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Abstract. We describe a technique to determine the automorphism

group of a geometrically represented graph, by understanding the

structure of the induced action on all geometric representations. Us-
ing this, we characterize automorphism groups of interval, permuta-

tion and circle graphs. We combine techniques from group theory
(products, homomorphisms, actions) with data structures from com-

puter science (PQ-trees, split trees, modular trees) that encode all

geometric representations.
We prove that interval graphs have the same automorphism

groups as trees, and for a given interval graph, we construct a tree

with the same automorphism group which answers a question of Han-
lon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and cir-

cle graphs, we give an inductive characterization by semidirect and

wreath products. We also prove that every abstract group can be
realized by the automorphism group of a comparability graph/poset

of the dimension at most four.
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1. Introduction

The study of symmetries of geometrical objects is an ancient topic in
mathematics and its precise formulation led to group theory. Symmetries
play an important role in many distinct areas. In 1846, Galois used sym-
metries of the roots of a polynomial in order to characterize polynomials
which are solvable by radicals.

Automorphism Groups of Graphs. The symmetries of a graph X
are described by its automorphism group Aut(X). Every automorphism
is a permutation of the vertices which preserves adjacencies and non-
adjacencies. Frucht [14] proved that every finite group is isomorphic to
Aut(X) of some graph X. General algebraic, combinatorial and topological
structures can be encoded by (possibly infinite) graphs [24] while preserving
automorphism groups.

Most graphs are asymmetric, i.e., have only the trivial automor-
phism [12]. However, many mathematical results rely on highly symmetri-
cal objects. Automorphism groups are important for studying large regular
objects, since their symmetries allow one to simplify and understand these
objects.

Definition 1.1. For a graph class C, let Aut(C) =
{
G : X ∈ C, G ∼=

Aut(X)
}

. The class C is called universal if every abstract finite group is
contained in Aut(C), and non-universal otherwise.

In 1869, Jordan [26] gave a characterization for the class of trees (TREE):

Theorem 1.2 (Jordan [26]). The class Aut(TREE) is defined inductively
as follows:

(a) {1} ∈ Aut(TREE).

(b) If G1, G2 ∈ Aut(TREE), then G1 ×G2 ∈ Aut(TREE).

(c) If G ∈ Aut(TREE), then G o Sn ∈ Aut(TREE).

The direct product in (b) constructs the automorphisms that act indepen-
dently on non-isomorphic subtrees and the wreath product in (c) constructs
the automorphisms that permute isomorphic subtrees.

Graph Isomorphism Problem. This famous problem asks whether two
input graphs X and Y are the same up to a relabeling. This problem is ob-
viously in NP, and not known to be polynomially-solvable or NP-complete.
Aside integer factorization, this is a prime candidate for an intermediate
problem with the complexity between P and NP-complete. It belongs to
the low hierarchy of NP [38], which implies that it is unlikely NP-complete.
(Unless the polynomial-time hierarchy collapses to its second level.) The
graph isomorphism problem is known to be polynomially solvable for the
classes of graphs with bounded degree [31] and with excluded topological
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subgraphs [22]. The graph isomorphism problem is the following funda-
mental mathematical question: given two mathematical structure, can we
test their isomorphism in some more constructive way than by guessing a
mapping and verifying that it is an isomorphism.

The graph isomorphism problem is closely related to computing gener-
ators of an automorphism group. Assuming X and Y are connected, we
can test X ∼= Y by computing generators of Aut(X ∪̇ Y ) and checking
whether there exists a generator which swaps X and Y . For the converse
relation, Mathon [32] proved that generators of the automorphism group
can be computed using O(n4) instances of graph isomorphism. Compared
to graph isomorphism, automorphism groups of restricted graph classes are
much less understood.

Geometric Representations. In this paper, we study automorphism
groups of geometrically represented graphs. The main question we address
is how the geometry influences their automorphism groups. For instance,
the geometry of a sphere translates to 3-connected planar graphs which
have unique embeddings [43]. Thus, their automorphism groups are so
called spherical groups which are the automorphism groups of tilings of a
sphere. For general planar graphs (PLANAR), the automorphism groups
are more complex and they were described by Babai [1] and in more details
in [27] by semidirect products of spherical and symmetric groups.

We focus on intersection representations. An intersection representation
R of a graph X is a collection {Rv : v ∈ V (X)} such that uv ∈ E(X) if
and only if Ru ∩ Rv 6= ∅; the intersections encode the edges. To get nice
graph classes, one typically restricts the sets Rv to particular classes of
geometrical objects; for an overview, see the classical books [20, 39]. We
show that a well-understood structure of all intersection representations
allows one to determine the automorphism group.

Interval Graphs. In an interval representation of a graph, each set Rv
is a closed interval of the real line. A graph is an interval graph if it has
an interval representation; see Fig. 1a. A graph is a unit interval graph
if it has an interval representation with each interval of the length one.
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Figure 1. (a) An interval graph and one of its interval
representations. (b) A circle graph and one of its circle
representations.
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We denote these classes by INT and UNIT INT, respectively. Caterpillars
(CATERPILLAR) are trees with all leaves attached to a central path; we
have CATERPILLAR = INT ∩ TREE.

Theorem 1.3. The following equalities hold:

(i) Aut(INT) = Aut(TREE),

(ii) Aut(connected UNIT INT) = Aut(CATERPILLAR),

Concerning (i), this equality is not well known. It was stated by Han-
lon [23] without a proof in the conclusion of his paper from 1982 on enumer-
ation of interval graphs. Our structural analysis is based on PQ-trees [4]
which describe all interval representations of an interval graph. It explains
this equality and further solves an open problem of Hanlon: for a given
interval graph, to construct a tree with the same automorphism group.
Without PQ-trees, this equality is surprising since these classes are very
different. Caterpillars which form their intersection have very restricted au-
tomorphism groups (see Lemma 4.6). The result (ii) follows from the known
properties of unit interval graphs and our understanding of Aut(INT).

Circle Graphs. In a circle representation, each Rv is a chord of a circle.
A graph is a circle graph (CIRCLE) if it has a circle representation; see
Fig. 1b.

Theorem 1.4. Let Σ be the class of groups defined inductively as follows:

(a) {1} ∈ Σ.

(b) If G1, G2 ∈ Σ, then G1 ×G2 ∈ Σ.

(c) If G ∈ Σ, then G o Sn ∈ Σ.

(d) If G1, G2, G3, G4 ∈ Σ, then (G4
1 ×G2

2 ×G2
3 ×G2

4) o Z2
2 ∈ Σ.

Then Aut(connected CIRCLE) consists of the following groups:

• If G ∈ Σ, then G o Zn ∈ Aut(connected CIRCLE).

• If G1, G2 ∈ Σ, then (Gn1 ×G2n
2 ) oDn ∈ Aut(connected CIRCLE).

The automorphism group of a disconnected circle graph can be easily
determined using Theorem 2.1. We are not aware of any previous results
on the automorphism groups of circle graphs. We use split trees describing
all representations of circle graphs. The class Σ consists of the stabilizers
of vertices in connected circle graphs and Aut(TREE) ( Σ.

Comparability Graphs. A comparability graph is derived from a poset by
removing the orientation of the edges. Alternatively, every comparability
graph X can be transitively oriented: if x→ y and y → z, then xz ∈ E(X)
and x → z; see Fig 2a. This class was first studied by Gallai [17] and we
denote it by COMP.

An important structural parameter of a poset P is its Dushnik-Miller
dimension [11]. It is the least number of linear orderings L1, . . . , Lk such
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Figure 2. (a) A comparability graph with a transitive
orientation. (b) A function graph and one of its represen-
tations. (c) A permutation graph and one of its represen-
tations.

that P = L1 ∩ · · · ∩Lk. (For a finite poset P , its dimension is always finite
since P is the intersection of all its linear extensions.) Similarly, we define
the dimension of a comparability graph X, denoted by dim(X), as the
dimension of any transitive orientation of X. (Every transitive orientation
has the same dimension; see Section 6.4.) By k-DIM, we denote the subclass
consisting of all comparability graphs X with dim(X) ≤ k. We get the
following infinite hierarchy of graph classes:

1-DIM ( 2-DIM ( 3-DIM ( 4-DIM ( · · · ( COMP.

For instance, [37] proves that the bipartite graph of the incidence between
the vertices and the edges of a planar graph always belongs to 3-DIM.

Surprisingly, comparability graphs are related to intersection graphs,
namely to function and permutation graphs. Function graphs (FUN) are
intersection graphs of continuous real-valued function on the interval [0, 1].
Permutation graphs (PERM) are function graphs which can be represented
by linear functions called segments [2]; see Fig. 2b and c. We have
FUN = co-COMP [21] and PERM = COMP ∩ co-COMP = 2-DIM [13],
where co-COMP are the complements of comparability graphs.

Since 1-DIM consists of all complete graphs, Aut(1-DIM) = {Sn : n ∈ N}.
The automorphism groups of 2-DIM = PERM are the following:

Theorem 1.5. The class Aut(PERM) is described inductively as follows:

(a) {1} ∈ Aut(PERM),

(b) If G1, G2 ∈ Aut(PERM), then G1 ×G2 ∈ Aut(PERM).

(c) If G ∈ Aut(PERM), then G o Sn ∈ Aut(PERM).

(d) If G1, G2, G3 ∈ Aut(PERM), then (G4
1 × G2

2 × G2
3) o Z2

2 ∈
Aut(PERM).

In comparison to Theorem 1.2, there is the additional operation (d)
which shows that Aut(TREE) ( Aut(PERM). Geometrically, the group Z2

2

in (d) corresponds to the horizontal and vertical reflections of a symmet-
ric permutation representation. Notice that it is more restrictive than the
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operation (d) in Theorem 1.4. Our result also easily gives the automor-
phism groups of bipartite permutation graphs (BIP PERM), in particular
Aut(CATERPILLAR) ( Aut(BIP PERM) ( Aut(PERM).

Corollary 1.6. The class Aut(connected BIP PERM) consists of all ab-
stract groups G1, G1 o Z2 × G2 × G3, and (G4

1 × G2
2) o Z2

2, where G1 is a
direct product of symmetric groups, and G2 and G3 are symmetric groups.

Comparability graphs are universal since they contain bipartite graphs;
we can orient all edges from one part to the other. Since the automorphism
group is preserved by complementation, FUN = co-COMP implies that also
function graphs are universal. In Section 6, we explain the universality of
FUN and COMP in more detail using the induced action on the set of all
transitive orientations. Similarly posets are known to be universal [3, 41].

It is well-known that bipartite graphs have arbitrarily large dimensions:
the crown graph, which is Kn,n without a matching, has the dimension n.
We give a construction which encodes any graph X into a comparability
graph Y with dim(Y ) ≤ 4, while preserving the automorphism group.

Theorem 1.7. For every k ≥ 4, the class k-DIM is universal and its graph
isomorphism is GI-complete. The same holds for posets of the dimension k.

Yannakakis [44] proved that recognizing 3-DIM is NP-complete by a re-
duction from 3-coloring. For a graph X, a comparability graph Y is con-
structed with several vertices representing each element of V (X) ∪ E(X).
It is proved that dim(Y ) = 3 if and only if X is 3-colorable. Unfortunately,
the automorphisms of X are lost in Y since it depends on the labels of V (X)
and E(X) and Y contains some additional edges according to these labels.
We describe a simple and completely different construction which achieves
only the dimension 4, but preserves the automorphism group: for a given
graph X, we create Y by replacing each edge with a path of length eight.
However, it is non-trivial to show that Y ∈ 4-DIM, and the constructed
four linear orderings are inspired by [44]. A different construction follows
from [6, 42].

