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Preface

Spring school on Combinatorics has been a traditional meeting organized for faculty and students participating in the
Combinatorial Seminar at Charles University for over 30 years. It is internationally known and regularly visited by
students, postdocs and teachers from our cooperating institutions in the DIMATIA network. As it has been the case for
several years, this Spring School is generously supported by Computer Science Institute (IÚUK) of Charles University
and the Department of Applied Mathematics (KAM) of Charles University.

The Spring Schools are entirely organized and arranged by our students (mostly undergraduates). The lecture subjects
are selected by supervisors from the Department of Applied Mathematics (KAM) and Computer Science Institute
(IÚUK) of Charles University as well as from other participating institutions. In contrast, the lectures themselves
are almost exclusively given by students, both undergraduate and graduate. This leads to a unique atmosphere of the
meeting which helps the students in further studies and their scientific orientation.

This year the Spring School is organized in Nová Ves, a mountain village in Orlické hory in Northern part of Czech
republic with a great variety of possibilities for outdoor activities.

Ondřej Pangrác, Robert Šámal, Martin Tancer
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Typical day

8:30 - 9:30 Breakfast
9:30 - 11:00 Talk 1

11:00 - 12:30 Talk 2
12:30 - 13:30 Lunch
13:30 - 18:00 Free time
18:00 - 19:00 Dinner
19:00 - 20:30 Talk 3

Schedule of talks
Friday

Evening sesion chaired by Ondřej Pangrác

Dušan Knop Applying simultaneous diofantine approximation [19:15–20:15]

Matas Šileikis Half–sandwich of two random graphs [20:15–20:45]

Tomáš Masařík Backbone coloring [20:45–21:00]

Saturday Series: Interval methods

Morning sesion chaired by Matas Šileikis

Jarda Horáček Introduction to Interval Computations [9:30–10:15]

Milan Hladík Verification by Interval Approach [10:30–11:15]

Michal Černý Interval & Data Analysis [11:15–12:00]

Evening sesion chaired by Karel Ha

Elif Garajová Optimality in Interval Linear Programming [18:50–19:40]

Mirek Rada Intervals→ Zonotopes→ Ellipsoids [20:00–20:45]

Pavel Klavík Visual Complex Analysis [21:00–22:30]

Sunday

Group 1 chaired by Milan Hladík
Interval methods — completion

Jana Novotná Feasibility in interval linear program-
ming [9:30–10:30]

Petra Pelikánová Interval linear regression [11:00–
12:00]

Group 2 chaired by Dušan Knop

Peter Zeman Isomorphism of graphs of bounded
valence can be tested in polynomial time
[9:30–10:30]

Honza Voborník How Robust is the Wisdom of the
Crowds? [10:30–12:00]

Evening sesion chaired by Jan Voborník

Andreas Emil Feldmann Fixed Parameter Approximations for k-Center Problems in Low Highway Dimension
Graphs [19:00–20:00]
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Monday Series: Nonstandard Methods in Combinatorics

Morning sesion chaired by Robert Šámal

Petr Glivický Nonstandard methods in Ramsey combinatorics I [9:00–10:30]

Petr Glivický Exercise: Nonstandard methods in Ramsey combinatorics [10:30–12:00]

Group 1 chaired by Petr Glivický
Nonstandard Methods — completion

Tomáš Toufar Nonstandard methods in Ramsey com-
binatorics II [18:00–19:30]

Karel Král Nonstandard methods in Ramsey combi-
natorics III [19:30–21:00]

Group 2 chaired by Tomáš Valla

Radovan Červený On interval representations of
graphs [18:30–20:00]

Václav Blažej Fast Algorithms for Exact String
Matching [20:00–21:30]

Tuesday

Group 1 chaired by Tomáš Toufar

Jakub Sosnovec Every graph is (2,3)-choosable
[9:30–11:00]

Jakub Svoboda Games on interval and permutation
graph representations [11:00–12:30]

Group 2 chaired by Pavel Dvořák

Peter Korcsok Drawing Planar Cubic 3-Connected
Graphs with Few Segments: Algorithms and
Experiments [9:30–11:00]

Veronika Slívová Chess: Retrograde analysis
[11:00–12:30]

Group 1 chaired by Mark Karpilovskij

Pavel Veselý Improved Deterministic Algorithms
for Linear Programming in Low Dimensions
[19:30–21:00]

Group 2 chaired by Robert Šámal

Karel Ha Mastering the Game of Go with Deep Neu-
ral Networks and Tree Search [19:30–21:00]

Wednesday — trip day

Group 1 chaired by Jan Musílek

Martin Töpfer Mapping planar graphs into the Cox-
eter graph [19:30–21:00]

Group 2 chaired by Tomáš Masařík

Jana Syrovátková Iterated Prisoners Dilema [19:30–
21:00]
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Thursday

Group 1 chaired by Jana Novotná

Stanislav Kučera Another exploration problem
[9:30–11:00]

Robert Lukotka Generating Snarks [11:00–12:00]

Group 2 chaired by Jan Musílek

Mark Karpilovskij The Erdős–Hajnal conjecture for
paths and antipaths [9:30–10:30]

Adam Kabela Combinatorial proofs of addition for-
mulas [11:00–12:30]

Group 1 chaired by Mark Karpilovskij

Jan Musílek Hollow heaps [19:30–21:00]

Group 2 chaired by Michal Opler

Filip Mišún Enumeration of antisymmetric mono-
tone triangles and domino tilings of quar-
tered Aztec rectangles [19:30–21:00]

Friday

Group 1 chaired by Robert Lukotka

Jarda Hančl The maximum number of subset divisors
of a given size [9:30–11:00]

Pavel “Koblich” Dvořák The diameter of Chess
Grows Exponentially [11:00–12:30]

Group 2 chaired by Veronika Slívová

Michal Opler Increasing paths in edge–ordered
graphs: the hypercube and random graph
[9:30–10:30]

Tereza Hulcová Independent Domination versus
Weighted Independent Domination [11:00–
12:30]
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Interval Methods

Michal Černý
cernym@vse.cz

Intervals & Data Analysis (Ser: Interval Methods)

Introduction

An interval is a natural model for a real number which is not known exactly. We can think of numbers computed
by inexact numerical methods, or inexactly observed data in statistical problems. We consider the following model:
let x = (x1, . . . ,xn) be an unobservable data sample (formally, a random vector) and let x = (x1, . . . ,xn) be a vector
of observable intervals such that xi ∈ xi a.s., i = 1, . . . ,n. We do not assume any further knowledge about the joint
distribution of (x,x).

Let a statistic (= continuous function) S(ξ ) be given. Under such weak assumptions on the distribution of (x,x),
the only information we can infer about S(x) from the observable data x is the pair of bounds S = minξ∈x S(ξ ) and
S = maxξ∈x S(ξ ), clearly satisfying S(x) ∈ [S,S] a.s.

Although the construction of the interval [S,S] is motivated by statistical analysis of interval data, from the optimiza-
tion-theoretic viewpoint the computation of S,S reduces to a pair of box-constrained optimization problems. Now
there is an interesting question: what are the computational properties of these optimization problems for particular
choices of S, namely for those often used in practical data analysis (such as sample mean, variance, coefficient of
variation, median, other quantiles, higher moments, test statistics for various hypotheses etc.)?

Sample variance

For sample variance S(x) = 1
n−1 ∑

n
i=1(xi− 1

n ∑
n
j=1 x j)

2 many results have been proved in [2]. The computation of
S is NP-hard; even worse, S is inapproximable with an arbitrary absolute error. But, conversely, it is computable
pseudopolynomially. It is immediate that the computation of S is reducible to CQP and thus solvable in weakly
polynomial time. It is interesting that in [2] a strongly polynomial algorithm is designed.

In our talk we show that the complexity of computation of S is related to an interesting question in the theory of interval
graphs. Namely, the algorithm from [2] for computation of S has complexity O(p(n) ·2ωn), where p(n) is a polynomial
and ωn is the size of the largest clique of the graph G(V,E) with V = {1, . . . ,n} and E = {{i, j} : |xC

i −xC
j | ≤

1
n , 1≤ i<

j≤ n} (here, xC is the center of the interval x). In the worst case we have clearly ωn = n. But our statistical motivation
leads us to the natural assumption that the intervals x1, . . . ,xn are random (and then G is a random graph). We assume
the following model: the centers of the intervals are sampled from a distribution Φ and the radii are sampled from
a distribution Ψ (and the samples are independent). For a discrete distribution Φ it is easy to show Eωn = Θ(n) by
pigeonholing. But we conjecture (with O. Sokol and M. Rada) that for a certain class of continuous distributions Φ

and ‘reasonable’ distributions Ψ it holds Eωn = O(logn) and varωn = O(1). Then, S is computable polynomially
on average. And, moreover, it is computable polynomially “in most cases” by the Chebyshev inequality. Thus we
have an interesting example of an problem which is NP-hard and inapproximable in the worst case, but “efficiently”
computable very often, at least in our probabilistic setup. (Recall that e.g. KNAPSACK behaves similarly: it is indeed
difficult to meet a hard instance.) Moreover, the problem of computing S leads to a certain class of random interval
graphs G the properties of which deserve further investigation; in particular, limit properties of G for n→ ∞ are of
interest.

Similar considerations hold also for other statistics, such as the t-ratio (coefficient of variation) studied in [1].
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Regression

Interval methods are also useful in regression. We discuss some recent results from [3, 4]. Our setup is entirely
probabilistic: we need interval-theoretic tools neither for the formulation of the problem nor for the statements of
results and algorithms. The interval toolbox is a powerful technique proving that things are right, but it can be fully
hidden inside proofs.

Assume the linear regression relationship y = Xθ + ε , where the matrix X of (stochastic) regressors is unobservable.
The observable data are (Z,y); here, Z is a contaminated form of X assumed to be in the form Z = X +Ξ, where Ξ

is a matrix of random errors. This model is known as Errors-in-Variables Regression. Traditional estimation theory
tells us that under certain assumptions on the distribution of (X ,Ξ,ε), the ‘right’ estimator θ̂ of the unknown vector
θ of regression parameters is Total Least Squares (TLS). Recall that TLS, also known as ‘orthogonal regression’, is
a solution to the optimization problem min

θ̂ ,∆Z,∆y ‖(∆Z,∆y)‖F s.t. (Z +∆Z)θ̂ = y+∆y, where ‖ · ‖F stands for the
Frobenius norm.

In [3, 4] we asked the question what happens when we replace the Frobenius norm by the Chebyshev norm ‖A‖max =
maxi, j |Ai j|, obtaining the optimization problem

min
θ̂ ,∆Z,∆y

‖(∆Z,∆y)‖max s.t. (Z +∆Z)θ̂ = y+∆y. (1)

It turns out that the replacement is fruitful. First, (1) yields a consistent estimator (θ̂ n→∞−→ θ in probability, where
n stands for the number of observations) under some interesting assumptions on (X ,Ξ,ε). Namely, it is a consistent
estimator in case when all errors (ε,Ξ) are uniformly bounded a.s. And, as a bonus, the bound is consistently estimable.
Here we skip details of this result (important for the theory of data analysis) and briefly sketch the second one: the
computation of (1) can be reduced to a family of generalized linear-fractional programming problems (GLFPs). Recall
that GLFPs can be solved in polynomial time by interior-point methods.

The main idea is to use the Oettli-Prager Theorem: solving (1) is equivalent to finding the minimum δ such that the
interval-valued linear system [Z±δE]θ̂ = [y±e] is (weakly) solvable, where E is the all-one matrix and e is the all-one
vector. The characterization given by the Oettli-Prager Theorem translates the problem to polyhedral geometry: given
a certain class of convex polyhedra with a specific structure and parametrized by δ , the task is to find the minimum δ

such that at least one of the polyhedra is nonempty. And this question can be reduced to a family of GLFPs.

To conclude, we have a nice example of a problem motivated by a classical regression setup, where interval meth-
ods serve as a ‘bridge’ to a reformulation as a problem in polyhedral geometry, the solution of which then leads to
interior-point methods for generalized linear-fractional programming. Except for that, we should emphasize that the
polyhedral-geometric characterization of (1) given by the Oettli-Prager Theorem also plays a central role in the proof
of consistency of the estimator θ̂ .

References

[1] M. Černý and M. Hladík: The complexity of computation and approximation of the t-ratio over one-dimensional
interval data. Computational Statistics and Data Analysis 80, 2014, 26–43.

[2] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpré and M. Aviles: Exact bounds on sample variance of interval
data. 2002. Available from: http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.16.2764.

[3] M. Hladík and M. Černý: Total Least Squares and Chebyshev norm. Procedia Computer Science 51, 2015, 1791–
1800.

[4] M. Hladík, M. Černý and J. Antoch: Linear regression with bounded errors in data: Total “Least Squares” with
Chebyshev norm. Statistica Sinica, submitted, 2015. Preprint: http://nb. vse.cz/∼cernym/tls.pdf.
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Elif Garajová
elif.garajova@gmail.com

Optimality in Interval Linear Programming (Ser: Interval Methods)

Introduction

In a linear programming problem, we usually treat coefficients as crisp real values. However, in practical applications,
there is often a need to include some sort of uncertainty or inexactness in the model. In this talk, we will address the
problem of determining the range of possible optimal values and the set of all optimal solutions of a linear program
with coefficients perturbing independently in given intervals. A detailed discussion of known results in interval linear
programming can be found in a survey by Hladík [2].

Optimal value range

When dealing with interval linear programs (ILP), one of the following (in general non-equivalent) forms of the
feasible set M (A,b) is usually assumed:

(A) M (A,b) = {x ∈ Rn : Ax = b,x≥ 0},

(B) M (A,b) = {x ∈ Rn : Ax≤ b},

(C) M (A,b) = {x ∈ Rn : Ax≤ b,x≥ 0}.

The first theorem by Oettli and Prager provides a useful characterization of the weak solution set in a system of
interval linear equations. It is followed by an analogical characterization for systems of inequalities due to Gerlach.
The corresponding proofs, as well as further results on feasibility and optimal value range in ILP, are presented in
book [1].

Theorem 1. Let A ∈ IRm×n,b ∈ IRm be given. A vector x ∈ Rn is a weak solution to the interval system Ax = b if and
only if it satisfies

|Acx−bc| ≤ A∆|x|+b∆.

Theorem 2. Let A ∈ IRm×n,b ∈ IRm be given. A vector x ∈ Rn is a weak solution to the interval system Ax≤ b if and
only if it satisfies

Acx−A∆|x| ≤ b.

