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1 Introduction

The book Large Networks and Graph Limits, xiv + 475 pp., published
in late 2012, comprises five parts, the first an illuminating introduction
and the last a tantalizing taste of how the scope of the theory developed
in its pages might be extended to other combinatorial structures than
graphs. The three central parts treat in depth the topics of graph algebras,
limits for sequences of dense graphs (this constitutes the most substantial
part, occupying nearly half the book) and limits for sequences of bounded
degree graphs. Primarily the book is aimed at graduate students and
research mathematicians interested in graph theory and its application
to networks (for example, the internet and networks in social science,
biology, statistical physics and engineering).

There are 23 chapters and an appendix, the latter conveniently giv-
ing necessary background from areas of mathematics outside mainstream
graph theory. A bibliography collects together the extensive research in
this area up to 2012, and a subject, author and notation index facilitate
navigation of the book. The author maintains a webpage1 for correc-
tions and supplementary material. Indeed, via the author’s homepage
the reader can freely access the many papers he has written with collabo-
rators on the topic of graph homomorphisms and graph limits. The book
synthesizes much of the material in these papers, with some revision in
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approach when needed to fit the larger trajectories of ideas that animate
the book and make it cohere.

The author is generous in sharing his speculative thoughts as well as
his insights: the book charts extensive conceptual territory in a way that
simultaneously impresses by its depth and scope and encourages by its
invitation to the reader to explore the area too. It is certain that there
are still far-reaching discoveries to be made: many will be made by the
author and his collaborators, but the territory is open to all those with a
firm background in graph theory, linear algebra, probability or analysis.
This active area of research – with such importance for applications to
large networks – has in this book a timely survey. By following the author
the reader is brought right up to the edge of what is currently terra incog-
nita: only, rather than declaring that hic sunt leones, the instruments for
charting the unmapped regions are put in the reader’s hand.

In being brought to the forefront of current research it is naturally the
case that the more rounded chapters and structured portions of book are
supplemented by those less easily incorporated into an overall picture. For
example, in Chapter 14 on the space of graphons, results are reported, but
their full import is as yet to be discovered. Sprinkled throughout the book
are such phrases as “this is not known” or “this only has a partial answer”.
However, one must also say that a huge amount has been answered – much
by the author – and receives a compelling exposition in the shape of this
book.

All but a few of the chapters contain many exercises, which appear
at the end of each section and help the reader to a deeper understanding
of the discussed notions and their properties. Doing the exercises forms
an essential part of engaging with the book, for they are complementary
to the content of the exposition, although sometimes they seem quite
challenging (and only occasionally is one alerted to which are the difficult
ones). There is however a plentiful supply of exercises that are not too dif-
ficult, or at least not beyond reach given mastery of the chapter material.
The book does not contain solutions to these exercises. The compromise
of leaving many statements as exercises or without detailed proof is an
effective way to keep the book readable, permitting concentration on key
ideas while still giving the reader the opportunity to explore the context
more widely and deeply. In such a new and rapidly growing field, there is
encouragingly large scope for the reader to follow paths as yet untrodden
and to discover new results for him/herself too.

Lovász is always punctilious in ascribing credit to others; in this re-
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view we refer to many results due not only to the author but to other
researchers in the field (many of whom he works with) and which receive
an exposition in the book – in the pages of this review we leave out all
these citations for reasons of space.

2 Chapter by chapter

2.1 Part 1. Large graphs: an informal introduction

In the first part of the book the author gives to the reader within just
over thirty pages an intuitive feel for the principal topics of the book.
This is far from just being a list of chapters with brief indications of
their content. The author gives a delightfully insightful and broad view
of the territory to be explored, in a way that is accessible to the reader
who may have an as yet insufficient technical background to understand
the finely developed theory that forms the remainder of the book. One
purpose of the book is precisely to equip such a reader with the necessary
tools to develop such an understanding. Having said that, even experts
in the area will appreciate the conspectus Lovász provides of their field of
research. In his introduction a clear idea is conveyed of the motivations
and key questions that underlie the theory to be elaborated in the core
of the book.

Chapter 1 Very large networks considers the key questions about large
networks that have had such a large impact on the recent evolution of
graph theory: how to obtain information about large networks, how net-
works can be modelled, how given networks can be approximated, and
how to run algorithms on them. While so doing the author introduces
such fundamental concepts as sampling, partitioning, left and right homo-
morphisms, random and quasirandom graphs, graph distances, regularity
lemmas, graph limits, parameter estimation and property testing. The
chapter finishes with a briefer treatment of the case of bounded degree
graphs, for the good reason that “the technicalities in the bounded degree
case are deeper, and so it is even more difficult to state key results, even
informally.” Nevertheless, the author identifies some of the issues that
make this area less well understood, and in Part 4, with the help of the
appropriate technical apparatus, the current state of the art is presented.

Chapter 2 Large graphs in mathematics and physics considers another
major motivation for graph limit theory, that of extremal graphs. The
theory expounded in Chapter 16 is closely related to Razborov’s flag al-
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gebra technique, that has seen recent success in proving long inaccessible
results in extremal graph theory. In this introductory chapter the au-
thor gives a brief history of the classical theorems on triangle density in
graphs, which serves as an exemplar for the class of problems typical in
this area. One of the virtues of graph limit theory is that it not only
allows quantities vanishing in the limit to actually be let vanish – giv-
ing a computational algebra of subgraph densities that allows one to see
the wood for the trees – but that it allows one to state in a precise way
general questions about the nature of extremal graphs. Examples of such
questions are given, such as “Is there always an extremal graph?” – this
is vague as just posed here, but is given precision by the author in this
introduction, and later in the book given a satisfying answer too. In the
remaining section of the chapter there is a brief indication of the applica-
tion of graph homomorphisms and limits to statistical physics, where the
limiting behaviour of graph parameters is a fundamental object of study,
although as the author ruefully states this topic is not discussed any fur-
ther in the book. Both extremal graph theory and statistical physics are
motivating forces for the topic of graph algebras, to which the second part
of the book is devoted.

2.2 Part 2. The algebra of graph homomorphisms

Necessary preliminaries are given in Chapter 3 Notation and terminol-
ogy (it is a not inconsiderable virtue of this book that the difficulties of
unifying notation stemming from disparate fields of mathematics are over-
come, and further that notation is kept informal whenever possible to do
so). From this chapter we highlight the key notion of a partially labelled
graph: a k-labelled graph is a graph to which k distinct labels have been
assigned to some of its vertices (there is a distinction to be made between
the case when a vertex can receive at most one label, and the case when
multiple labels are allowed, but this is not important here).

The second part begins in earnest with Chapter 4 Graph parameters
and connection matrices. Here we meet the notion of a graph parameter (a
function defined on isomorphism types of multigraphs with loops; a graph
property is identified with the graph parameter that is its indicator func-
tion) and the fundamental operation of the gluing product of k-labelled
graphs (disjoint union followed by identification of like-labelled vertices).
Graph parameters such as the stability number and matching number
have the property that they are additive over disjoint unions; those such
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as the maximum clique size or chromatic number have the property that
they are maxing over disjoint unions; while those such as the number of
perfect matchings or number of proper colourings are multiplicative over
disjoint unions. It turns out that graph parameters that are multiplicative
will be fundamental objects of study (because homomorphism densities
have this property). The connection rank of a graph parameter is in-
troduced in order to study its properties more finely. This is a function
of nonnegative integer k and equal to the rank of the connection matrix
M(f, k) of the graph parameter f , whose rows and columns are indexed
by isomorphism types of k-labelled graphs and entries are the value of
the parameter f on the gluing product of the graphs corresponding to the
given row and column. The connection rank may of course be infinite,
but is often finite: graph parameters of finite connection rank for all k are
of particular interest, not least because, as is shown in Chapter 6, they
can be computed in polynomial time on graphs of bounded treewidth. As
well as the connection rank, another fundamental property of the graph
parameter f is that of reflection positivity, which the parameter possesses
if the matrix M(f, k) is positive semidefinite for all nonnegative integers
k. (A graph parameter is multiplicative if and only if M(f, 0) is positive
semidefinite and has rank ≤ 1.) The chapter proceeds to give a gener-
ous selection of examples of graph parameters and their connection rank.
Examples with finite connection rank include the stability number (but
not the clique number or chromatic number), number of stable sets and
Hamiltonian cycles, the chromatic polynomial and Tutte polynomial (but
not the number of Eulerian orientations). The chapter concludes with
proofs that any graph property that is minor-closed or definable by a
monadic second order formula has finite connection rank.

