
Key words. Distributed algorithm, Graph theory, Low tree-depth decomposition

AMS subject classifications. 68W15, 68R10, 05C85, 05C15

A DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION

ALGORITHM FOR BOUNDED EXPANSION CLASSES ∗

J. NEŠETŘIL† AND P. OSSONA DE MENDEZ‡

Abstract. We study the distributed low tree-depth decomposition problem for graphs restricted
to a bounded expansion class. Low tree-depth decomposition have been introduced in 2006 and have
found quite a few applications. For example it yields a linear-time model checking algorithm for
graphs in a bounded expansion class. Recall that bounded expansion classes cover classes of graphs
of bounded degree, of planar graphs, of graphs of bounded genus, of graphs of bounded treewidth,
of graphs that exclude a fixed minor, and many other graphs.

There is a sequential algorithm to compute low tree-depth decomposition (with bounded number
of colors) in linear time. In this paper, we give the first efficient distributed algorithm for this
problem. As it is usual for a symmetry breaking problem, we consider a synchronous model, and
as we are interested in a deterministic algorithm, we use the usual assumption that each vertex
has a distinct identity number. We consider the distributed message-passing CONGEST BC model,
in which messages have logarithmic length and only local broadcast are allowed. In this model,
we present a logarithmic time distributed algorithm for computing a low tree-depth decomposition
of graphs in a fixed bounded expansion class. In the sequential centralized case low tree-depth
decomposition linear time algorithm are used as a core procedure in several non-trivial linear time
algorithms. We believe that, similarly, low tree-depth decomposition could be at the heart of several
non-trivial logarithmic time algorithms.

1. Introduction and Previous Work. The coloring problems present some of
the key problems of combinatorial algorithms, both in theory and applications (such
as scheduling). For sparse classes of structures, a very strong variant of the problem
— low tree-detph decomposition — was recently isolated and this immediately found
many applications to diverse algorithmic problems (for instance, graph problems that
have finite integer index (FII) have linear kernels on bounded expansion classes when
parametrized by the size of a modulator to constant tree-depth graphs [8]).

What are sparse classes of structures? Obvious examples include trees, bounded
degree graphs, geometrically defined graphs (such as planar graphs). All these classes
are generalized by the notion of bounded expansion class [17, 20]. This notion is
defined in Section 3, in terms of density of shallow minors. Figure 1.1 displays some
of the frequently studied classes which fall into the category of classes with bounded
expansion. We shall see in Section 3 that classes with bounded expansion may be
alternatively defined by means of low tree-depth decomposition.

Low tree-depth decomposition generalize graph coloring [19], and is the core of
several linear-time algorithms for classes with bounded expansion [18, 20, 21, 22],
including linear-time model checking [6, 7, 10, 13] (to be introduced in §3). As the
coloring problems are one of the most central and most intensively studied problems in
Distributed Algorithms [1, 9, 14, 16, 26], it is then natural to ask whether an efficient
distributed algorithm exists to compute low tree-depth decomposition.

∗Supported by grant ERCCZ LL-1201 of the Czech Ministry of Education and LEA STRUCO
† Computer Science Institute of Charles University (IUUK and ITI) Malostranské nám.25, 11800

Praha 1, Czech Republic (nesetril@iuuk.mff.cuni.cz). Supported by grant CE-ITI P202/12/G061
of GAČR

‡ Centre d’Analyse et de Mathématiques Sociales (CNRS, UMR 8557) 190-198 avenue de France,
75013 Paris, France and Computer Science Institute of Charles University (IUUK) Malostranské
nám.25, 11800 Praha 1, Czech Republic (pom@ehess.fr). Supported by ANR STINT

1



2 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

bounded expansion
::✉✉✉✉✉✉✉✉✉✉✉✉✉

OO ee❑❑❑❑❑❑❑❑❑❑❑❑❑❑

no Kp subdivisions Random G(n, d/n) highly subdivided
OO dd■■■■■■■■■■■

__

1 2 3 4 5 6 7 8 9 10 11 12

ll

bounded degree no Kp minors bounded stack number bounded queue number
OO

ee❑❑❑❑❑❑❑❑❑❑❑❑❑❑

OO

meshes planar

Figure 1.1. Some classes with Bounded Expansion. For random graphs, the meaning of the
inclusion is as follows: for every positive real d > 0 there exists a class Rd with bounded expansion,
such that a random graph G with n vertices and edge probability d/n belongs to Rd asymptotically
almost surely (as n → ∞).

The combinatorial side is natural and easy to describe. For a graph G, we denote
by |G| and ‖G‖ the order (i.e. the number of vertices) and the size (i.e. the number
of edges) of G. The tree-depth of a graph G is the minimum height of a rooted
forest F such that every edge of G connects vertices that have an ancestor-descendant
relationship in F [19] (see Fig. 1.2). This parameter is minor-monotone. Equivalent
notions include the vertex ranking number, the minimum height of an elimination
tree [4, 3, 25], etc. It is also closely related to the cycle rank of directed graphs, the
star height of regular languages, and the quantifier rank of formulas. For instance, the
tree-depth of a graph G with connected components G1, . . . , Gk can be inductively
defined by

td(G) =





1 if G is K1

maxi td(Gi) if G is not connected

1 + minv∈V (G) td(G− v) otherwise

For non-negative integer p, a low tree-depth decomposition with parameter p of a
graph G is a partition V1, . . . , Vk of its vertex set such that every i ≤ p parts induce a



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 3

Figure 1.2. The tree-depth of a path P2n−2 is n.

subgraph with tree-depth at most i [19]. The minimum number of parts k for which
a low tree-depth decomposition with parameter p of G exists is χp(G). In particular,
χ1(G) is the standard chromatic number χ(G) of the graph G.

