicative factors appearing in the next two results.

Proposition 5. If G is a connected planar graph of order at least 2, then

lpt(G) 6 9
√
|V (G)| log |V (G)| .

Proof. We proceed by induction on the order n of G, the result being true if n = 2. Let n > 3
and assume that the statement holds for all connected planar graphs of order at least 2 and
less than n. Let G be a connected planar graph of order n and let ` be the order of the longest
paths in G. In particular, ` > 2. Since G is planar, the separator theorem of Lipton and Tarjan
ensures that G contains a set X of order at most 2

√
2
√
n such that every component of G−X

has order at most 2n/3.
If X is a longest path transversal of G, then G satisfies the desired property. Otherwise,

G−X contains a path of order `. Note that, since every two longest paths of G intersect, all
paths of order ` in G−X must be contained in the same component of G−X, which we call
C. Moreover, the order of C is at most 2n/3 and at least `, so the induction hypothesis implies
that C has a longest path transversal X ′ of order at most 9

√
2n/3 log(2n/3). Therefore, X ∪X ′

is a longest path transversal of G of order at most

2
√

2
√
n+ 9

√
2n/3 log(2n/3) = 9

√
2n/3 log n+

√
n ·
(

2
√

2− 9
√

2/3 log(3/2)
)

6 9
√
n log n

since 9
√

2/3 log(3/2) > 2
√

2. This concludes the proof.

An anlaguous statement is true for graphs of bounded tree-width. Indeed, if G is a graph with
tree-width at most k, then there is a set X of vertices of G of order at most k + 1 such that
every component of G−X has order at most |V (G)| /2. Consequently, an inductive reasoning
similar to that made in the proof of Proposition 5 yields that

lpt(G) 6 3 tw(G) · log |V (G)| ,

where tw(G) is the tree-width of the graph G. However, as pointed to us by Pierre Charbit, a
much stronger statement holds, namely

lpt(G) 6 tw(G) + 1.

Indeed, the tree-width of a graph is at least the order of any of its brambles minus one. The
family of all longest path of a graph G is a bramble (since any two longest paths intersect) and
its order is, by definition, lpt(G). This provides the stated inequality.

We proceed to circular arc graphs. We explain the approach of Balister et al. [1], the problem
with their argument, and prove the following weaker result.
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Theorem 6. Let G be a circular-arc graph.
If G is connected, then lpt(G) 6 3, and if G is 2-connected, then lct(G) 6 3.

Let G be a connected circular arc graph. Let C be a circle and let F be a collection of open
arcs of C such that G is the intersection graph of F . In view of the result for interval graphs
mentioned in the introduction, we may assume that C ⊆ ⋃A∈F A. Furthermore, we may assume
that all endpoints of arcs in F are distinct.

Balister et al. [1] consider a collection K = {K0, . . . , Kn−1} of arcs in F such that

(0) C ⊆ ⋃A∈KA,

(1) n is minimal, and

(2) each Ki is maximal, that is, no arc in F properly contains an arc in K.

They may assume that n > 2, because otherwise, G has a universal vertex that belongs to
every longest path or cycle. We consider the indices of the arcs in K as elements of Zn, that is,
modulo n.

A chain of order ` in F is a sequence P : A1 . . . A` of distinct arcs in F such that Ai∩Ai+1 6= ∅
for i ∈ [` − 1]. The chain P is closed, if A` ∩ A1 6= ∅. Thus chains and closed chains in F
correspond to paths and cycles in G. For a chain P : A1 . . . A` in F , let K(P) = {A1, . . . , A`}∩K.

If P : A1 . . . A` is a chain in F of largest order, then Balister et al. [1, Lemma 3.1] proved
that K(P) is of the form {Ki : i ∈ I} for some contiguous and non-empty subset I of Zn. Their
argument actually yields the same statement for closed chains, that is, if C is a closed chain in
F of largest order, then K(C) is of the form {Ki : i ∈ J} for some contiguous and non-empty
subset J of Zn.

In the proof of their main result [1, Theorem 3.3] — stating that lpt(G) = 1 — Balister et al.
choose a chain P in F of largest order such that K(P) has minimum order. They let K(P) be
{Ka+1, . . . , Kb−1} and assert that Kb−1 belongs to K(Q) for every chain Q in F of largest order,
that is, the vertex of G corresponding to the arc Kb−1 would belong to every longest path of G.

For a contradiction, they consider a chain Q in F of largest order such that Kb−1 6∈ K(Q).
They set K(Q) = {K`+1, . . . , Km−1}. They deduce from the choice of P that K`+1 ∈ K(Q)\K(P)
since Kb−1 ∈ K(P) \ K(Q). Using their Lemma 3.2 [1], they reorder the arcs in the chains P
and Q and obtain chains P∗ and Q∗ containing the same arcs as P and Q in a possibly different
order, respectively. They split these chains at Kb−1 and K`+1 writing them as P∗ : P1Kb−1P2
and Q∗ : Q1K`+1P2, respectively.