Chapter 5 Graph homomorphisms collects together a diverse set of
results about graph homomorphisms (adjacency-preserving mappings be-
tween graphs) and its primary purpose is to give the reader a good feel
for a key object of study in the book, namely that of a homomorphism
number. For homomorphisms between simple graphs the homomorphism
number is straightforwardly defined as the number of homomorphisms.
The homomorphism number is defined more generally for multigraphs,
vertex- and edge-weighted graphs (in this case homomorphism numbers
are related to partition functions in statistical physics), signed graphs, and
partially labelled graphs. It is also sometimes useful to make a restriction
to injective homomorphisms, surjective homomorphisms, full homomor-
phisms (preserving non-adjacency as well as adjacency) or some combina-
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tion of these (in particular, induced homomorphisms, which are injective
full homomorphisms – counting these type of homomorphisms from a
graph F into a graph G is to count the number of induced copies of F in
G). Useful properties of these homomorphism numbers and the relation-
ship between homomorphism numbers for the various restrictions such as
injectivity are recorded. There then follows a discussion on normalizing
the homomorphism number to give the homomorphism density of a graph
F in a graph G, defined in such a way as to give sampling probabilities
of seeing F in a large graph G. For dense graphs G, for example, the
number of homomorphisms between F and G is divided by the number
of mappings from F to G, to give a homomorphism density that is the
probability that a mapping from F to G chosen uniformly at random is
a homomorphism. There are variants for injective homomorphisms etc.
and, for the density to be meaningful, a different normalization is required
when considering bounded degree graphs G.

On fixing one of the graphs F and G, homomorphism numbers from
F to G include many important graph parameters. For example the
number of homomorphisms from F to Kq is the number of proper q-
colourings, and the number of homomorphisms from cycles toG determine
the spectrum of G. Taken collectively, these graph parameters defined
by homomorphism profiles determine a graph G up isomorphism (this
holds both for left homomorphisms, where we consider homomorphisms
to G, and for right homomorphisms, from G). This is a result the author
proved over forty years ago and which was famously used to give a short
proof of cancellation for the categorical product. The author reviews
this and other applications of homomorphism numbers to problems in
graph isomorphism. This is followed by a section in which it is shown
that the homomorphism numbers from F to a fixed graph G are linearly
independent.

We then move on to several recent characterizations of graph param-
eters which can be expressed as a homomorphism number from (or to)
some finite graph. For example, a graph parameter defined on multi-
graphs without loops can be expressed as a homomorphism number to a
finite graph if it is reflection positive and has exponentially bounded rank
(and takes value 1 on the empty graph). Thus for instance the number
of spanning trees of a graph cannot be expressed as a homomorphism
number, for its kth connection rank is the kth Bell number and this
is not exponentially bounded. For homomorphisms from a fixed graph
there is a dually defined connection matrix for which the corresponding
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conditions must obtain – instead of gluing-products of labelled graphs
one has coloured-products of coloured graphs. The proofs are postponed
to next chapter where the necessary algebraic tools are developed. The
chapter concludes with a brief exposition of two structures, one graphical
and the other topological, which can be imposed on the set of homomor-
phisms from one graph to another (the former significant in the context
of statistical physics, the latter in relating topological connectivity to the
chromatic number).

Chapter 6 Graph algebras and homomorphism functions introduces
semigroup algebras on multigraphs and more generally k-labelled multi-
graphs (labelled multigraphs with gluing product form a commutative
semigroup). The elements of these algebras are formal R-linear combi-
nations of multigraphs and are given the name of quantum graphs. By
linearity, the definitions of graph parameter, graph homomorphisms and
homomorphism densities extend to quantum graphs. The tools and re-
sults from linear algebra now become available, and will be used in order
to derive the characterization of graph parameters expressible as homo-
morphism numbers stated in the previous chapter. But this is to make
sound utilitarian what is in fact a very elegant transposition from graph
parameters to algebras, in which properties of graph parameters are re-
flected closely in the structure of the algebras formed from them – the
techniques are novel and deserve the reader’s special attention.

Any graph parameter defines an inner product on the vector space of
k-labelled quantum graphs to be equal to the evaluation of the graph pa-
rameter on the gluing product. This inner product is positive semidefinite
if the same is true of the parameter, it satisfies the Frobenius identity (by
its definition via the associative gluing product), and its Gram matrix
is the connection matrix of the graph parameter used to define it. The
dimension of the algebra of quantum graphs factored out by the kernel of
the inner product defined by the graph parameter is equal to the connec-
tion rank of the parameter. If the graph parameter is reflection positive
then the inner product on the quotient space is positive definite, making
this an inner product space. If further the graph parameter has finite
connection rank then the quotient space is a finite-dimensional commu-
tative Frobenius algebra (structures for which there is a rich theory of
duality). In this case the quotient algebra has the simple structure of Rm

with coordinatewise multiplication and the usual inner product (m is the
connection rank). The algebra elements corresponding to the standard
basis form an idempotent basis for the quotient algebra defined by the
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graph parameter. As the chapter unfolds the combinatorial significance
of these idempotents is revealed.

Another algebra structure can be introduced on the vector space of
2-labelled multigraphs by concatenation (gluing a vertex of the first graph
labeled by 2 with a vertex of the second graph labeled by 1 and unlabelling
this identified vertex). This yields an associative non-commutative alge-
bra with a *-operation (conjugation). The generalization of this construc-
tion to more labels has been used in topological quantum field theory but
the details of this are not discussed in the book.

After this setting up of the graph algebra apparatus comes the
promised construction of a weighted graph H for which the value of a
reflection positive graph parameter f(G) of exponentially bounded con-
nection rank equals the number of homomorphisms from G to H. We
then move to contractors and connectors for 2-labelled quantum graphs,
which among other things are used in order to give a more explicit descrip-
tion of the special idempotent basis for the graph parameter’s quotient
algebra. A contractor for a graph parameter f is a quantum 2-labelled
graph that upon gluing replicates modulo f the operation of identifying
two labelled vertices (other than the 2-labelled graph K1 with both la-
bels on its single vertex). The deletion-contraction identity for the Tutte
polynomial translates to the fact that the Tutte polynomial has as a con-
tractor a linear combination of K2 and K2 (both 2-labelled, one label for
each vertex). Connectors are quantum 2-labelled graphs in which the la-
belled vertices are non-adjacent and which upon gluing replicate modulo
f the operation of joining the labelled vertices by an edge. Connectors
allow multiple edges to be eliminated, and in this case for each multi-
graph there is a a simple graph for which the graph parameter takes the
same value. Graph parameters f given by a homomorphism number to
a weighted graph are shown to have a simple connector and a simple
contractor. In fact possession of a contractor substitutes for finiteness of
connection rank in another characterization of graph parameters given by
homomorphism numbers to a weighted graph H: the requisite conditions
are that the graph parameter be reflection positive, multiplicative and
have a contractor.