A related notion is the notion of (p+1)-centered coloring, which is a vertex coloring
such that, for any (induced) connected subgraph H, either some color appears exactly
once in H, or H gets at least p+1 colors (see Fig. 1.3). Every (p+1)-centered coloring
is a low tree-depth decomposition with parameter p. Indeed, assume V1, . . . , Vk are
the color classes of a (p+ 1)-centered coloring of the graph G, and let I ⊂ {1, . . . , k}
be a subset of at most p indices. Let us prove by induction over |I| that the tree-depth
of the subgraph GI of G induced by

⋃
i∈I Vk is at most I: if |I| = 1, then GI has

tree-depth 1 as each Vi is an independent set. Assume that the property has been
proved for subsets of at most 1 ≤ t < p indices at let |I| = t+1. Let H be a connected
component of GI . As H gets less than p colors, some color i0 appears exactly once in
H at a vertex v0. Thus

td(H) ≤ 1 + td(H − v0) ≤ td(GI\{i0}) ≤ 1 + |I \ {i0}| = |I|.

(Note, however, that a low tree-depth decomposition with parameter p does not
directly define a (p + 1)-centered coloring, as witnessed by the path P6 colored
1, 2, 3, 1, 2, 3, which defines a low tree-depth decomposition of depth 3 of P6, but
is not a 4-centered coloring of P6.)

Let us now precise the distributed computing models we shall consider. Dis-
tributed algorithms are commonly analyzed in either the LOCAL or the CONGEST
model. In both settings, the distributed system is a communication network, is a
graph G = (V,E) of order n, where each vertex gets a unique label Id, called iden-
tifier, of length log n (usually assumed to be 1, . . . , n). The graph does not change
during the execution of an algorithm. The processors in the network are located at
the vertices of G, while edges of G are communication links between the processors
located at the incident vertices. The vertices perform arbitrary computations in dis-
crete synchronous rounds and, in each round, exchange messages along the edges.
Precisely, in each round each vertex v is allowed to send

(i) possibly distinct messages of arbitrary size to all or part of its neighbors, in
the LOCAL model;

(ii) possibly distinct messages of size O(log n) to all or part of its neighbors, in
the CONGEST model;

(iii) a single message (possibly distinct for different v) of size O(log n) to all its
neighbors (local broadcast), in the CONGEST BC model.
All messages that are sent in a round arrive before the next round starts. The number
of rounds required by the computation is called the running time of the algorithm. For



4 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

1

2 2 23

3

3

3

3

3

3

3

34 4

44 4

444

2

2 2

2

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

Figure 1.3. Example of a 3-centered coloring: every connected subgraph with less than 3
color contains a uniquely colored subgraph. Hence this defines a low-tree depth decomposition with
parameter 2: each color class induces a subgraph with tree-depth 1 (that is: a discrete graph), and
every two color classes induce a subgraph with tree-depth 2 (that is: a star forest).

further details on the distributed message-passing LOCAL and CONGEST models,
we refer the reader to [24]. Compare also [12] for an interesting general setting.

2. Statement of the Result and Organization of the Paper. In this paper,
we consider CONGEST BC model, with the additional restriction that the local data
space at a vertex v is bounded by O(deg(v) log n), where deg(v) denotes the degree
of the vertex v in the network. (This means intuitively that the more connected is a
vertex, the more local storage it can have.) Moreover, as in [1], we further assume that
every vertex knows the order n of the graph, or at least some polynomial estimate of
it. All these assumptions are natural in our setting of the problem.

We prove that, in this model, low tree-decomposition (with number of colors
N(C)) can be computed in O(log n) time for graphs in a fixed bounded expansion
class C (see Section 3 for a formal definition of bounded expansion classes). The
corresponding algorithm in Section 4 as Algorithm 2. This may seem to be surprising
at first glance in view of the generality of bounded expansion classes. Recall that
bounded expansion classes include, for instance, proper minor closed classes like planar
graphs, classes of graphs with bounded degrees, several geometrically defined classes
of graphs, etc. [23]. Precisely, we prove the following.

Theorem 2.1. For a fixed bounded expansion class C, Algorithm 2 computes (in
the CONGEST BC model) on a graph G ∈ C, for an input parameter p, a (p + 1)-
centered coloring (hence a low tree-depth decomposition of depth p) with O(1) colors
in time O(log n).

In Section 3 we introduce necessary preliminaries on bounded expansion classes
and fraternal augmentation. In Section 4 we discuss how the sequential algorithm
Algorithm 1 can be transformed into distributed Algorithm 2, and the four main
procedures involved (bounded indegree orientation, fraternal augmentation, transitive
augmentation, and final coloring computation). Section 5 is devoted to the analysis of
the algorithm characteristics. How the rooted trees witnessing tree-depth at most p



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 5

of a subgraph induced by p colors of the computed decomposition can be computed in
a distributed way is discussed in Section 6. Finally, some final remarks and discussion
are the subject of concluding Section 7.