Related Graph Classes. Theorems 1.3, 1.4 and 1.5 and Corollary 1.6
state that INT, UNIT INT, CIRCLE, PERM, and BIP PERM are non-
universal. Figure 3 shows that their superclasses are already universal.

Trapezoidal graphs (TRAPEZOID) are intersection graphs of trape-
zoids between two parallel lines and they have universal automorphism
groups [40]. Claw-free graphs (CLAW-FREE) are graphs with no induced
K1,3. Roberts [34] proved that UNIT INT = CLAW-FREE ∩ INT. The com-
plements of bipartite graphs (co-BIP) are claw-free and universal. Chordal
graphs (CHOR) are intersection graphs of subtrees of trees. They contain
no induced cycles of length four or more and naturally generalize inter-
val graphs. Chordal graphs are universal [30]. Interval filament graphs
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universal
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Figure 3. The inclusions between the considered graph
classes. We characterize the automorphism groups of the
classes in gray.

(IFA) are intersection graphs of the following sets. For every Ru, we choose
an interval [a, b] and Ru is a continuous function [a, b] → R such that
Ru(a) = Ru(b) = 0 and Ru(x) > 0 for x ∈ (a, b).

Outline. In Section 2, we introduce notation and group products. In Sec-
tion 3, we explain our general technique for determining the automorphism
group from the geometric structure of all representations, and relate it to
map theory. We describe the automorphism groups of interval and unit in-
terval graphs in Section 4, of circle graphs in Section 5, and of permutation
and bipartite permutation graphs in Section 6. Our results are constructive
and lead to polynomial-time algorithms computing automorphism groups of
these graph classes; see Section 7. We conclude with several open problems.

2. Preliminaries

We use X and Y for graphs, M , T and S for trees and G and H for
groups. The vertices and edges of X are V (X) and E(X). For A ⊆ V (X),
we denote by X[A] the subgraph induced by A, and for x ∈ V (X), the
closed neighborhood of x by N [x]. The complement of X is denoted by X,
clearly Aut(X) = Aut(X).

A permutation π of V (X) is an automorphism if uv ∈ E(X) ⇐⇒
π(u)π(v) ∈ E(X). The automorphism group Aut(X) consists of all auto-
morphisms of X. We use the notation Sn, Dn and Zn for the symmetric,
dihedral and cyclic groups. Note that D1

∼= Z2 and D2
∼= Z2

2 (which ap-
pears in Theorems 1.4 and 1.5 in (d)). An action is called semiregular if
all stabilizers are trivial.

Group Products. Group products allow decomposing of large groups into
smaller ones. Given two groups N and H, and a group homomorphism
ϕ : H → Aut(N), we can construct a new group N oϕ H as the Cartesian
product N × H with the operation defined as (n1, h1) · (n2, h2) = (n1 ·
ϕ(h1)(n2), h1 · h2). The group N oϕ H is called the external semidirect
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product of N and H with respect to the homomorphism ϕ, and sometimes
we omit the homomorphism ϕ and write N o H. Alternatively, G is the
internal semidirect product of N and H if N EG, H ≤ G, N ∩H is trivial
and 〈N ∪H〉 = G.

Suppose that H acts on {1, . . . , n}. The wreath product G oH is a short-
hand for the semidirect product Gn oψ H where ψ is defined naturally by
ψ(π) = (g1, . . . , gn) 7→ (gπ(1), . . . , gπ(n)). In the paper, we have H equal Sn
or Zn for which we use the natural actions on {1, . . . , n}. For more details,
see [5, 35]. All semidirect products used in this paper are generalized wreath
products of G1, . . . , Gk with H, in which each orbit of the action of H has
assigned one group Gi.

2.1. Automorphism Groups of Disconnected Graphs. In 1869, Jor-
dan described the automorphism groups of disconnected graphs, in terms
of the automorphism groups of their connected components. Since a similar
argument is used in several places in this paper, we describe his proof in
details. Figure 4 shows the automorphism group for a graph consisting of
two isomorphic components.

Theorem 2.1 (Jordan [26]). If X1, . . . , Xn are pairwise non-isomorphic
connected graphs and X is the disjoint union of ki copies of Xi, then

Aut(X) ∼= Aut(X1) o Sk1 × · · · ×Aut(Xn) o Skn .
Proof. Since the action of Aut(X) is independent on non-isomorphic com-
ponents, it is clearly the direct product of factors, each corresponding to the
automorphism group of one isomorphism class of components. It remains
to show that if X consists of k isomorphic components of a connected graph
Y , then Aut(X) ∼= Aut(Y ) o Sk.
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Figure 4. The structure of Aut(X), generated by three
involutions acting on X on the left: Aut(X) ∼= Z2

2 o Z2 =
Z2 o Z2.
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We isomorphically label the vertices of each component. Then each
automorphism π ∈ Aut(X) is a composition σ · τ of two automorphisms:
σ maps each component to itself, and τ permutes the components as in
π while preserving the labeling. Therefore, the automorphisms σ can be
bijectively identified with the elements of Aut(Y )k and the automorphisms
τ with the elements of Sk.

Let π, π′ ∈ Aut(X). Consider the composition σ · τ · σ′ · τ ′, we want
to swap τ with σ′ and rewrite this as a composition σ · σ̂ · τ̂ · τ . Clearly
the components are permuted in π · π′ exactly as in τ · τ ′, so τ̂ = τ . On
the other hand, σ̂ is not necessarily equal σ′. Let σ′ be identified with the
vector (σ′1, . . . , σ

′
k) ∈ Aut(Y )k. Since σ′ is applied after τ , it acts on the

components permuted according to τ . Therefore σ̂ is constructed from σ′

by permuting the coordinates of its vector by τ :

σ̂ = (σ′τ(1), . . . , σ
′
τ(k)).

This is precisely the definition of the wreath product, so

Aut(X) ∼= Aut(Y ) o Sk. �

2.2. Automorphism Groups of Trees. Using the above, we can explain
why Aut(TREE) is closed under (b) and (c):

Proof of Theorem 1.2 (a sketch). We assume that trees are rooted since the
automorphism groups preserve centers. Every inductively defined group can
be realized by a tree as follows. For the direct product in (b), we choose
two non-isomorphic trees T1 and T2 with Aut(Ti) ∼= Gi, and attach them
to a common root. For the wreath product in (c), we take n copies of a
tree T with Aut(T ) ∼= G and attach them to a common root. On the other
hand, given a rooted tree, we can delete the root and apply Theorem 2.1
to the created forest of rooted trees. �

3. Automorphism Groups Acting on Intersection
Representations

In this section, we describe the general technique which allows us to ge-
ometrically understand automorphism groups of some intersection-defined
graph classes. Suppose that one wants to understand an abstract group
G. Sometimes, it is possible interpret G using a natural action on some set
which is easier to understand. The action is called faithful if no element of
G belongs to all stabilizers. The structure of G is captured by a faithful
action. We require that this action is “faithful enough”, which means that
the stabilizers are simple and can be understood.

Our approach is inspired by map theory. A map M is a 2-cell embedding
of a graph; i.e, aside vertices and edges, it prescribes a rotational scheme for
the edges incident with each vertex. One can consider the action of Aut(X)
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Figure 5. There are two different maps, depicted with
the action of Aut(X). The stabilizers Aut(Mi) ∼= Z2

2 are
normal subgroups. The remaining automorphisms morph
one map into the other, for instance π transposing 2 and
3. We have Aut(X) ∼= Z2

2 o Z2.

on the set of all maps of X: for π ∈ Aut(X), we get another map π(M) in
which the edges in the rotational schemes are permuted by π; see Fig. 5.
The stabilizer of a map M, called the automorphism group Aut(M), is
the subgroup of Aut(X) which preserves/reflects the rotational schemes.
Unlike Aut(X), we know that Aut(M) is always small (since Aut(M) acts
semiregularly on flags) and can be efficiently determined. The action of
Aut(X) describes morphisms between different maps and in general can be
very complicated. Using this approach, the automorphism groups of planar
graphs can be characterized [1, 27].

The Induced Action. For a graph X, we denote by Rep the set of all
its (interval, circle, etc.) intersection representations. An automorphism
π ∈ Aut(X) creates from R ∈ Rep another representation R′ such that
R′π(u) = Ru; so π swaps the labels of the sets of R. We denote R′ as π(R),

and Aut(X) acts on Rep.
The general set Rep is too large. Therefore, we define a suitable equiva-

lence relation ∼ and we work with Rep/∼. It is reasonable to assume that
∼ is a congruence with respect to the action of Aut(X): for every R ∼ R′
and π ∈ Aut(X), we have π(R) ∼ π(R′). We consider the induced action
of Aut(X) on Rep/∼.

The stabilizer of R ∈ Rep/∼, denoted by Aut(R), describes automor-
phisms inside this representation. For a nice class of intersection graphs,
such as interval, circle or permutation graphs, the stabilizers Aut(R) are
very simple. If it is a normal subgroup, then the quotient Aut(X)/Aut(R)
describes all morphisms which change one representation in the orbit of R
into another one. Our strategy is to understand these morphisms geomet-
rically, for which we use the structure of all representations, encoded for
the considered classes by PQ-, split and modular trees.

4. Automorphism Groups of Interval Graphs

In this section, we prove Theorem 1.3. We introduce an MPQ-tree
which combinatorially describe all interval representations of a given in-
terval graph. We define its automorphism group, which is a quotient of
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the automorphism group of the interval graph. Using MPQ-trees, we de-
rive a characterization of Aut(INT) which we prove to be equivalent to the
Jordan’s characterization of Aut(TREE). Finally, we solve Hanlon’s open
problem [23] by constructing for a given interval graph a tree with the same
automorphism group, and we also show the converse construction.

4.1. PQ- and MPQ-trees. We denote the set of all maximal cliques of X
by C(X). In 1965, Fulkerson and Gross proved the following fundamental
characterization of interval graphs by orderings of maximal cliques:

Lemma 4.1 (Fulkerson and Gross [15]). A graph X is an interval graph
if and only if there exists a linear ordering � of C(X) such that for every
x ∈ V (X) the maximal cliques containing x appear consecutively in this
ordering.

Sketch of proof. Let R =
{
Rx : x ∈ V (X)

}
be an interval representation

of X and let C(X) = {C1, . . . , Ck}. By Helly’s Theorem, the intersection⋂
x∈Ci

Rx is non-empty, and therefore it contains a point ci. The ordering
of c1, . . . , ck from left to right gives the ordering �.

For the other implication, given an ordering C1 � · · · � Ck of the maxi-
mal cliques, we place points c1, . . . , ck in this ordering on the real line. To
each vertex x, we assign the minimal interval Rx such that ci ∈ Rx for
all x ∈ Ci. We obtain a valid interval representation

{
Rx : x ∈ V (X)

}
of

X. �

An ordering � of C(X) from Lemma 4.1 is called a consecutive ordering.
Consecutive orderings of C(X) correspond to different interval representa-
tions of X.

