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1. INTRODUCTION

Extending classical early Ramsey-type results, the structural Ramsey the-

ory originated at the beginning of 70ies, see [11] for references. However

the list of Ramsey classes, as the top of the line of Ramsey properties, was

somewhat limited. This was also supported by result of Nešetřil [7] that

made a connection between Ramsey classes and ultrahomogeneous structures

showing particularly that there are only four types of Ramsey classes of undi-

rected graphs. This connection led to the classification programme for Ramsey

classes [8] and, perhaps more importantly, to the connection to the topological

dynamics and ergodic theory [6].

Let us start with the key definition of this paper. Let K be a class of struc-

tures endowed with embeddings. For objects A,B ∈ K denote by
(
B

A

)
the set

of all sub-objects Ã of B, Ã isomorphic to A. (By a sub-object we mean that

the inclusion is an embedding.) Using this notation the definition of Ramsey

class gets the following form: A class K is a Ramsey class if for every its two

objects A and B and for every positive integer k there exists object C ∈ K
such that the following holds: For every partition

(
B

A

)
in k classes there exists

B̃ ∈
(
C

B

)
such that

(
B̃

A

)
belongs to one class of the partition. It is usual to

shorten the last part of the definition as C −→ (B)A2 .

It is not known which classes K are Ramsey but there are often trivial ob-

stacles for this. One of them is the lack of rigidity of K. One can expand the

structure by new relations (such as ordering of elements) and to use this to

definite partition of sub-objects. This trick leads to study of enriched classes

K′ induced on K. Thus, for example, instead of dealing with graphs G we deal

with the class of all ordered graphs
−→
G .
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Structures with this additional informations are called lifts and the basic

question asked during the Bertinoro 2011 meeting by several people is whether

every ultrahomogeneous structure (and equivalently every ω-categorical struc-

ture) has a finitary Ramsey lift. This is presently open. On the one side the

known characterizations of ultrahomogeneous structures were tested for ex-

istence of Ramsey lifts and they confirm the conjecture. But so far this list

contain, like for undirected graphs, only variants of known theorems. The

central question of this paper can be then formulated.

Question 1.1. Given a class of structures K does there exists a finitary lift of

K which is a Ramsey class?

A necessary condition for validity of Question 1.1 is ω-categoricity and

finiteness of the algebraic closure of K.

Our main theorem can be used to establish the validity of Question 1.1

for many new classes of relational structures. The main result stated bellow

takes the form of an implication: having proved that certain class K is Ramsey

we can also prove that certain other class L is Ramsey. The class L may be

much more complex and restrictive than K. Consequently, this result general-

izes many results obtained earlier and brings a systematic approach to proving

Ramsey property of new classes. This result is obtained by Partite Construc-

tion combined with new tools (particularly Partite Lemma for structures with

closure). Presently this seems to be the strongest tool for producing new Ram-

sey classes. Particularly the main result implies Ramsey property of many

monotone classes with bounded algebraic closure (such classes were shown

to have ω-categorical lift in [1]): for classes with unary algebraic closure the

existence of Ramsey lift follows in full generality and we also verified that

our method can be applied to known examples of non-unary algebraic closure.

This paper uses the experience gained in giving combinatorial proof of [1] and

is a far reaching generalization of recent [2], where we found the first Ramsey

class (so called bowtie-free graphs) with a non-trivial algebraic closure.

2. PRELIMINARIES

A structure A is a pair (A, (Ri
A
; i ∈ I)) where Ri

A
⊆ Aδi (i.e. Ri

A
is

a δi-ary relation on A). The finite family (δi; i ∈ I) is called the type ∆.

The pair (I,∆) is called the language L. The language is usually fixed and

understood from the context. If set A is finite we call A finite structure. A ho-

momorphism f : A → B = (B, (Ri
B
; i ∈ I)) is a mapping f : A → B

satisfying for every i ∈ I the implication (x1, x2, . . . , xδi) ∈ Ri
A

=⇒
(f(x1), f(x2), . . . , f(xδi)) ∈ Ri

B
. If f is 1–1 and these implications are

equivalences, then f is called an embedding. The class of all (countable) re-

lational structures of type ∆ will be denoted by Rel(∆). We can also define
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structures as models of a language L but for our purposes we need to be little

more explicite.