3. Preliminaries. The graph invariants χp (defined by means of low tree-depth
decomposition) are related to the densities of the shallow minors (topological minors,
or immersions) of the graph G [20]. In order to explicit this non-trivial connection,
we briefly introduce some notions related to shallow minor densities:

For a graph G and a half positive integer p we denote by G ▽̃ p the set of all the
graphs H such that some subdivision of H in which every edge has been replaced by
a path of length at most 2p + 1 (that is some ≤ 2p-subdivision of H) is a subgraph
of G. A graph H ∈ G ▽̃ p is called a shallow topological minor of G at depth p. In
particular, G ▽̃ 0 is the set of all the subgraphs of G. Let C be a class of graphs and
let p ∈ N. We extend the above notation as follows:

C ▽̃ p =
⋃

G∈C

G ▽̃ p.

The class C has bounded expansion if there exists a function f : N → N such that it
holds

∀p ∈ N, ∀G ∈ C ▽̃ p,
‖G‖

|G|
≤ f(p).

Defining

∇̃p(G) = max
H∈G ▽̃ p

‖H‖

|H|

this turns into

∀p ∈ N, ∀G ∈ C, ∇̃p(G) ≤ f(p).

For an extensive study of bounded expansion classes and of low tree-depth decom-
position, we refer the reader to [22]. The main property of classes with bounded
expansion relates to χp invariants.

Theorem 3.1 ([20]). A class C has bounded expansion if and only if for every
p ∈ N it holds

sup
G∈C

χp(G) < ∞

Theorem 3.1 is perhaps most useful in its algorithmic version [21], which states that,
within a fixed bounded expansion class C and for any fixed p ∈ N, a (p+ 1)-centered
coloring (hence a low tree-depth decomposition with parameter p) of an input graph
G ∈ C using N(C) colors can be computed in linear time. In this paper, we will follow
the lines of a slightly different linear time algorithm introduced in [22]:

Theorem 3.2 ([22], Theorem 17.1). For every integer p there exists a polynomial
Pp (of degree about 22

p

) such that for every graph G Algorithm 1 computes a (p+1)-

centered coloring of G with Np(G) ≤ Pp(∇̃2p−2+ 1

2

(G)) colors in time O(Np(G)n)-
time.

Algorithm 1, which is mentioned in Theorem 3.2 and described below, is based
on the notion of “fraternal augmentation” (see Fig 3.1). The idea behind the use of



6 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

fraternal augmentation comes from a tree experience. Note that any vertex in the
closure of a tree of height d (oriented from the root) has indegree bounded by d, and
that the in-neighbors of any vertex induce a complete graph. A fraternal augmentation
of a directed graph mimics this by adding at each step edges between in-neighbors
of vertices, keeping track of the “depth” of the added edges. The added edges are
then oriented, while keeping the maximum indegree (relatively) small. Repeating this
process exponentially many times and then computing transitivity edges at depth p
— that is all the pairs (x, y) of non-adjacent vertices such that there exists a directed
path from x to y with length at most p — is then enough to ensure that any proper
coloring of the augmented graph is automatically a (p + 1)-centered coloring of the
(non-augmented) original graph. The reason for the exponential bound in the number
of iterations is that the longest path a graph of tree-depth t can contain has length
2n − 2.

The fraternal augmentation procedure will be needed in the sequel, and it may
be described as follows (see also [22], §7.4):

1 1 1 1 1 1

1

1

1

2

2

23

4

4
4

5

5

8

v1

v2 v3 v4 v5 v6
v7

v8

v9

v10

Figure 3.1. Example of a fraternal augmentation

Definition 3.3. Let p ∈ N and let G = (V,E) be a graph. A depth-p fraternal

augmentation of G is a directed graph ~Gp = (V, F ), with edge set F partitioned as
E1 ∪ · · · ∪ Ep, and such that

(i) (V,E1) is an orientation of (V,E);
(ii) (x, y) ∈ F implies (y, x) /∈ F ;
(iii) for every 1 ≤ i ≤ j ≤ p with i+ j ≤ p, and for every x, y, z ∈ V , it holds

(x, z) ∈ Ei and (y, z) ∈ Ej =⇒ (x, y) or (y, x) belongs to

i+j⋃

k=1

Ek.

Definition 3.4. Let p ∈ N and let ~G be a directed graph. A depth p transitivity
edge of ~G is a the pair (x, y) of non-adjacent vertices such that there exists a directed
path from x to y with length at most p.

The depth p transitive augmentation of ~G is the addition to ~G of all the depth p
transitivity edges of ~G.

Using these notions we can give a high-level description of the sequential algo-
rithm, presented bellow as Algorithm 1.



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 7

Algorithm 1: Sequential (p+ 1)-centered coloring algorithm

As input this algorithm receives an undirected graph G = (V,E) and a parameter p,
and the algorithm outputs a (p+1)-centered coloring of G. To do so, it first computes
a depth 2p−1 + 2 fraternal augmentation of G, by iteratively adding depth i edges
(2 ≤ i ≤ 2p−1 + 2) as follows:

• the edges of Ei−1 (with E1 defined as the original edge set E of G) are oriented

with maximum indegree at most 2∇̃0(Hi), whereHi = (V,Ei) (henceH1 = G,
and Hi only contains edges added during the previous iteration if i > 1);

• the edge set Ei is defined as the set of all pairs {x, y} not in
⋃i−1

j=1 Ej such that
there exists a vertex z with (x, z) ∈ Ek and (y, z) ∈ Ei−k for some 1 ≤ k < i.