PQ-trees. Booth and Lueker [4] invented a data structure called a PQ-
tree which encodes all consecutive orderings of an interval graph. They
build this structure to construct a linear-time algorithm for recognizing
interval graphs which was a long standing open problem. PQ-trees give
a lot of insight into the structure of all interval representations, and have
applications to many problems. We use them to capture the automorphism
groups of interval graphs.

A rooted tree T is a PQ-tree representing an interval graph X if the
following holds. It has two types of inner nodes: P-nodes and Q-nodes. For
every inner node, its children are ordered from left to right. Each P-node
has at least two children and each Q-node at least three. The leaves of T
correspond one-to-one to C(X). The frontier of T is the ordering � of the
leaves from left to right.

Two PQ-trees are equivalent if one can be obtained from the other by a
sequence of two equivalence transformations: (i) an arbitrary permutation
of the order of the children of a P-node, and (ii) the reversal of the order of
the children of a Q-node. The consecutive orderings of C(X) are exactly the
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Figure 6. An ordering of the maximal cliques, and the
corresponding PQ-tree and MPQ-tree. The P-nodes are
denoted by circles, the Q-nodes by rectangles. There are
four different consecutive orderings.

frontiers of the PQ-trees equivalent with T . Booth and Lueker [4] proved the
existence and uniqueness of PQ-trees (up to equivalence transformations).
Figure 6 shows an example.

For a PQ-tree T , we consider all sequences of equivalent transformations.
Two such sequences are congruent if they transform T the same. Each se-
quence consists of several transformations of inner nodes, and it is easy to
see that these transformation are independent. If a sequence transforms
one inner node several times, it can be replaced by a single transforma-
tion of this node. Let Σ(T ) be the quotient of all sequences of equivalent
transformations of T by this congruence. We can represent each class by a
sequence which transforms each node at most once.

Observe that Σ(T ) forms a group with the concatenation as the group op-
eration. This group is isomorphic to a direct product of symmetric groups.
The order of Σ(T ) is equal to the number of equivalent PQ-trees of T . Let
T ′ = σ(T ) for some σ ∈ Σ(T ). Then Σ(T ′) ∼= Σ(T ) since σ′ ∈ Σ(T ′)
corresponds to σσ′σ−1 ∈ Σ(T ).

MPQ-trees. A modified PQ-tree is created from a PQ-tree by adding infor-
mation about the vertices. They were described by Korte and Möhring [29]
to simplify linear-time recognition of interval graphs. It is not widely known
but the equivalent idea was used earlier by Colbourn and Booth [8].

Let T be a PQ-tree representing an interval graph X. We construct the
MPQ-tree M by assigning subsets of V (X), called sections, to the nodes
of T ; see Fig. 6. The leaves and the P-nodes have each assigned exactly
one section while the Q-nodes have one section per child. We assign these
sections as follows:

• For a leaf L, the section sec(L) contains those vertices that are
only in the maximal clique represented by L, and no other maximal
clique.

• For a P-node P , the section sec(P ) contains those vertices that are
in all maximal cliques of the subtree of P , and no other maximal
clique.
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• For a Q-node Q and its children T1, . . . , Tn, the section seci(Q)
contains those vertices that are in the maximal cliques represented
by the leaves of the subtree of Ti and also some other Tj , but not
in any other maximal clique outside the subtree of Q. We put
sec(Q) = sec1(Q) ∪ · · · ∪ secn(Q).

Korte and Möhring [29] proved existence of MPQ-trees and many other
properties, for instance each vertex appears in sections of exactly one node
and in the case of a Q-node in consecutive sections. Two vertices are in
the same sections if and only if they belong to precisely the same maximal
cliques. Figure 6 shows an example.

We consider the equivalence relation ∼TW on V (X) is defined as follows:
x ∼TW y if and only if N [x] = N [y]. If x ∼TW y, then we say that they
are twin vertices. The equivalence classes of ∼TW are called twin classes.
Twin vertices can usually be ignored, but they influence the automorphism
group. Two vertices belong to the same sections if and only if they are twin
vertices.

4.2. Automorphisms of MPQ-trees. For a graph X, the automorphism
group Aut(X) induces an action on C(X) since every automorphism per-
mutes the maximal cliques. If X is an interval graph, then a consecutive
ordering � of C(X) is permuted into another consecutive ordering π(�), so
Aut(X) acts on consecutive orderings.

Suppose that an MPQ-tree M representing X has the frontier �. For
every automorphism π ∈ Aut(X), there exists the unique MPQ-tree M ′

with the frontier π(�) which is equivalent to M . We define a mapping

Φ : Aut(X)→ Σ(M)

such that Φ(π) is the sequence of equivalent transformations which trans-
forms M to M ′. It is easy to observe that Φ is a group homomorphism.

By Homomorphism Theorem, we know that Im(Φ) ∼= Aut(X)/Ker(Φ).
The kernel Ker(Φ) consists of all automorphisms which fix the maximal
cliques, so they permute the vertices inside each twin class. It follows that
Ker(Φ) is isomorphic to a direct product of symmetric groups. So Im(Φ)
almost describes Aut(X).

Two MPQ-trees M and M ′ are isomorphic if the underlying PQ-trees are
equal and there exists a permutation π of V (X) which maps each section of
M to the corresponding section of M ′. In other words, M and M ′ are the
same when ignoring the labels of the vertices in the sections. A sequence
σ ∈ Σ(M) is called an automorphism of M if σ(M) ∼= M ; see Fig. 7.
The automorphisms of M are closed under composition, so they form the
automorphism group Aut(M) ≤ Σ(M).

Lemma 4.2. For an MPQ-tree M , we have Aut(M) = Im(Φ).



AUTOMORPHISM GROUPS OF GEOMETRICALLY REPRESENTED GRAPHS 15

M1

2 3

{4} {5} {6, 7} {8, 9}

σ
σ(M)1

2 3

{4} {5} {8, 9} {6, 7}

Figure 7. The sequence σ, which transposes the children
of the P-node with the section {3}, is an automorphism
since σ(M) ∼= M . On the other, the transposition of the
children the root P-node is not an automorphism.

Proof. Suppose that π ∈ Aut(X). The sequence σ = Φ(π) transforms M
into σ(M). It follows that σ(M) ∼= M since σ(M) can be obtained from
M by permuting the vertices in the sections by π. So σ ∈ Aut(M) and
Im(Φ) ≤ Aut(M).

On the other hand, suppose σ ∈ Aut(M). We know that σ(M) ∼= M
and let π be a permutation of V (X) from the definition of the isomorphism.
Two vertices of V (X) are adjacent if and only if they belong to the sections
of M on a common path from the root. This property is preserved in
σ(M), so π ∈ Aut(X). Each maximal clique is the union of all sections on
the path from the root to the leaf representing this clique. Therefore the
maximal cliques are permuted by σ the same as by π. Thus Φ(π) = σ and
Aut(M) ≤ Im(Φ). �

Lemma 4.3. For an MPQ-tree M representing an interval graph X, we
have Aut(X) ∼= Ker(Φ) o Aut(M).

Proof. Let σ ∈ Aut(M). In the proof of Lemma 4.2, we show that every
permutation π from the definition of σ(M) ∼= M is an automorphism of X
mapped by Φ to σ. Now, we want to choose these permutations consistently
for all elements of Aut(M) as follows. Suppose that id = σ1, σ2, . . . , σn be
the elements of Aut(M). We want to find id = π1, π2, . . . , πn such that
Φ(πi) = σi and if σiσj = σk, then πiπj = πk. In other words, H =
{π1, . . . , πn} is a subgroup of Aut(X) and Φ �H is an isomorphism between
H and Aut(M) = Im(Φ).

Suppose that π, π′ ∈ Aut(X) such that Φ(π) = Φ(π′). Then π and π′

permute the maximal cliques the same and they can only act differently
on twin vertices, i.e., ππ′−1 ∈ Ker(Φ). Suppose that C is a twin class,
then π(C) = π′(C) but they can map the vertices of C differently. To
define π1, . . . , πn, we need to define them on the vertices of the twin classes
consistently. To do so, we arbitrarily order the vertices in each twin class.
For each πi, we know how it permutes the twin classes, suppose a twin class
C is mapped to a twin class πi(C). Then we define πi on the vertices of C
in such a way that the orderings are preserved.
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X1 X2(b)
Y Y . . . Y{ n

(c) X1 X2 X1(d)

Figure 8. The constructions in the proof of Theorem 1.3(i).

The above construction of H is correct. Since H is the complementary
subgroup of Ker(Φ), we get Aut(X) as the internal semidirect product
Ker(Φ) oH ∼= Ker(Φ) o Aut(M). Our approach is similar to the proof of
Theorem 2.1, and the external semidirect product can be constructed in
the same way. �

4.3. The Inductive Characterization. Let X be an interval graph, rep-
resented by an MPQ-tree M . By Lemma 4.3, Aut(X) can be described from
Aut(M) and Ker(Φ). We build Aut(X) inductively using M , similarly as
in Theorem 1.2:

Proof of Theorem 1.3(i). We show that Aut(INT) is closed under (b), (c)
and (d); see Fig. 8. For (b), we attach interval graphs X1 and X2 such that
Aut(Xi) = Gi to an asymmetric interval graph. For (c), let G ∈ Aut(INT)
and let Y be a connected interval graph with Aut(Y ) ∼= G. We construct X
as the disjoint union of n copies of Y . For (d), we construct X by attaching
X1 and X2 to a path, where Aut(Xi) = Gi.

For the converse, let M be an MPQ-tree representing an interval graph
X. Let M1, . . . ,Mk be the subtrees of the root of M and let Xi be the
interval graphs induced by the vertices of the sections of Mi. We want to
build Aut(X) from Aut(X1), . . . ,Aut(Xk) using (b) to (d).

Case 1: The root is a P-node P . Each sequence σ ∈ Aut(M) corresponds
to interior sequences in Aut(Mi) and some reordering σ′ of M1, . . . ,Mk. If
σ′(Mi) = Mj , then necessarily Xi

∼= Xj . On each isomorphism class of
X1, . . . , Xk, the permutations σ′ behave to Aut(Xi) like the permutations
τ to Aut(Y ) in the proof of Theorem 2.1. Therefore the point-wise sta-
bilizer of sec(P ) in Aut(X) is constructed from Aut(X1), . . . ,Aut(Xk) as
in Theorem 2.1. Since every automorphim preserves sec(P ), then Aut(X)
is obtained by the direct product of the above group with the symmetric
group of order |sec(P )|. Thus the operations (b) and (c) are sufficient.1

Case 2: The root is a Q-node Q. We call Q symmetric if it is transformed
by some sequence of Aut(M), and asymmetric otherwise. Let M1, . . . ,Mk

be its children from left to right. If Q is asymmetric, then Aut(M) is the
direct product Aut(X1), . . . ,Aut(Xk) together with the symmetric groups
for all twin classes of sec(Q), so it can be build using (b). If Q is symmetric,

1Alternatively, we can show that each Xi is connected and X is the disjoint union

of X1, . . . , Xk together with |sec(P )| vertices attached to everything. So Theorem 2.1

directly applies.
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let G1 is the direct product of the left part of the children and twin classes,
and G2 of the middle part. We get

Aut(X) ∼= (G2
1 ×G2) o Z2

∼= G2
1 o Z2 ×G2

∼= G1 o Z2 ×G2,

where the wreath product with Z2 adds the automorphisms reversing Q,
corresponding to reversing of vertically symmetric parts of a representation.
Therefore Aut(X) can be generated using (b) and (c). �

4.4. The Action on Interval Representations. For an interval graph
X, the set Rep consists of all assignments of closed intervals which define
X. It is natural to consider two interval representations equivalent if one
can be transformed into the other by continuous shifting of the endpoints of
the intervals while preserving the correctness of the representation. Then
the representations of Rep/∼ correspond to consecutive orderings of the
maximal cliques; see Fig. 9 and 10.