From now on, we will consider an ILP in the form mincT x subject to x ∈M (A,b). An important and well-studied
problem in interval linear programming is the computation of the range of optimal values based on the possible values
of the coefficients:

Definition 3. Denote by f (A,b,c) = inf{cT x : x ∈M (A,b)} the optimal value of a linear program. For an ILP given
by the triplet (A,b,c), we define the optimal value range as the interval

[
f (A,b,c), f (A,b,c)

]
, where

f (A,b,c) = inf{ f (A,b,c) : A ∈ A,b ∈ b,c ∈ c},
f (A,b,c) = sup{ f (A,b,c) : A ∈ A,b ∈ b,c ∈ c}.
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Theorem 4. For an ILP of type (A), we have

f (A,b,c) = inf{cT x : Ax≤ b,Ax≥ b,x≥ 0},
f (A,b,c) = sup{ f (Ac−diag(p)A∆,bc +diag(p)b∆,c) : p ∈ {±1}m}.

Theorem 5. For an ILP of type (C), we have

f (A,b,c) = inf{cT x : Ax≤ b,x≥ 0},
f (A,b,c) = inf{cT x : Ax≤ b,x≥ 0}.

Set of optimal solutions

Another interesting problem is finding a description and analyzing the properties of the set of all possible optimal
solutions. This set is in general difficult to determine, however, characterizations for some special cases are known.

Lemma 6. For an ILP of type (A), the optimal solution set can be described by the parametric interval linear system

Ax = b,x≥ 0,AT y≤ c,cT x = bT y,

with A ∈ A,b ∈ b and c ∈ c.

Definition 7. Let a basis B ⊆ {1, . . . ,n} be given. An ILP is said to be B-stable, if B is an optimal basis for each
scenario of the ILP. Furthermore, it is said to be unique B-stable, if each scenario has a unique optimal basic solution
with the basis B.

Theorem 8. If an ILP of type (A) is unique B-stable, then the optimal solution set can be described by the linear
system

ABxB ≤ b,−ABxB ≤−b,xB ≥ 0,xN = 0. (2)

If the ILP is B-stable, then each solution of (1) belongs to the optimal solution set and each scenario of the ILP has an
optimal solution satisfying (1).

References

[1] M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann: Linear Optimization Problems with Inexact Data,
Springer, New York, 2006.

[2] M. Hladík: Interval linear programming: A survey, Linear Programming – New Frontiers in Theory and Applica-
tions, pp. 85–120, Nova Science Publishers, New York, 2012.
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Milan Hladík
hladik@kam.mff.cuni.cz

Verification by Interval Approach (Ser: Interval Methods)

Introduction

By verification we mean to compute a solution by floating-point arithmetic, and then to verify that the result is correct
or to determine rigorous distance to a true solution.

Problem statement. As an example, we show a verification method for the problem of finding a root of a function
f : Rn→ Rn.

Formally, given x∗ a numerically computed (=approximate) solution of f (x) = 0, find a small interval 0∈ y∈ IRn such
that the true solution lies in x∗+ y.

Ingredients

Brouwer fixed-point theorem: Let U be a convex compact set in Rn and g : U →U a continuous function. Then
there is a fixed point, i.e., ∃x ∈U : g(x) = x.

Observation: Finding a root of f (x) is equivalent to finding a fixed-point of the function g(y) ≡ y−C · f (x∗+ y),
where C is any nonsingular matrix of order n.

Perron theory of nonnegative matrices:

• If |A| ≤ B, then ρ(A)≤ ρ(B). (herein, ≤ is meant entrywise and ρ(·) is the spectral radius)

• If A≥ 0, x > 0 and Ax < αx, then ρ(A)< α .

Mean value theorem: Everybody knows . . . I hope . . .

Cooking

Lemma 1. If z+Ry⊆ inty, then ρ(R)< 1 for every R ∈ R.

Theorem 2. Suppose 0 ∈ y. Now if −C · f (x∗)+(I−C ·∇ f (x∗+ y)) · y⊆ inty, then:

• C is nonsingular,

• every matrix in ∇ f (x∗+ y) is nonsingular, and

• there is a unique root of f (x) in x∗+ y.

Proof By the mean value theorem,
f (x∗+ y) ∈ f (x∗)+∇ f (x∗+ y)y.

By the assumptions, the function

g(y) = y−C · f (x∗+ y) ∈ −C · f (x∗)+(I−C ·∇ f (x∗+ y)) · y⊆ inty

has a fixed point, which shows “existence”. By Lemma 1, C and ∇ f (x∗+y) are nonsingular; the latter shows “unique-
ness”. �
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Recipes

Hamburg steak:

• take C ≈ ∇ f (x∗)−1 (numerically computed inverse),

• take y :=C · f (x∗) and repeat inflation

y :=
(
−C · f (x∗)+(I−C ·∇ f (x∗+ y)) · y

)
· [0.9,1.1]+10−20[−1,1]

until the assumption of Theorem 2 are satisfied.

References

[1] S.M. Rump: Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica 19, pp. 187–
449, 2010
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Jaroslav Horáček
horacek@kam.mff.cuni.cz

Introduction to Interval Computations (Ser: Interval Methods)

Introduction

The purpose of this talk is to show the basics of interval computations. We will introduce a basis on which the other
talks in Interval section will build. In this talk we enclose numbers in our problems with closed real intervals

x = [x,x] = {x ∈ R | x≤ x≤ x},

and show why this description can be useful.

More formally

With intervals we can define interval arithmetic that works quite similarly to the classical one with real numbers.

Definition 1. Interval arithmetic is defined as follows

x+ y = [x+ y,x+ y],

x− y = [x− y,x− y],

x ∗ y = [min(S),max(S)], where S = {xy, xy, xy, xy},
x / y = x∗ (1/y), where 1/y = [1/y,1/y],0 /∈ y.

These interval operations are defined to return the tightest interval containing all possible results emerging by picking
any real number from the first interval and any real number from the second interval and providing a classical real
operation on them. The only problem is that some properties of arithmetic do not hold (e.g., existence of inverse
or opposite element, distributivity). However, if necessary, in many formulas we can just replace real numbers and
operations with their interval versions.

Theorem 2. Let us have a formula formed only by using +,−,∗,/ and with each variable occurring only once.
When we substitute variables with intervals and continue the computation with interval arithmetic, we also get the
tightest possible interval enclosing all possible results of formula applied to all possible real numbers coming from
corresponding intervals.

We wish to build intervals in more complex structures – functions, matrices, linear and nonlinear systems, constraint
programming. There might be various reasons why to do that – catching rounding errors, representation of measure-
ment errors, verified intervals containing all possible values or cases. The ideas will be illustrated on some basic
interval problems. We will also show practical examples – two famous computer assisted proofs – Kepler’s conjecture
and Lorentz attractor.

We will introduce the recent projects and research directions and the applications we are interested in – localization of
robots with poor sensors, handling clinical interval data in children lung function diagnosis.

For more information about our research and projects please visit kam.mff.cuni.cz/∼horacek. For additional basic
information about the interval computation do not hesitate to take a look into the references.

References

[1] J. Horáček, M. Hladík, M. Černý, Interval Linear Algebra and Computational Complexity, http://arxiv.org/
abs/1602.00349, accepted to Applied and Computational Matrix Analysis, Springer Verlag, 2016.

[2] J. Horáček, Přeurčené soustavy intervalových lineárních rovnic, Diploma thesis, MFF UK, 2011.
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Jana Novotná
jamafyna@gmail.com

Feasibility in interval linear programming (Ser: Interval Methods)

Introduction

In linear programming we often want to know if a given problem is feasible or not. We extend the feasibility concept
into interval linear programming and the basic questions we ask are: "Is every scenario feasible?" or "Is at least one
scenario feasible?". We show that the answer depends on the form of the linear constraint system and that some
problems are easy to compute while others are NP-hard.

More formally

Definition 1. Let A ∈ IRm×n,b ∈ IRm,c ∈ IRn be given. By an interval linear programming (ILP) problem we mean
a family of linear problems

minc>x subject to x ∈M (A,b) where A ∈ A,b ∈ b,c ∈ c

where M (A,b) is a feasible set characterized by a linear system of equations and inequalities. We write it shortly as

minc>x subject to x ∈M (A,b).

Definition 2. We call a scenario a realization of interval values, i.e. A ∈ A,b ∈ b,c ∈ c.

We focus on three types of a feasible set description:

(A) M (A,b) = {x ∈ Rn | Ax = b,x≥ 0}

(B) M (A,b) = {x ∈ Rn | Ax≤ b}

(C) M (A,b) = {x ∈ Rn | Ax≤ b,x≥ 0}

and we discuss these systems separately because the types cannot be straightforwardly rewritten to each other in
interval setting unlike in real value setting.

Definition 3. An interval linear system is strongly feasible if it is feasible for all scenarios and it is called weakly
feasible if it is feasible for at least one scenario.

Testing of weak or strong feasibility in type (C) is polynomial whereas one of those problems is NP-hard in types (A)
and (B).

Theorem 4. An interval linear system Ax ≤ b,x ≥ 0 is strongly feasible if and only if the system Ax ≤ b,x ≥ 0 is
feasible.

Theorem 5. An interval linear system Ax ≤ b,x ≥ 0 is weakly feasible if and only if the system Ax ≤ b,x ≥ 0 is
feasible.

Strong feasibility of the type (B) gives us a surprising result:

Theorem 6. The interval linear system Ax ≤ b is strongly feasible if and only it has a strong solution, i.e. ∃x ∀A ∈
A ∀b ∈ b : Ax≤ b.

Next theorems show how important is the non-negativity of variable x. The testing weak feasibility of an ILP Ax =
b,x≥ 0 is polynomial whereas of an ILP Ax = b is NP-hard.
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Theorem 7. An interval linear system Ax= b,x≥ 0 is weakly feasible if and only if the system Ax≤ b,−Ax≤−b,x≥ 0
is feasible.

Theorem 8. Testing weak feasibility of an interval linear system Ax = b is an NP-hard problem.

Type (A): Type (B): Type (C):
Ax = b,x≥ 0 Ax≤ b Ax≤ b,x≥ 0

strong feasibility NP-hard polynomial polynomial
week feasibility polynomial NP-hard polynomial
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Interval linear regression (Ser: Interval Methods)

Introduction

Common linear regression can be extended to interval linear regression. There are many approaches. This talk presents
two a little bit oposite models of interval linear regression, possibilistic model and necessity model. Tolerance approach
is described and also it’s adaptation to a data affected by outliers.

Notation

Definition 1. We have p measurements. Matrix of independent variables X represent input data of measurements.
Vector of dependent variables y represents output data.

y =

y1
...

yp

 X =

x11 . . . x1n
...

. . .
...

xp1 . . . xpn


Definition 2. Basic model of interval linear regression can be represented as

YYY (X) = Xaaa

where X is a p× (n+ 1) matrix (where first column is X∗1 = (1, . . . ,1)T and others are input data), Y (X) is a vector
from IRp and aaa ∈ IRn+1 is a vector of regression parameters. Every j-th observation corresponds to one equation:
Y (x j) = X j∗aaa = X j1aaa+X j2aaa+ · · ·+X jnaaa. When y is a vector of output data, y j ∈Y (x j). There exists a ∈ aaa such that it
holds

y j = X j∗a = a0 +X j1a1 +X j2a2 + · · ·+X jnan.

Possibilistic and Necessity models

Possibilistic model Necessity model

∀ j = 1, . . . , p : yyy j⊆X j∗aaa ∀ j = 1, . . . , p : yyy j⊇X j∗aaa

minac,a∆ ∑
p
j=1 |X | j∗a∆ maxac,a∆ ∑

p
j=1 |X | j∗a∆

∀ j = 1, . . . , p ∀ j = 1, . . . , p

y j≥X j∗ac−|X | j∗a∆ y j≤X j∗ac−|X | j∗a∆

y j≤X j∗ac + |X | j∗a∆ y j≥X j∗ac + |X | j∗a∆
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Tolerance approach

In a regression model YYY (x) = Xaaa the parameter vector is given as

aaa = [ac−δ r,ac +δ r].

Theorem 3. If there is j ∈ {1, . . . , p} such that |X | j∗r = 0 and y j 6= X j∗ac then there exists no δ satisfying

∀ j ∈ {1, . . . , p} ∃a′ ∈ [ac−δ r,ac +δ r] : y j = X j∗a′.

Otherwise let

δ
∗ := max

j:|X | j∗r>0

|y j−X j∗ac|
|X | j∗r

.

Then δ ∗ is minimal tolerance quotient.
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Intervals→ Zonotopes→ Ellipsoids (Ser: Interval Methods)

Intervals – linear regression model with interval outputs

First, consider linear regression model in form
y = Xβ + ε,

where y∈Rm are observations of dependent variable, X ∈Rm×p are observations of independent variables and ε ∈Rm

are disturbances. Our goal is to estimate unknown regression parameters β ∈ Rp.

Here, we assume that regression parameters can be estimated with a linear estimator, e.g. with ordinary least squares
(hereinafter OLS) or, more generally, with generalized least squares. Using OLS, the estimates of regression parame-
ters read β̂ = Qy with Q = (XTX)−1XT.

Now, assume that we don’t know the crisp values of y. Instead of them, we are given intervals [y,y] = y ∈ IRm for
y,y ∈ Rm, and we know that the true values of y belong to y. We call this extension linear regression model with
interval outputs (formally, it can be viewed as collection of regression models).

What can one say under this setup? Traditional approaches construct an estimator of β that is “good” in some sense.
However, these approaches usually require some additional assumptions on the distribution of y over y. We take
another, possibilistic approach: we will examine the set of all possible OLS estimates β̂ for some y ∈ y.

Definition 1. The OLS-set of linear regression model with data y,X is the set

B(y,X) = {b ∈ Rp : b = Qy,y ∈ y}. (3)

Zonotopes – OLS-sets of regression model with interval outputs

The OLS-set in the form (3) is not very user-friendly. It is easy to observe that the OLS-set is linear image of
m-dimensional hypercube (living in the space of observations of output variable) in the p-dimensional space of param-
eters. Such images are polytopes of a special type with some nice properties, so called zonotopes.

Viewing OLS-set as a polytope (zonotope) allows for characterization of the OLS-set in terms of usual representations
and/or approximations of polytopes. One might be interested in interval envelope (which gives bounds on individual
regression parameters), in list of vertices and facets of the OLS-set, in volume of the OLS-set (as a measure of amount
of uncertainty introduced into regression by intervals) or in ellipsoidal approximation of the OLS-set.

The approximative characteristics of the OLS-set are of a high importance, since the exact ones are expensive to
compute. In particular, the problem of volume computation of zonotope is in #P, and the vertices and facets of the
OLS-set can not be enumerated efficiently just because of the fact that their numbers are superpolynomial in p:

Lemma 2. Let f0 resp. fp−1 denote the number of vertices resp. facets of the OLS-set. Then f0 ≤ 2∑
p−1
i=0

(m
i

)
and

fp−1 ≤ 2
( m

p−1

)
. Furthermore, the bounds are the tightest possible.