Next we return to the idempotent basis used in the construction of
weighted graph H so that f(G) is the number of homomorphisms from G
to H for reflection positive graph parameter with exponentially bounded
connection rank. Two questions are addressed: what size this idempotent
basis has and how large the constituent graphs need to be in the quan-
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tum graphs that represent the basis elements (in the quotient algebra
defined by the graph parameter). A useful application of graph algebras
follows, namely a proof of the theorem that a graph parameter of finite
kth connection rank can be computed in polynomial time for graphs of
treewidth at most k. The chapter concludes with description of a method
of proving representation theorems for graph parameters, with an appli-
cation being a proof of a characterization of graph parameters defined
on looped multigraphs that are given by homomorphism numbers to an
edge-weighted graph.

2.3 Part 3. Limits of dense graph sequences

In the third part of the book we move into a different discourse, namely
that of analysis, with the aim being to define limit objects for graph
sequences in the dense case, which are called graphons. There are similar-
ities here between the completion of Q to R and the completion of finite
weighted graphs to the space of graphons, with like advantages and in-
sights from working with limiting values rather than the sequences them-
selves. Before realizing graphons as limits of dense graph sequences they
are studied as objects in their own right. A cut norm and cut-distance is
defined for graphons, regularity lemmas formulated and proved, and basic
properties of sampling from them are established. Just as the rich theory
of linear algebra was mined in the second part, so in this third part the
resources of the well-developed theory of functional analysis are tapped.

Chapter 7 Kernels and graphons introduces these limiting objects for
dense graph sequences. Kernels are bounded symmetric measurable func-
tions from the unit square to the reals (the name alludes to the fact that
these functions give rise to kernel operators on function spaces on the
unit interval) and graphons are those with values in the unit interval
only. Kernels are generalization of weighted graphs in the following way.
For a vertex- and edge-weighted graph G on n vertices, take a partition
of the interval [0, 1] into n intervals with lengths equal to the relative
weight of the corresponding vertices. The value of the kernel is then set
constant equal to the appropriate edge weight on the product of inter-
vals corresponding to endvertices of that edge. In the case of unweighted
simple graphs this gives a {0, 1}-valued graphon (which can be seen as a
representation of the adjacency matrix as a “pixel picture”).

With kernels (and graphons as their normalized version) defined we
can transform many basic constructions known for (weighted) graphs into
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the language of kernels. For example, the degree function for a given el-
ement x ∈ [0, 1] is defined as the integral of the kernel over [0, 1] with
one component set equal to x (a straightforward analogue of summing a
row/column of an incidence matrix for graphs). A section of the chapter
is then devoted to defining homomorphism densities for graphons, anal-
ogously to homomorphism densities for finite graphs in which integrals
replace summations, and to describing some of their properties such as
their reflection positivity and multiplicativity. (Homomorphism numbers
between graphons on the other hand seem not to have any sensible way
of being defined – it turns out that the parameters defined by homomor-
phism numbers for finite graphs extend most naturally to graphons by
replacing counting by maximization.) An interesting example of a ho-
momorphism density for graphons and a taster of the fruitfulness of the
limiting theory to be developed is the graphon for which the density of a
finite graph F in it is equal to the number of Eulerian orientations of F .
Recall that there was no representation of this graph parameter by a ho-
momorphism number to a finite weighted graph (it has infinite connection
rank), although it is the case that for finite graphs of bounded degree the
number of Eulerian orientations can be represented by a homomorphism
number via {±1}-flows modulo m for sufficiently large m.

Having constructed the limit objects of dense graph sequences (graph-
ons) there arises the question as to when two graphons should be regarded
as the same up to isomorphism. One straightforward answer is to declare
two kernels to be isomorphic up to a null set if there is an invertible
measure-preserving mapping under which the kernels are equal almost
everywhere. Kernels isomorphic up to a null set have the property that
the homomorphism density of any multigraph in either kernel is the same.
This turns out to be the defining notion of isomorphism required, and this
equivalence with respect to homomorphism densities is called weak iso-
morphism (cf. the Lovász vector or homomorphism profile of a finite graph
which determines it up to isomorphism). In the next section sums and
products of kernels are defined, beginning with a direct sum decomposi-
tion of kernels analogous to the decomposition of a graph into connected
components and unique up to zero sets. A kernel is then connected if it is
not isomorphic up to a null set to the direct sum of two kernels; connec-
tivity is invariant under weak isomorphism. Other notions applicable to
finite graphs can be easily carried over to kernels. For example, a graphon
is bipartite if there is a partition of the unit interval into subsets A and
B such that its value on points in A× B is zero almost everywhere; one
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can then characterize bipartite graphons as those for which the density of
odd cycles is zero. Three product operations are then defined on kernels
that will be used later (pointwise, operator, and tensor products) and to
finish the chapter kernel operators are used to derive spectral properties
of kernels, using the rich theory of Hilbert-Schmidt operators. This allows
the expression of many homomorphism densities in kernels in terms of its
eigenvalues (for example, the density of a k-cycle gives a sum of kth pow-
ers of eigenvalues entirely analogous to the finite case). Indeed, there is a
general spectral formula for the homomorphism density of a multigraph
in a kernel which is an analogue of the expression of a homomorphism
number to a finite weighted graph as an edge-colouring model (the latter
notion is briefly discussed in the appendix).

In Chapter 8 The cut distance we return to finite graphs with a view
to defining a structural similarity measure between graphs that survives
the passage to the limit in a dense graph sequence to give a distance
measure on graphons. The latter is in fact a more tractable quantity
to work with: this is a phenomenon typical of working with graphons,
where all the extraneous detritus prevalent when arguing about finite
graphs has been pruned away. The cut distance is defined at first for
two graphs on the same vertex set of size n. Take a pair of subsets of
the common vertex set and calculate the number of edges between them
in either graph, and then take the difference of these two quantities and
divide by n2 (normalization is not by a number dependent on the size of
the vertex subsets, which has the effect of biasing the measure away from
small vertex subsets in favour of larger ones). To obtain the cut distance
between the two graphs maximize this quantity over all possible pairs of
vertex subsets. For two different vertex sets of the same cardinality, take
the minimum of the cut distance over all possible labellings of the vertex
sets by 1, 2, . . . , n (this refractory measure is but an auxiliary stepping
stone to the final definition for arbitrary pairs of graphs). For graphs
G and G′ on vertex sets of sizes n and n′ by replacing each vertex of G
by kn′ twin vertices and each vertex of G′ by kn twin vertices (two new
vertices being adjacent if and only if their progenitors are), for any postive
integer k, we obtain a pair of graphs on the same number knn′ vertices.
The cut distance between G and G′ is defined to be the limit of the cut
distances as k tends to infinity in this construction. The cut distance is
in fact a pseudometric, but it will turn out that a zero cut distance will
be the same as indistinguishable with respect to weak isomorphism of the
limiting graphon of a dense sequence. There is also a finite construction of
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cut distance which uses fractional overlays, which, roughly speaking, for
probability distributions with uniform marginals on the vertices of G and
vertices of G′ measures correlations between uv and u′v′ being an edge
when (u, u′) and (v, v′) are chosen from the distribution: the cut distance
is obtained for the distribution that minimizes this correlation.

The corresponding construction of cut distance for kernels proceeds
by first defining the cut norm on the linear space of kernels as the supre-
mum of absolute value of integrals of the kernel over all possible pairs
of measurable subsets of [0, 1]. (This is a direct parallel to the matrix
cut norm, which defines the cut distance for finite graphs.) Properties
of the cut norm are then described, for example its equivalence with the
operator norm, and that the supremum of its definition is in fact attained
(i.e., it is a maximum). Likewise for the cut distance, defined from the
cut norm: the infimum that defines it (in a similar way to fractional over-
lays of finite graphs) is in fact a minimum. The chapter concludes with
some relationships between the cut norm and the L1-norm that need to
be recorded for the sequel.