We interpret our results in terms of the action of Aut(X) on Rep. In
Lemma 4.3, we proved that Aut(X) ∼= Ker(Φ) o Aut(M) where M is an
MPQ-tree. If an automorphism belongs to Aut(R), then it fixes the order-
ing of the maximal cliques and it can only permute twin vertices. Therefore
Aut(R) = Ker(Φ) since each twin class consists of equal intervals, so they
can be arbitrarily permuted without changing the representation. Every
stabilizer Aut(R) is the same and every orbit of the action of Aut(X) is
isomorphic, as in Fig. 9.

Different orderings of the maximal cliques correspond to different re-
orderings of M . The defined Aut(M) ∼= Aut(X)/Aut(R) describes mor-
phisms of representations belonging to one orbit of the action of Aut(X),
which are the same representations up to the labeling of the intervals; see
Fig. 9 and Fig. 10.

C1 C2 C3

C2 C1 C3

C1 C3 C2

C2 C3 C1

C3 C1 C2

C3 C2 C1

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Aut(R5)

Aut(R6)

π π π

Figure 9. An interval graph with six non-equivalent rep-
resentation. The action of Aut(X) has three isomorphic
orbits.
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C1C2C3C4C5C6

C6C5C3C4C2C1

C6C5C4C3C2C1

C1C2C4C3C5C6

πQ

πP πQ

πP

Aut(R1)

Aut(R2)

Aut(R3)

Aut(R4)

Figure 10. The action of Aut(X) is transitive. An MPQ-
tree M of X is depicted in Fig. 6. There are three twin
classes of size two, so Aut(R) ∼= Z3

2. The group Aut(M)
is generated by πQ corresponding to flipping the Q-node,
and πP permuting the P-node. We have Aut(M) ∼= Z2

2 and
Aut(X) ∼= Z3

2 o Z2
2.

4.5. Direct Constructions. In this section, we explain Theorem 1.3(i)
by direct constructions. The first construction answers the open problem
of Hanlon [23].

Lemma 4.4. For X ∈ INT, there exists T ∈ TREE such that Aut(X) ∼=
Aut(T ).

Proof. Consider an MPQ-tree M representing X. We know that Aut(X) ∼=
Ker(Φ) o Aut(M) and we inductively encode the structure of M into T .

Case 1: The root is a P-node P . Its subtrees can be encoded by trees
and we just attach them to a common root. If sec(P ) is non-empty, we
attach a star with |sec(P )| leaves to the root (and we subdivide it to make
it non-isomorphic to every other subtree attached to the root); see Fig 11a.
We get Aut(T ) ∼= Aut(X).

T1

T4 T5
T2 T3 sec(P )

(a)
T1

TW1
T2

TW2 TW3 T3

(b) (c)
T1 T2 T1

Figure 11. For an interval graph X, a construction of a
tree T with Aut(T ) ∼= Aut(X): (a) The root is a P-node.
(b) The root is an asymmetric Q-node. (c) The root is a
symmetric Q-node.
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T X X
Y

Y

Figure 12. We place the intervals following the struc-
ture of the tree. We get Aut(X) ∼= S3 × S2 × S3, but
Aut(T ) ∼= S2 × S3. We fix this by attaching asymmetric
interval graphs Y .

Case 2: The root is a Q-node Q. If Q is asymmetric, we attach the
trees corresponding to the subtrees of Q and stars corresponding to the
vertices of twin classes in the sections of Q to a path, and possibly modify
by subdivisions to make it asymmetric; see Fig. 11b. And if Q is symmetric,
then Aut(X) ∼= (G2

1×G3)oZ2 and we just attach trees T1 and T2 such that
Aut(Ti) ∼= Gi to a path as in Fig. 11c. In both cases, Aut(T ) ∼= Aut(X). �

Lemma 4.5. For T ∈ TREE, there exists X ∈ INT such that Aut(T ) ∼=
Aut(X).

Proof. For a rooted tree T , we construct an interval graph X such that
Aut(T ) ∼= Aut(X) as follows. The intervals are nested according to T as
shown in Fig. 12. Each interval is contained exactly in the intervals of
its ancestors. If T contains a vertex with only one child, then Aut(T ) <
Aut(X). This can be fixed by adding suitable asymmetric interval graphs
Y , as in Fig. 12. �

4.6. Automorphism Groups of Unit Interval Graphs. We apply the
characterization of Aut(INT) derived in Theorem 1.3(i) to show that the
automorphism groups of connected unit interval graphs are the same of
caterpillars (which form the intersection of INT and TREE). The reader
can make direct constructions, similarly as in Lemmas 4.4 and 4.5. First,
we describe Aut(CATERPILLAR):

Lemma 4.6. The class Aut(CATERPILLAR) consists of all groups G1 and
G1 oZ2 ×G2 where G1 is a direct product of symmetric groups and G2 is a
symmetric group.

Proof. We can easily construct caterpillars with these automorphism
groups. On the other hand, the root of an MPQ-tree M representing T
is a Q-node Q (or a P-node with at most two children, which is trivial). All
twin classes are trivial, since T is a tree. Each child of the root is either a
P-node, or a leaf. All children of a P-node are leaves. We can determine
Aut(X) as in the proof of Theorem 1.3(i). �

Proof of Theorem 1.3(ii). According to Corneil [9], an MPQ-tree M rep-
resenting a connected unit interval graph contains only one Q-node with
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all children as leaves. It is possible that the sections of this Q-node are
nontrivial. This equality of automorphism groups follows by Lemma 4.6
and the proof of Theorem 1.3(i). �

5. Automorphism Groups of Circle Graphs

In this section, we prove Theorem 1.4. We introduce the split decomposi-
tion which was invented for recognizing circle graphs. We encode the split
decomposition ofX by a split tree S which captures all circle representations
of X. We define automorphisms of S and show that Aut(S) ∼= Aut(X).

5.1. Split Decomposition. A split is a partition (A,B,A′, B′) of V (X)
such that:

• For every a ∈ A and b ∈ B, we have ab ∈ E(X).
• There are no edges between A′ and B ∪ B′, and between B′ and
A ∪A′.

• Both sides have at least two vertices: |A∪A′| ≥ 2 and |B∪B′| ≥ 2.

The split decomposition of X is constructed by taking a split of X and
replacing X by the graphs XA and XB defined as follows. The graph XA

is created from X[A∪A′] together with a new marker vertex mA adjacent
exactly to the vertices in A. The graph XB is defined analogously for B,
B′ and mB ; see Fig. 13a. The decomposition is then applied recursively
on XA and XB . Graphs containing no splits are called prime graphs. We
stop the split decomposition also on degenerate graphs which are complete
graphs Kn and stars K1,n. A split decomposition is called minimal if it is
constructed by the least number of splits. Cunningham [10] proved that
the minimal split decomposition of a connected graph is unique.

The key connection between the split decomposition and circle graphs is
the following: a graph X is a circle graph if and only if both XA and XB

are. In a other words, a connected graph X is a circle graph if and only
if all prime graphs obtained by the minimal split decomposition are circle
graphs.

X

B
A′ A

mA mBsplit

XA XB

12
3

4

5

6 7

8

9

10

1

23

4 5

6

7

8

9

10

X S(a) (b)

Figure 13. (a) An example of a split of the graph X.
The marker vertices are depicted in white. The tree edge
is depicted by a dashed line. (b) The split tree S of the
graph X. We have that Aut(S) ∼= Z5

2 oD5.
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Split tree. The split tree S representing a graph X encodes the minimal
split decomposition. A split tree is a graph with two types of vertices
(normal and marker vertices) and two types of edges (normal and tree
edges). We initially put S = X and modify it according to the minimal split
decomposition. If the minimal decomposition contains a split (A,B,A′, B′)
in Y , then we replace Y in S by the graphs YA and YB , and connect the
marker vertices mA and mB by a tree edge (see Fig. 13a). We repeat this
recursively on YA and YB ; see Fig. 13b. Each prime and degenerate graph
is a node of the split tree. Since the minimal split decomposition is unique,
we also have that the split tree is unique.

Next, we prove that the split tree S captures the adjacencies in X.

Lemma 5.1. We have xy ∈ E(X) if and only if there exists an alternating
path xm1m2 . . .mky in S such that each mi is a marker vertex and precisely
the edges m2i−1m2i are tree edges.

Proof. Suppose that xy ∈ E(X). We prove existence of an alternating
path between x and y by induction according to the length of this path.
If xy ∈ E(S), then it clearly exists. Otherwise the split tree S was con-
structed by applying a split decomposition. Let Y be the graph in this
decomposition such that xy ∈ E(Y ) and there is a split (A,B,A′, B′) in Y
in this decomposition such that x ∈ A and y ∈ B. We have x ∈ V (YA),
xmA ∈ E(YA), y ∈ V (YB), and ymB ∈ E(YB). By induction hypothesis,
there exist alternating paths between x and mA and between mB and y in
S. There is a tree edge mAmB , so by joining we get an alternating path
between x and y. On the other hand, if there exists an alternating path
xm1 . . .mky in S, by joining all splits, we get xy ∈ E(X). �

5.2. Automorphisms of Split-trees. In [18], split trees are defined in
terms of graph-labeled trees. Our definition is more suitable for automor-
phisms. An automorphism of a split tree S is an automorphism of S which
preserves the types of vertices and edges, i.e, it maps marker vertices to
marker vertices, and tree edges to tree edges. We denote the automor-
phism group of S by Aut(S).

Lemma 5.2. If S is a split tree representing a graph X, then Aut(S) ∼=
Aut(X).

Proof. First, we show that each σ ∈ Aut(S) induces a unique automorphism
π of X. Since V (X) ⊆ V (S), we define π = σ �V (X). By Lemma 5.1,
xy ∈ E(X) if and only if there exists an alternating path between them
in S. Automorphisms preserve alternating paths, so xy ∈ E(X) ⇐⇒
π(x)π(y) ∈ E(X).

On the other hand, we show that π ∈ Aut(X) induces a unique auto-
morphism σ ∈ Aut(S). We define σ �V (X)= π and extend it recursively on
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the marker vertices. Let (A,B,A′, B′) be a split of the minimal split de-
composition in X. This split is mapped by π to another split (C,D,C ′, D′)
in the minimal split decomposition, i.e., π(A) = C, π(A′) = C ′, π(B) = D,
and π(B′) = D′. By applying the split decomposition to the first split,
we get the graphs XA and XB with the marker vertices mA ∈ V (XA) and
mB ∈ V (XB). Similarly, for the second split we get XC and XD with
mC ∈ V (XC) and mD ∈ V (XD). Since π is an automorphism, we have
that XA

∼= XC and XB
∼= XD. It follows that the unique split trees of

XA and XC are isomorphic, and similarly for XB and XD. Therefore, we
define σ(mA) = mC and σ(mB) = mD, and we finish the rest recursively.
Since σ is an automorphism at each step of the construction of S, it follows
that σ ∈ Aut(S). �

Similarly as for trees, there exists a center of S which is either a tree
edge, or a prime or degenerate node. If the center is a tree edge, we can
modify the split tree by adding two adjacent marker vertices in the middle
of the tree edge. This clearly preserves the automorphism group Aut(S),
so from now on we assume that S has a center C which which is a prime
or degenerate node. We can assume that S is rooted by C, and for a node
N , we denote by S[N ] the subtree induced by N and its descendants. For
N 6= C, we call m its root marker vertex if it is the marker vertex of N
attached to the parent of N .