The next section is focused on ellipsoidal approximation of the OLS-set.

Ellipsoids – finding tight ellipsoidal approximations of OLS-sets

Definition 3. Given a positive definite matrix E ∈ Rp×p and a point c ∈ Rp, the ellipsoid is the set

E (E,c) = {x ∈ Rp : (x− p)TE−1(x− p)≤ 1}.
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The following theorem guarantees existence of tight ellipsoidal approximation of the OLS-set:

Theorem 4. Given a convex body K ⊆ Rp, there exists an ellipsoid E (E,c), called Löwner-John’s ellipsoid for K,
such that

E (r2E,c)⊆ K ⊆ E (E,c),

where the shrunk factor r equals to p.

If K is centrally symmetric, the shrunk factor can be increased to
√

p−1.

In other words, for every convex set K in Rp, there is a circumscribing ellipsoid, whose p-times-shrunk copy (resp.√
p-times-shrunk copy for symmetric bodies) is inscribed into K. Note that the stronger version holds for the OLS-set,

since it is image of centrally symmetric hypercube.

Given an H-polytope, Löwner-John’s ellipsoid can be computed (with given precision) in polynomial time using
Goffin’s algorithm (a variant of shallow-cut ellipsoid method). Unfortunately, Goffin’s algorithm can’t be used for
OLS-set effectively, since its facet representation is not known and can’t be computed in reasonable time due to
Lemma 2.

Hence, we adapt Goffin’s algorithm to handle the input data y,X of the OLS-set. We are able to find Löwner-John’s
ellipsoid with shrunk factor p with arbitrary precision in time polynomial in size of y,X . This shrunk factor is not the
best possible. The improvement of the shrunk factor is related to the ability to solve the following problem:

Assume B(y,X)⊆ E (Ip,0). Does E (r2Ip,0)⊆ B(y,X) hold for r = p−1/2? (4)

Currently, we are able to test (4) for r = p−1. Of course, every result that enables to perform the test (4) for any
r ∈ (p−1, p−1/2] would be of interest.

The Goffin’s algorithm for OLS-set is described in more detail in [1].
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Nonstandard methods in Ramsey combinatorics I

Introduction

Recently, nonstandard methods have been successfully applied in many areas of combinatorics. The nonstandard
methodology provides an extension of the universe of mathematics by new ideal (nonstandard) objects such as "an
infinitely large natural number", "an infinitely small neighborhood of a point", and many more. The rich structure
of relations between the original (standard) and the new (nonstandard) objects enables the standard objects and their
standard properties to be described and studied by means of nonstandard concepts. It turns out that this nonstan-
dard description is in many cases more elegant and the nonstandard proofs clearer and shorter than their standard
alternatives.

In this series, we outline a nonstandard approach to Ramsey-type combinatorics. We prove two nonstandard Ramsey-
type principles of the following common form (vaguely): “If, in a coloring of finite subsets of N, certain nonstandard
object (a witness) has a color C, then there is an infinite subset of N homogeneously having the color C.”

As an application of these principles we give very short and simple nonstandard proofs of several well-known Ramsey-
type combinatorial theorems, including Ramsey’s, Hilbert’s and Hindman’s theorems.

Nonstandard universes

The nonstandard world consists of three interrelated universes (instead of just one universe of the classical mathemat-
ics). The universe V of all sets (= all objects) contains the isomorphic copy S of itself. The universe S is extended by
the universe I⊆ V which contains new ideal (nonstandard) elements. The whole picture is as follows:

S
elementary
≺ I

transitive
⊆t V

∗
isomorphism

ww

∗:V→ S isomorphism ⇔ ϕV(a)↔ ϕS(∗a) for ∈-formula ϕ , a ∈ V,
∗ is injective and onto S = rng(∗) = ∗[V],

S≺ I (elementary) ⇔ ϕS(a)↔ ϕI(a) for ∈-formula ϕ and a ∈ S,
I⊆t V (transitive) ⇔ y ∈ x ∈ I→ y ∈ I,
I almost universal ⇔ x⊆ I→ (∃y ∈ I)(x⊆ y),
I©κ -saturated ⇔ (C ⊆ I centered & |C |<©κ )→

⋂
C 6= /0

where a system C is centered if for any
finite C ′ ⊆ C it is

⋂
C ′ 6= /0

Nonstandard natural numbers

This is what happens with the set N of all natural numbers:
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0 1 2 3

N

0 1 2 3

σ∗N

l

∗N

* * * *

*

∗n = n ∈ S for n ∈ N

l ∈ I−S infinite natural number

∗N ∈ S standard set of nat. numbers

σ∗N= N /∈ I set of standard natural numbers

∗N−N /∈ I set of non-standard natural numbers

Whatever property of numbers n ∈ N is true in N, is true in ∗N and vice versa.

Basic nonstandard principles

We list some handy “nonstandard principles”:

Proposition 1. (Transfer principle). Let ϕ be a bounded formula (i.e. with all quantifiers bounded in a set: ∀x ∈ y,
∃x ∈ y). Then

ϕ(x)↔ ϕ(∗x).

Corollary 2. Let ϕ be a bounded formula. Then
∗{x ∈ B ; ϕ(x,z)}= {x ∈ ∗B ; ϕ(x,∗z)}

for all B,z.

Proposition 3. Let operation o(x) is defined by a bounded formula ϕ(x,z).

1. Then ∗o(x)⊆ o(∗x) for every x.

2. If, moreover, o(∗x)⊆ A∪
⋃

B for some A,B⊆ S, then ∗o(x) = o(∗x).

Iterated star

The mapping ∗:V→ S can be iterated: For n ∈ N the mapping n∗ : V→ V is ∗ applied n-times.

We also define the mapping · : V→ V by
·x =

⋃
n∈N

n∗x.

We have the following chain of nonstandard extensions of N: N( ∗N( ∗∗N( · · ·( ·N.
The sets n∗N are transitive, i.e. they are initial segments of ·N with respect to the canonical ordering ∈. Letters α,β ,ν
denote elements of ·N, α,β ,ν tuples of elements from ·N.
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Nonstandard methods in Ramsey combinatorics II

Introduction

In this part of nonstandard series, we introduce the tools required to work with iterated ∗ mapping. We also sketch the
proof of an existence of idempotent elements, as these play a crucial role in arithmetic Ramsey theorems.

Iterated ∗ and transfer principle

Definition 1. For α ∈ ·N, the rank of α is defined as r(α) = min{n ∈N ; α ∈ n∗N}. For a vector α , its rank is defined
as r(α) = maxi<l(α) r(αi).

Lemma 2. (Variant of transfer principle). Let ϕ be a bounded formula, α ∈ ·N, and m,n ∈ N such that m,n ≥ r(α).
Then

ϕ(α,n∗y)↔ ϕ(α,m∗y).

Lemma 3. Let S denote the set of all functions g : Nm → N and relations R ⊆ Nm of all arities m. The structures
〈n∗N,n∗s〉s∈S form the elementary chain

〈N,s〉s∈S ≺ 〈∗N,∗s〉s∈S ≺ 〈∗∗N,∗∗s〉s∈S ≺ ·· · ≺ 〈·N, ·s〉s∈S

with the limit 〈·N, ·s〉s∈S .

Lemma 4. For any relation R⊆ N<ω , B⊆ N, and α ∈ ·N,

{x ∈ m∗B ; ·R(x,m∗
α)}= m∗{x ∈ B ; ·R(x,α)}.

Grading

Definition 5. We define the grading transformation ↑ : ·N<ω → ·N<ω by

α
↑ = (α0,

r(α0)∗α1,
(r(α0)+r(α1))∗α2, . . . ,

(∑i<l(α)−1 r(αi))∗αl(α)−1)

We set r↑(α) = r(α↑) = ∑r(αi). For every (partial) function g from N<ω into N and every relation R⊆ N<ω we set

g↑(α) = ·g(α↑), R↑(α)↔ ·R(α↑),

Indistinguishability

Definition 6. For α,β ∈ ·N we define the equivalence relation ∼ (the indistinguishability equivalence) by

α ∼ β ↔ (∀A⊆ N)(α ∈ ·A↔ β ∈ ·A).

For tuples α,β , the equivalence is defined entry-wise: α ∼ β if αi ∼ βi for every i < l(α) = l(β ).
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Lemma 7. Let α,β ∈ ·N. Then

1. α ∼ n∗α for every n ∈ N,

2. α ∼ β → m∗α ∼ n∗β for every m,n ∈ N,

3. α ∼ β → α
↑ ∼ β

↑
.

Definition 8. Let R⊆ N<ω be a relation, we denote

R[γ` .`δ ] = {x ∈ N<ω ; R(γ`x`δ )}, R[ .`δ ] = R[ /0` .`δ ].

Lemma 9. Let α ∈ ·N, m,k ∈ N. Then:

1. R↑(α)↔ /0 ∈ R[ .`α
↑].

2. m ∈ R[ .`α
↑]↔ α0 ∈ r(α0)∗R[m` .`(

(
α)↑].

3. α ∼ β → R[k` .`α
↑] = R[k` .`β

↑
],

where (
α denotes the tuple α without its first element.

Theorem 10. The equivalence ∼ is a congruence with respect to s↑ whenever s is a (partial) function from N<ω into
N or a relation s⊆ N<ω .

Corollary 11. Let g : N→ N be an unary function. Then ∼ is congruence with respect to g.

Topology and idempotent elements

Definition 12. We define
Ñ= ·N/∼, g̃ = g↑/∼, R̃ = R↑/∼, α̃ = α/∼

for g : N<ω → N, R⊆ N<ω , α ∈ ·N, and ϒ : P(N)→P(Ñ) by

ϒ(A) = {α̃ ; α ∈ ·A}.

The set B = {ϒ(A) ; A⊆ N} is a basis of a topology on Ñ. We call this topology the canonical topology on Ñ.

Lemma 13. If©κ > 2ℵ0 , then

1. (Ñ,τ(B)) is a compact Hausdorff space.

2. All functions g̃ with g : N<ω → N are continuous in the first coordinate in (Ñ,W̃).

Definition 14. Let g : Nn→ N be a function. An element ν ∈ ·N is g-idempotent, if g↑(νn)∼ ν .

Lemma 15. (Ellis-Numakura). Let S be a semigroup with a compact Hausdorff topology and such that the group
operation is left-continuous. Then S contains an idempotent element.

Moreover, every element of the minimal compact subsemigroup of S is idempotent.

Corollary 16. There exist ν ,ν ′ ∈ ∗N−N such that ν is +-idempotent and ν ′ is ·-idempotent.
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Nonstandard methods in Ramsey combinatorics III

Nonstandard Ramsey-Type Principles

For operations f ,g on N and n≤ ar( f ) we define

( f ◦n g)(α,β ,γ) = f (α,g(β ),γ)

for all α ∈ Nn−1, β ∈ Nar(g), γ ∈ Nar( f )−n.

Lemma 1. ( f ◦n g)↑ = f ↑ ◦n g↑.

Lemma 2. If ν is a common idempotent of G , then it is also a common idempotent of G
op

.

Definition 3. X ⊆ 〈·N〉<ω is ν-N-inductive if (∀F ∈ 〈N〉<ω)(∧N−1
i=1 F`ν

i ∈ X → F`ν
N ∈ X)

Theorem 4. Let C ⊆ 〈N〉<ω , S⊆ N, ν ∈ ∗S−N.

1. Let I ⊆ N be finite and suppose that ν
n ∈C↑ for all n ∈ I. Then there is an infinite set A⊆ S such that for every

n ∈ I and m≤ n
〈A,ν〉m,n−m ⊆C↑ and thus in particular 〈A〉n ⊆C.

2. Suppose that C↑ is ν-N-inductive, N > 1, and ν
n ∈C↑ for all 0 < n≤ N−1. Then there is an infinite set A⊆ S

such that
〈A,ν〉<ω,≤N−{ /0} ⊆C↑ and thus in particular 〈A〉<ω −{ /0} ⊆C.

Applications

A coloring of a set X is any family C of mutually disjoint sets such that X ⊆
⋃

C . It can be easily seen that if C is a
coloring of X ⊆ 〈N〉<ω , then C ↑ = {C↑ ; C ∈ C } is a coloring of X↑. In particular, if X is some 〈N〉n or 〈N〉<ω , then
C ↑ is a coloring of X (as X ⊆ X↑).

Theorem 5.[Ramsey] Let C be a finite coloring of 〈N〉n, n ∈N. Then there is an infinite A⊆N such that 〈A〉n ⊆C for
some C ∈ C .

We can even prove the following stronger statement directly:

Theorem 6.[Ramsey II] Let I ⊆ N be finite and let Cn be a finite coloring of 〈N〉n for every n ∈ I. Then there are an
infinite set A⊆ N and colors Cn ∈ Cn such that 〈A〉n ⊆Cn for every n ∈ I.

Proof Let us take arbitrary ν ∈ ∗N−N and denote C↑n ∈ C ↑n the colors of ν
n (that is ν

n ∈C↑n) for n ∈ I. The existence
of A follows directly from Theorem 4.1 for C =

⋃
n∈I Cn. �

Theorem 7.[Hilbert] Let C ′ be a finite coloring of N and m ∈ N. Then there are an infinite set A ⊆ N and C′ ∈ C ′

such that ∑F ∈C′ for all F ∈ 〈A〉≤m.

Theorem 8.[Hindman] Let C be a finite coloring of N. Then there are an infinite set A ⊆ N and C ∈ C such that
∑F ∈C for all F ∈ 〈A〉<ω .

Proof Let us take ν ∈ ∗N−N a +-idempotent, denote C′ its color (that is ν ∈ ·C′), and apply Theorem 4.2 for
C = {F ∈ 〈N〉<ω ; ∑F ∈C′}. To verify that C↑ is ν-2-inductive, it is enough to observe that ∑F +ν ∼ ∑F +ν + ∗ν
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for every F ∈ 〈N〉<ω , which follows directly from +-idempotence of ν . �

Partition Regularity and van der Waerden’s Theorem for Length 3

We say that a tuple x is injective if its elements are mutually distinct. A set X ⊆Nn is called injectively partition regular
if for every finite coloring C of N there is an injective x ∈ X that is monochromatic (i.e. x ∈C for some C ∈ C ). An
equation f (x) = 0 over N is called injectively partition regular if the set of all its solutions is.