Chapter 9 Szemerédi partitions surveys various forms of the Szemerédi
Regularity Lemma and extends it to graphons, in a streamlined formu-
lation already observed to be typical of the passage from convergent se-
quences of dense graphs to the limiting graphon. Beginning with the
original formulation, a reformulation in the language of graph distances
follows and after this it is generalized to kernels. We can find there both
the weak and strong version of the regularity lemma. The most general
form of regularity lemma is then derived from compactness of the metric
space of graphons defined by the cut distance. The next section concerns
the technically useful fact that the limiting cut distance between graphs
on vertex sets of equal size defined by replacing each vertex by a number of
twin vertices is bounded by a certain function of their actual cut distance
(as defined by a min-max formula over all possible labellings of vertices),
with the consequence that the property of Cauchy convergence of a se-
quence under either distance coincides. The final section of the chapter
is devoted to a proof of the uniqueness of strong regularity partitions.

In Chapter 10 Sampling we come to techniques for the analysis of
large dense graphs by sampling from a limiting graphon. For graphon W,
a W -random graph on n vertices can be extracted by joining distinct ver-
tices i and j with probability W (xi, xj), where (x1, . . . , xn) is an ordered
tuple of n points chosen uniformly at random from [0, 1]. When W is
constant equal to p this is the classical Erdős–Rényi random graph Gn,p.
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Another sampling method is to extract a weighted graph for given tuple
(x1, . . . , xn) where the edge joining i and j is assigned weight W (xi, xj).
This sampling method is useful when studying parameters defined on
edge-weighted graphs, or in order to discuss nearness in cut distance of
samples to the graphon from which they have been sampled (a W -random
graph can be generated using the edge-weights as probabilities). A graph
parameter such as a homomorphism density changes in value slowly be-
tween graphs on the same vertex set that differ only in the edges incident
with a single vertex. For such graph parameters there is concentration of
its value on random induced subgraphs of a given large graph G around
its expected value, and similar behaviour is observed for its value on a
W -random graph. In fact, as is shown later in the chapter, the samples
themselves are concentrated in the cut-distance, not only the values of
graph parameters on them. Before this though it is shown that the cut
distance between two large graphs on the same vertex set can be estimated
by sampling; this extends to kernels, in the sense that the cut norm of a
random sample from the kernel is close to the cut norm of the kernel. A
corollary is that when sampling from a pair of graphons the cut distance
between the samples is closely matched by the cut distance between the
graphons. The broad message is that the metric space of graphons en-
capsulates information about random sampling from large dense graphs,
and in a form that permits easier analysis of random samples and graph
parameters defined on them. After this section we then have, with an-
other rather technically involved proof, the result to which we have just
alluded, that samples are close in cut distance to the original large graph
or graphon. Homomorphism densities are equivalent to sample distribu-
tions, and a generalization of the classical Counting Lemma (the density
of a fixed graph in a quasirandom graph is roughly what it should be) for
them is proved: the density of a simple graph F in a given simple graph
is a Lipschitz-continuous function under the cut distance metric, and the
same is true of the density of F in graphons. This is followed by a converse
Inverse Counting Lemma, which states that if two large dense graphs or
graphons are close in the sense of homomorphism densities then they are
close in cut distance. Finally, the Counting Lemma and Inverse Counting
Lemma are used to tighten the elementary observation that weak isomor-
phism of graphons is equivalent to being indistinguishable by sampling
(all homomorphism densities equal). By way of topological equivalence
of sampling and cut distance on the space of graphons assured by the
Counting Lemma and its converse, two graphons are weakly isomorphic
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if and only if their cut distance is zero (this statement easily extends
to kernels more generally, and as the author points out can be proved
more elementarily than via the heavyweight Counting Lemma and In-
verse Counting Lemma). The chapter closes with other characterizations
of weak isomorphism that enrich its intuitive meaning.

After the technically demanding exertions of the previous couple of
chapters, in Chapter 11 Convergence of dense graph sequences a consoli-
dating approach is adopted in order to bring together the advances thus
far to bear on the topic of convergent graph sequences. Convergence is
defined with reference to a sampling method. In the case of dense graphs
subgraph sampling is used, i.e. take an induced subgraph on a k-element
vertex set chosen uniformly at random. Equivalently and sometimes more
conveniently, homomorphism densities or injective homomorphism densi-
ties can be used to define convergence rather than the injective full ho-
momorphism densities that are induced subgraph densities. A sequence
of graphs (Gn), n → ∞ (where n is number of vertices), is then (left-
) convergent if for each finite graph F the induced subgraph density (or
homomorphism density, or subgraph density) of F in Gn converges. For
example, given fixed 0 ≤ p ≤ 1, any sequence of random graphs Gn taken
from the Erdős–Rényi model Gn,p is convergent with probability 1 (as a
random induced subgraph on k vertices is very close in distribution to Gk,p

for almost all choices of Gn). The choice of cut distance as the natural
metric to take on graphs (and graphons) is vindicated by the result that
a sequence of simple graphs of increasing order is convergent if and only
if it is a Cauchy sequence in the cut distance metric (and a similar result
holds for sequences of graphons). So far the message has been that, for
the seeker of limits of dense graph sequences, “graphons are what you are
looking for”. The author pauses to consider the alternatives, and during
the course of the chapter works to a summary of “cryptomorphic” ob-
jects that all can play the role of a graph limit in an equivalent way to
graphons. These include consistent and local random graph models, local
random countable graph models, multiplicative normalized simple graph
parameters nonnegative on signed graphs, and points in the completion
of the space of finite graphs with the cut distance metric.

A random graph model is sequence of random variables indexed by
positive integer k whose values are simple graphs on k vertices in which
isomorphic graphs have the same probability. A random graph model is
consistent if deleting a vertex from the kth random variable yields a ran-
dom variable with the same distribution as that given by the model on
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k − 1 vertices; it is local if for any pair of disjoint subsets of vertices the
subgraphs induced on these subsets are independent as random variables.
It is proved that a convergent sequence of graphs (Gn) gives rise to a
consistent and local random graph model by taking the limiting distri-
bution of induced homomorphism densities on k-vertex graphs, and that
conversely every consistent and local random graph model arises in this
way. It then turns out that a consistent and local random graph model
can be represented by sampling k vertices from a graphon.

The countable random graph model is a probability distribution on
countable graphs on vertex set N∗ (positive integers) invariant under per-
mutations of N∗. The correspondence to consistent random graph models
is uncomplicated and preserves the notion of locality: in the countable
model, locality means that the induced subgraphs on disjoint finite sub-
sets of positive integers are independent as random variables. The Rado
graph in which two positive integers are joined with probability 1/2 is a
classical example of a local countable random graph model, whose cor-
responding consistent and local random graph model is the Erdős–Rényi
model Gn, 1

2
. Given a graphon W , selecting a sequence of points x1, x2, . . .

independently uniformly at random and joining i and j with probability
W (xi, xj) we obtain a local countable random graph model, and it turns
out all such models can be constructed in this way.

Having strayed from graphons momentarily, we are now led back to
consider them, and to see they are more explicit than the alternatives,
in the sense that any convergent sequence of graphs has homomorphism
densities convergent to a homomorphism density of a fixed graphon W
(unique up to weak isomorphism). Conversely, it is shown that any mea-
surable function W occurs as the limit object of some convergent sequence
of simple graphs. Three different proofs are given, the first based on tech-
niques presented in the book (compactness of the space of graphons, and
the Counting Lemma). The second proof is based on model theory using
ultraproducts and ultralimits, the relevant notions receiving a brief expo-
sition here, supplemented by the two-page crash course in the appendix,
while the details of the proof can be found in the recent paper that is
cited. The third proof by exchangeable random variables uses represen-
tation theorems of Aldous and Hoover, and receives a very brief outline
with references given to other sources for the details.