Recursive Construction. We can describe Aut(S) recursively from the
leaves to the root C. Let N be an arbitrary node of S and consider all
its descendants. Let StabS[N ](x) be the subgroup of Aut(S[N ]) which fixes
x ∈ V (S[N ]). We further color the non-root marker vertices in N by colors
coding isomorphism classes of the subtrees attached to them.

Lemma 5.3. Let N 6= C be a node with the root marker vertex m. Let
N1, . . . , Nk be the children of N with the root marker vertices m1, . . . ,mk.
Then

StabS[N ](m) ∼=
(
StabS[N1](m1)× · · · × StabS[Nk](mk)

)
o StabN (m),

where StabN (m) is color preserving.

Proof. We proceed similarly as in the proof of Theorem 2.1. We isomor-
phically label the vertices of the isomorphic subtrees S[Ni]. Each automor-
phism π ∈ StabS[N ](m) is a composition of two automorphisms σ ·τ where σ
maps each subtree S[Ni] to itself, and τ permutes the subtrees as in π while
preserving the labeling. Therefore, the automorphisms σ can be identified
with the elements of the direct product StabS[N1](m1)×· · ·×StabS[Nk](mk)
and the automorphisms τ with the elements of StabN (m). The rest is ex-
actly as in the proof of Theorem 2.1. �
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The entire automorphism group Aut(S) is obtained by joining these
subgroups at the central node C. No vertex in C has to be fixed by Aut(S).

Lemma 5.4. Let C be the central node with the children N1, . . . , Nk with
the root marker vertices m1, . . . ,mk. Then

Aut(S) ∼=
(
StabS[N1](m1)× · · · × StabS[Nk](mk)

)
o Aut(C),

where Aut(C) is color preserving.

Proof. Similar as the proof of Lemma 5.3. �

5.3. The Action On Prime Circle Representations. For a circle graph
X with |V (X)| = `, a representation R is completely determined by a cir-
cular word r1r2 · · · r2` such that each ri ∈ V (X) and each vertex appears
exactly twice in the word. This word describes the order of the endpoints
of the chords in R when the circle is traversed from some point counter-
clockwise. Two chords intersect if and only if their occurrences alternate
in the circular word. Representations are equivalent if they have the same
circular words up to rotations and reflections.

The automorphism group Aut(X) acts on the circle representations in
the following way. Let π ∈ Aut(X), then π(R) is the circle representation
represented by the word π(r1)π(r2) · · ·π(r2`), i.e., the chords are permuted
according to π.

Lemma 5.5. Let X be a prime circle graph. Then Aut(X) is isomorphic
to a subgroup of a dihedral group.

Proof. According to [16], each prime circle graph has a unique representa-
tion R, up to rotations and reflections of the circular order of endpoints
of the chords. Therefore, for every automorphism π ∈ Aut(X), we have
π(R) = R, so π only rotates/reflects this circular ordering. An auto-
morphism π ∈ Aut(X) is called a rotation if there exists k such that
π(ri) = ri+k, where the indexes are used cyclically. The automorphisms,
which are not rotations, are called reflections, since they reverse the circu-
lar ordering. For each reflection π, there exists k such that π(ri) = rk−i.
Notice that composition of two reflections is a rotation. Each reflection
either fixes two endpoints in the circular ordering, or none of them.

If no non-identity rotation exists, then Aut(X) is either Z1, or Z2. If at
least one non-identity rotation exists, let ρ ∈ Aut(X) be the non-identity
rotation with the smallest value k, called the basic rotation. Observe that
〈ρ〉 contains all rotations, and if its order is at least three, then the rotations
act semiregularly on X. If there exists no reflection, then Aut(X) ∼= Zn.
Otherwise, 〈ρ〉 is a subgroup of Aut(X) of index two. Let ϕ be any reflec-
tion, then ρϕρ = ϕ and Aut(X) ∼= Dn. �

Lemma 5.6. Let X be a prime circle graph and let m ∈ V (X). Then
StabX(m) is isomorphic to a subgroup of Z2

2.
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Figure 14. A prime circle graph X with StabX(m) ∼= Z2
2.

Proof. Let mAm̂B be a circular ordering representing X, where m and m̂
are the endpoints of the chord representing m, and A and B are sequences
of the endpoints of the remaining chords. We distinguish m and m̂ to make
the action of StabX(m) understandable. Every π ∈ StabX(m) either fixes
both m and m̂, or swaps them.

Let A′ be the reflection of A and B′ be the reflection of B. If both m
and m̂ are fixed, then by the uniqueness this representation can only be
reflected along the chord m. If such an automorphism exists in StabX(m),
we denote it by ϕm and we have ϕm(mAm̂B) = mB′m̂A′. If m and
m̂ are swapped, then by the uniqueness this representation can be either
reflected along the line orthogonal to the chord m, or by the 180◦ rotation.
If these automorphisms exist in StabX(m), we denote them by ϕ⊥ and ρ,
respectively. We have ϕ⊥(mAm̂B) = m̂A′mB′ and ρ(mAm̂B) = m̂BmA.
Figure 14 shows an example.

All three automorphisms ϕm, ϕ⊥ and ρ are involutions, and ρ = ϕ⊥ ·ϕm.
Since StabX(m) is generated by those which exist, it is a subgroup of Z2

2. �

5.4. The Inductive Characterization. By Lemma 5.2, it is sufficient to
determine the automorphism groups of split trees. We proceed from the
leaves to the root, similarly as in Theorem 1.2.

Lemma 5.7. The class Σ defined in Theorem 1.4 consists of the following
groups:

(5.1) Σ =
{
G : X ∈ connected CIRCLE, x ∈ V (X), G ∼= StabX(x)

}
.

Proof. First, we show that (5.1) is closed under (b) to (d); see Fig. 15.
For (b), let X1 and X2 be circle graphs such that StabXi

(xi) ∼= Gi. We
construct X as in Fig. 15b, and we get StabX(x) ∼= G1 × G2. For (c),
let Y be a circle graph with StabY (y) ∼= G. As X, we take n copies of
Y and add a new vertex x adjacent to all copies of y. Clearly, we get
StabX(x) ∼= G o Sn. For (d), let G1, G2, G3, G4 ∈ Σ, and let Xi be a circle
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Figure 15. The construction of the group in (d). The
eight-cycle in X can be reflected horizontally, vertically
and rotated by 180◦.

graph with StabXi
(xi) ∼= Gi. We construct a graph X as shown in Fig. 15.

We get StabX(x) ∼=
(
G4

1 ×G2
2 ×G2

3 ×G2
4

)
o Z2

2.
Next we show that every group from (5.1) belongs to Σ. Let X be a

circle graph with x ∈ V (X), and we want to show that StabX(x) ∈ Σ.
Since Aut(S) ∼= Aut(X) by Lemma 5.2, we have StabS(x) ∼= StabX(x)
where x is a non-marker vertex. We prove this by induction according to
the number of nodes of S, for the single node it is either a subgroup Z2

2 (by
Lemma 5.6), or a symmetric group.

Let N be the node containing x, we can think of it as the root and x
being a root marker vertex. Therefore, by Lemma 5.3, we have

StabS(x) ∼=
(
StabS[N1](m1)× · · · × StabS[Nk](mk)

)
o StabN (x),

where N1, . . . , Nk are the children of N and m1, . . . ,mk their root marker
vertices. By the induction hypothesis, StabS[Ni](mi) ∈ Σ. There are two
cases:

Case 1: N is a degenerate node. Then StabN (x) is a direct product of
symmetric groups. The subtrees attached to marker vertices of each color
class can be arbitrarily permuted, independently of each other. Therefore
StabS(x) can be constructed using (b) and (c), exactly as in Theorem 2.1.

Case 2: N is a prime node. By Lemma 5.6, StabN (x) is a subgroup
of Z2

2. When it is trivial or Z2, observe that StabS(x) can be constructed
using (b) and (c). The only remaining case is when it is Z2

2. The action
of Z2

2 on V (N) can have orbits of sizes 4, 2, and 1. By Orbit-Stabilizer
Theorem, each orbit of size 2 has also a stabilizer of size 2, having exactly
one non-trivial element. Therefore, there are at most three types of orbits
of size 2, according to which of elements (1, 0), (0, 1) and (1, 1) stabilizes
them. Figure 15 shows that all three types of orbits are possible.

Let G1 be the direct product of all StabS[Ni](mi), one from each orbit
of size four. The groups G2, G3, and G4 are defined similarly for the three
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Figure 16. The construction of the described groups.

types of orbits of size two, and G5 for the orbits of size one. We get that

StabS(x) ∼=
(
G4

1 ×G2
2 ×G2

3 ×G2
4

)
oϕ Z2

2 ×G5,

where ϕ(1, 0) and ϕ(0, 1) swap the coordinates as the horizontal and vertical
reflections in Fig. 15d, respectively. Thus StabS(x) can be build using (b)
and (d). �

Now, we prove Theorem 1.4.

Proof of Theorem 1.4. We first prove that Aut(connected CIRCLE) con-
tains all described groups. Let G ∈ Σ and let Y be a connected circle
graph with StabY (y) ∼= G. We take n copies of Y and attach them by y to
the graph depicted in Fig. 16 on the left. Clearly, we get Aut(x) ∼= GnoZn.
Let G1, G2 ∈ Σ and let X1 and X2 be connected circle graphs such that
StabXi(xi)

∼= Gi and X1 6∼= X2. We construct a graph X by attaching n
copies of X1 by x1 and 2n copies of X2 by x2 as in Fig. 16 on the right.
We get Aut(X) ∼= (Gn1 ×G2n

2 ) oDn.
Let X be a connected circle graph, we want to show that Aut(X) can

be constructed in the above way. Let S be its split, by Lemma 5.2 we have
Aut(S) ∼= Aut(X). For the central node C, we get by Lemma 5.4 that

Aut(S) ∼=
(
StabS[N1](m1)× · · · × StabS[Nk](mk)

)
o Aut(C),

where N1, . . . , Nk are children of C and m1, . . . ,mk are their root marker
vertices. By Lemma 5.7, we know that each StabS[Ni] ∈ Σ and also∏

StabS[Ni](mi) ∈ Σ. The rest follows by analysing the automorphism
group Aut(C) and its orbits.

Case 1: C is a degenerate node. This is exactly the same as Case 1 in
the proof of Lemma 5.7. We get that Aut(S) ∈ Σ, so it is the semidirect
product with Z1.