Let ∆′ = (δ′
i
; i ∈ I ′) be a type containing type ∆. (That is I ⊆ I ′ and δ′

i
=

δi for i ∈ I .) Then every structure X ∈ Rel(∆′) may be viewed as a structure

A = (A, (Ri
A
; i ∈ I)) ∈ Rel(∆) together with some additional relations for

i ∈ I ′ \I . We will thus also write X = (A, (Ri
A
; i ∈ I), (Ri

X
; i ∈ I ′ \I)). We

call X a lift of A. Note that a lift is also in the model-theoretic setting called

an expansion (as we are expanding our relational language by new relations).

Given structure A, relation Ri
A

of arity n the Ri
A

-out-degree of a k-tuple

(v1, v2, . . . , vk) is the number of (n−k)-tuples (vk+1, vk+2, . . . , vn) such that

(v1, v2, . . . , vn) ∈ Ri
A

.

Let F be a family of finite structures. By Forbh(F) we denote the class of

all finite or countable structures A such that there is no homomorphism from

any F ∈ F to A.

3. MAIN RESULT

Because Ramsey classes consists of rigid structures, we make the order

an explicit part of the language. Our language will thus always contain at

least one binary relation R≤. Structure A is ordered if relation R≤ forms a

complete order on A.

Next we need to formalize our notion of closure. Informally the closure

of a set S in structure A is a set of vertices of A connected to S in a special

way which does not permit them to be duplicated. We however consider very

restricted notion of this concept:

Definition 3.1. A closure description C is a set pairs (RCi ,Ri) where RCi is

relation of arity n and Ri is an ordered structure on at most n − 1 vertices.

We will refer to relations RCi , as to closure edges and to structures Ri as the

roots of the closures.

We say that structure A is C-closed if for every pair (RCi ,Ri) ∈ C it holds

that the RCi

A
-out-degree of an |Ri|-tuple ~r (of vertices of A) is 1 if and only if

there is an embedding from Ri to ~r and 0 otherwise.

We say that A is C-semi-closed if for every pair it holds that the RCi

A
-out-

degree of a |Ri|-tuple ~r is:

(1) 1 if |Ri|=1 and there is an embedding from Ri to ~r,

(2) at most 1 if there is an embedding from Ri to ~r, and,

(3) 0 otherwise.

Remark: For amalgamation classes of ordered structures this definition of clo-

sure is equivalent with model-theoretic definition of the algebraic closure in

the Fraı̈ssé limit of the class. This follows from fact that the closure edges are
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definable in the structure and thus their equivalent need to be already present

in the language.

Let F and R be classes of finite structures. We say that F is locally finite

in R if for every A ∈ R there is only finitely many structures F ∈ F such

that there is a homomorphism F → A.

Definition 3.2. Let R be a Ramsey class, F be a (possibly infinite) family of

finite connected ordered structures, and, C a closure description. We say that

countable class K is (R,F , C)-multiamalgamation class if:

(1) K is a subclass of the class of (not necessarily all) C-closed structures

in R∩ Forbh(F).
(2) Regularity of F: there is ω-categorical universal object in

Forbh(F).
(3) Local finiteness: F is locally finite in R.

(4) Completetion property: Let B be structure from K, C be C-

semi-closed structure with homomorphism to some structure in R ∩
Forbh(F) such that every vertex of C as well as every tuple in every

relation of C is contained in a copy of B. Then there exists C ∈ K
and a homomorphism h : C → C such that h is an embedding on

every copy of B in C to C.

Structure A is connected if its vertex set can not be partitioned into two

parts A1 and A2 in a way that every tuple in every relation of A (with excep-

tion of the order R
≤
A

) is fully contained either in A1 or A2.