The chapter now moves on to the concrete problem of how to show
a given sequence of graphs converges and determining its limit graphon.
Disconcerting behaviour is possible here: a randomly growing sequence of
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graphs may be convergent with probability 1 and yet its limit itself be a
random variable. But on the whole convergence is with probability 1 to
a single well-defined limit graphon, and moreover is often {0, 1}-valued.
The latter property of a graphon, called random-free, has the consequence
that convergence is not only in cut distance but also L1 (edit distance),
which means that while the graph sequence may grow randomly, there
is high concentration, with two instances of the nth term of the random
sequence differing in only o(n2) edges when overlaid properly.

Several well-known examples of convergent sequences are given to il-
lustrate methods of establishing convergence and the limit graphon (there
is by no means a unified approach to take here). These include simple
threshold graphs (for a graph on n vertices, vertices i, j are connected if
and only if i+ j ≤ n), (multitype) quasirandom graphs, growing uniform
attachment graphs (in the n-th step we add a vertex and every nonadja-
cent vertices are connected with probability 1/n; the corresponding limit
function is 1−max(x, y)), prefix attachment graphs (a newly added ver-
tex is connected to all those created earlier than a given randomly chosen
existing vertex). The growing preferential attachment graph, where a new
vertex is joined to an old vertex with probability proportional to its cur-
rent degree, with probability 1 converges to a constant function (i.e., is
quasirandom), only the limit constant may differ on running the process
again (the distribution of the limit is unknown).

Earlier, in Chapter 7, it was shown how graphons, considered as kernel
operators, have a discrete spectrum such that any neighbourhood of 0
contains all but a finite number of eigenvalues. Eigenvalues occur with
finite multiplicity and are contained in [−1, 1]. It is shown here that if a
sequence of simple graphs is convergent to graphon W , then the (suitably
ordered and normalized) eigenvalues of their adjacency matrices converge
to the spectrum of W . In fact the stronger result is proved that a sequence
of graphons convergent to W in the cut distance have spectra convergent
to the spectrum of W .

The chapter concludes with two applications of graph limits to proving
results about finite graphs: the Chung–Graham–Wilson characterization
of quasirandom graphs by edge and C4 densities alone, and the Removal
Lemma (hinting at deeper connections between the Regularity Lemma
and measure theory).

Having explored at length convergence of graph sequences (Gn) with
respect to left homomorphism densities (from a fixed graph to Gn), the
dual question of counting right homomorphisms (from Gn to a fixed
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graph) is the subject of Chapter 12 Convergence from the right. The
problem considered is whether left convergence can be characterized in
terms of right homomorphism densities, and not to define a new metric
that might in a similar way to the cut distance give a condition for Cauchy
convergence equivalent to convergence of right homomorphism densities
(i.e., the structural similarity between graphs measured so well by the cut
distance is taken as a paramount). That there are difficulties character-
izing convergence of a graph sequence in the cut distance metric space
(which is equivalent to convergence of left homomorphism densities) by
means of right homomorphisms is already suggested by the fact that any
sequence of graphs (Gn) such that the chromatic number of Gn tends
to infinity will eventually have zero homomorphism density to any given
fixed simple graph: here convergence of right homomorphism densities
gives no information about the convergence or otherwise of the sequence
(Gn). It turns out that there is more than one suitable definition of right
convergence in terms of homomorphisms from Gn to a fixed small graph
that can be adopted to surmount the problem that even taking weighted
target graphs is not sufficient to characterize graph sequence convergence
with respect to cut distance. Two routes are taken in this chapter: a
modification of counting homomorphisms, or replacement of counting by
maximization and introducing restricted multicuts.

For a fixed weighted graph H on q vertices the number of homomor-
phisms from G with n vertices to H grows exponentially with n2; the
homomorphism entropy is defined as the logarithm of the number of ho-
momorphisms from G to H divided by n2. The homomorphism entropy
can be tightly bounded by the maximum weighted multicut density of G
with respect to positively edge-weighted graph H. This is defined as the
maximum over all possible partitions of the vertices of G into at most
q parts of normalized sums of edge densities between pairs of subsets of
the partition (cuts) weighted by the logarithm of the edge-weight of H.
Using the fact that weighted multicut density is invariant under blowing
up of vertices and the fact that the multicut density with respect to H is
Lipschitz-continuous in the cut distance metric (a simpler variant of the
Counting Lemma) a necessary condition for graph convergence emerges,
namely that for every weighted graph with positive edge-weights, the se-
quence of homomorphism entropies is convergent. This condition is not
sufficient, suggested already by the fact the any vertex weights of H are
ignored, and confirmed by the example of interleaved sequences of quasir-
andom graphs of density p and 2p, which has convergent homomorphism
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entropies but is not a left convergent sequence. This brings us to the no-
tion of typical homomorphisms, which are those whose inverse images have
size proportional to the vertex weights of the target graph H. Counting
only with those we obtain the typical homomorphism entropy and likewise
the maximum restricted multicut density.

The generalization of maximum weighted multicut density to graphons
(using supremum in place of maximum and integration instead of sum-
mation) is called the overlay functional. This has many good properties,
such as invariance under measure-preserving transformations of the two
kernels that are its arguments, symmetry, and behaviour close to an in-
ner product (although it is not, for instance, bilinear, only subadditive in
each variable). Finally, on the way to proving a characterization of con-
vergence in terms of right homomorphisms, the quotient set of a kernel W
is defined as the set of all its quotient graphs, where the quotient graph
of a kernel with respect to a partition of [0, 1] into q measurable subsets
Si, i ∈ {1, . . . , q}, is defined analogously to the template graph with re-
spect to a partition of the vertices of a graph into q subsets. Specifically,
the quotient graph is a weighted graph on {1, . . . , q} where vertex i has
weight the measure of Si and edge ij has weight the integral of W over
Si × Sj normalized by the measure of Si × Sj.

Convergence of a graphon sequence from the right is shown to be
equivalent to (1) convergence of restricted multicut densities for all simple
graphs, (2) convergence of overlay functional values for every kernel, or (3)
that, for each q, the quotient sets of terms of the sequence by q-partitions
form a Cauchy sequence in the Hausdorff metric defined via the cut dis-
tance. The remainder of the chapter then translates this characterization
of convergent graphon sequences by behaviour of right homomorphisms
to the setting of graph sequences, the complication lying in the fact that
quantities such as multicuts associated with the graphon defined from a
finite graph G are only approximations of the analogous combinatorial
quantities for G. The chapter finishes with a question: what other con-
vergence results are there for right-homomorphism parameters of a left
convergent graph sequence? In the negative direction, convergence of the
normalized logarithm of right homomorphism densities (from a term of
the convergent sequence (Gn) to fixed graphon W ) does not follow from
left convergence of (Gn), as shown by an example given in the exercises.

A leitmotiv of part 3 is that graphons bring a leanness and clarity to
reasoning about sequences of large graphs and convergence to a limit. In
Chapter 13 On the structure of graphons this is taken a step further, with
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a generalization of kernels and graphons to arbitrary probability spaces
(when the space is finite one obtains a weighted graph with normalized
vertex weights). While this may seem redundant, given that graphons on
[0, 1] with the Lebesgue measure account for all limit objects of convergent
graph sequences, a felicitous choice of underlying probability spaces can
radically simplify finding the limits of such sequences as those of prefix
attachment graphs and interval graphs. As far as subgraph densities and
multicuts etc. are concerned the underlying probability space is a matter
of indifference, permitting one to choose the most convenient at hand.