Case 2: C is a prime node. By Lemma 5.5, we know that Aut(C) is
isomorphic to either Zn, or Dn. If n ≤ 2, we can show by a similar argument
that Aut(S) ∈ Σ.
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If Aut(C) ∼= Zn, where n ≥ 3, then by Lemma 5.5 we know that
Aut(C) consists of rotations which act semiregularly. Therefore each orbit
of Aut(C) is of size n and Aut(C) acts isomorphically on them. Let G ∈ Σ
be the direct product of StabS[Ni](mi), one for each orbit of Aut(C). It
follows that

Aut(S) ∼= Gn o Aut(C) = G o Zn.
If Aut(C) ∼= Dn, where n ≥ 3, then by Lemma 5.5 there exists a sub-

group of rotations of index two, acting semiregularly. Therefore each orbit
of Aut(C) is of size n or 2n. On the orbits of size 2n, we know that Aut(C)
acts regularly. Let ρ ∈ Aut(C) be the basic rotation by k. Then the chords
belonging to an orbit of size n are cyclically shifted by k endpoints. There-
fore Aut(C) acts on all of them isomorphically, exactly as on the vertices
of a regular n-gon. Let G1 ∈ Σ be the direct product of StabS[Ni](mi),
one from each orbit of size n, and let G2 ∈ Σ be the direct product of
StabS[Ni](mi), one for each orbit of size 2n. We get:

Aut(S) ∼= (Gn1 ×G2n
2 ) o Aut(C) = (Gn1 ×G2n

2 ) oDn,

where Dn permutes the coordinates in Gn1 exactly as the vertices of a regular
n-gon, and permutes the coordinates in G2n

2 regularly. �

5.5. The Action on Circle Representations. For a connected circle
graph X, the set Rep/∼ consists of all circular orderings of the endpoints
of the chords which give a correct representation of X. Then π(R) is the
representation in which the endpoints are mapped by π. The stabilizer
Aut(R) can only rotate/reflect this circular ordering, so it is a subgroup of
a dihedral group. For prime circle graphs, we know that Aut(R) = Aut(X).
A general circle graph may have many different representations, and the
action of Aut(X) on them may consist of several non-isomorphic orbits and
Aut(R) may not be a normal subgroup of Aut(X).

The above results have the following interpretation in terms of the action
of Aut(X). By Lemma 5.2, we know that Aut(S) ∼= Aut(X). We assume
that the center C is a prime circle graph, otherwise Aut(R) is very restricted
(Z1 or Z2) and not very interesting. We choose a representationR belonging
to the smallest orbit, i.e., R is one of the most symmetrical representations.
Then Aut(R) consists of the rotations/reflections of C described in the
proof of Theorem 1.4.

The action of Aut(X) on this orbit is described by the point-wise stabi-
lizer H of C in Aut(S). We know that H =

∏
StabS[Ni](mi) as described

in Lemma 5.7. When Ni is a prime graph, we can apply reflections and
rotations described in Lemma 5.6, so we get a subgroup of Z2

2. If Ni is
a degenerate graph, then isomorphic subtrees can be arbitrarily permuted
which corresponds to permuting small identical parts of a circle represen-
tation. It follows that Aut(X) ∼= H o Aut(R).
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6. Automorphism Groups of Comparability and Permutation
Graphs

All transitive orientations of a graph are efficiently captured by the mod-
ular decomposition which we encode into the modular tree. We study the
induced action of Aut(X) on the set of all transitive orientations. We show
that this action is captured by the modular tree, but for general comparabil-
ity graphs its stabilizers can be arbitrary groups. In the case of permutation
graphs, we study the action of Aut(X) on the pairs of orientations of the
graph and its complement, and show that it is semiregular. Using this, we
prove Theorem 1.5. We also show that an arbitrary graph can be encoded
into a comparability graph of the dimension at most four, which establishes
Theorem 1.7.

6.1. Modular Decomposition. A module M of a graph X is a set of
vertices such that each x ∈ V (X) \M is either adjacent to all vertices in
M , or to none of them. Modules generalize connected components, but one
module can be a proper subset of another one. Therefore, modules lead to a
recursive decomposition of a graph, instead of just a partition. See Fig. 17a
for examples. A module M is called trivial if M = V (X) or |M | = 1, and
non-trivial otherwise.

If M and M ′ are two disjoint modules, then either the edges between M
and M ′ form the complete bipartite graph, or there are no edges at all; see
Fig. 17a. In the former case, M and M ′ are called adjacent, otherwise they
are non-adjacent.

Quotient Graphs. Let P = {M1, . . . ,Mk} be a modular partition of
V (X), i.e., each Mi is a module of X, Mi ∩ Mj = ∅ for every i 6= j,
and M1 ∪ · · · ∪Mk = V (X). We define the quotient graph X/P with the
vertices m1, . . . ,mk corresponding to M1, . . . ,Mk where mimj ∈ E(X/P)
if and only if Mi and Mj are adjacent. In other words, the quotient graph
is obtained by contracting each module Mi into the single vertex mi; see
Fig. 17b.

Modular Decomposition. To decompose X, we find some modular par-
tition P = {M1, . . . ,Mk}, compute X/P and recursively decompose X/P
and each X[Mi]. The recursive process terminates on prime graphs which

M1

M2

M3

M4 M5
M6

(a) (b)

m1 m2 m4 m5 m6

m3

Figure 17. (a) A graph X with a modular partition P.
(b) The quotient graph X/P is prime.
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(a) (b)

Figure 18. (a) The graph X from Fig. 17 with the modu-
lar partitions used in the modular decomposition. (b) The
modular tree T of X, the marker vertices are white, the
tree edges are dashed.

are graphs containing only trivial modules. There might be many such de-
compositions for different choices of P in each step. In 1960s, Gallai [17]
described the modular decomposition in which special modular partitions
are chosen and which encodes all other decompositions.

The key is the following observation. Let M be a module of X and
let M ′ ⊆ M . Then M ′ is a module of X if and only if it is a module of
X[M ]. A graph X is called degenerate if it is Kn or Kn. We construct the
modular decomposition of a graph X in the following way, see Fig. 18a for
an example:

• If X is a prime or a degenerate graph, then we terminate the modu-
lar decomposition on X. We stop on degenerate graphs since every
subset of vertices forms a module, so it is not useful to further
decompose them.

• Let X and X be connected graphs. Gallai [17] shows that the
inclusion maximal proper subsets of V (X) which are modules form
a modular partition P of V (X), and the quotient graph X/P is a
prime graph; see Fig. 17. We recursively decompose X[M ] for each
M ∈ P.

• If X is disconnected and X is connected, then every union of con-
nected components is a module. Therefore the connected compo-
nents form a modular partition P of V (X), and the quotient graph
X/P is an independent set. We recursively decompose X[M ] for
each M ∈ P.

• If X is disconnected and X is connected, then the modular decom-
position is defined in the same way on the connected components
of X. They form a modular partition P and the quotient graph
X/P is a complete graph. We recursively decompose X[M ] for
each M ∈ P.

6.2. Modular Tree. We encode the modular decomposition by the mod-
ular tree T , similarly as the split decomposition is captured by the split
tree in Section 5. The modular tree T is a graph with two types of ver-
tices (normal and marker vertices) and two types of edges (normal and
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directed tree edges). The directed tree edges connect the prime and degen-
erate graphs encountered in the modular decomposition (as quotients and
terminal graphs) into a rooted tree.

We give a recursive definition. Every modular tree has an induced sub-
graph called root node. If X is a prime or a degenerate graph, we define
T = X and its root node is equal T . Otherwise, let P = {M1, . . . ,Mk}
be the used modular partition of X and let T1, . . . , Tk be the correspond-
ing modular trees for X[M1], . . . , X[Mk]. The modular tree T is the dis-
joint union of T1, . . . , Tk and of the quotient X/P with the marker vertices
m1, . . . ,mk. To every graph Ti, we add a new marker vertex m′i such that
m′i is adjacent exactly to the vertices of the root node of Ti. We further
add a tree edge oriented from mi to m′i. For an example, see Fig. 18b.

The modular tree of X is unique. The graphs encountered in the modular
decomposition are called nodes of T , or alternatively root nodes of some
modular tree in the construction of T . For a node N , its subtree is the
modular tree which has N as the root node. Leaf nodes correspond to the
terminal graphs in the modular decomposition, and inner nodes are the
quotients in the modular decomposition. All vertices of X are in leaf nodes
and all marker vertices, corresponding to modules of X, are in inner nodes.

Similarly as in Lemma 5.1, the modular tree T captures the adjacencies
in X.

Lemma 6.1. We have xy ∈ E(X) if and only if there exists an alternating
path xm1m2 . . .mky in the modular tree T such that each mi is a marker
vertex and precisely the edges m2i−1m2i are tree edges.

Proof. Both x and y belong to leaf nodes. If there exists an alternating
path, let N be the node which is the common ancestor of x and y. This
path has an edge m2im2i+1 in N . These vertices correspond to adjacent
modules M2i and M2i+1 such that x ∈ M2i and y ∈ M2i+1. Therefore
xy ∈ E(X).

On the other hand, let N be the common ancestor of x and y, such that
mx is the marker vertex on a path from x to N and similarly my is the
marker vertex for y and N . If xy ∈ E(X), then the corresponding modules
Mx and My has to be adjacent, so we can construct an alternating path
from x to y. �

6.3. Automorphisms of Modular Trees. An automorphism of the mod-
ular tree T has to preserve the types of vertices and edges and the orienta-
tion of tree edges. We denote the automorphism group of T by Aut(T ).

Lemma 6.2. If T is the modular tree of a graph X, then Aut(X) ∼= Aut(T ).

Proof. First, we show that each automorphism σ ∈ Aut(T ) induces a
unique automorphism of X. Since V (X) ⊆ V (T ), we define π = σ �V (X).
By Lemma 6.1, xy ∈ E(X) if and only if there exists an alternating
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path in T connecting them. Automorphisms preserve alternating paths,
so xy ∈ E(X) ⇐⇒ π(x)π(y) ∈ E(X).

For the converse, we prove that π ∈ Aut(X) induces a unique automor-
phism σ ∈ Aut(T ). We define σ �V (X)= π and extend it recursively on
the marker vertices. Let P = {M1, . . . ,Mk} be the modular partition of
X used in the modular decomposition. It is easy to see that Aut(X) in-
duces an action on P. If π(Mi) = Mj , then clearly X[Mi] and X[Mj ] are
isomorphic. We define σ(mi) = mj and σ(m′i) = m′j , and finish the rest
recursively. Since σ is an automorphism at each step of the construction,
it follows that σ ∈ Aut(T ). �

Recursive Construction. We can build Aut(T ) recursively. Let N be
the root node of T . Suppose that we know the automorphism groups
Aut(T1), . . . ,Aut(Tk) of the subtrees T1, . . . , Tk of all children of N . We
further color the marker vertices in N by colors coding isomorphism classes
of the subtrees T1, . . . , Tk.

Lemma 6.3. Let N be the root node of T with subtrees T1, . . . , Tk. Then

Aut(T ) ∼=
(
Aut(T1)× · · · ×Aut(Tk)

)
o Aut(N),

where Aut(N) is color preserving.

Proof. Recall the proof of Theorem 2.1. We isomorphically label the ver-
tices of the isomorphic subtrees Ti. Each automorphism π ∈ Aut(T ) is
a composition of two automorphisms σ · τ where σ maps each subtree Ti
to itself, and τ permutes the subtrees as in π while preserving the label-
ing. Therefore, the automorphisms σ can be identified with the elements
of Aut(T1)× · · · ×Aut(Tk) and the automorphisms τ with the elements of
Aut(N). The rest is exactly as in the proof of Theorem 2.1. �

With no further assumptions on X, if N is a prime graph, then Aut(N)
can be isomorphic to an arbitrary group, as shown in Section 6.7. If N is
a degenerate graph, then Aut(N) is a direct product of symmetric groups.