From the graph G+ = (V,
⋃2p−1+2

i=1 Ei) we construct a directed graph G0 obtained by
adding all the depth p transitivity edges, that is all the pairs (x, y) of non-adjacent
vertices such that there exists in G+ a directed path from x to y with length at most
p. Then we compute a proper vertex coloring of G0 by using the greedy coloring
algorithm (driven by topological sort ordering). The computed coloring of V (which

uses at most 2∇̃0(G0) + 1 colors) is a (p+ 1)-centered coloring of G.

4. The Distributed Algorithm. In order to design a distributed version of
Algorithm 1, several changes have to be considered:

• The basic orientation (and coloring) procedures used in Algorithm 1 are based
on topological sort. In the context of distributed computing, we shall rely
on a variant of the algorithm of Barenboim and Elkin [1]; the orientation
procedure orient will be described in more details in §4.1, while the coloring
procedure color will be described in §4.4. The procedure orient will be given
a constant Ci (when orienting edge set Ei) corresponding to an upper bound
for the maximum indegree of the computed orientation.

• As the graph topology cannot be changed in CONGEST BC model, we can-
not add edges to the graph. Instead, we emulate the different augmented
graphs in G by appropriate O(1)-time procedures, relying on the locality of
the emulated links and an upper bound on the subsequent congestion. The
computation of the needed routing information for fraternal augmentation
will be presented in §3.1, while the the broadcast procedure (tbc) in the
graph G0 will be presented in §4.3.

The main difficulty here is to justify and compute the bounds Ci for the orienta-
tions and a bound for the congestion of our routing algorithm. This will be done in
Section 5.

A high level description of the distributed algorithm obtained from Algorithm1
is given below as Algorithm 2.

In order to allow a unified use of all our emulations, we introduce the general
procedure bc(z, µ) which is responsible for the emulation of a local broadcast on the
graph (V,Ez) (for 1 ≤ z ≤ 2p−1 + 1), or G0 (for z = 0), by calling appropriate
procedure fbc(z, µ) or tbc(µ) (respectively described in §4.2 and §4.3).

4.1. Bounded Indegree Acyclic Orientation. We start with the description
of procedure orient(z,C), which computes an acyclic orientation of the graph Hz =
(V,Ez) with indegree bounded by C.



8 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

Algorithm 2: Distributed (p+ 1)-centered coloring algorithm

This algorithm runs on an undirected graph G = (V,E) in a fixed bounded expansion
class C and is given a parameter p and computes a (p + 1)-centered coloring of G.
To do so, it first computes inductively the routing information of a depth 2p−1 + 2
fraternal augmentation of G as follows:

• the edges of Ei−1 are acyclically oriented with maximum indegree at most
Ci, where Ci is a constant defined from the class C;

• the routing information for the edge set Ei is computed.
The routing information of the depth p transitivity edges is computed. From an acyclic
orientation of all the edges of the augmented graph G0 with maximum indegree C0

(constant computed from C), a proper vertex coloring of G0 is coloring, which defines
a (p+ 1)-centered coloring of G.

Input: z is the index of the graph to emulate, µ the message to broadcast

if z = 0 then call tbc(µ) ; /* broadcast in G0 = (V,E0) */

else if z = 1 then broadcast µ ; /* broadcast in G = (V,E1) */

else call fbc(z, µ) ; /* broadcast in Hz = (V,Ez), z > 1 */

Procedure bc(z,µ): Emulation of a local broadcast on (V,Ez)

This procedure computes the lists Neighborz (resp. Neighbor−z ) of the identifiers
of the neighbors (resp. the in-neighbors) of the vertices, as well as a partition, which
can be used to compute a proper coloring of (V,Ez).

We mainly follow the lines of [1] (except that we consider the maximum average

degree 2∇̃0(H) of the graph H instead of its arboricity, which is a minor change as
both invariants are equivalent up to a factor of 2 but has some non-negligible impact
on our bounds because of the cumulative effect of exponential number of iterations).
The parameter ǫ > 0 below is considered as fixed.

Procedure orient takes two global parameters, z and C, with following meaning:

z: this parameter is the index of the edge set to be oriented. For instance, the
value z = 1 corresponds to edge set E1, that is the original edge set of the graph.
As the graph is not actually modified, this index will be used as an argument to the
emulation procedure bc, which is responsible for the emulation of a local broadcast
on the graph (V,Ez).

C: this parameter is an upper bound for 2(1 + ǫ)∇̃0(Hz), for the graph Hz =
(V,Ez). This will be a bound on the indegree of the computed orientation.

The result of the orientation procedure consists into

(i) the list Neighbor−z containing the identifiers of the in-neighbors of the con-
sidered vertex;

(ii) the list Neighborz containing the identifiers of all the neighbors of the con-
sidered vertex;

(iii) the integer Part (in {1, . . . , ⌊log n/ log(1+ ǫ)⌋}), containing the index of the
part the considered vertex belongs to, in a special partition of the vertices, which can
be used by procedure color to compute a proper coloring of Hz

The procedure proceeds as follows:

(i) The list Neighborz, as well as the degree d of the vertex, is computed using



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 9

Input: z is the index of the graph Hz = (V,Ez) to be used, C is an integer

such that C ≥ 2(1 + ǫ)∇̃0(H). Both parameters are global (do not
depend on the vertex running the code)

Result: Part is the index of the part VPart the vertex belongs to
(1 ≤ Part ≤ q = log n/ log(1 + ǫ)) and it is such that the vertex has
at most C neighbors in

⋃
i≥Part Vi. The list Λ (resp. Λ′) contains the

identifiers of the neighbors in
⋃

i>Part Vi (resp. the neighbors in VPart

with identifier > Id). The lists Neighborz (resp. Neighbor−z ) contains
the identifiers of the neighbors (resp. the in-neighbors) of the vertex.