With these concepts we can state our main result compactly as:

Theorem 3.1. Every (R,F , C)-multiamalgamation class K has a Ramsey lift.

Explicitly: There exists class L of lifts of structures in K such that for every

pair of structures A,B in L there exists a structure C ∈ L such that

C −→ (B)A2 .

Remark: While our notion of closure is as powerful as algebraic closure for

amalgamation classes, applying our result on classes with ω-categorical uni-

versal structure needs extra care. The closure edges are typically not ex-

plicitely present in the language and their existence is implied by a particu-

lar embedding of some structure P. For example, in the case of bow-tie free

graphs the closure of a vertex v basically binds vertex v with (some) vertices

of triangles containing v, see [2]. This easily translate to binary closure edges

in a lifted language that follow the existing edges of the triangles and unary

relations describing the type of closure of a vertex. Because of the special case

for arity 1 in the definition of semi-closed structures, it is easy to show that all

closures of vertices in C given by Theorem 3.1 are consistent (they are copies

of closures of vertices in B). If relational structure in binary language have
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a non-unary closure one however need to add explicit relations of higher ari-

ties representing the closure. For non-unary closures our construction provide

only limited means to prevent introduction of new embeddings of P and thus

to apply our result one needs to carefully verify the completetion property.

The proof of Theorem 3.1 constructs a homogenizing lift with relations rep-

resenting pieces of structures in F by technique similar to [3]. The main tool

to show Ramsey property is a variant of the the Partite Construction developed

by Nešetřil-Rödl. In a way our result is further evidence for the surprising ef-

fectivity of Partite Construction is the structural Ramsey Theory. Proving our

result, we however need to modify the Partite Construction to preserve clo-

sure. This was done, for a first time, in [2] and perhaps surprisingly we extend

the techniques for non-unary closures. Finally the forbidden homomorphic

images are avoided by iterating the Partite Construction in similar sense as in

[9]. Full proof will appear in [4].

4. EXAMPLES

We believe the above result generalizes all proofs of Ramsey property via

Partite Constructions. For example by forbidding regular families F one can

show Ramsey property of metric spaces, ultra-metric spaces, or partial orders.

By defining closure one can show Ramsey property of bow-tie-free graphs and

classes where Ramsey lift needs additional closure operator, like the semi-

generic tournament. We can also show many new classes, including several

classes of metric graphs, m-ary functions, and various classes with ternary

relations.

In brief, two main directions motivated this paper: We wanted to prove [1]

in a combinatorial way. This more explicite proof started to consider forbid-

den homomorphisms (as explained in [3]) and this then extended to nontrivial

algebraic closure in [2]. The second motivation was to extend forbidden ho-

momorphism theorems to some infinite families. In both of these directions

this was a successful project as indicated by the main result of this paper.

We give three (admittedly easy) examples to show the method how the The-

orem 3.1 can be applied. To get the initial Ramsey class we use the following

classical result (an ordered structure A is complete if for every pair of vertices

u, w there is tuple ~v ∈ Ri
A

where i is not ≤ such that t contains both u and

w):

Theorem 4.1 ([12]). Let L be a finite relational language and E be a set of

complete ordered L-structures. Let K be the class of all finite ordered L-

structures A such that A contain no E ∈ E as an induced substructure. Then

the class K is a Ramsey class.
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Partial orders with linear extensions. The language of partial orders, in our

setting, has binary relations R≺ representing the partial order (we do not in-

clude loops in R≺), R≤ representing the linear order, and R⊥ denoting that

two vertices are not comparable. R⊥ is added to make structures complete.