Proposition 9. Let X ⊆ Nn. The following statements are equivalent:

1. X is injectively partition regular.

2. There is injective ν ∈ ∗X such that ν0 ∼ ·· · ∼ νn−1.

3. There is injective ν ∈ ·X such that ν0 ∼ ·· · ∼ νn−1.

Proposition 10. The equation x+ y = 2z over N is injectively partition regular.

Corollary 11.[van der Waerden’s Theorem for length 3] Let C be a finite coloring of N. Then there is C ∈ C and an
arithmetic progression a,a+d,a+2d ∈C.
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Fast Algorithms for Exact String Matching

Given a pattern string P of length n and a query string T of length m, where the characters of P and T are drawn from
an alphabet of size ∆, the exact string matching problem consists of finding all occurrences of P in T .

We can solve this problem using: (1) character based comparison algorithms, (2) automata based algorithms,
(3) algorithms based on bit-parallelism and (4) constant-space algorithms.

The character based comparison algorithms are ofter based on sliding window mechanism which does the following.

(1) Align the n characters of the pattern string P with the first n characters of T – the search window.

(2) Repeat the following until the search window is no longer contained within the query string T : inspect the aligned
pairs in some order until there is either a mismatch in an aligned pair or there is a complete match among all the n
aligned pairs. Then shift the search window to the right.

The order in which the aligned pairs are inspected and the length by which the search window is shifted differs from
one algorithm to another. The main approaches to the inspections are: (1) left to right scan; (2) right to left scan; (3)
scan in specific order, and (4) scan in random order or scan order is not relevant.

1) Morris and Pratt; Knuth, Morris and Pratt

When shifting, we expect that a prefix v of the pattern matches some suffix of the portion u of the text. The longest
such prefix v is called the border of u (it occurs at both ends of u). Borders can be computed in preprocessing in O(m)
and using this principle, we reach O(m+n) search time complexity.

2) Boyer-Moore-Horspool

Compare aligned pairs from right to left. Preprocess pattern to find distance from end of the rightmost occurrence
of each character (excluding last symbol). When shifting, move sliding window by preprocessed value for the first
compared character in the text. This assures that it is aligned to matching character in the pattern. Runs in O(mn).

3) Boyer-Moore

Extends Boyer-Moore-Horspool and adds notion of good-suffix shift. We create array suff where we store how long
suffix of prefix ending at position j matches the suffix of the whole pattern. This allows us to shift so that the found
suffix aligns with its rightmost occurrence in the pattern. When no occurrence is found, we can align it with prefix
(principle of border). Since we can still use principle from Boyer-Moore-Horspool, we use maximum value to shift.
Search worst case complexity is O(mn).

4) Apostolico and Giancarlo

Extends Boyer-Moore with memory – it stores information about matched suffixes, so it doesn’t have to check same
pair twice. We keep this information in skip array. Lets denote length of matched suffix with k and see what happens
when window is shifted. We have to compare all new characters from right. When we reach known suffix three cases
can arise: When k > su f f [i] and su f f [i] = i+ 1 we found a match. If k 6= su f f [i] we know there will be mismatch,
because either this part matched before but is different now or it did not match before but stayed the same. Third case
is when k = su f f [i], this means that we skipped exactly and now we compare further pairs.

This algorithm performs in the worst case at most 3/2n text character comparisons.
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(a) Knuth, Morris and Pratt (b) Boyer-Moore-Horspool bad character shift

(c) Boyer-Moore good suffix shift (d) Boyer-Moore matching prefix

(e) Boyer-Moore bad character shift
(f) Apostolico and Giancarlo, when k > su f f [i] and su f f [i] =
i+1

(g) Apostolico and Giancarlo, when k = su f f [i]

Lets now expand on those simple algorithms and devise algorithms A and B.

Definitions 2.1

Given a pattern string P of length n and a query string T of length m, we define Ni(P), i ∈ [1..n], denote the length
of the longest suffix of P[1..i] that matches a suffix of P, and M to be a m length vector whose j-th entry M[ j] = k
indicates that a suffix of P of length at least k occurs in T and ends at position j.

Definitions 2.2

Given a pattern string P, and an ordered pair of characters u,v∈ Σ (not necessarily distinct), we define sparse(u,v)(P),
the 2sparse pattern of P with respect to u and v, to be the 3 rightmost occurrence of a substring of P of longest length
that starts with u, ends with v, but does not contain u or v within it. We define sparse(P) to be the longest among the
2sparse patterns of P.

Definitions 2.3

Given sparse(P), we define startc(P) and endc(P) to be the respective first and last characters of sparse(P), and
startpos(P) and endpos(P) be the respective indices of the first and last characters of sparse(P) in P. For c ∈ Σ, if
c ∈ sparse(P), shiftc(P) is the distance between the rightmost occurrence of c in sparse(P) and the last character
of sparse(P). If c is not present in P then shiftc(P) is set to n, the length of P. If c is present in P but not in
sparse(P) then shiftc(P) is set to |sparse(P)|+1.

Theorem 1

Given any pattern string P of length n and a query string T of length m, Algorithm A finds all occurrences of P in T in
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O(m) time.

Theorem 2

Given any pattern string P of length n and a query string T of length m where each character is drawn uniformly
at random, Algorithms A and B find all occurrences of P in T in O(m/min(|sparse(P)|,∆)) expected time, where
|sparse(P)| is at least δ (i.e the number of distinct characters in P).

Lemma 3

For any pattern string P, the length of sparse(P), the longest 2−sparse pattern of P, is at least δ , where δ is the
number of distinct characters in P.

Lemma 4

For any pattern string P, Algorithm A preprocesses P in O(n∆2 time to determine (i) Ni(P), for i ∈ [1..n], (ii)
sparse(P), and (iii) shiftc(P), for c ∈ Σ, where ∆ is the number of characters in its alphabet Σ.

Lemma 5

For any pattern string P, during the search phase of Algorithm A, the expected length of shift of P after a Type-1,
Type-2 or Type-3 event is at least O(min(|sparse(P)|,∆)).
Lemma 6

For any given pattern string P of length n from Σ and a query string T whose characters are drawn independently
and uniformly from Σ, the expected number of matches before a mismatch when invoking Apostolico-Giancarlo or
Random-Match Algorithm is O(1).
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On interval representations of graphs
(http://www.tau.ac.il/~nogaa/PDFS/ijcai15.pdf)

Preliminary

k-vertex is a vertex of degree k. true twin – vertices u, v are true twins only if N[u] = N[v]. Pg is a class of planar
graphs with girth atleast g.

General

• d-interval representation of G is an assignement of at most d intervals of the real line to every vertex of G. Two
vertices of G are adjacent only if some intervals of respective vertices intersect.

• interval component of an d-interval representation is a maximal subset S of the real line such that every point is
contained in an interval in the representation.

• d-local representation of G is a d-interval representation of G with the additional requirement that two intervals
for the same vertex belong to distinct interval components.

• d-track representation of G is given by the union of d (1-interval) representations of the graphs G j for 1≤ j≤ d
such that G j has the same vertex set as G and E(G) =

⋃
1≤ j≤t E(G j)

• interval number i(G) of G is the least integer d such that G has a d-interval representation.
• local track number l(G) of G is the least integer d such that G has a d-local representation.
• track number t(G) of G is the least integer d such that G has a d-track representation.

Article specific

• interval is displayed if some part of that interval does not intersect any other interval.
• extremity (one of the two ends) of an interval is displayed if it does not intersect any other interval.
• vertex is displayed if it is represented by strictly less intervals than what is allowed by considered representation

or if one of its intervals is displayed.
• interval a covers interval b if b is contained in a.

Theorems

Theorem 1. The local track number of a graph in P7 is at most 2.

Theorem 2. Given a graph G, determining whether t(G)≤ d is NP-complete, even if G is (K4,2K3)-free, alternately
orientable, a Meyniel graph, and a string graph.

Theorem 3. Given a 2-degenerate planar graph G with maximum degree 5, determining whether l(G) ≤ 2 is NP-
complete.

Answer to the question: Is it possible to construct graph W that is d-track and not the union of d pairwise edge-disjoin
interval graphs? We construct such graph W .

Theorem 4. The graph W is a 2-track graph and the edge AA′ is represented twice in every 2-interval representation.
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The Diameter of Chess Grows Exponentially
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Introduction

The paper contributes to the complexity theory of puzzles (games for one player). The puzzle is a directed graph whose
vertices are called position and arcs are called moves. An initially position is given to the player and he has to find an
oriented path to the final position. Examples of puzzles are Rubik’s cube, Game of Fifteen, Sokoban etc.

The important parameter of puzzles is its diameter which is a length of the longest directed path in the graph of
the puzzle. Some of the puzzles have diameter bounded by a polynomial in the size of puzzle. This is the case for
generalizations of Rubik’s cube [1] and Game of Fifteen [2] such that the puzzle has arbitrary size. Therefore, these
puzzles can be solved in NP. However, there is no such known bound for Sokoban and this puzzle is PSPACE-
complete [3].

Chess Puzzle

We will study a diameter of puzzle related to chess. There is an n×n chess board and the player need to construct a
legal series of chess moves from the initial position and the final position.

Theorem 1. There is an infinite sequence (An,Bn) of pairs of chess positions on an n× n chess board such that the
minimum number of legal moves required to get from An to Bn is exponential in n.

The main idea of the proof is depicted on Figure 2. The position An is on the figure, the position Bn is same as An
except the bishops in circles are switched. If we want to move the white bishops in the left most cycle to the right we
have to move all white bishops in the same direction. The i-th bottom cycles have length 2pi +2 where pi is a prime.
Moreover, every bottom cycle has distinct length. To reach the position Bn we have to rotate each bottom cycle at least
∏

m
i=2 pi where m is the number of the bottom cycles. This gives us the required lower bound.
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Figure 2: Initial position for the puzzle.
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Fixed Parameter Approximations for k-Center Problems in Low Highway
Dimension Graphs

Abstract

For the k-Center problem, a set of k center vertices needs to be found in a graph G with edge lengths, such that the
distance from any vertex of G to its nearest center is minimized. This problem naturally occurs in transportation
networks, and therefore we model the inputs as graphs with bounded highway dimension, as proposed by Abraham et
al. [SODA 2010].

We show both approximation and fixed-parameter hardness results, and how to overcome them using fixed-parameter
approximations, where the two paradigms are combined. In particular, we prove that for any ε > 0 computing a
(2− ε)-approximation is W[2]-hard for parameter k, and NP-hard for graphs with highway dimension O(log2 n). The
latter does not rule out fixed-parameter (2− ε)-approximations for the highway dimension parameter h, but implies
that such an algorithm must have at least doubly exponential running time in h if it exists, unless the ETH fails. On
the positive side, we show how to get below the approximation factor of 2 by combining the parameters k and h: we
develop a fixed-parameter 3/2-approximation with running time 2O(kh logh) ·nO(1).
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Mastering the game of Go with deep neural networks and tree search
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(a copy available at http://kam.mff.cuni.cz/ spring/2016/papers/go.pdf)

Introduction

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to
its enormous search space and the difficulty of evaluating board positions and moves. A new approach to computer
Go introduces value networks to evaluate board positions and policy networks to select moves. These deep neural
networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play.

Furthermore, a new search algorithm is introduced: it combines Monte Carlo simulation with value and policy
networks. Using this search algorithm, the computer program AlphaGo developed by Google DeepMind achieved
a 99.8 % winning rate against other Go programs.

Supervised learning

A (machine learning) program is “trained” on a pre-defined dataset. Based on its training data, the program can make
accurate decisions when given new data.

Training is the phase, when the model “learns”, i.e. it optimizes the error function by adjusting inner parameters.
The portion of the dataset used for training is called the training set.

Testing is the phase evaluating, how well the model can make predictions about unseen data. The portion of the
dataset used for testing is called the testing set.

Classification is is the process of taking some sort of input and assigning a label to it. Classification systems are often
used when predictions are of a discrete nature, e.g. “yes or no”, “spam or regular email”, “winning or losing
position” etc.

Regression is used when the predicted value falls on a continuous spectrum. It is a “continuous counterpart” of
classification, used to answer questions of “How much? How many?” nature.

Gradient descent (GD) is an iterative optimization algorithm to find a (generally local) minimum of an error function.
It moves from the current point to a new one, by taking steps proportional to the negative of the gradient (or
the approximate gradient).

Stochastic gradient descent (SGD) is a variant of GD, which updates the parameters in each iteration by using only
one sample of the training set. Hence, instead of using the overall error of the training set as in the classic GD,
the SGD works with an error of a single sample.

Overfitting is a situation where the model learns the training data by heart, instead of learning the big picture. This
happens when the model is too complex for the size of the training data, e.g. when using a 100-degree polyno-
mial as a model to fit 100 data points.

Overfitting prevents the model from generalizing to new data.
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Reinforcement learning

Reinforcement learning allows machines and software agents to automatically determine the ideal behavior based
on the feedback from the environment, in order to maximize the performance. This automated learning scheme
implies that there is little need for a human expert in the domain of application.

Self-play means learning from game matches played by the agent against itself (or in the case of AlphaGo, against
its previous versions). Self-play is especially useful when the evaluation function of the game is unknown in
advance.

Game-tree search

Monte Carlo tree search (MCTS) is a Monte Carlo heuristic of the classical tree search. However, instead of travers-
ing the entire game tree, the MCTS selects the most promising moves, expanding the search tree based on ran-
dom sampling.

In each iteration, the game is played-out to the very end by choosing moves at random. The final outcome
of each playout is then used to weight the nodes in the game tree accordingly. Thus, better nodes are more likely
to be chosen in future playouts.

Neural networks

Inspired by biological neural networks, an artificial neural network (ANN) is a network of interconnected nodes that
make up a model. ANNs can be defined as statistical learning models that are used to approximate functions which
depend on a large number of inputs. Neural networks are typically used when the volume of inputs is far too large
for standard machine learning approaches.

Figure 3: A shallow neural network with 3 layers (input, hidden and output)

Convolutional neural network (CNN) is a neural network suitable for high-dimensional inputs (e.g. a large number
of pixels in an image). CNNs are frequently used in computer vision (for identifying objects in an image, for
face detection in photos etc.).

They are invariant to expectable transformations of input, such as translations of objects in a picture or changes
in illumination.

Deep neural network (DNN) is a neural network with many hidden layers. It can model complex non-linear rela-
tionships, e.g. in speech, in images, in videos or in board positions of Go.

Rules of Go

Black and White place pieces (stones) on the unoccupied intersections (points) of a board with a 19×19 grid of lines.
Players take turns, Black moves first. There are only 2 basic rules of Go:
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The rule of liberty Every stone remaining on the board must have at least one open point (an intersection, called
a liberty) directly next to it (up, down, left, or right), or must be part of a connected group that has at least one
such liberty next to it.

Stones or groups of stones which lose their last liberty are removed from the board.