Atoms in a probability space are singleton subsets with positive mea-
sure; kernels can be made atom-free by a procedure analogous to the
construction of a kernel from a weighted graph, replacing atoms by inter-
vals of their measure. Two points in the probability space underlying a
kernel are called twins if the marginal of the kernel with respect to one
point is almost everywhere equal to the marginal with respect to the other
point. Twins can be removed to leave a twin-free kernel that is related to
the orginal kernel by a measure-preserving map, and moreover based on
a standard probability space (completion of a Borel space) if the original
kernel is. With these preparations, it is proved that two weakly isomorphic
standard twin-free kernels are in fact isomorphic up to a null set. From
this follows a clutch of characterizations of weak isomorphism of standard
kernels extending those given in Chapter 10. Since null sets are usually
happily ignored it would seem that with atom-free and twin-free kernels
we have reached our ultimate destination. However, purifying kernels of
their null sets proves useful in deriving further results about homomor-
phism densities. A neighbourhood distance is defined on the probability
space underlying the kernel W by setting the distance between points x
and y equal to the L1-distance of the marginals of W along x and along
y. A kernel is pure if with the neighbourhood distance it is based on a
complete separable metric space and every open set has positive measure.
Every twin-free kernel is isomorphic up to a null set to a pure kernel. After
using pure kernels to prove some results about homomorphism densities,
such as the fact that as a multigraph parameter the density in a kernel
is contractible, the topology of the underlying space of a pure graphon is
examined for correspondences with combinatorial properties of sequences
that converge to it. In order to extract these correspondences a different
metric than neighbourhood distance is introduced, namely the similarity
distance which is defined like the neighbourhood distance except with the
replacement of W by the operator product of W with itself (like a convo-

19



lution, or taking the square of the adjacency matrix in the case of finite
graphs). The similarity distance defines a Hausdorff space, but not nec-
essarily a complete metric space. The differences in topologies defined by
the neighbourhood and similarity distances appear to have combinatorial
significance, in particular those graphons for which the finer space defined
by neighbourhood distance is also compact. A compelling reason for in-
troducing the similarity distance is the correspondence of the subsets in a
weak regularity partition with the Voronoi cells of an average ε-net in the
metric space defined by similarity distance. Further, the Minkowski di-
mension of this metric space has implications for the number of classes in
a weak regularity partition of the graphon, and the Vapnik–Chervonenkis
dimension has implications for densities of signed bipartite graphs.

The chapter closes with a brief look at the automorphism group of
a graphon, which for a pure graphon when given the topology of point-
wise convergence under the similarity distance is compact. After proving
that a graphon must be a step-function when the connection matrix of
homomorphism densities in W for 2-labelled graphs has finite rank, the
corollary is deduced that a reflection positive, multiplicative and normal-
ized simple graph parameter f either has infinite kth connection rank for
k greater than 1 or there is a twin-free weighted graph H such that f(G)
is the normalized homomorphism number from G to H, in which case the
kth connection rank is finite and its kth root tends to |V (H)|.

Chapter 14 The space of graphons consists of disparate technical re-
sults about graphons, difficult to summarize in any detail here. It begins
by considering alternative norms than the cut norm, such as those de-
fined by homomorphism densities. Then the interrelationships between
different norms that have combinatorial interpretations are explored. For
example, the relation between the cut norm and L2 norm features in the
proof of the Regularity Lemma and the relationship between the cut norm
and the L1-norm will be seen in the succeeding two chapters to be sig-
nificant in property testing and the stability theory of extremal graphs.
The chapter then moves on to consider closures of graphon properties and
derives some characterizations of hereditary properties from it, and those
that are random-free (the closure of the property is {0, 1}-valued; a graph
property is random-free if it does not contain large quasirandom bipartite
graphs).

The next section studies graphon varieties, defined by equations spec-
ifying linear dependence between subgraph densities (linear dependence
is equivalent to algebraic dependence due to multiplicativity of subgraph
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densities), and gives many examples to illustrate the theory. This is fol-
lowed by a section on random graphons, or more precisely probability
distributions on equivalence classes of graphons under weak isomorphism,
which form a compact metric space whose sigma-algebra of Borel subsets
allows some headway in analysis. Random graphons give a representation
of graph parameters more general than those represented by graphons.
Random graphon models are shown to be cryptomorphic to countable
random graph models, consistent random graph models and normalized
simple graph parameters indifferent to isolated vertices and with nonneg-
ative upper Möbius inverse. There follows a number of equivalent descrip-
tions of isolate-indifferent normalized simple graph parameters that are
reflection positive and that are multiplicative.

The final section of the chapter summarizes some recent work by other
authors about exponential random graph models on the compact space of
graphons. These give a way to understand the structure of a random
graph conditioned on the value of a given graph parameter being small
(for example, having triangle density much less than 1/8) by imposing a
probability distribution weighted in favour of those graphs for which the
value of the parameter is small, and then studying the limiting distribu-
tion on graphons.

The next two chapters treat two major areas of success for the appli-
cation of the abstract theory developed hitherto.

Chapter 15 Algorithms for large graphs and graphons concerns param-
eter estimation, property testing and distinguishing between two proper-
ties, and computation of structures such as maximum cuts.

A parameter is estimable if it can be approximated with high proba-
bility by taking a sample of sufficiently large size (dependent only on the
desired error bound). Estimability of a graph parameter f is equivalent to
saying that f preserves left convergence of graph sequences (in particular
all left homomorphism densities are estimable by definition). The open-
ing result of the chapter is a useful set of criteria that a parameter must
satisfy in order to be testable, which are derived using facts about the
cut distance. This is followed by showing that the density of maximum
cuts and the free energy of a states model (from statistical physics, and
related to the right homomorphism density to an edge-weighted graph)
are both estimable.

Before considering the more complicated task of testing for a single
property the more tractable problem of distinguishing between two prop-
erties P1 and P2 by sampling is addressed. Here an auxiliary test property
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Q is queried of the sample, and the answer determines which of the two
properties to plump for: the properties P1 and P2 are said to be dis-
tinguishable by sampling if for every sufficiently large sample size k the
probability of the test property Q being satisfied on a sample of k vertices
given P1 is at least 2/3 while that given P2 is at most 1/3 (it is then seen
to suffice to require that the former be strictly larger than the latter).
Then it is shown that this is equivalent to either of two conditions involv-
ing the cut distance and the total variation distance between two graphs
on sufficiently large number of vertices one of which has property P1 and
the other P2.

Next the widely studied problem of tesing for a single property P is
considered in its aspect relating to graph limit theory. First testability
of a graphon property P is defined in terms of a test property that for a
graph of any sample size from a graphon satisfying P holds with proba-
bility at least 2/3, and such that, for a given postive ε, a sample graph
of sufficiently large size (dependent on ε) from a graphon that has edit
distance from P at least ε does not have the test property with probability
at least 2/3. A test property for P is then constructed in terms of graphs
of sufficiently small cut distance from P and a condition for testability
of a property framed in terms of distinguishability from the property of
having edit distance from P of at least a given ε. A number of corollaries
are deduced giving equivalent formulations of testability that permit more
examples of testable properties to be offered, such as subgraph density.

From graphon properties we then move to testing graph properties,
with an analogous definition of testability as that for graphon properties
(this notion of testability for finite graphs is called oblivious testing as
it does not assume any information about the size of graphs involved).
That being triangle-free is testable is equivalent to the Removal Lemma.
Testable graphon properties are shown to be precisely the closures of
testable graph properties, and a graph property testable if and only if it
has a property called robustness and its closure is testable.

Next the theorem that every hereditary property is testable is proved
using the machinery developed in the chapter. A characterization of testa-
bility relating it to estimability is given: P is testable if and only if the
normalized edit distance from P is an estimable parameter.

Finally in this chapter the problem of computing structures in large
graphs is treated, with the examples of representative sets (under a defi-
nition of similarity distance), regularity partitions, and maximum cuts.