Their core statement is that C1 : P1Kb−1RK`+1Qr1 and C2 : Pr2Kb−1RK`+1Q2 are chains that
satisfy the inequality |C1|+ |C2| > 2 + |P|+ |Q|, where R is the possibly empty chain Kb . . . K`

and the exponent “r” means reversal. In order to prove this statement, they have to show that
no arc appears twice in these sequences. They give details only for C1. Their argument that C1
is a chain heavily relies on the properties of the reordered chains P∗ and Q∗ guaranteed by their
Lemma 3.2. In the proof of Lemma 3.2 these properties are established by iteratively shifting
within P the arc Kb−1 to the beginning of P and, similarly, by iteratively shifting within Q the
arc K`+1 to the beginning of Q. After proving that C1 is indeed a chain, they say that the same
type of argument shows that C2 is a chain as well.

This is the gap in their argument.
In order to use the same type of argument for C2, they would need reversed versions of the

properties guaranteed by Lemma 3.2, that is, in order to establish these properties they would
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have to iteratively shift within P the arc Kb−1 to the end of P and, similarly, to iteratively shift
within Q the arc K`+1 to the end of Q. This may easily result in reorderings that are distinct
from P∗ and Q∗. In view of this asymmetry, the suitably adapted chain C2, which would use the
different reorderings of P and Q, need not satisfy the crucial inequality |C1|+ |C2| > 2+ |P|+ |Q|
and the argument breaks down.

We proceed to the proof of our Theorem 6.

Proof of Theorem 6. Let G be a connected circular arc graph. We choose C, F , and K exactly
as above and we start by proving the following statement.
Assertion. If P and Q are chains of largest order in F such that

K(P) = {Ka+1, . . . , Kb−1} = {Ki : i ∈ I(P)} and
K(Q) = {K`+1, . . . , Km−1} = {Ki : i ∈ I(Q)}

are disjoint, then a = m−1 or b = `+1, that is, the subsets I(P) and I(Q) of Zn are contiguous.
To establish this assertion, assume on the contrary that a 6= m− 1 and b 6= `+ 1. Select a set

S(P) of points of C such that S(P) contains a point in the intersection of every two consecutive
arcs of P . Define S(Q) analogously. If Ka or Kb would intersect S(P) or S(Q), then Ka or Kb

could be inserted into P or Q, respectively, contradicting the assumption that these chains are
of largest order. If S(P) or S(Q) would intersect both arcs of C \ (Ka ∪Kb), then some arc of
P or Q would properly contain Ka or Kb, which yields a contradiction to the condition (2) in
the choice of K. Since K(P) and K(Q) are disjoint, the sets S(P) and S(Q) are contained in
different of the two arcs of C \ (Ka ∪Kb). Since G is connected, P and Q have a common arc
A. This arc A intersects S(P) as well as S(Q), that is, it intersects both arcs of C \ (Ka ∪Kb).
Hence either Ka or Kb is properly contained in A, which again yields a contradiction to the
condition (2) in the choice of K. This conludes the proof of the assertion.

Again let P be a chain in F of largest order and, subject to this, such that K(P) has minimum
order. Let K(P) = {Ka+1, . . . , Kb−1}.

In view of the desired statement, we may assume that F contains a chain Q of largest order
such that Ka+1, Kb−1 6∈ K(Q). Among all such chains, we assume that Q is chosen such that
K(Q) has minimum order. Let K(Q) = {K`+1, . . . , Km−1}. By the choice of P, the sets K(P)
and K(Q) are disjoint. By the assertion, we may assume that b = `+ 1.

In view of the desired statement, we may assume that F contains a chain R of largest order
such that Ka+1, Kb−1, Km−1 6∈ K(R). Among all such chains, we assume that R is chosen such
that K(R) has minimum order. Let K(R) = {Kp+1, . . . , Kq−1}. By the choice of P and Q, the
sets K(P) ∪ K(Q) and K(R) are disjoint. Applying the assertion to P and R as well as to Q
and R, we obtain p = m− 1 and q = a+ 1, that is, K(P) ∪ K(Q) ∪ K(R) is a partition of K.

In view of the desired statement, we may assume that F contains a chain S of largest order
such that Ka+1, K`+1, Kp+1 6∈ K(S). We deduce from the choice of P that K(S) has at least as
many elements as K(P). This implies that K(S) is disjoint from K(P). Now, by the choice of
Q, this implies that K(S) has at least as many elements as K(Q). This in turn implies that the
set K(S) is disjoint from K(P) ∪ K(Q). Finally, by the choice of R, this implies that K(S) has
at least as many elements as K(R). This in turn implies that the set K(S) equals K(R), that
is, K(S) contains Kp+1, which is a contradiction.

This completes the proof that lpt(G) is at most 3.
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From now on we assume that G is a 2-connected circular arc graph, that is, every two longest
cycles in G — closed chains of largest order in F — intersect. It is straightforward to see that
the assertion also applies to closed chains instead of chains. Arguing exactly as above for closed
chains in F instead of chains in F implies that lct(G) 6 3.
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