call bc(z, Id); // locally broadcast the identifier

put all received identifiers in set Neighborz;
let d be the number of received messages;
let Part = 0;
let Λ = Λ′ = ();
let q = log n/ log(1 + ǫ);
for i = 1 to q do

if d ≤ C and Part = 0 then

let Part = i;
call bc(z, Id);

if Part = 0 then

decrease d by the number of received messages;
else if Part < i then

add all received identifiers to Λ;
else

add all received identifiers greater than Id to Λ′;

put all identifiers in Λ and Λ′ in the set Neighbor−z .
Procedure orient(z, C) Partition and Orientation

a local broadcast. In the context of the procedure, the value d will be the number of
unmarked neighbors of a vertex.

(ii) partition is computed by iteratively marking unmarked vertices with at most
C unmarked neighbors, putting newly marked vertices into a new part, and updating
accordingly the value d of the number of unmarked neighbors. That q = ⌊log n/ log(1+
ǫ)⌋ iterations are sufficient is proved in Lemma 4.1 below. By construction a vertex
in part VPart has at most C neighbors in

⋃
i≥Part Vi.

(iii) The list Neighbor−z is computed, by considering the acyclic orientation de-
fined by lexicographic order of (Part, Id).

We shall now prove that the procedure orient(z, C) indeed computes in O(log n)-
time an acyclic orientation of the graph Hz with indegree at most C.

Lemma 4.1. Procedure orient(z, C) computes in O(log n)-time an acyclic orien-
tation of the graph Hz = (V,Ez) with indegree at most C.

At the end of the procedure, the list Neighborz (resp. Neighbor−z ) of a vertex v
contains the identifiers of all the neighbors (resp. in-neighbors) of v.

Proof. Let us first prove that at the end of Procedure orient(z, C), each vertex v
has a been assigned a value Part 6= 0. For i ≥ 0, let ni be the number of vertices with
Part = 0 before step i. As the subgraph Gi induced by vertices with Part = 0 has
average degree at most C/(1 + ǫ), the number ni+1 of vertices having degree greater



10 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

than C is at most ni/(1+ ǫ) (by Markov inequality). Hence after q = log n/ log(1+ ǫ)
steps every vertex has Part 6= 0.

It follows that all the edges of G are eventually oriented by Procedure orient(z,
C). By construction, the computed orientation is acyclic and has indegree at most
C.

4.2. The Fraternal Augmentation Emulation. In this section, we describe
how to emulate a local broadcast in the graph (G,Ez), defined as follows: two vertices
u, v ∈ V are adjacent in Ez if

1. vertices u and v are adjacent in none of the (V,Ei) with 1 ≤ i < z;
2. there exists a vertex w and integers 1 ≤ i, j < z such that (u,w) ∈ Ei,

(v, w) ∈ Ej , and i+ j = z.
Procedure fbc(z, µ) allows vertices to broadcast to all their neighbors a message

µ (possibly different for all sending vertices). The procedure fbc(z, µ) is inductive in
nature: in order to In order to emulate a broadcast in Hz, it uses broadcasts in graphs
Hi (for i < z) and even needs these graphs to have been oriented (with maximum
indegree Ci), and neighbor and in-neighbor list Neighbori and Neighbor−i to have
been computed. Recall that the edges in Hz corresponds to pairs of vertices {u, v}
such that

• the pair {u, v} is not in any Ei for i < z;
• there exists at least a vertex w and an integer 1 ≤ d ≤ z − 1 such that

(u,w) ∈ Ed and (v, w) ∈ Ez−d.
The method used by the broadcast fbc(z, µ) then follows. To get an intuitive view
on how the algorithm proceeds, consider how a broadcast from vertex u will reach a
neighbor v of u in Hz. Note that, as mentioned above, there exists at least a vertex
w and an integer 1 ≤ d0 ≤ z − 1 such that (u,w) ∈ Ed0

and (v, w) ∈ Ez−d0
. The

procedure fbc(z, µ) repeats at loop for values d = 1, . . . , z−1. Consider the loop when
d = d0. At this stage, vertices (including u) broadcast on Ed a message containing
both the message µ they want to broadcast and their identifier Id. As (u,w) ∈ Ed,
vertex w will receive this message. As the message comes from an in-neighbor of
w in Hd (checked by verifying that the received identifier i of u belongs to the list
Neighbor−d of in-neighbors in Hd), the message (i,m) is put in the list L′ of relevant
messages. (Note that this list will contain at most one message per in-neighbors in Hd

hence will have length at most Cd.) Then, each relevant message in L′ is broadcast in
Ez−d with addition of the identifier of the current vertex (w in our example) to the
message. This message will then reach v, which will detect that the message comes
from an out-neighbor in Ez−d (as (v, w) ∈ Ez−d). After having checked that the
identifier of the origin vertex (here u, identified by i) is not in the neighbor list for
some i < z, the message formed by the pair of the identifier of the origin vertex (here
u) and its message µ is added to the reception list RList. Duplicates may exist in
RList, as the vertex w considered above does not have to be unique for the pair (u, v).
Nevertheless, as the identifier of the origin is known, it is easy to remove duplicates
and to fill a clean list RcvList with all the messages the vertex has received from
different origins. This is formalized as procedure fbc(z, µ) bellow.