The “ko” rule The stones on the board must never repeat a previous position of stones. This is to prevent unending
cycles.

There are several scoring rules to determine the winner of a game. In the match against Lee Sedol, the area scoring
was used: a player’s score is the number of player’s stones on the board, plus the number of empty intersections
surrounded by that player’s stones.

AlphaGo

Figure 4: Training the neural networks: the pipeline and the architecture

Rollout policy pπ is a CNN rapidly sampling actions during a rollout (a fast-forward simulation from a position to
the end of the game). It predicts expert human moves much faster but less accurately than pσ (see below).

Policy network is a CNN selecting moves. It addresses the problem of the game-tree breadth.

SL policy network pσ is trained by supervised learning to predict expert human moves.

RL policy network pρ is trained by reinforcement learning to win in the games of self-play.

Value network vθ is a CNN evaluating board positions, so as to address the problem of the game-tree depth. It is
trained by regression to predict the outcome in positions of the self-played games.

AlphaGo combines the policy and value networks with the MCTS, thus achieving the main result of the article:

Theorem 1. The (distributed version of) AlphaGo plays Go at the super-human level.

Proof The proof is left as an exercise to the reader. This exercise consists of making an effort to follow the slides. :-) �
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Introduction

Let X be any finite set of positive integers. We write ∑X for the sum ∑x∈X x of all elements of X . Let B be the subset
of finite set A of positive integers. We say that B is a divisor of A if ∑B | ∑A. We define dk(A) to be the number of
k-subset divisors of A and d(k,n) = maxdk(A) be the maximum value of dk(A) over all n-sets A of positive integers.

Similarly, for positive integer s≥ 1, we say that B is an s-divisor of A if ∑B | s∑A. We define ds
k(A) to be the number

of k-subset s-divisors of A and ds(k,n) = maxds
k(A) be the maximum over all sets A of n positive integers.

We are interested in finding the values d(k,n) and ds(k,n) for any couple (k,n) of positive integers satisfying k ≤ n.
Let a1 < a2 < · · ·< an be the elements of A. Huynh notes that for any choice of a1,a2, . . . ,an−1 one can find an such
that every k-subset of {a1,a2, . . . ,an−1} is a divisor of A. This motivates following conjecture

Conjecture 1. For all but finitely many values of k and n we have d(k,n) =
(n−1

k

)
.

Unfortunately, this conjecture is not true since d(n,n) = 1 and d(1,n) = n. However, in all other cases we can declare
victory since

Theorem 2. For all but finitely many pairs (k,n) satisfying 1 < k < n we have d(k,n) =
(n−1

k

)
.

In case of s-divisors the situation slightly changes, because the case k = n− 1 has to be removed and one can only
prove

Theorem 3. For all but finitely many pairs (k,n) satisfying 1 < k < n−1 we have ds(k,n) =
(n−1

k

)
.

The structure of the proof

For convenience, we rescale our situation by dividing every element of A by a factor ∑A. Hence, our elements of A
are positive rationals and ∑A = 1. Therefore, any set B ⊂ A is a divisor of A whenever ∑B = 1/m for some positive
integer m, and is an s-divisor of A whenever ∑B = s/m. Clearly, d(k,n) and ds(k,n) does not change.

The observation of Huynh motivates following definition. We say that any set A is an k-antipencil if the set of k-subset
divisors of A is

(A\{an}
k

)
. Similarly, any set A is an (k,s)-antipencil if the set of k-subset s-divisors of A is

(A\{an}
k

)
.

Now we can reveal the structure of the proof. We prove scaled Theorem 3 in four steps thanks to following four
propositions. Theorem 2 follows from Theorem 3 in case 1 < k < n− 1, moreover, the case k = n− 1 is an easy
exerise.

Proposition 4. For all k ≥ 2 there exists n0 = n0(k,s) such that for all n ≥ n0, if a set A of positive rational numbers
with |A|= n and ∑A = 1 satisfies ds(A)≥

(n−1
k

)
then A is an (k,s)-antipencil.

Proposition 5. There exists k1 = k1(s) such that for all pairs (k,n) with k ≥ k1 and k ≤ 2n/3, if a set A of positive
rational numbers with |A|= n and ∑A = 1 satisfies ds(A)≥

(n−1
k

)
then A is an (k,s)-antipencil.

Proposition 6. There exists k2 = k2(s) such that for all pairs (k,n) with k ≥ k2 and 2n/3 < k < n− (6s2 + 3s)2, if a
set A of positive rational numbers with |A|= n and ∑A = 1 satisfies ds(A)≥

(n−1
k

)
then A is an (k,s)-antipencil.

Proposition 7. There exists k3 = k3(s) such that for all pairs (k,n) with k ≥ k3 and n− (6s2 + 3s)2 ≤ k < n− 1, if a
set A of positive rational numbers with |A|= n and ∑A = 1 satisfies ds(A)≥

(n−1
k

)
then A is an (k,s)-antipencil.

Define K = max(k1,k2,k3) and N = maxk≤K n0(k,s). For any pair (k,n) with 1 < k < n− 1, if k ≥ K then Theorem
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3 follows from Proposition 5, Proposition 6 and Proposition 7. If k < K and n≥ N then Theorem 3 is a consequence
of Proposition 4. Therefore, we are left with finitely many cases of pairs (k,n), particularly the pairs with k < K and
n < N, which proves Theorem 3.

Auxiliary lemma

Let A,B be two k-subsets of finite set X of positive integers. Denote by a1 ≤ a2 ≤ ·· · ≤ ak the elements of A and by
b1 ≤ b2 ≤ ·· · ≤ bk the elements of B. We say that A≤I B if ai ≤ bi for any i ∈ [k].

Lemma 8. Fix d > 1. Then the size of the largest antichain of the partial order ≤I is less than 2
n
√

d

∣∣∣(X
d

)∣∣∣ for any
sufficiently large n.

Lemma 9. Fix positive integers k,m,a,b. Then for positive integers n, the number of pairs of positive integers (x,y)
such that

m
n
=

a
x
+

b
y

and all three fractions are in lowest terms is at most O(n1/k).
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Introduction

Independent domination is one of the problems for which the complexity of weighted and unweighted version is known
to be different in some classes of graphs. For instance, it has been proven that weighted independent domination is
NP-hard on chordal graph, but the unweighted case is easy. We will prove that WID is NP-hard on a subclass of
chordal graphs, and as a secondary result we will show that it is easy on a different class of graphs.

More formally

Observation 1. Independent domination problem is NP-hard.

Definition 2. Graph G is called sat-graph if there exists a partition A∪B =V (G) such that

1. A is a clique.

2. B is an induced matching.

3. There are no triangles b,b′,a, where a ∈ A and b,b′ ∈ B.

Theorem 3. The WID problem is NP-hard in the class of (C4,Sun3)-free sat-graphs.

Fact 4. ID is NP-hard in the class of (C3,C4,C5,C6)-free graphs.

Proof Reduction ID in (C3,C4,C5,C6)-free graphs to WID in (C4,Sun3)-free sat graphs. �

Theorem 5. The WID problem is polynomially solvable in (P5,P5)-free graphs.

Definition 6. Let G = (V,E) be a graph. A vertex set M⊆V is called module of G if every vertex outside M is adjacent
either to each vertex in M or to no vertex.

Definition 7. A vertex v is good if WID is solvable in graph G−N(v) in polynomial time.

Lemma 8. The decision tree T (G) has O(n2) vertices.

Lemma 9. Module in the graph G can be found in polynomial time.

Lemma 10. In (P5,P5)-free graphs the good vertex can be found in polynomial time.
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Combinatorial proofs of addition formulas

Introduction

The paper presents an addition formula for weighted partial Motzkin paths. As the main result, combinatorial proof
of this formula is given. It is shown that one can apply this formula to evaluate Hankel matrices defined by sequences
related to these paths.

More applications of the formula for evaluating determinants of various Hankel matrices are presented, also a similar
addition formula for weighted large Schröder paths is given.

More formally

Let Pk
n denote the set of lattice paths from (0,0) to (n,k) and never going below the x-axis, consisting of up steps

(1,1), horizontal steps (1,0) and down steps (1,−1), and let P≥r
n denote such paths ending in (n,k) for any k ≥ r.

The paths P0
n are Motzkin paths. The number of distinct Motzkin paths ending in (n,0) is the nth Motzkin number

(see A001006 in [1]). The paths Pk
n with a weight assigned to each step are weighted partial Motzkin paths. The

weights considered in the paper are w(1,1) = xy, w(1,0) = ux, w(1,−1) = vx/y and usvtxnyk is the weight of the path,
where s is the number of horizontal steps and t is the number of down steps.

The weight of the set of lattice paths is the sum of weights of all its paths. Let

an,k :=
1

xnyk w(Pk
n).

For the case u = v = 1, an,0 is the nth Motzkin number, and the matrix (ai, j)0≤i, j≤n−1 is the Motzkin triangle (see
A026300 in [1]). Let

an,r(y) :=
1

xnyr w(P≥r
n ),

So an,r(y) = ∑k≥r an,kyk−r, here y marks the distance from the end point of each path to the line y = r.

Theorem 1. For integers m≥ 0 and n≥ 0, we have

am+n,0(y) =
min(m,n)

∑
r=0

vram,r(y)an,r(y).

Proof For a lattice path P= (P0,P1, ...,Pm+n) of Pk
m+n, we consider a decomposition of P to Lm(P), Mm(P) and Rm(P),

where Lm(P) = (P0,P1, ...,Pm), Mm(P) = (Pm,Pm+1, ...,P j), Rm(P) = (Pj,Pj+1, ...,Pn) such that Pj is the rightmost
point of (Pm,Pm+1, ...,Pn) with the smallest y coordinate. We let Qr denote the set of all paths in P≥0

m+n such that the
number of down steps minus the number of up steps in Mm(P) equals r.

We consider bijection ϕ that assigns to every P a path obtained by reversing the subpath Mm(P) in P, and we note that
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w(P) = vr

y2r w(ϕ(P)). In other words, w(Qr) =
vr

y2r w(P≥0
m )w(P≥0

n ). Thus,

am+n,0(y) =
1

xm+n w(P≥0
m+n)

=
1

xm+n

min(m,n)

∑
r=0

w(Qr)

=
min(m,n)

∑
r=0

vr 1
xmyr w(P≥r

m )
1

xnyr w(P≥r
n )

=
min(m,n)

∑
r=0

vram,r(y)an,r(y).

�

For a sequence {an}n≥0, its nth Hankel matrix is the matrix (ai, j)0≤i, j≤n−1, where ai, j = ai+ j.

Corollary 2. The determinant of the nth Hankel matrix of {an,0(y)}n≥0 equals v
n(n−1)

2 .

Proof Let An(y) denote the nth Hankel matrix. By Theorem 1, An(y) = A ·D ·AT , where D = diag(v0,v1, ...,vn−1) and

A =


a0,0(y) 0 0 ... 0
a1,0(y) a1,1(y) 0 ... 0
...

an−1,0(y) an−1,1(y) an−1,2(y) ... an−1,n−1(y)

 .

We note that ai,i(y) = ai,i = 1 for 0≤ i≤ n−1, and we obtain the following:

det(An(y)) = detD · (detA)2 = v
n(n−1)

2 (a0,0(y) ·a1,1(y) · ... ·an−1,n−1(y))2 = v
n(n−1)

2 .

�
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Introduction

The famous Erdős-Hajnal conjecture states that for every strict class of graphs closed under induced subgraphs there
is a constant c > 0 such that every n-graph in the class contains a clique or an independent set of size at least nc.

The presented paper solves this conjecture for the class Ck of graphs which do not induce a path of length k or its
complement.

More formally

An n-graph is a simple undirected graph on n vertices. For a graph G we denote its complement by G. A complete
subgraph of G is a clique in G and a complete subgraph of G is an independent set in G. For a vertex v we denote
by N(v) its neighborhood and deg(v) = |N(v)| denotes its degree. We consider only classes of graphs closed under
induced subgraphs and we call such a class strict if it does not contain all graphs.

Definition 1. A strict class of graphs C has the Erdős-Hajnal property if there exists a constant c > 0 such that every
n-graph in C contains either a clique of size at least nc or an independent set of size at least nc.

Definition 2. For an integer k ≥ 2 let Ck be the class of all graphs not inducing the path Pk or its complement Pk.

The main result of the article is the following theorem.

Theorem 3. The class Ck has the Erdős-Hajnal property for every integer k ≥ 2.

We say that an n-graph is an ε-independent set if it contains at most ε
(n

2

)
edges and it is an ε-clique if it is a complement

of an ε-independent set. To prove Theorem 3, the authors used the following result of Fox and Sudakov.

Theorem 4. For every positive integer k and every ε ∈ (0,1/2) there is a δ > 0 such that every n-graph G satisfies
one of the following:

1. G induces all graphs on k vertices.

2. G contains an ε-independent set of size at least δn.

3. G contains an ε-clique of size at least δn.

A subgraph H of a graph G is a biclique of size t if it is a (not necessarily induced) complete bipartite graph with
each part consisting of at least t vertices. The class C of graphs then has the strong Erdős-Hajnal property if there
is a constant c such that every n-graph in C contains a biclique of size at least cn. As the name suggests, the strong
Erdős-Hajnal property implies the (weak) Erdős-Hajnal property.

Theorem 5. Let C be a class of graphs with the strong Erdős-Hajnal property. Then C has the Erdős-Hajnal property.
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It turns out that it is easier to prove the strong Erdős-Hajnal property for the class Ck than to prove the basic one
directly. The authors do so using the following key lemma.

Lemma 6. For every integer k ≥ 2 there exist numbers εk > 0 and 0 < ck ≤ 1/2 such that every connected n-graph G
with n≥ 2 vertices satisfies at least one of the following:

1. G has a vertex of degree more than εkn.

2. For every vertex v of G there is an induced Pk starting at that vertex.

3. The complement G contains a biclique of size at least ckn.

Finally, using Theorems 4 and 5 and Lemma 6, the authors give a short proof of their main result.

Theorem 7. The class Ck has the strong Erdős-Hajnal property.
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Visual Complex Analysis

Visual Complex Analysis, based on a book of the same name by Tristam Needham, and this link: http://pavel.
klavik.cz/orgpad/complex_analysis.html.

Figure 5: Orgpad: Visual Complex Analysis
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An application of simultaneous diophantine approximation
(http://link.springer.com/article/10.1007%2FBF02579200)

Introduction

The aim of the paper is to show how to use simultaneous diophantine approximation to

• design a preprocessing routine, that will

• turn weakly polynomial algorithms into strongly polynomial ones.

We will present the routine and show some application – namely showing a result that rounding routine for a problem

maxwT x : Ax≤ b

Theorem 1.