Graph limits have seen their richest application in extremal graph the-
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ory, and this is taken up in Chapter 16 Extremal theory of dense graphs.
The first section relates reflection positivity to inequalities between sub-
graph densities, and the second section develops techniques of variational
calculus of graphons (which have the advantage of being able to be con-
tinuously deformed, as opposed to finite graphs). We are now ready to see
applications to the problem of describing relationships between densities
of complete graphs, which of course has a long history in combinatorics,
and here is surveyed with formulations and proofs using the theory devel-
oped thus far.

Another advantage of graphons is exploited, namely that local op-
tima can be defined and the tools of analysis used to study them. Three
examples are given: that for every hereditary property a random graph
of appropriate density is asymptotically furthest from it in edit distance
(here the local optimum is global, giving a short proof), Sidorenko’s Con-
jecture relating bipartite subgraph densities to edge densities, and “com-
mon graphs” (a prototypical example being triangles, for which the sum
of their density in a given graph and the density in its complement is at
least 1/4).

After this survey of historically important examples in extremal graph
theory comes the general question of deciding inequalities between sub-
graph densities, beginning with the recent result that it is algorithmically
undecidable to decide whether a quantum graph with rational coefficients
is nonnegative, which is proved by a reduction to Matiyasevich’s solution
of Hilbert’s Tenth Problem. By a nonnegative quantum graph is meant
one whose density (extended linearly from graphs to quantum graphs) in
any graphon is nonnegative. The similar result is true, and older and eas-
ier to prove, for homomorphism numbers into finite simple graphs (rather
than graphons). Then the related question of a Positivstellensatz for
graphs is raised: is there a nonnegative quantum graph that is not a sum
of squares? Well, yes, one has been recently constructed, but a weaker
result is true: a nonnegative quantum graph is arbitrarily close in edit
distance to a sum of squares.

The rest of the chapter is devoted to the interesting question of de-
scribing the structure of extremal graphs for an extremal problem. For
classical extremal graph theory this has been answered in the dense case
by the Erdős–Simonovits–Stone theory of extremal graphs. In the asymp-
totic sense, the only extremal graphs are the Turán graphs. A more gen-
eral type of extremal problem on simple graphs is considered: maximize
the density of a given quantum graph in a graphon W subject to a fi-
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nite set of constraints giving the densities of other quantum graphs in
W . The question is whether (as for the classical extremal problem, where
the constraints all stipulate density zero and the given quantum graph
whose density is to be maximized is the single edge) there is a special
family of graphons (like the graphons obtained from complete graphs in
the classical case) such that every extremal graph problem has a solution
from this family?

A class of graphons necessary to cater for these sorts of extremal prob-
lems is then described, that is conjectured to be sufficient too, namely
the finitely forcible graphons. These are defined as those graphons for
which knowing the densities of a finite number of simple graphs is suffi-
cient to determine them up to weak isomorphism. The Chung–Graham–
Wilson characterization of quasirandom graphs by edge and 4-cycle den-
sities alone is equivalent to saying that every graphon given by a constant
function is finitely forcible. It is shown that “most” graphons (in the
Baire category sense) are not finitely forcible, but that there are inter-
esting families of finitely forcible graphons. The author conjectures that
every extremal problem of the type described has a finitely forcible opti-
mum. Finite forcible graphons include step-functions (almost all classical
extremal problems have a solution whose “template” is a step-function),
threshold graphons (defined by an inequality on a real symmetric bivari-
ate polynomial), and the fractal-like complement reducible graphons. We
are then shown that there are not too many finitely forcible graphons,
and after discussion of a more technical notion of infinitesimally finitely
forcible graphons, the chapter concludes with some speculation about the
nature of finitely forcible graphons.

The final Chapter 17 Multigraphs and decorated graphs of Part 3 adum-
brates extensions of the theory developed in detail for sequences of simple
graphs to multigraphs; it turns out that there is (modulo the differences
in how homomorphisms between multigraphs may be defined) when edge
multiplicities are uniformly bounded a not too unstraightforward trans-
portation of results to not only multigraphs but decorated graphs, where
edges are assigned elements from a compact Hausdorff space (for multi-
graphs one can work with the compactification of N by adjoining ∞).
After an initial discussion of the variations one might consider, namely
sequences of multigraphs with (un)bounded edge multiplicities, and den-
sities of (multi)graphs in terms of this sequence, the case of bounded
edge multiplicities is subsumed under the more general consideration of
decorated graphs. These include simple graphs, (discrete space on two
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elements “edge” and “non-edge”), coloured graphs (finite discrete space),
multigraphs of edge multiplicity at most m (discrete space {0, 1, . . . .d}),
and weighted graphs (closed bounded interval). The definition of homo-
morphism number is not so straightforward, and a definition is offered for
homomorphisms between decorated graphs where the source graph is dec-
orated with the space of continuous real-valued functions on the compact
space decorating the target graph (thus a map between vertices gets a real
weight according to the evaluation of the source edge on its target value).
Defining convergence is unproblematic since samples define a distribution
on a compact space, and the requisite notion of weak convergence in dis-
tribution suffices. A characterization of convergence of a graph sequence
in terms of homomorphism numbers from the left analogous to the simple
case is then proved.

Limits of graphs decorated by a compact Hausdorff space K are bivari-
ate functions taking probability measures as values rather than values in
K. After defining the appropriate limit objects (K-graphons), it is proved
that a convergent sequence of K-decorated graphs has left homorphism
densities of a graph decorated by continuous real-valued functions on K
convergent to the corresponding density in a K-graphon. The section
concludes with a proof deferred of the theorem from Chapter 5 that a
multigraph parameter is equal to a homomorphism number to a random
weighted graph if and only if it is multiplicative, reflection positive and
has finite second connection rank.

The final section sketches the problems surrounding sequences of
multigraphs of unbounded edge multplicity, with references to as yet un-
published work for further reading.

2.4 Part 4. Limits of bounded degree graphs

This part is devoted to developing a theory of graph limits for graphs
of bounded degree (all degrees are bounded by a fixed constant D). The
limit objects that will play a role analogous to that of graphons are infinite
graphs generalizing finite bounded degree graphs, namely Borel graphs,
and these are the subject of Chapter 18 Graphings. There is a close
connection to the construction of limit objects for bounded degree se-
quences by Benjamini and Schramm, and there will be some appeal to
their construction, in particular to extend the notion of weak isomorphism
to graphings.

We are given a Borel sigma-algebra (Ω,B). A graph on vertex set Ω is
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a Borel graph if its edge set is a Borel set in B × B; the tacit assumption
that degrees are bounded by D is maintained. Two basic examples on
the unit interval and unit circle are given as illustrations: given a fixed
a ∈ (0, 1) we connect by an edge points at distance a. In the case of an
interval we thus obtain a union of finite paths (for a greater than 1/2 just
a matching and isolated vertices). For a circle we obtain cycles if a is
rational and two-way infinite paths if a is irrational.

The neighbourhood of a vertex in a Borel graph is obtained by projec-
tion onto a coordinate, and this is again a Borel set by a classical theorem
of Lusin. It is shown that the converse holds: a graph on a Borel space is
Borel if and only if vertex neighbourhoods are Borel. The theory of Borel
graphs is already well developed, and the author marshals just those re-
sults that are needed in the sequel. For example, a proper colouring of the
vertices of a Borel graph is a Borel colouring if each colour class is a Borel
set: every Borel graph has a Borel colouring with D + 1 colours (extend-
ing Brooks’ Theorem) and a Borel edge colouring with 2D− 1 colours (a
bit weaker than Shannon’s Theorem for multigraphs that 3D/2 colours
suffices, and Vizing’s Theorem for simple graphs that D + 1 suffices).