Automorphism Groups of Interval Graphs. In Section 4, we proved
using MPQ-trees that Aut(INT) = Aut(TREE). The modular decom-
position gives an alternative derivation that Aut(INT) ⊆ Aut(TREE) by
Lemma 6.3 and the following:

Lemma 6.4. For a prime interval graph X, Aut(X) is a subgroup of Z2.

Proof. Hsu [25] proved that prime interval graphs have exactly two con-
secutive orderings of the maximal cliques. Since X has no twin vertices,
Aut(X) acts semiregularly on the consecutive orderings and there is at most
one non-trivial automorphism in Aut(X). �
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6.4. Automorphism Groups of Comparability Graphs. In this sec-
tion, we explain the structure of the automorphism groups of comparability
graphs, in terms of actions on sets of transitive orientations.

Structure of Transitive Orientations. Let→ be a transitive orientation
of X and let T be the modular tree. For modules M1 and M2, we write
M1 → M2 if x1 → x2 for all x1 ∈ M1 and x2 ∈ M2. Gallai [17] shows
the following properties. If M1 and M2 are adjacent modules of a partition
used in the modular decomposition, then either M1 → M2, or M1 ← M2.
The graph X is a comparability graph if and only if each node of T is
a comparability graph. Every prime comparability graph has exactly two
transitive orientations, one being the reversal of the other.

The modular tree T encodes all transitive orientations as follows. For
each prime node of T , we arbitrarily choose one of the two possible orien-
tations. For each degenerate node, we choose some orientation. (Where
Kn has n! possible orientations and Kn has the unique orientation.) A
transitive orientation of X is then constructed as follows. We orient the
edges of leaf nodes as above. For a node N partitioned in the modular
decomposition by P = {M1, . . . ,Mk}, we orient X[Mi] → X[Mj ] if and
only if mi → mj in N . It is easy to check that this gives a valid tran-
sitive orientation, and every transitive orientation can be constructed by
some orientation of the nodes of T . We note that this implies that the
dimension of the transitive orientation is the maximum of the dimensions
over all nodes of T , and that this dimension is the same for every transitive
orientation.

Action Induced On Transitive Orientations. Let to(X) be the set of
all transitive orientations of X. Let π ∈ Aut(X) and→ ∈ to(X). We define
the orientation π(→) as follows:

x→ y =⇒ π(x) π(→) π(y), ∀x, y ∈ V (X).

We can observe that π(→) is a transitive orientation of X, so π(→) ∈ to(X);
see Fig. 19. It easily follows that Aut(X) defines an action on to(X).

Let Stab(→) be the stabilizer of some orientation→ ∈ to(X). It consists
of all automorphisms which preserve this orientation, so only the vertices

X T2

1

4

3

6

5

8

7

1 2 3 4 5 6 7 8

Figure 19. Two automorphisms reflect X and change the
transitive orientation, and their action on the modular tree
T .
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that are incomparable in → can be permuted. In other words, Stab(→) is
the automorphism group of the poset created from the transitive orientation
→ of X. Since posets are universal [3, 41], Stab(→) can be arbitrary groups
and in general the structure of Aut(X) cannot be derived from its action
on to(X), which is not faithful enough.

Lemma 6.3 allows to understand it in terms of Aut(T ) for the modular
tree T representing X. Each automorphism of Aut(T ) somehow acts inside
each node, and somehow permutes the attached subtrees. Consider a node
N with attached subtrees T1, . . . , Tk. If σ ∈ Stab(→), then it preserves
the orientation in N . Therefore if it maps Ti to σ(Ti), the corresponding
marker vertices are necessarily incomparable in N . If N is an independent
set, the isomorphic subtrees can be arbitrarily permuted in Stab(→). If N
is a complete graph, all subtrees are preserved in Stab(→). If N is a prime
graph, then isomorphic subtrees of incomparable marker vertices can be
permuted according to the structure of N which can be complex.

It is easy to observe that stabilizers of all orientations are the same
and that Stab(→) is a normal subgroup. Let H = Aut(X)/Stab(→), so
H captures the action of Aut(X) on to(X). This quotient group can be
constructed recursively from the structure of T , similarly to Lemma 6.3.
Suppose that we know H1, . . . ,Hk of the subtrees T1, . . . , Tk. If N is an
independent set, there is exactly one transitive orientation, so H ∼= H1 ×
· · · ×Hk. If N is a complete graph, isomorphic subtrees can be arbitrarily
permuted, so H can be constructed exactly as in Theorem 2.1. If N is a
prime node, there are exactly two transitive orientations. If there exists
an automorphism changing the orientation of N , we can describe H by a
semidirect product with Z2 as in Theorem 2.1. And if N is asymmetric,
then H ∼= H1 × · · · ×Hk. In particular, this description implies that H ∈
Aut(TREE).

6.5. Automorphism Groups of Permutation Graphs. In this section,
we derive the characterization of Aut(PERM) stated in Theorem 1.5.

Action Induced On Pairs of Transitive Orientations. Let X be a
permutation graph. In comparison to general comparability graphs, the
main difference is that both X and X are comparability graphs. From
the results of Section 6.4 it follows that Aut(X) induces an action on both
to(X) and to(X). Let to(X,X) = to(X) × to(X), and we work with one
action on the pairs (→,→) ∈ to(X,X). Figure 20 shows an example.

Lemma 6.5. For a permutation graph X, the action of Aut(X) on
to(X,X) is semiregular.

Proof. Since a permutation belonging to the stabilizer of (→,→) fixes both
orientations, it can only permute incomparable elements. But incomparable
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Figure 20. The action of Aut(X) on four pairs of transi-
tive orientations X. The black generator flips the orienta-
tion of X, the gray automorphism of both X and X.

elements in → are exactly the comparable elements in →, so the stabilizer
is trivial. �

Lemma 6.6. For a prime permutation graph X, Aut(X) is a subgroup of
Z2

2.

Proof. There are at most four pairs of orientations in to(X,X), so by
Lemma 6.5 the order of Aut(X) is at most four. If π ∈ Aut(X), then
π2 fixes the orientations of both X and X. Therefore π2 belongs to the
stabilizers and it is an identity. Thus π is the involution and Aut(X) is a
subgroup of Z2

2. �

Geometric Interpretation. First, we explain the result PERM = 2-DIM
of Even et al. [13]. Let → ∈ to(X) and → ∈ to(X), and let →R be
the reversal of →. We construct two linear orderings L1 = → ∪ → and

6
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4
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6
1
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3
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1
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2
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1
2
3
4
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6

1
2
3
4
5
6

3
5
1
6
2
4

ϕv

ϕh ϕv

ϕh

Figure 21. Four representations of a symmetric permu-
tation graph. The black automorphism is the horizontal
reflection, the gray automorphism is the vertical reflection.
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X1 X2(b)
Y Y . . . Y{ n

(c) (d)

X1

X1

X1

X1

X2

X2

X3 X3

Figure 22. The constructions in the proof of Theorem 1.5.

L2 = → ∪→R. The comparable pairs in L1 ∩ L2 are precisely the edges
E(X).

Consider a permutation representation of a symmetric prime permuta-
tion graph. The vertical reflection ϕv corresponds to exchanging L1 and
L2, which is equivalent to reversing →. The horizontal reflection ϕh corre-
sponds to reversing both L1 and L2, which is equivalent to reversing both
→ and →. We denote the central 180◦ rotation by ρ = ϕh · ϕv which
corresponds to reversing →; see Fig. 21.

The Inductive Characterization. Now, we are ready to prove Theo-
rem 1.5.

Proof of Theorem 1.5. First, we show that Aut(PERM) is closed under (b)
to (d). For (b), let G1, G2 ∈ Aut(PERM), and let X1 and X2 be two
permutation graphs such that Aut(Xi) ∼= Gi. We construct X by attaching
X1 and X2 as in Fig. 22b. Clearly, Aut(X) ∼= G1 × G2. For (c), let
G ∈ Aut(PERM) and let Y be a connected permutation graph such that
Aut(Y ) ∼= G. We construct X as the disjoint union of n copies of Y ; see
Fig. 22c. We get Aut(X) ∼= G o Sn. Let G1, G2, G3 ∈ Aut(PERM), and
let X1, X2, and X3 be permutation graphs such that Aut(Xi) ∼= Gi. We
construct X as in Fig. 22d. We get Aut(X) ∼=

(
G4

1 ×G2
2 ×G2

3

)
o Z2

2.
We show the other implication by induction. Let X be a permutation

graph and let T be the modular tree representing X. By Lemma 6.2,
we know that Aut(T ) ∼= Aut(X). Let N be the root node of T , and let
T1, . . . , Tk be the subtrees attached to N . By the induction hypothesis, we
assume that Aut(Ti) ∈ Aut(PERM). By Lemma 6.3,

Aut(T ) ∼=
(
Aut(T1)× · · · ×Aut(Tk)

)
o Aut(N).

Case 1: N is a degenerate node. Then Aut(N) is a direct product of
symmetric groups. The subtrees attached to marker vertices of each color
class can be arbitrarily permuted, independently of each other. Therefore
Aut(T ) can be constructed using (b) and (c), exactly as in Theorem 2.1.

Case 2: N is a prime node. By Lemma 6.6, Aut(N) is a subgroup of
Z2

2. If it is trivial or Z2, observe that it can be constructed using (b) and
(c). The only remaining case is when Aut(N) ∼= Z2

2. The action of Z2
2 on

V (N) can have orbits of sizes 4, 2, and 1. By Orbit-Stabilizer Theorem,
each orbit of size 2 has also a stabilizer of size 2, having exactly one non-
trivial element. Therefore, there are at most three types of orbits of size
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2, according to which element of Z2
2 stabilizes them. We give a geometric

argument that one of these elements cannot be a stabilizer of an orbit of
size 2, so there are at most two types of orbits of size 2.

As argued above, the non-identity elements of Z2
2 correspond geometri-

cally to the reflections ϕv and ϕh and to the rotation ρ; see Fig. 21. The
reflection ϕv stabilizes those segments which are parallel to the horizontal
axis. The rotation ρ stabilizes those segments which cross the central point.
For both automorphisms, there might be multiple segments stabilized. On
the other hand, the reflection ϕh stabilizes at most one segment which lies
on the axis of ϕh. Further, this segment is stabilized by all elements of Z2

2,
so it belongs to the orbit of size 1. Therefore, there exists no orbit of size
2 which is stabilized by ϕh.

Let G1 be the direct product of all Aut(Tj), one for each orbit of size
four. The groups G2 and G3 are defined similarly for the orbits of size two
stabilized by ϕv and ρ, respectively, and G4 for the orbit of size one (if it
exists). We have

Aut(T ) ∼=
(
G4

1 ×G2
2 ×G2

3

)
oψ Z2

2 ×G4,

where ψ(ϕh) and ψ(ϕv) swap the coordinates as ϕh and ϕv in Fig. 21. So
Aut(T ) can be constructed using (b) and (d). �

6.6. Automorphism Groups of Bipartite Permutation Graphs. We
use the modular trees to characterize Aut(connected BIP PERM). For a
connected bipartite graph, every non-trivial module is an independent set,
and the quotient is a prime bipartite permutation graph. Therefore, the
modular tree T has a prime root node N , to which there are attached leaf
nodes which are independent sets.