1. x ∈ P is w-maximal if and only if it is w-maximal.

2. A set of rows of A is an optimal dual basis for max(wT x : Ax ≤ b) if and only if it is an optimal basis for
max(wT x : Ax≤ b).

Definitions and tools

Theorem 2.[Simultaneous diophantine approximation] Given a positive integer N and n real numbers α1,α2, . . . ,αn
there are integers p1, p2, . . . , pn and q such that 1≤ q≤ Nn and

|qαi− pi|<
1
N
, for every i = 1,2, . . . ,n.

Moreover, if 0≤ α1,α2 . . . ,αn ≤ 1 then there is a strongly polynomial-time algorithm achieving worser bound 1≤ q≤
2n2+nNn.

Preprocessing routine

Theorem 3. For every vector w ∈ Rn and positive integer N there exists integer vectors v1,v2, . . . ,vk (k ≤ n) and
positive reals λ1,λ2, . . . ,λk such that

1. w = ∑
k
i=1 λivi,

2. ‖vi‖∞ ≤ Nn i = 1,2, . . . ,k and

3. λi
λi−1
≤ 1

N‖vi‖∞ i = 2,3, . . . ,k.

Algorithm

Input: A rational vector w and an integer N.

Output: An integral vector w such that ‖w‖∞ ≤ 24n3
Nn(n+2) and signw ·b = signw ·b whenever b is an integer vector

with ‖b‖1 ≤ N−1.
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Drawing Planar Cubic 3-Connected Graphs with Few Segments
(http://link.springer.com/chapter/10.1007/978-3-319-27261-0_10)

Introduction

Given a graph, there are many possibilities for the actual drawing of the graph into the plane. We are also trying to
find as simple visualization as possible – e.g. we want to avoid crossings and bends of the edges. In this talk, we are
trying to draw the graph using not too many geometric objects – e.g. when we want to draw a path in the graph, the
vertices can be placed along one line, that can represent all the edges, and we do not need an unique line segment for
each edge.

The aim of this talk is to introduce three algorithms for finding a plane drawing of a planar cubic 3-connected graph
using 3n+3 line segments (n is the number of vertices):

1. the Deconstruction algorithm (DEC)

2. the Windmill algorithm (WIN)

3. a revision and modification of Mondal’s algorithm [1] (MON)

Figure 6: Result of the algorithms DEC, WIN, and MON, respectively, for the same graph and outer face.

In the end of this talk, a comparison of the algorithms is given.
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Another exploration problem
(http://www.sciencedirect.com/science/article/pii/S0012365X16000030)

Introduction

It’s a hot summer day and we follow a group of divers as they try to dive as deep into an ocean as possible, while
holding breath. For small groups we will determine the exact value of the deepest point at least one of them can reach.
For a bit bigger groups as well as for a group of general size we show some bounds. The exercises 10-15 are (possibly
still open) problems listed at the end of the paper.

More formally

The capacity of lungs of each member is exactly one liter of air that allows the diver to hold the breath for exactly two
minutes. To swim one unit distance she needs one half of a liter of air.

Definition 1. Let d(n) denote the maximum depth at least one of the members of a party having n members can reach.

Definition 2. A helper is a member who meets the last group on their way back and has a larger amount of food than
each member of the group when they meet.

Definition 3. A supporter is a member of the group which first dived, who separates from the others midway to the
destination leaving them some extra air.

Lemma 4. If an expedition party can reach the destination at depth d, then there is a feasible plan for them to reach
the same depth d that satisfies the following (a)–(d).

(a) Just one member reaches the destination at depth d. Let A stand for this member.

(b) The diver A dives with the first group, and returns last. It takes 2d days to finish A’s journey.

(c) The last group of members on their way back never meet a helper while their air remains.

(d) When a supporter separates from other ongoing members, the supporter leaves air to the others so that each of
them has one liter of air.

Theorem 5. d(1) = 1; d(2) = 5/3; d(3) = 2; d(4)≥ 2+ 41
90 .

Conjecture 6. d(4) = 2+ 41
90

Theorem 7. d(5)≥ 2+3/5, d(6)≥ 2+4/5

Theorem 8. If n≥ 2k−1 then d(n)≥ 2
( 1

2 +
1
3 +

1
4 + · · ·+

1
k+1

)
. Therefore lim

n→∞
d(n) = ∞.

Theorem 9. d(n)< 2
( 1

2 +
1
3 +

1
4 + · · ·+

1
n

)
+1

Exercise 10. Find an algorithm to make an efficient plan for n divers or to achieve the depth d.

Exercise 11. Prove (or disprove) d(4) = 2+ 41
90 .

Exercise 12. Determine d(5) and d(6).

Exercise 13. Improve the bounds in Theorem 11 and Theorem 12.

Exercise 14. Is d(n) strictly increasing (that is, d(n)< d(n+1) for every n > 0)?

Exercise 15. Can d(n) always be achieved a symmetric plan for every n > 0?
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Generating snarks
(http://arxiv.org/abs/1206.6690 and http://arxiv.org/abs/1512.05944)

Introduction

We show how to generate non-isomorphic cubic graphs of given order (feasible up to 30 vertices). The generated
graphs are used to produce complete lists of various interesting subclasses of cubic graphs. The talk is based on [3]
and [2].

More formally

Lemma 1. All cubic graphs can be generated using four operations (the figure is from [1]).

After certain point, opperation (d) is sufficient

We describe how to avoid creating isomorphic copies of the same graph. We will describe strategies that allow us to
cut branches that cannot produce snarks. The following strategies allow us to generate larger graphs of high girth.

Lemma 2. Every connected cubic graph G with girth k ≥ 5 can be reduced using the following reduction: (the figure
is from [2]).

The obtained graph has girth at least k−1 and at most 3 disjoint cycles of length k−1.

Lemma 3. Every connected cubic graph G with girth at least k≥ 5 can be reduced using the following reduction: (the
figure is from [2]).
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The girth of the reduced graph is at least k−2 if k ∈ {5,6} and at least k−1 otherwise.
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Backbone coloring

The aim of this talk is to study backbone coloring and to show an elegant proof.

Introduction

Definition 1. Graphs G(V,E) and its spanning subgraph H(V,E ′) are backbone k-colorable (BCC(G,H)≤ k) if there
is a mapping f : V (G)→{1, . . . ,k} such that:

• ∀{u,v} ∈ E holds | f (u)− f (v)| ≥ 1,

• ∀{u,v} ∈ E ′ holds | f (u)− f (v)| ≥ 2.

Backbone coloring generalize L2,1-labeling which in this context is equivalently defined as BCC(G2,G). Both are
motivated by frequency assignment problem.

The backbone coloring is also studied for graph G and its spanning tree T . The special version aims to find special T
such that BCC(G,T ) = χ(G) where χ(G) is usual proper coloring of graph G.
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Enumeration of antisymmetric monotone triangles and domino tilings of
quartered Aztec rectangles
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Introduction

It has been shown, that both for 2-enumeration of antisymmetric monotone triangles and enumeration of domino tilings
of the quartered Aztec rectangles holds the same formula. The goal of this talk is to explain this phenomenon directly
by building a correspondence between antisymmetric monotone triangles and domino tilings of the quartered Aztec
rectangles.

More formally

Definition 1. A monotone triangle of order n is a triangular array of integers

whose entries are strictly increasing along the rows and weakly increasing along both rising and descending diagonals
from left to right. An antisymmetric monotone triangle (AMT) is a monotone triangle, which has ai,k =−ai,i+1−k for
any 1≤ i≤ n and 1≤ k ≤ i.
For any AMT τ , we denote by S(τ) the set consisting of all positive entries ai, j, which do not appear on the row above.
For any given number q, we define the q-weight of an AMT to be q|S(τ)|.
Assume that n ≥ 2 and 0 < a1 < a2 < ... < abn/2c, the q-enumeration Aq

n(a1,a2, ...,abn/2c) of AMTs is defined as the
sum of q-weights of all AMTs of order n whose positive entries on the bottomost row are a1,a2, ...,abn/2c.

Definition 2. An Aztec rectangle is a region on the square lattice of such a shape, that is illustrated in the following
figure. Aztec rectangle of size m×n (denoted by ARm,n) has m squares along the southwest side and n squares along
the southeast side.
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Lets take the ARm,n and some b(m+ 1)/2c integers 1 ≤ a1 < a2 < ... < ab(m+1)/2c ≤ n. Remove all squares at even
positions (from the bottom to top) on the southwest side of ARm,n and remove all the squares on the southeast side
except for the squares at positions a1,a2, ...,ab(m+1)/2c. The region obtained by this process, will be denoted by
REm,n(a1,a2, ...,ab(m+1)/2c) (see (b) in the following figure).
We also have an odd-analog ROm,n(a1,a2, ...,abm/2c) of the above region when removing odd squares (instead of the
even ones) from the southwest side, and removing all squares from the southeast side, except for the squares at the
positions a1,a2, ...,abm/2c (see (c) in the following figure).

Definition 3. Let R be a finite region on the square lattice. A domino tiling of R is a covering of R by dominoes such
that there are no gaps or overlaps. By T(R) we denote the number of domino tilings of the region R.

Theorem 4. Assume that k,a1,a2, ...,ak are positive integers, such that a1 < a2 < ... < ak. The AMTs with positive
entries a1,a2, ...,ak on the bottom are 2-enumerated by

A2
2k(a1,a2, ...,ak) =

2k2

0!2!4!...(2k−2)! ∏
1≤i< j≤k

(a j−ai) ∏
1≤i< j≤k

(ai +a j−1)

A2
2k+1(a1,a2, ...,ak) =

2k2

1!3!5!...(2k−1)! ∏
1≤i< j≤k

(a j−ai) ∏
1≤i≤ j≤k

(ai +a j−1)

Theorem 5. For any 1≤ k < n and 1≤ a1 < a2 < ... < ak ≤ n holds:

T(RE2k−1,n(a1,a2, ...,ak)) = T(RE2k,n(a1,a2, ...,ak)) = A2
2k(a1,a2, ...,ak)

T(RO2k,n(a1,a2, ...,ak)) = T(RO2k+1,n(a1,a2, ...,ak)) = A2
2k+1(a1,a2, ...,ak)
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Proof Only the first equation will be proved. We start by some preparations and definitions, which will be used in the
proof:

• We always rotate the rectangles by 45◦ clockwise to help the visualisation of our arguments.

• We also color the squares of the rectangles black and white, so that any two squares sharing an edge have
different colors, and that the bottommost squares are black.

• We number all the black rows in ARm,n by 1,2, ...,m+1 from top to bottom. We also label all squares on each
black row by 1,2, ...,n from left to right (we also label all black squares removed on the bottommost row) (the
following figure illustrates RE7,10(2,3,6,9) as an example; in the figure, the black squares are labeled only in
the first (black) row, however).

• Let T be a tiling of an Aztec rectangle. We say a black square is matched upward or matched downward,
depending on whether the white square covered by the same domino is above or below it.

The proof will proceed in the following steps:

1. We prove T(RE2k−1,n(a1,a2, ...,ak)) = T(RE2k,n(a1,a2, ...,ak)). From now on, we only need to show that
T(RE2k−1,n(a1,a2, ...,ak)) = A2

2k(a1,a2, ...,ak).

2. Denote by T (R) the set of all tilings of a region R, and An(a1,a2, ...,abn/2c) the set of all AMTs of order n having
positive entries a1 < a2 < ... < abn/2c on the bottom. Next, we define a map Φ : T (RE2k−1,n(a1,a2, ...,ak))→
A2k(a1,a2, ...,ak) as follows. Pick T from T (RE2k−1,n(a1,a2, ...,ak)), we describe τ := Φ(T ). The positive
entries in the ith row of τ are the labels of the matched-upward squares on the ith black row (by the antisymmetry,
τ is completely determined by its positive entries).

3. We show that Φ is well defined, i.e. we need to verify that Φ(T ) ∈A2k(a1,a2, ...,ak).

4. We show that |Φ−1(τ)|= 2S(τ) for any τ ∈A2k(a1, ...,ak).

�
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Hollow Heaps
(http://arxiv.org/abs/1510.06535)

Introduction

Hollow heaps are very simple data structure with the same amortized efficiency as the classical Fibonacci heap. All
heap operations except delete and delete-min take O(1) worst-case time while delete and delete-nmin take O(logn)
amortized time on a heap of n items. The simplicity of implementation is achieved by introducing two ortogonal
concepts – use of lazy deletion and the use of directed acyclic graph instead of tree or set of trees to represent a heap.

Definitions

Definition 1. A heap is a data structure consisting of a set of items, each with a key selected from a totally ordered
universe. Heaps support the following operations:

• make-heap(): Return a new, empty heap.

• find-min(h): Return an item of minimum key in heap h, or null if h is empty.

• insert(e,k,h): Return a heap formed from heap h by inserting item e, with key k. Item e must be in no heap.

• delete-min(h): Return a heap formed from non-empty heap h by deleting the item returned by find-min(h).

• meld(h1,h2): Return a heap containing all items in item-disjoint heaps h1 and h2.

• decrease-key(e,k,h): Given that e is an item in heap h with key greater than k, return a heap formed from h by
changing the key of e to k.

• delete(e,h): Return a heap formed by deleting e, assumed to be in h, from h.

Definition 2. A tree is heap-ordered if and only if for every arc (v,w) it holds that v.key≤ w.key. Heap-order implies
that the root has a minimum key.

Definition 3. In hollow heaps, we have the items represented as nodes of set of trees and we have a pointer to the
minimum root (which we call the minimum node of the heap). We implement heap operation as follows:

• make-heap(): Return empty forest.

• find-min(h): Return the minimum node of the heap h.

• meld(h1,h2): If one is empty, return the other. Otherwise unite their sets of trees and update the minimum node.

• insert(e,k,h): Create a new node, store the item into it and meld the resulting one-node heap with h.

• decrease-key(e,k,h): Let u := e.node. We create the new node v, move e from u to v (making u hollow), set
v.key = k. Then we move some of the children of u, and their subtrees, to v. Then we meld this one-root heap
with h.

• delete-min(h): Delete the item in the minimum node.
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• delete(e,h): Let u := e.node. We delete e from u making u hollow. If u is the minimum node, we destroy it, turn
its children into new roots and make some links to reduce the number of trees. Then meld all the resulting trees
into one heap.

Theorems

Lemma 4. (Rank-invariant) A node u of rank r has exactly r children, of ranks 0,1, . . . ,r−1, unless r > 2 and u was
made hollow by a decrease-key, in which case u has exactly two children, of ranks r−2 and r−1.

Theorem 5. A node of rank r has at least Fr+3−1 descendants, both full and hollow.