The notion of graphing as an analogue of graphon in the dense case
is now introduced. We take a probability measure on (Ω,B) and call a
graph with vertex set Ω a graphing if measuring (counting) edges between
any two measurable sets of vertices is the same if we measure from the
point of view of either of them. For example, the previously mentioned
example on the unit circle with uniform probability measure is a graphing.
There follows a section on how to verify that a distribution on a Borel
graph makes it into a graphing, which includes introducing the notion
of measure-preserving family of graphs, which can be thought of as a
graphing whose edges have been coloured and oriented so that each colour
defines an invertible measure-preserving map. (The connection of these
families with finitely generated groups is indicated right at the end of the
chapter, but this aspect, which makes limits of bounded degree graphs of
such interest to group theorists, is beyond the scope of the book.)

There is no space in this review to describe all the technical machin-
ery needed (concerning involution-invariant random rooted graphs) for
the main goal of this chapter, which is, in a similar manner to Chapter 5,
to introduce homomorphism densities and local equivalence (i.e., same ho-
momorphism densities, equivalently, same r-neighbourhood distributions)
for graphings.

Chapter 19 Convergence of bounded degree graphs continues the jour-
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ney towards defining a limit process for bounded degree graphs. For this
a distance has to be introduced, but unfortunately there is no analogue
to cut distance and we are thus left with a sampling distance construc-
tion, which is locally defined as opposed to the globally defined cut dis-
tance, and so is less powerful an instrument for comparing graphs. The
sampling distance leads to the notion of local convergence of graph se-
quences (r-neighbourhood densities converge for every r and given r-ball,
equivalently, convergence of homomorphism densities for every connected
graph) and a description of their limits (involution-invariant distribu-
tions), followed by an interesting selection of examples as illustrations,
including the representation of the limit of Penrose tilings as a graph-
ing. The description of the limit of a locally convergent sequence by
means of graphings is not unique; the sigma-algebra of the limit object
carries combinatorial information, which is in contrast to the graphon
limits of convergent sequences of dense graphs. On the other hand, limits
of locally convergent sequences are uniquely described by an involution-
invariant distribution; however, under a stronger notion of convergence
(local–global), graphings are precisely what are required to describe the
limits. Local-global convergence uses the nondeterministic sampling dis-
tance, in which r-neighbourhoods of two graphs are compared in sampling
distance over all possible pairs of k-colourings of the graphs. Local-global
convergence enables combinatorial information to be passed from the the
limiting graphing back down to the graphs in the sequence (for example,
whether they are expanders).

Chapter 20 Right convergence of bounded degree graphs may be un-
derstood as a direct analogue of Chapter 12 (which treats dense graphs).
A strong motivation comes from statistical physics, where for example
the Ising model is most commonly studied on regular lattices, but again
the bounded degree case brings many difficulties, which we do not have
the space to elaborate on here. In particular, specific conditions need
to be fulfilled in order to enable the construction of random homomor-
phisms. In case the source graph has small maximum degree and the
edge weights of the destination graph are close to 1 this is ensured by
the Dobrushin Uniqueness Theorem, which receives here a proof in its
combinatorial version. Convergence from the right can be then character-
ized by the convergence of normalized homomorphism numbers to certain
fixed graphs. The proof of this result is included in the second half of this
chapter.

Chapter 21 On the structure of graphings contains a detailed descrip-
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tion of a specific type of graphing, namely hyperfinite graphings. Hy-
perfiniteness of a graph means that we obtain bounded size connected
components after deleting a small fraction of edges. Many families used
in practice have this property (trees, grids, planar graphs, random graphs,
expanders) and thus an understanding of the limiting behaviour in the
hyperfiniteness case would be very welcome. This definition of hyper-
finiteness generalizes naturally to graphings. Any two locally equivalent
hyperfinite atom-free graphings are locally–globally equivalent, which re-
duces the complexity of the bounded degree case and the results are in
such cases direct analogues to those of dense case.

It is shown that a sequence of graphs converges locally (not necessarily
local-globally) to a hyperfinite graphing if and only if the family of graphs
in the given sequence is hyperfinite. Moreover a graphing is hyperfinite
only if it is a limit of a hyperfinite graph sequence.

After a short section concerning the question of how far a general
bounded degree graph can be simplified by removing a small fraction
of its edges, the chapter concludes with brief discussion about what a
Regularity Lemma might look like for non-dense graphs.

Chapter 22 Algorithms for bounded degree graphs steps into territory
that has as yet to submit to a unified theoretical approach. The absence
of a Regularity Lemma and a metric as discerning as the cut distance
are sorely felt. The chapter tries as far as it can to illustrate previous
theoretical results in the context of algorithms, addressing as for dense
graphs (see Chapter 15) the problems of parameter estimation, property
distinction, property testing and computation of a structure. A selection
of recent non-trivial results are presented on these topics. An algorithmic
theory of bounded-degree graphs of corresponding power to that of dense
graphs is still in the future.

2.5 Part 5. Extensions: a brief survey

The last part consists of one chapter and the appendix. Chapter 23
Other combinatorial structures briefly surveys some possible extensions
of the theory developed in parts 2, 3 and 4. First the author discusses
the limits of sparse (but not too sparse) graphs, and a Markov chain on
a graphon is defined. But it is an open problem whether it can be used
for construction of a limit object for suitable graph sequences (neither
bounded degree nor dense).

Next come edge-connection matrices as analogues to connection ma-
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trices, where gluing is done not on vertices but on edges. An analogous
theorem to the vertex-gluing version for homomorphism numbers charac-
terizes those graph parameters that can be expressed as edge-colouring
models as those that are multiplicative and have positive semidefinite
edge-connection matrices. The connection between edge-colouring mod-
els and multilinear algebra (tensor networks) is explained in some detail.

Another generalization goes in the direction of hypergraphs, intro-
ducing homomorphism density, constructing a limit object hypergraphon,
and concluding with the formulation of a Strong Hypergraph Regularity
Lemma.

The categorical way of looking at mathematical structures is then
adopted, and a categorical version of the Regularity Lemma formulated.
Many questions arise concerning the interpretation of statements in cat-
egorical language in concrete instances.

Lastly, a short concluding section surveys other discrete structures for
which convergence and limits might be defined, including directed graphs,
posets, permutations, metric spaces, and functions on Abelian groups.
While partial results have been obtained in these areas, and there are
resonances with classical mathematics of the last century such as von
Neumann’s theory of continuous geometries and the number theoretical
study of sequences of integers, it is at this point that a cloud of unknowing
descends. There remains much to be discovered.

The Appendix contains definitions and technical details on the follow-
ing topics: Möbius functions, the Tutte polynomial, basics of probability
and measure theory, moments and moment problem, ultraproducts and
ultralimits, Artin’s theorem on nonnegative polynomials, and basics of
category theory.

3 Concluding remarks

All in all this is a very interesting book at the frontier of research, giving
a detailed exposition of a well developed theory (especially for sequences
of dense graphs) and at the same time describing many open problems
for further research. It is informative and the technical passages are re-
lieved by an engaging informal written style and the regular interspersal
of paragraphs signposting where we have been and where we are going.
There are only a few inconsistencies in notation to watch out for and
subjects omitted can be pursued by consulting the references the author
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gives. The author occasionally refers to supposedly well-known terms and
techniques from other disciplines that would perhaps only be immediately
understandable to an expert from that field, and may even be used in a
sense that differs a little from its source due to nature of its application
here. For instance, in Chapter 8 he defines `1 and `2 matrix norms which
are normalized versions of the usual definitions (to fit in with the cut
norm). Also, the term “graphing” has a meaning of some twenty years’
vintage, but, given that this meaning seems labile, the author adjusts its
meaning to suit its role as a counterpart to graphons. These shifts are
explicitly remarked by the author when the terms are introduced, but
perhaps could be overlooked by the nonlinear reader.

The book is highly recommended to general mathematicians and com-
puter scientists, both students and professionals. Every reader will find
inspiration from some of its pages.
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