By application of Theorem 4.1 we first obtain a Ramsey property of the class

A of all acyclic graphs where oriented edges are represented by R≺ and there

is no pair of vertices in both R≺ and R⊥. We require the relation R≺ to be

subrelation of R≤ so the linear order R≤ forms a linear extension of R≺. Then

Ramsey property of partial orders is a modification of Ramseyness of acyclic

graphs (as noted in [10]). We formulate this to fit our main theorem:

We put the family of forbidden homomorphic images, FC , to be a set of all

quasi cycles. (A quasi cycle of length n is a structure on vertices v1, v2, . . . , vn
where (v1, vn) ∈ R⊥ and (vi, vi+1) ∈ R≺, 1 ≤ i < n). Next we ver-

ify that the set of all partial orders with linear extension in this language is

(A,FC , ∅)-multiamalgamation class: Regularity of FC follows from the ex-

istence of generic partial order. Completetion property follows from fact that

every acyclic graph in A not containing any quasi cycle can be completed to

a partial order. The critical is local finiteness. While we forbid infinite family

of quasi cycles, for every fixed structure A ∈ A there is only finitely many

cycles F ∈ F with homomorphic image in A. This is because the oriented

path in a quasi cycle must be mapped to a oriented path of same length and

thus quasi cycles containing more vertices than |A| have no image in A.

We shall stress that the local finiteness is not only a technical limitation

following from the structure of the proof of Theorem 3.1. It is possible to

show that the linear extension is definable in every Ramsey lift of the class of

all partial orders.

Multipartite graphs. The n-partite graphs can be shown to be Ramsey by

adding an unary relation denoting the individual parts. The forbidden edge

within a single partition can be then described by a complete structure and the

Ramsey property follows by Theorem 4.1. If we want to add only finitely many

relations then the existence of such a lift is not obvious when n is not bounded

and the parts are denoted by a binary function representing the equivalence

class. We need a different lift that adds a closure. We add a special (closure)

vertex that that is used as a unique representative of each equivalence class:

Our language use binary relation RE for edges, unary relation RS to denote

the special vertices and binary relation RC representing the unary closure. By

Theorem 4.1 we build Ramsey class RP in this language. We choose complete

forbidden subgraphs to describe the following: 1. force RE to be symmetric

without loops; 2. allow edges only in between non-special vertices; 3. make

RC to be the set of all oriented edges always pointing from nonspecial vertex

to the special one.
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The closure description CP consist of single pair (RC ,R) where R is struc-

ture containing one vertex that is not in relation RS . We put (r, s) ∈ R
≤
P

,

(r, s) ∈ RC
P

, and (s) ∈ RS
P

. This represents the fact that every vertex belongs

to one partition. Finally we put into FP a triangle containing one special

vertex and two normal vertices in the same partition connected by an edge

(to represent the fact that there are no edges within one partition). It is easy

to verify that the class of multipartite graphs with closures is (RP , CP ,FP )-
multiamalgamation class.

This technique can be easily used to construct Ramsey lifts of structures

that define an equivalence with infinitely many classes. See, for example, the

Ramsey lift of the age of the semigeneric tournament [5] or of the class of

bowtie-free graphs [2].

Binary functions. While the structures with unary closure can be treated eas-

ily by Theorem 3.1 for binary closure we need more care. We illustrate this

here on perhaps simplest case. We consider ordered structures in language

with one binary function assigning every pair of two distinct vertices a vertex:

structure A is triple (A,R≤
A
, fA) where R

≤
A

is a linear order of A and fA is a

function {(a, b) : a, b ∈ A, a 6= b} → A. Substructures are induced by A only

on those subsets of A which are closed with respect to function fA. Because

our relational structures have no function symbols, we will equivalently in-

terpret those as relational ordered structures in language LB with relation R≤

and ternary relation RC , where (a, b, c) ∈ RC
A

if and only if fA(a, b) = c. De-

note by B the class of all such interpretations of finite structures (A,R≤
A
, fA).

To show that B has Ramsey expansion we apply Theorem 3.1. The closure

description CB has one pair (RC ,R) where RC is a discrete structure on two

vertices. By application of Theorem 4.1 we obtain Ramsey class RB of struc-

tures in language LB where tuples in RC contain no duplicated vertices. It is

easy to see that B is (RB , CB , ∅)-multiamalgamation class because the semi-

closed structures can be completed in a free way.
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[8] Jaroslav Nešetril. Ramsey classes and homogeneous structures. Combinatorics, probability

and computing, 14(1-2):171–189, 2005.
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