Corollary 6. The rank of a node in a multi-root hollow heap of N nodes is at most logϕ N.

Theorem 7. The amortized time per multi-root hollow heap operation is O(1) for each operation other than a delete
or delete-min, and O(logN) per delete or delete-min on a heap of N nodes.
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Increasing paths in edge-ordered graphs: the hypercube and random graphs
(http://arxiv.org/abs/1502.03146v1)

Introduction

An edge-ordering of graph G = (V,E) is a bijection ϕ : E → {1,2, . . . , |E|}. For a given edge-ordering ϕ , a sequence
of edges P = e1,e2, . . . ,ek is an increasing path if it is a path in G which satisfies ϕ(ei)< ϕ(e j) for all i < j.

What is the maximum length of increasing path that can be guaranteed in edge-orderings of G? In this talk we will
provide lower bounds for the hypercube Qn and the random graph G(n, p).

Groundwork

Definition 1. For a graph G let f (G) be the largest integer l such that every edge-ordering of G contains an increasing
path of length l.

Pedestrian algorithm(G, ϕ).

1. Place a distinct marker (pedestrian) on each vertex of G.

2. Consider the edges in the order given by ϕ . When an edge e is considered, the pedestrians currently at the
vertices incident to e switch places if and only if the switch does not cause either pedestrian to move to a vertex
it has already traversed.

Lemma 2. Let G be a graph and k ∈ Z+. If f (G) < k, there exist sets V1,V2, . . .Vn ⊆ V (G) such that |Vi| ≤ k and
E(G)⊆ ∪n

i=1E(G[Vi]).

Definition 3. For a graph G and a positive integer k, let ζk(G) be the maximum number of edges induced by any k
vertices of G, i.e.

ζk(G) = max
U∈(V (G)

k )
|E(G[U ])|.

Lemma 4. Let G be any connected graph with average degree d. If G and k ∈ N satisfy 2ζk(G)− k+ 1 < d, then
f (G)≥ k.

Corollary 5. If G is any graph with average degree d then f (G)≥
√

d.

Main results

Theorem 6. Let Qd denote the d-dimensional hypercube. For all d ≥ 2

d
log2 d

≤ f (Qd)≤ d.

Theorem 7. For any function ω(n)→ ∞ and any p≤ logn√
n ω(n), with high probability

f (G(n, p))≥ (1−o(1))np
ω(n) logn

.
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Chess: Retrograde analysis

Introduction

Chess retrograde analysis is a type of problem, where solver must determine, which moves were played to reach the
given position. Following diagrams are examples of retrograde analysis problems. Stars correspond to dificulty of the
problem (more stars↔ more difficult).

Chess terminology

Chess figures: king��, queen��, rook��, bishop��, knight�
, pawn��

Special moves: castling 0-0 or 0-0-0, en passant c5×b5

Retrograde analysis

1

8 � ��� �
7 � � ���
6 ��� � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(*) Is it possible that no pawn
changed?

2

8 ���� � �
7 � � � �
6 � � � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(*) White on turn. What was the
last black turn?

3

8 �  �� #
7 ����� ��
6 � � � �
5 � � ����
4 � � � �
3 � ������
2 �� � � �
1 � � � �

a b c d e f g h

(**) White is on turn and mate
the black in 2 moves.

4

8 ���#
 ��
7 ��������
6 � � � �
5 � � � �
4 � � � �
3 � � � �
2 ��������
1 ��������

a b c d e f g h

(**) Mate in one.

5

8 � ��� �
7 � � � �
6 � � � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(**) No piece has moved from
white to black square and vice
versa. What color is the pawn
on g3?

6

8 � � � �
7 � � � ��
6 � � � #
5 � � ����
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(**) White is on turn and mate
in two.
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7

8 � � ���
7 � � � �
6 � � �	�
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(**) Colour the pieces

8

8 �� ��� �
7 � � � �
6 �� ��� �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(***) White is on turn and mate
the black in 2 moves.

9

8 �# ��� �
7 ��� � �
6 � � � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(***)Mate in one.

10

8 � � � �
7 � � � �
6 � � � �
5 � � � �
4 � � � �
3 � � � �
2 � � ��#
1 � ��� ��

a b c d e f g h

(***) What was the last black
turn?

11

8 � � !��
7 ��������
6 � � � �
5 � � � �
4 � � � �
3 ����� �
2 ���� ���
1 � � � ��

a b c d e f g h

(***) White on turn. Can he
castle?

12

8 �! � � �
7 ��� � �
6 ���� � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 � � � �

a b c d e f g h

(****) The black king is
invisible. Who wins?

13

8 �� "��
!
7 ��� ����
6 �
��� �
5 � � � �
4 � � � �
3 ��� � �
2 ��������
1 � � � ��

a b c d e f g h

(*****) Where was the white
queen captured?

14

8 � � � �
7 � � � �
6 � � � �
5 ����� �
4 �� � � �
3 � � � �
2 � � � �
1 � ��� �

a b c d e f g h

(*****) Where is the white
king?

15

8 � � � �
7 ����� �
6 � �� � �
5 !�� � �
4 ������ �
3 � ��� ��
2 ������ �
1 "�� � �

a b c d e f g h

(******) Who win the game?
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Every graph is (2,3)-choosable
(link.springer.com/article/10.1007%2Fs00493-014-3057-8)

Introduction

A total weighting of a graph G is a mapping ϕ that assigns to each vertex and edge a real number. It is proper if for
any adjacent vertices u and v, we have

ϕ(u)+ ∑
e∈E(u)

ϕ(e) 6= ϕ(v)+ ∑
e∈E(v)

ϕ(e).

1-2-3 Conjecture. [1] Every graph with no isolated edges has a proper edge weighting (i.e., total weighting with zero
weights on vertices) using colours {1,2,3}.
1-2 Conjecture. [2] Every graph has a proper total weighting using colours {1,2}.
A graph G is (k, `)-choosable if the following holds. If every vertex v is assigned a list L(v) of k permissible weights
and every edge e is assigned a list L(e) of ` permissible weights, then G has a proper total weighting ϕ satisfying that
ϕ(z) ∈ L(z) for every z ∈V (G)∪E(G).

Theorem 1. Every graph is (2,3)-choosable.

Sketch of proof

Let xz be a variable associated to z ∈V (G)∪E(G). Fix an arbitrary orientation D of G. We write uv ∈ E(D) to mean
the edge oriented from u to v. Consider the polynomial

PG({xz : z ∈V (G)∪E(G)}) = ∏
uv∈E(D)

((
xv + ∑

e∈E(v)
xe

)
−
(

xu + ∑
e∈E(u)

xe

))
Let ϕ be a total weighting, then PG(ϕ) denotes the evaluation of PG, where each variable xz is assigned the value ϕ(z).

Observation 2. The mapping ϕ is a proper total weighting of G if and only if PG(ϕ) 6= 0.

An index function of G is a mapping η : E(G)∪V (G)→ N0. An index function η of G is valid if ∑z η(z) = |E|. For
a valid index function η , let cη be the coefficient of the monomial ∏z xη(z)

z in the expansion of PG. An index function
η of G is non-singular if there exists a valid index function η ′ such that η ′ ≤ η and cη ′ 6= 0.

Main Theorem. Every graph G has a non-singular index function η such that η(v) ≤ 1 for v ∈ V (G) and η(e) ≤ 2
for e ∈ E(G).

Combinatorial Nullstellensatz. [3] Let F be an arbitrary field and let f = f (x1, . . . ,xn) be a polynomial from
F [x1, . . . ,xn]. Suppose the degree of f is ∑

n
i=1 ti, where t1, . . . , tn ∈ N0, and suppose that the coefficient of ∏

n
i=1 xti

i
in f is nonzero. Then, if S1, . . . ,Sn are subsets of F with |Si| > ti, then there exist s1 ∈ S1, . . . ,sn ∈ Sn such that
f (s1, . . . ,sn) 6= 0.

Let AG be the matrix whose rows are indexed by edges in D and columns are indexed by edges and vertices of G and
for e = uv ∈ E(D) and z ∈V (G)∪E(G),

AG[e,z] =

 1 if z = v, or z 6= e is an edge incident to v
−1 if z = u, or z 6= e is an edge incident to u
0 otherwise
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Observation 3. We can express the polynomial PG in the following way.

PG({xz : z ∈V (G)∪E(G)}) = ∏
e∈E(D)

∑
z∈V (G)∪E(G)

AG[e,z]xz

If z is a vertex or edge of G, then AG(z) denotes the column of AG indexed by z. For a valid index function η , let
AG(η) be the matrix with the property that each of its columns is a column of AG and each column AG(z) of AG occurs
η(z) times as a column of AG(η).

Observation 4. For an edge e = {u,v} ∈ E(G), we have AG(e) = AG(u)+AG(v).

The permanent of an m×m matrix A is defined as ∑σ∈Sm ∏
m
i=1 A[i,σ(i)] and satisfies the following. If a column C

of A is a linear combination of two column vectors C = αC′+βC′′ and A′ (respectively, A′′) is obtained from A by
replacing the column C with C′ (respectively, with C′′), then per(A) = α per(A′)+β per(A′′).

Observation 5. cη 6= 0 if and only of per(AG(η)) 6= 0.

Assume A is a square matrix whose columns are expressed as linear combinations of columns of AG. The index
function ηA is defined as follows. If z is a vertex or edge of G, then ηA(z) is the number of columns of A in which
AG(z) appears with nonzero coefficient. Note that ηA may not be uniquely defined, as the columns of AG are not
linearly independent.

Lemma 6. Let σ be an index function of G. Then G has a non-singular index function η with η ≤ σ if and only if
there is a square matrix A whose columns are expressed as linear combinations of columns of AG such that per(A) 6= 0
and ηA ≤ σ .

Theorem 7. Assume G is a connected graph and F is a spanning tree of G. Then there is a matrix A whose columns
are linear combinations of columns of AG such that per(A) 6= 0 and ηA(v)≤ 1 for v ∈V (F), ηA(e) = 0 for e ∈ E(F)
and ηA(e)≤ 2 for e ∈ E(G−F).
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Games on interval and permutation graph representations

Introduction

In this paper we look at combinatorial games on graphs in which two players antagonistically build a representation
of a subgraph of a given graph. We show that for a large class of these games, determining wheter a given instatnce is
a winning position for the next player is PSPACE-hard. Also, for some special cases better complexity is shown.

Definitions

Definition 1. PSPACE is the set of all decision problems that can be solved by a Turing machine using polynomial
amount of space.

Definition 2. Kayles game (or only Kayles). For a given graph G = (V,E), two players takes turns choosing a vertex
v ∈ V that has not been chosen before and that is not adjacent to any previously chosen vertex. The last player to
choose a vertex wins.

Definition 3. Representation games are games played on graphs in which two players construct a representation a of
a subgraph of a given graph by taking turns choosing a vertex and adding a crresponding element to the representation.
At each stage, the representation that has been constructed correctly represents the subgraph induced by the vertices
that have been chosen so far. The game ends when all of the vertices have been played, or when the representation
cannot be extended to include any of the unchosen vertices. The last player to make a move wins.

Definition 4. Let S be a set and Φ be a symmetric binary relation on S. For any Q⊆ R⊆ S and s ∈ S, s is consistent
with (Q,R,S) if for all q ∈ Q, sΦq and for all r ∈ R\Q,¬(sΦr).

Definition 5. Let S be a set, Φ be a symmetric binary relation on S, n be a positive integer, R1,R2, . . . ,Rn be nonempty
finite subsets of S and Q1,Q2, . . . ,Qn be subsets of S such that Qi ⊆ Ri fro all 1 ≤ i ≤ n. Then (Q1,R1), (Q2,R2),. . . ,
(Qn,Rn) are separating set pairs for (S,Φ) if for all 1≤ i≤ n, all of the following hold:

1. there exists si ∈ S that is consistent with (Qi,Ri).

2. for all si, s′i ∈ S consistent with (Qi,Ri), for all r ∈ R1∪R2∪·· ·∪Rn: siΦr if and only if s′iΦr.

3. for all 1≤ j ≤ n, j 6= i, for all si consistent with (Qi,Ri) and all s j consistent with (Q j,R j): ¬(siΦs j).

Definition 6. Let S be a set and Φ be a symmetric binary relation on S. Then (S,Φ) is separable if for every positive
integer n, there exist n separating set pairs for (S,Φ).

Results

Theorem 7. Given graph G = (V,E) and U ⊆V . Decision if this is winning position in Kayles is in PSPACE [1].

Theorem 8. Let S be a set and let Φ be a symmetric binary relation on S. If (S,Φ) is polynomial time separable then
the (S,Φ) Game is PSPACE-hard.
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Oyun: A New, Free Program for Iterated Prisoner‘s Dilemma Tournaments in the
Classroom

Prisoner‘s dilemma

B: Cooperate B: Defect
A: Cooperate 3,3 (mutual cooperation) 0, 5 („sucker‘s payoff“)
A: Defect 5, 0 (defector‘s payoff) 1, 1 (mutual defection)

Defection is strongly dominant – regardless of what my opponent does, defecting gives me a higher payoff than
cooperating, so it seems that I should choose to defect even if I don’t know what he’ll do.

For both of us is better if we both were to cooperate rather than defect.

Iterated prisoner’s dilemma

One game – defection will be evolutionarily favored. Real situations – individuals each interact repeatedly.

First experiment (Axelrod, 1984)

14 different strategies, head-to-head against, 5 games of 200 moves each. Score = sum of its scores number of rounds
= probability that 2 strategies would meet again = 0,99654

Both won Tit-for-Tat – cooperates in first round, on each subsequent round repeats the previous action of the oponent

Oyun

Finite state machine, environment where iterated prisoner’s dilemma strategies can be tested, refined, and explored

Numbered set of states and instructions:

what act to perform in that state (C or D)

how to respond (which state to move into if the other player C or D)

Syntax:

John Doe Author
Tit-For-Tat Name of the strategy
2 Number of states
C, 0, 1 State #0, if C→ leave, D→ 1
D, 0, 1 State #1, C→ next round be in 0

Tournaments

Round-robin tournament – 5 games with 168, 359, 306, 622 and 319 rounds.

Evolutionary – uniformly distributed population across all. Next generation – relative fitness.

Other strategies

groups, define one as host, rest as parasite (how to set host to stay in game?)