In Procedure fbc(z, µ), the graph (V,Ez) is only implicitly defined using graphs
(V,Ei) (1 ≤ i < z). The neighbor list Neighborz is not computed by this procedure,
but it can computed afterward by the orientation procedure orient(z,Cz), which uses
Procedure bc(z, µ).

Remark 1. Local data space at vertex v is O(deg(v) log n). Indeed, it is easily

checked by induction that for each vertex v of G, the ratio of the degree of v in ~Gp



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 11

Require: for 1 ≤ d < z, sets Neighbord and Neighbor−d are defined and the
maximum indegree in (V,Ed) is bounded by Cd.

Input: z is the index of the emulated graph (V,Ez), µ is the message to
broadcast to all neighbors in (V,Ez).

Output: RcvList contains all received messages

let RcvList = (); // Received messages

let RList = (); // Received messages with Ids
for d = 1 to z − 1 do

call bc(d, (Id, µ));
let L′ = (). forall the received message (i,m) do

if i ∈ Neighbor−d then add (i,m) to L′

for k = 1 to Cd do

if L′ 6= () then
pop (i,m) from L′;
call bc(z − d, (i, Id,m));

forall the received message (i, j,m) do

if j ∈ Neighborz−d \Neighbor
−
z−d and i /∈

⋃z−1
k=1 Neighbork then

add (i,m) to RList;

purge duplicates from RList;
forall the message (i,m) in RList do put m in RcvList

Procedure fbc(z,µ) Local broadcast on (V,Ez)

and the degree of v in G is bounded by a constant, which only depends on the bounded
expansion class and the integer p.

That procedure fbc(z, µ) is run in constant time easily follows from the existence
of a bound Ci on the maximum indegree of (V,Ei) for 1 ≤ i < z. The existence of
this bound is non-trivial and is justified in §5.

4.3. The Transitive Augmentation. Carrying on the transformation of Al-
gorithm 1 into Algorithm 2, we reach the step where depth p transitivity arcs have to
be computed on ~Gq. In distributed setting, this translates into a procedure tbc(µ),
which is emulating the local broadcast in the augmented graph G0 = (V,E0). This
procedure is described bellow. Although similar to §4.2, this procedure needs to be
formalized carefully.

Procedure tbc(µ) needs to keep on the messages an information on the direction
of the broadcast (“+” for messages following forward arcs in (V,

⋃q
i=1 Ae), and “-” for

messages following backward arcs). In the procedure, the constant Xp,q (bounding the
number of iterations of the main loop) is computed from p and the bounds C1, . . . , Cq

on the maximum indegrees in the directed graphs (V,E1), . . . , (V,Eq). Existence of
the bounds Ci is non-trivial, and is justified in Section 5.

4.4. The Final Coloring. Procedure orient(z, C) not only computes an acyclic
orientation with bounded indegree, but also computes a partition of the vertices which
is used by the coloring procedure color (in a similar way that in [1]). This procedure
runs in O(log n)-time. (Note that in Procedure color, the coloring of subgraphs G[Vi],
which have maximum degree at most C, is done in O(C + log∗ n)-time using [2].)



12 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

Require: sets Neighbori and Neighbor−i have been computed for all 1 ≤ i ≤ q.
Input: µ is the message to broadcast to all G0-neighbors.

let RcvList = ();
let RList = ();
push (Id, µ, p, “+”) on L′;
push (Id, µ, p, “-”) on L′;
for i = 1 to Xp,q do

if L′ 6= ∅ then

pop (i,m, z, direction) from L′;
for d = 1 to q do

call bc(d, (Id, d, i,m, k − 1, direction));
// params: identifier of the sender for last hop,

length of the last hop, identifier of the initial

sender, main message, number of remaining hops,

direction of the broadcast

forall the received message (f, l, i′,m′, k′, direction′) do
if k′ = 0 then

add (i′,m′) to RList;

else if f ∈ Neighbor−l and direction′ = “+” then

add (i′,m′, k′, direction′) to L′;

else if f ∈ Neighborl \Neighbor
−
l and direction′ = “-” then

add (i′,m′, k′, direction′) to L′;

purge duplicates from RcvList;
forall the message (i,m) in RList do put m in RcvList

Procedure tbc(µ) Local broadcast on G0

Output: γ is the color of the vertex

Compute a (C0 + 1)-coloring c of every G0[Vi];
let q = log n/ log(1 + ǫ);
let L = ();
for i = 1 to q do

for j = 1 to C0 + 1 do

if (Part, c) = (i, j) then
let γ be the smallest integer not in L;
call bc(0, γ);

else if (Part, c) > (i, j) then
add all received values to L;

Procedure color (Coloring from Orientation of G0)

5. Analysis and Main Theorem. The analysis of our algorithm is tdeious
however routine as all its parts and subroutines fit well together. In the following
proof, we use all the special notations introduced in Section 4. One of the main ingre-
dients of the proof stands in the stability of the invariants ∇̃r(G) under lexicographic
product by a small clique. Lexicographic product G •Kp will reflect the intuition of



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 13

a routing with congestion p (see Fig. 5.1).

Figure 5.1. Routing in the lexicographic product G •Kp

Recall that for graph G and integer p, the lexicographic product G • Kp of the
graph G and the complete graph Kp is the graph with vertex set V (G)× {1, . . . , p},
where (u, i) and (v, j) are adjacent if either u = v or {u, v} is an edge of G. For a
proof of the following lemma, we refer the reader to [22], Proposition 4.6.