Proof of Corollary 1.6. Every abstract group from Corollary 1.6 can be
constructed as shown in Fig. 23. Let T be the modular tree represent-
ing X. By Lemmas 6.2 and 6.3,

Aut(X) ∼=
(
Aut(T1)× · · · ×Aut(Tk)

)
o Aut(N),

· · ·k1 k`

(a) (b)

· · · · · ·k1 k` n

m

k` k1

(c)

· · ·

· · ·

· · ·

· · ·

k1

k1

k`

k`

n

n

k`

k`

k1

k1

Figure 23. Let G1 = Sk1 × · · · × Sk` , G2 = Sn and G3 =
Sm. The constructed graphs consist of independent sets
joined by complete bipartite subgraphs. They have the
following automorphism groups: (a) G1, (b) G1 oZ2×G2×
G3, (c) (G4

1 ×G2
2) o Z2

2.
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where Aut(N) is isomorphic to a subgroup of Z2
2 (by Lemma 6.6), and each

Aut(Ti) is a symmetric group since Ti is an independent set.
Consider a permutation representation of N in which the endpoints of

the segments, representing V (N), are placed equidistantly as in Fig. 21.
By [36], there are no segments parallel with the horizontal axis, so the
reflections ϕv and ϕh fix no segment. Further, since N is bipartite, there
are at most two segments crossing the central point, so the rotation ρ can
fix at most two segments.

Case 1: Aut(N) is trivial. Then Aut(X) is a direct product of symmetric
groups.

Case 2: Aut(N) ∼= Z2. Let G1 be the direct product of all Aut(Ti), one
for each orbit of size two. Notice that Aut(N) is generated by exactly one of
ϕv, ϕh, and ρ. For ϕv or ϕh, all orbits are of size two, so Aut(X) ∼= G1 oZ2.
For ρ, there are at most two fixed segments, so Aut(X) ∼= G1 oZ2×G2×G3,
where G2 and G3 are isomorphic to Aut(Ti), for each of two orbits of size
one.

Case 3: Aut(N) ∼= Z2
2. Then Aut(N) has no orbits of size 1, at most

one of size 2, and all other of size 4. Let G1 be the direct product of all
Aut(Ti), one for each orbit of size 4, and let G2 be Aut(Ti) for the orbit
of size 2. We have Aut(X) ∼= (G4

1 × G2
2) oψ Z2

2, where ψ is defined in the
proof of Theorem 1.5. �

6.7. k-Dimensional Comparability Graphs. In this section, we prove
that Aut(4-DIM) contains all abstract finite groups, i.e., each finite group
can be realised as an automorphism group of some 4-dimensional compara-
bility graph. Our construction also shows that graph isomorphism testing
of 4-DIM is GI-complete. Both results easily translate to k-DIM for k > 4
since 4-DIM ( k-DIM.

The Construction. Let X be a graph with V (X) = {x1, . . . , xn} and
E(X) = {e1, . . . , em}. We define

P =
{
pi : xi ∈ V (X)

}
, Q = {qik : xi ∈ ek}, R =

{
rk : ek ∈ E(X)

}
,

where P represents the vertices, R represents the edges and Q represents
the incidences between the vertices and the edges.

The constructed comparability graph CX is defined as follows, see
Fig. 24:

V (CX) = P ∪Q ∪R, E(CX) = {piqik, qikrk : xi ∈ ek}.

So CX is created from X by replacing each edge with a path of length four.

Lemma 6.7. For a connected graph X 6∼= Cn, Aut(CX) ∼= Aut(X). �

Lemma 6.8. If X is a connected bipartite graph, then dim(CX) ≤ 4.
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x2 x4

x1

x3

x5

e1e2

e3 e4
e5e6

X CX

p1 p2 p3 p4 p5

q11 q41 q12 q22 q23 q33 q34 q44 q45 q55 q26 q56

r1 r2 r3 r4 r5 r6

Figure 24. The construction CX for the graph X = K2,3.

Proof. We construct four chains such that L1 ∩ L2 ∩ L3 ∩ L4 have two
vertices comparable if and only if they are adjacent in CX . We describe
linear chains as words containing each vertex of V (CX) exactly once. If
S1, . . . , Ss is a sequence of words, the symbol 〈St : ↑ t〉 is the concatenation
S1S2 . . . Ss and 〈St : ↓ t〉 is the concatenation SsSs−1 . . . S1. When an arrow
is omitted, as in 〈St〉, we concatenate in an arbitrary order.

First, we define the incidence string Ii which codes pi and its neighbors
qik:

Ii = pi
〈
qik : piqik ∈ E(CX)

〉
.

Notice that the concatenation IiIj contains the right edges but it further
contains edges going from pi and qik to pj and qj`. We remove these edges
by the concatenation IjIi in some other chain.

Since X is bipartite, let (A,B) be the partition of its vertices. We define

PA = {pi : xi ∈ A}, QA = {qik : xi ∈ A},
PB = {pj : xj ∈ B}, QB = {qjk : xj ∈ B}.

Each vertex rk has exactly one neighbor in QA and exactly one in QB .
We construct the four chains as follows:

L1 = 〈pi : pi ∈ PA〉〈rkqik : qik ∈ QA, ↑ k〉〈Ij : pj ∈ PB , ↑ j〉,
L2 = 〈pi : pi ∈ PA〉〈rkqik : qik ∈ QA, ↓ k〉〈Ij : pj ∈ PB , ↓ j〉,
L3 = 〈pj : pj ∈ PB〉〈rkqjk : qjk ∈ QB , ↑ k〉〈Ii : pi ∈ PA, ↑ i〉,
L4 = 〈pj : pj ∈ PB〉〈rkqjk : qjk ∈ QB , ↓ k〉〈Ii : pi ∈ PA, ↓ i〉.

The four defined chains have the following properties, see Fig. 25:

PA PB

QA QB

R
L1 ∩ L2

PA PB

QA QB

R
L3 ∩ L4

Figure 25. The forced edges in L1 ∩ L2 and L3 ∩ L4.
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• The intersection L1 ∩ L2 forces the correct edges between QA and
R and between PB and QB . It poses no restrictions between QB
and R and between PA and the rest of the graph.

• Similarly the intersection L3 ∩ L4 forces the correct edges between
QB and R and between PA andQA. It poses no restrictions between
QA and R and between PB and the rest of the graph.

It is routine to verify that the intersection L1 ∩ L2 ∩ L3 ∩ L4 is correct.

Claim 1: The edges in Q ∪ R are correct. For every k, we get rk adjacent
to both qik and qjk since it appear on the left in L1, . . . , L4. On the other
hand, qikqjk /∈ E(CX) since they are ordered differently in L1 and L3.

For every k < `, there are no edges between N [rk] = {rk, qik, qjk} and
N [r`] = {r`, qs`, qt`}. This can be shown by checking the four orderings of
these six elements:

in L1: rkqik r`qs` qjk qt` , in L2: r`qs` rkqikqjk qt` ,

in L3: rkqjk r`qt` qik qs` , in L4: r`qt` rkqjkqik qs` ,

where the elements of N [r`] are boxed. �
Claim 2: The edges in P are correct. We show that there are no edges
between pi and pj for i 6= j as follows. If both belong to PA (respectively,
PB), then they are ordered differently in L3 and L4 (respectively, L1 and
L2). If one belongs to PA and the other one to PB , then they are ordered
differently in L1 and L3. �
Claim 3: The edges between P and Q ∪ R are correct. For every pi ∈ P
and rk ∈ R, we have pirk /∈ E(CX) because they are ordered differently in
L1 and L3. On the other hand, piqik ∈ E(CX), because pi is before qik in
Ii, and for pi ∈ PA in L1 and L2, and for pi ∈ PB in L3 and L4.

It remains to show that piqjk /∈ E(CX) for i 6= j. If both pi and pj
belong to PA (respectively, PB), then pi and qjk are ordered differently in
L3 and L4 (respectively, L1 and L2). And if one belongs to PA and the
other one to PB , then pi and qjk are ordered differently in L1 and L3. �

These three established claims show that comparable pairs in the inter-
section L1 ∩L2 ∩L3 ∩L4 are exactly the edges of CX , so CX ∈ 4-DIM. �

Universality of k-DIM. We are ready to prove Theorem 1.7.

Proof of Theorem 1.7. We prove the statement for 4-DIM. Let X be a
connected graph such that X 6∼= Cn. First, we construct the bipartite
incidence graph Y between V (X) and E(X). Next, we construct CY from
Y . From Lemma 6.7 it follows that Aut(CY ) ∼= Aut(Y ) ∼= Aut(X) and by
Lemma 6.8, we have that CY ∈ 4-DIM. Similarly, if two graphs X1 and
X2 are given, we construct CY1 and CY2 such that X1

∼= X2 if and only if
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CY1
∼= CY2 ; this polynomial-time reduction shows GI-completeness of graph

isomorphism testing.
The constructed graph CY is a prime graph. We fix the transitive ori-

entation in which P and R are the minimal elements and get the poset PY
with Aut(PY ) ∼= Aut(CY ). Hence, our results translate to posets of the
dimension at most four. �

7. Algorithms for Computing Automorphism Groups

Using PQ-trees, Colbourn and Booth [8] give a linear-time algorithm to
compute permutation generators of the automorphism group of an interval
graph. We are not aware of any such algorithm for circle and permutation
graphs, but some of our results might be known from the study of graph
isomorphism problem [25, 7].

We briefly explain algorithmic implications of our results which allow to
compute automorphism groups of studied classes in terms of Zn, Dn and
Sn, and their group products. This description is better than just a list of
permutations generating Aut(X). Many tools of the computational group
theory are devoted to getting better understanding of an unknown group.
Our description gives this structural understanding of Aut(X) for free.

For interval graphs, we get a linear-time algorithm by computing an
MPQ-tree [29] and finding its symmetries. For circle graphs, our descrip-
tion easily leads to a polynomial-time algorithm, by computing the split
tree for each connected component and understanding its symmetries. The
best algorithm for computing split trees runs in almost linear time [19].
For permutation graph, we get a linear-time algorithm by computing the
modular decomposition [33] and finding symmetries of prime permutation
graphs.

8. Open Problems

We conclude this paper with several open problems concerning automor-
phism groups of other intersection-defined classes of graphs; for an overview
see [20, 39].

Circular-arc graphs (CIRCULAR-ARC) are intersection graphs of circular
arcs and they naturally generalize interval graphs. Surprisingly, this class
is very complex and quite different from interval graphs. Hsu [25] relates
them to circle graphs.

Problem 1. What is Aut(CIRCULAR-ARC)?

Let Y be any fixed graph. The class Y -GRAPH consists of all inter-
sections graphs of connected subgraphs of a subdivision of Y . Observe
that K2-GRAPH = INT and we have an infinite hierarchy between INT and
CHOR is formed by T -GRAPH for a tree T , for which INT ⊆ T -GRAPH (
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CHOR. If Y contains a cycle, then Y -GRAPH 6⊆ CHOR. For instance,
K3-GRAPH = CIRCULAR-ARC.

Conjecture 1. For every fixed graph Y , the class Y -GRAPH is non-universal.

The last open problem involves the open case of 3-DIM.

Conjecture 2. The class 3-DIM is universal and its graph isomorphism prob-
lem is GI-complete.
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