Lemma 5.1. Let G be a graph, let p ≥ 2 and r be positive integers. Then

∇̃r(G •Kp) ≤ max(2r(p− 1) + 1, p2) ∇̃r(G) + p− 1.

Proof of Theorem 2.1. We now consider how the values Ci are fixed. In the
following, we fix a bounded expansion class C and a positive real ǫ > 0.

The constant C1 is constrained by C1 ≥ 2(1+ǫ)∇̃0(G) (see §4.1). Hence we define

C1 = ⌈2(1 + ǫ) sup
G∈C

∇̃0(G)⌉.

Let F (1) = 0. For 2 ≤ i ≤ p define inductively

F (i) =





(
C1

2

)
, if i = 2;∑i−1

j=2 F (j)Ci−j

+
∑(i−1)/2

j=1 CjCi−j , if i ≡ 1 (mod 2);∑i−1
j=2 F (j)Ci−j

+
∑i/2−1

j=1 CjCi−j +
(Ci/2

2

)
, if i ≡ 0 (mod 2).

Then (see §7.4 of [22]) by subdividing j − 1 times the arcs of ~Gi that are in Aj

(for 1 ≤ j ≤ i) we obtain a subgraph of the lexicographic product G • K1+F (i) of
G with a complete graph of order F (i) + 1. It follows that if Hi denotes the graph

(V,Ei) it holds ∇̃0(H) ≤ ∇̃ i−1

2

(G • K1+F (i)). According to Lemma 5.1, in order to

have the inequality Ci ≥ 2(1 + ǫ)∇̃0(Hi) satisfied, we can safely define

Ci =

⌈
2(1 + ǫ)

(
max((i− 1)F (i) + 1, (F (i) + 1)2) sup

G∈C
∇̃ i−1

2

(G) + F (i)
)⌉

< ∞



14 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

Then we see easily that for each 1 ≤ i ≤ q the maximum indegree of (V,Ei) is
bounded by Ci.

It follows that the number of colors in the (p+1)-centered coloring computed by
Procedure color is bounded by N = C0 + 1, where

C0 =
⌈
2(1 + ǫ)S

⌉

and

S =

(∑q
i=1 Ci

)p+1

−

(∑q
i=1 Ci

)

(∑q
i=1 Ci

)
− 1

.

This is a large yet finite number, which only depends on C. Theorem 2.1 follows.

Remark 2. The parameter ǫ has the following influence: When ǫ → 0, the
orientation procedure slows down (by a factor log(1+ ǫ)); However, when ǫ grows, the
constants Ci grow like a power of (1+ ǫ), implying a proportional increase of the time
used by local broadcast emulation procedures and of the bound of the number of colors
used by the algorithm. It follows that a good tradeoff for ǫ could be ǫ ≈ 2−2p .

6. Computing Rooted Forests. In a (p + 1)-centered coloring of G with N
colors, for each subset I of N with cardinality at most p, the subgraph GI induced by
vertices with color in I has tree-depth at most |I| thus is a subgraph of a rooted forest
with height at most |I|. When the set of colors is ordered, the rooted forest can be
defined in a canonical way. The list, for each vertex of color γ ∈ I, of its ancestors in
the canonical forest is computed in O(1)-time from the coloring by Procedure tree(I).
Note that for every subset I of N with cardinality at most p, every vertex is adjacent
in (V,E0) to all its ancestors.

Input: I is a subset of at most p colors in {1, . . . , N} (global parameter)
Output: Ancestors is ordered list of ancestors identifier and color

call bc(0, γ);
let L be the list of received colors;
if γ ∈ I then

add γ to L;
let L′ be the list of the colors c appearing exactly once in L;
call bc(0, (Id, γ, L′)); // |L′| ≤ p hence size(L′) = O(log n)

let S be the set of the received messages;
let J = ∅;
for i = 1 to p do

if γ ∈ I \ J then

let c0 be the minimum of
⋂

(i′′,c′′,L′′)∈S L′′;

let (i′′, c′′, L′′) be the only triple in S with c′′ = c0;
add c0 to J ;
if c0 6= γ then add (i′′, c0) to Ancestors

Procedure tree(I) (compute the root for subset of colors I)



DISTRIBUTED LOW TREE-DEPTH DECOMPOSITION ALGORITHM 15

From these rooted forests, several O(1)-time computations can be made. For
instance, if F is a connected graph of order at most p, a marking of the vertices
belonging to at least one induced copy of F in G can be computed in O(1)-time.

7. Conclusion and Further Works. We believe that low tree-decompositions,
which proved to be powerful tools to design linear time sequential algorithms, can be
applied in the context of distributed computing to design efficient O(log n) algorithms.

Let us give two examples:

(i) Minimum Dominating Set problem is NP-hard to solve in general, even
approximately. Much work has been dedicated to sequential and distributed approx-
imation algorithms on restricted graph classes. For instance, a distributed algorithm
is given in [15] for graphs with bounded arboricity a, which achieves a factor O(a2)-
approximation in randomized time O(log n). Also, a deterministic sequential linear
time algorithm has been given in [5], which achieves (for graphs in an arbitrary but
fixed bounded expansion class) a constant factor approximation for the distance-k
Minimum Dominating Set problem. The latter algorithm is, in essence, based on low
tree-depth decomposition techniques. Does there exist an O(log n)-time distributed
algorithm achieving a constant factor approximation for the distance-k Minimum
Dominating Set problem for graphs in a bounded expansion class?

(ii) Linear-time (centralized sequential) model checking algorithms have been
proposed for bounded expansion classes [6, 10, 13] (and even in the more general set-
ting of nowhere dense classes [11]), which are based on low tree-depth decompositions.
On the basis of the distributed algorithm proposed in this paper, it is natural to ask
whether for arbitrary (but fixed) local first-order formula φ, an O(log n) distributed
algorithm exists (in CONGEST BC model), which would mark vertices v of the net-
work graph G such that G |= φ(v). (Recall that a formula φ(x) is local if there exists
an integer r such that the satisfaction of φ only depends on the r-neighborhood of
the free variable.)

REFERENCES

[1] L. Barenboim and M. Elkin, Sublogarithmic distributed MIS algorithm for sparse graphs
using Nash-Williams decomposition, Distributed Computing, 22 (2010), pp. 363–379.

[2] L. Barenboim, M. Elkin, and F. Kuhn, Distributed (∆ + 1)-coloring in linear (in ∆) time,
SIAM Journal on Computing, 43 (2014), pp. 72–95.

[3] H. Bodlaender, J. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Z. Tuza,
Rankings of graphs, in Graph-Theoretic Concepts in Computer Science, vol. 903/1995 of
Lecture Notes in Computer Science, Springer, 1995, pp. 292–304.

[4] J. Deogun, T. Kloks, D. Kratsch, and H. Müller, On vertex ranking for permutation and
other graphs, in Proceedings of the 11th Annual Symposium on Theoretical Aspects of
Computer Science, P. Enjalbert, E. Mayr, and K. Wagner, eds., vol. 775 of Lecture Notes
in Computer Science, Springer, 1994, pp. 747–758.

[5] Z. Dvořák, Constant-factor approximation of domination number in sparse graphs, European
J. Combin., 34 (2013), pp. 833–840.

[6] Z. Dvořák, D. Král’, and R. Thomas, Deciding first-order properties for sparse graphs, in
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), 2010,
pp. 133–142.

[7] , Testing first-order properties for subclasses of sparse graphs, Journal of the ACM, 60:5
Article 36 (2013).

[8] J. Gajarský, P. Hliněný, J. Obdržálek, S. Ordyniak, F. Reidl, P. Rossmanith,
F. Sánchez Villamil, and S. Sikdar, Kernelization using structural parameters on sparse
graph classes, in ESA 2013, 2013. accepted.

[9] A. V. Goldberg and S. A. Plotkin, Parallel (∆ + 1)-coloring of constant-degree graphs,
Information Processing Letters, 25 (1987), pp. 241 – 245.



16 J. NEŠETŘIL AND P. OSSONA DE MENDEZ

[10] M. Grohe and S. Kreutzer, Methods for algorithmic meta theorems, in Model Theoretic
Methods in Finite Combinatorics, Contemporary mathematics, 2011, pp. 181–206.

[11] M. Grohe, S. Kreutzer, and S. Siebertz, Deciding first-order properties of nowhere dense
graphs. arXiv:1311.3899 [cs.LO], November 2013.

[12] M. Herlihy, D. Kozlov, and S. Rajsbaum, Distributed Computing Through Combinatorial
Topology, Elsevier, 2014.

[13] W. Kazana and L. Segoufin, Enumeration of first-order queries on classes of structures
with bounded expansion, in Proceedings of the 16th International Conference on Database
Theory, 2013, pp. 10–20.

[14] F. Kuhn and R. Wattenhofer, On the complexity of distributed graph coloring, in Proceedings
of the twenty-fifth annual ACM symposium on Principles of distributed computing, 2006,
pp. 7–15.

[15] C. Lenzen and R. Wattenhofer, Minimum dominating set approximation in graphs of
bounded arboricity, in Distributed Computing, N. Lynch and A. Shvartsman, eds., vol. 6343
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010, pp. 510–524.

[16] N. Linial, Locality in distributed graph algorithms, SIAM J. on Computing, 21 (1992), pp. 193–
201.

[17] J. Nešetřil and P. Ossona de Mendez, The grad of a graph and classes with bounded ex-
pansion, in 7th International Colloquium on Graph Theory, A. Raspaud and O. Delmas,
eds., vol. 22 of Electronic Notes in Discrete Mathematics, Elsevier, 2005, pp. 101–106.

[18] , Linear time low tree-width partitions and algorithmic consequences, in STOC’06. Pro-
ceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM Press, 2006,
pp. 391–400.

[19] , Tree depth, subgraph coloring and homomorphism bounds, European Journal of Com-
binatorics, 27 (2006), pp. 1022–1041.

[20] , Grad and classes with bounded expansion I. decompositions, European Journal of Com-
binatorics, 29 (2008), pp. 760–776.

[21] , Grad and classes with bounded expansion II. algorithmic aspects, European Journal of
Combinatorics, 29 (2008), pp. 777–791.

[22] , Sparsity (Graphs, Structures, and Algorithms), vol. 28 of Algorithms and Combina-
torics, Springer, 2012. 465 pages.

[23] J. Nešetřil, P. Ossona de Mendez, and D. Wood, Characterizations and examples of graph
classes with bounded expansion, European Journal of Combinatorics, 33 (2012), pp. 350–
373.

[24] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, 2000.
[25] A. Schäffer, Optimal node ranking of trees in linear time, Inform. Process. Lett., 33 (1989/90),

pp. 91–96.
[26] M. Szegedy and S. Vishwanathan, Locality based graph coloring, in Proc. 25th ACM Sym-

posium on Theory of Computing, 1993, pp. 201–207.