Tit-for-Two-Tats, AW, Consolation Prizefighter
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Appendix: Selected Student Entries

Jane Doe
Tit-for-Two-Tats
3

C, 0, 1

C, 1, 2

D, 0, 1

Urocerus gigas
Host
12

C, 1, 11

C, 2, 11

C, 3, 11

D, 7, 4

C, 5, 6

C, 5, 5

C, 6, 6

C, 8, 8

C, 9, 9

C, 10, 10

C, 10, 11

D, 10, 11

Rhyssa persuasoria
Parasite
12

C, 1, 11

C, 2, 11

C, 3, 11

D, 7, 4

D, 5, 6

D, 5, 5

C, 6, 6

C, 8, 8

C, 9, 9

C, 10, 10

C, 10, 11

D, 10, 11

Angelo Wong
AW
19

C, 0, 1

D, 1, 2

C, 2, 3

C, 3, 4

D, 4, 5

C, 5, 6

C, 6, 7

C, 7, 8

C, 8, 9

D, 9, 10

C, 10, 11

C, 11, 12

C, 12, 13

C, 13, 14

C, 14, 15

C, 15, 16

C, 16, 17

C, 17, 18

D, 18, 18

Robert Justin Sutton
Consolation Prizefighter
20

C, 0, 1

D, 2, 2

C, 3, 3

C, 3, 4

D, 5, 5

D, 6, 6

C, 7, 7

C, 7, 8

D, 9, 9

D, 10, 10

D, 11, 11

C, 12, 12

C, 12, 13

D, 14, 14

D, 15, 15

D, 16, 16

D, 17, 16

D, 18, 19

C, 18, 19

D, 19, 19
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Half-sandwich of Two Random Graphs

Summary

We consider relations between two models of random graphs on vertex set [n] = {1, . . . ,n}, as n grows. We show that
the uniform Erdős-Rényi random graph G(n,m) can be treated (with high probability) as a subgraph of the random
d-regular graph R(n,d) in such a way that the former graph consists of “almost all” edges of the latter. The assumption
that we make is that d = d(n) grows faster than logn but slower than n.

Definitions and Results

Definition 1. A sequence of probability events An, n = 1,2, . . . holds with high probability (w.h.p.) if P(An)→ 1 as
n→ ∞. For two sequences an and bn we write an� bn and bn� an if an/bn→ 0, as n→ ∞.

Definition 2. The random graph G(n,m) is picked uniformly among graphs on n vertices with m edges and the random
graph R(n,d) is picked uniformly among graphs with n vertices that are d-regular (that is, with degree of every vertex
equal to d).

It is an easy fact that whenever average degree 2m/n of G(n,m) grows faster than logn, then with high probability all
vertex degrees are 2m(1± εn)/n, where εn = o(1) are some non-random numbers.

Kim and Vu [1] stated the following.

Conjecture 3. If d = d(n)� logn, then one can pick parameters m− = m−(n),m+ = m+(n)∼ nd/2 and define three
random graphs G(n,m−),R(n,d), and G(n,m+) on the same vertex set in such a way that

G(n,m−)⊆ R(n,d)⊆G(n,m+) w.h.p.

The purpose of such a statement is to have an easy way to prove monotone properties.

Definition 4. A monotone increasing (decreasing) property P is a family of graphs closed under addition (removal)
of edges.

An example of an increasing property is connectivity: if you add an edge to a connected graph, it stays connected.
Note that if you add a vertex, but no edges connecting it to old vertices, it might lose the property. So essentially
we are considering a sequence of monotone properties Pn,n = 1,2, . . . , where Pn are the graphs on n vertices with
property P .

In [2] the following theorem was proved (in [1] Theorem 5 was proved with a stronger upper bound on d).

Theorem 5. If logn� d� n, then one can pick a parameter m = m(n) ∼ nd/2 and define random graphs G(n,m)
and R(n,d) on the same vertex set in such a way that

G(n,m)⊆ R(n,d) w.h.p.

Corollary 6. Suppose that P is an increasing property and G(n,m) ∈P for some m� n logn. Then there exists
d = d(n)∼ 2m/n such that R(n,d) ∈P w.h.p.
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Hamilton 1-cycle Hamilton 2-cycle

Figure 7: Hamilton cycles for n = 8,k = 3 and `= 1,2.

Extension to Hypergraphs

In [2] the results of the previous section were also extended to k-uniform hypergraphs (also known as k-graphs).

Definition 7. A k-graph on vertex set [n] is a family of k-element subsets (edges) of [n].

Definition 8. A k-graph is d-regular if each vertex of it belongs to exactly d edges.

Random k-graphs G(k)(n,m) and R(k)(n,d) are defined similarly as in the graph case. Note that a d-regular k-graph
has nd/k edges, and the largest possible value of parameter d is

(n−1
k−1

)
, which is of order nk−1.

Theorem 9. If log� d � nk−1, then one can pick a parameter m = m(n) ∼ nd/k and define random k-graphs
G(k)(n,m) and R(k)(n,d) on the same vertex set in such a way that

G(k)(n,m)⊆ R(k)(n,d) w.h.p.

Definition 10. Given `= 1, . . . ,k−1, a Hamilton `-cycle is a k-graph such that for some cyclic order of vertices every
vertex belongs to an edge, every edge consists of consecutive vertices, and consecutive edges overlap in ` vertices (see
Figure).

For hypergraphs, Corollary 6 still holds, but we instead give a particular example. In view of a results of Dudek and
Frieze (see [2] for references), Theorem 9 implies the following.

Corollary 11. Let ` = 1, . . . ,k− 1. If d = d(n) grows faster than logn (if ` = 1) or faster than n`−1 (if ` > 1), then
R(k)(n,d) contains a Hamilton `-cycle w.h.p.

In [2] it is conjectured that the assumption d is of optimal order for ` > 1, but for ` = 1 the assumption on d can be
relaxed.

Conjecture 12. There is an integer constant C such that R(k)(n,d) has a Hamilton 1-cycle w.h.p., if d ≥C.
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Mapping planar graphs into the Coxeter graph
(http://www.math.univ-toulouse.fr/~aharutyu/CoxeterFinal.pdf)

Definitions

Definition 1. Odd girth is the length of the shortest odd cycle in graph.

Definition 2. The Coxeter graph is a subgraph of Kneser graph K(7,3) obtained by deleting the vertices corresponding
to the lines of the Fano plane.

Definition 3. A homomorphism of a graph G to another graph H is a mapping ϕ : V (G)→ V (H) which preserves
adjacency, i.e. uv ∈ E(G)→ ϕ(u)ϕ(v) ∈ E(H).

Theorem 4. Every planar graph of odd girth at least 17 admits a homomorphism to the Coxeter Graph.

Conjecture 5. Every planar graph of odd girth at least 11 admits a homomorphism to the Coxeter Graph.

Definition 6. Distinct vertices x and y are weakly adjacent if there exists a path in X containing both of them and with
all the internal vertices of degree 2. dweak(v) denotes the number of weakly adjacent 2-vertices of v.
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Usefull lemmas

Lemma 7. The Coxeter graph satisfies the following:

1. It is distance-transitive.

2. It is of diameter 4.

3. Its girth is seven.

4. For a vertex A, we have |N(A)|= 3, |N2(A)|= 6, |N3(A)|= 12, |N4(A)|= 6.

5. Let A and B be a pair of vertices in Cox. If d(A,B)≤ 3, then a 7-cycle passes through A and B. If d(A,B) = 4,
then a 9-cycle passes through A and B.

Lemma 8. Let P be a u˘v path of length l, l ≤ 5. Consider a partial Cox-coloring ϕ given by ϕ(u) = A and ϕ(v) = B.
Then, ϕ is extendable to P if and only if:

1. l = 2 and d(A,B) ∈ 0,2, or

2. l = 3 and d(A,B) ∈ 3,1, or

3. l = 4 and d(A,B) 6= 1, or

4. l = 5 and A 6= B.

Lemma 9. P7,T123,T034 are reducible configurations. If v is a 3-vertex in X, dweak ≤ 6.

Lemma 10. T1334,T2234,T2333 are reducible configurations. If v is a 4-vertex in X, dweak ≤ 12 with equality only for
T0444, otherwise dweak ≤ 10.

Lemma 11. T24T24,T24T33,T33T33,T141T14 are reducible configurations.

Discharging

Let us define w0(v) = 45d(v)−120. Then from Euler formula follows that sum of all charges in vertices is -204. Rules
for discharging:
(R1)For each pair x,y of weakly adjacent vertices in X with d(x) = 2 and d(y)≥ 3, y sends charge of 6 to x.
Given a 3+-vertex x ∈V (X), we say x supports v if: (i) w1(x)> 0, and (ii) x is a leaf vertex of T (v) on a shortest thread
of T (v).
(R2)Whenever y supports a vertex x with w1(x)< 0, then y gives charge of 3 to x if d(x,y) = 1, and charge of 1.5 to x
if d(x,y) 6= 1.
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How Robust is the Wisdom of the Crowds?
(http://www.tau.ac.il/~nogaa/PDFS/ijcai15.pdf)

Introduction

We introduce the study of adversarial effects on wisdom of the crowd phenomena. In particular, we examine the
ability of an adversary to influence a social network so that the majority of nodes are convinced by a falsehood, using
its power to influence a certain fraction, µ < 0.5 of N experts.

We are interested in providing an agent, who does not necessarily know the graph structure nor who the experts are,
to determine the true value of a binary property using a simple majority.

We prove bounds on the social graph’s maximal degree, which ensure that with a high probability the adversary will
fail (and the majority vote will coincide with the true value) when he can choose who the experts are, while each expert
communicates the true value with probability p > 0.5. When we examine expander graphs as well as random graphs
we prove such bounds even for stronger adversaries, who are able to pick and choose not only who the experts are, but
also which ones of them would communicate the wrong values, as long as their proportion is 1− p. Furthermore, we
study different propagation models and their effects on the feasibility of obtaining the true value for different adversary
types.

More formally

We consider a social network given by undirected graph G = (V,E) with |V |= n nodes, corresponding to agents. The
agents are interested in a binary ground truth which can be either red (R) or blue (B). Without a loss of generality
assume that the ground truth in the world the agents live in is red.

Opinion: Denote by c(v) ∈ R,B the opinion of node v.

Experts: A set V ′ ⊆V of size µ|V |, constitutes the expert set.

Forming an Opinion: Every agent forms his opinion based on the majority opinion of his expert neighbors. That is,
if |{u ∈ N(v)∩V ′|c(u) = R}|> |{u ∈ N(v)∩V ′|c(u) = B}|, then c(v) = R. If the inequality is reversed, then c(v) = B
and if there is a tie, v decides randomly s.t. Pr[c(v) = R] = Pr[c(v) = B] = 1/2.

We consider three models of expert formation:

• Strong adversary: an adversary chooses an expert set V ′ ⊆ V (such that |V ′| = µ|V |), and assigns opinions
to agents in V ′ satisfying the following equations: |{v ∈ V ′|c(v) = R}| ≥ ( 1

2 +δ )|V ′| and {v ∈ V ′|c(v) = B} =
V ′ \{v ∈V ′|c(v) = R}, for some fixed δ .

• Weak adversary: an adversary chooses an expert set V ′ ∈ V (such that |V ′| = µ|V |). Experts receive signals
about the state of the world, and are more likely to be correct than incorrect. Specifically, for every agent v ∈V ′

independently, it holds that c(v) = R with probability 1/2+δ and c(v) = B with probability 1/2−δ , for some
fixed δ .

• Passive adversary (random process): a set of µ|V | nodes are chosen uniformly at random forming expert set
V ′ . Opinion formation of agents in V ′ is as in the weak adversary model.

Robust network: A network is said to be robust against a particular adversary if, with high probability, the majority
of agents hold the true opinion, despite adversary’s attempt to deceive.
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Fact 1. [Chernoff’s inequality] Let Xi ∈ [0,1], i= 1, . . . ,n be independent random variables and X =∑
n
i=1 Xi, µ =E[X ]

and δ ∈ (0,1). Then Pr [X > (1+δ )µ]≤ e−δ 2µ/3.

Weak Adversaries

Theorem 2. For 0 < ε < µ , δ < 1
2 , if n is sufficiently large, there is an absolute positive constant c1 so that if the

largest degree ∆ satisfies

∆≤ c1
εδ 4µn

log(1/ε)
,

then majority over all vertices gives the truth with probability at least 1− ε .

Proof We split the vertices that are not experts to three groups.

VH = {v ∈V −V ′ : |Nv∩V ′| ≥M}
VL = {v ∈V −V ′ : 1≤ |Nv∩V ′|< M}
VN = {v ∈V −V ′ : Nv∩V ′ = /0}

And split them to sets of agents with true and false opinions VHT ,VHF , . . . .

We prove four inequalities which hold for large enough n and together imply the theorem. To make sure they all hold
simultaneously, we use the union bound. First follows from Chernoff’s inequality.

Pr[|V ′T |− |V ′F |< δ µn]<
ε

4
(5)

By Chernoff again, we get

Pr[|VNF |− |VNT |>
δ µn

4
]<

ε

4
. (6)

Using Chernoff once more and Markov’s inequality,

Pr
[
|VHF |− |VHT |>

δ µn
4

]
< Pr

[
|VHF |>

δ µ|VH |
4

]
<

ε

4
. (7)

And finally by the second moment method.

Pr[|VLF |− |VLT | ≥
δ µn

2
]≤ ε

4
(8)

�

Strong Adversaries

Theorem 3. Leg G = (V,E) be an (n,d,λ )-graph, let A and B be subsets of V and assume that |A|> |B|. Let X be the
set of all vertices v of G satisfying |N(v)∩B| ≥ |N(v)∩A|, where N(v) is the set of neighbors of v in G. Then

|X | ≤ 2λ 2

d2
|A|(1−|A|/n)+ |B|(1−|B|/n)

(|A|− |B|)2 n2.

Theorem 4. Let G = (V,E) be an (n,d,λ )-graph and suppose that

d2

λ 2 >
1

δ 2µ(1−µ +2δ µ)
.

Then for any strong adversary as above the majority gives the truth.
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Presented paper by Timothy M. Chan

Improved deterministic algorithms for linear programming in low dimensions
(https://cs.uwaterloo.ca/~tmchan/detlp10_15.pdf)

Given LP mincT x s.t. Ax≤ b with d variables and n constrains where d is small and n large, how quickly can we solve
it?

Constraints Ax ≤ b form a set H of n halfspaces in ℜd , and we seek a point p that lies in
⋂

H, while minimizing a
linear function cT x.

Strongly polynomial-time algorithms

We are interested in running time bounded by a polynomial in the number of integers on input.

Definition 1. The algorithm runs in strongly polynomial time if:

• the number of operations in the arithmetic model of computation is bounded by a polynomial in the number of
integers (or rationals) in the input instance; and

• the space used by the algorithm is bounded by a polynomial in the size of the input.

Open problem:1 Is there a strongly polynomial algorithm for linear programming?

There is (at least) an algorithm with running time linear in the number of constrains:

Theorem 2. There exists a deterministic algorithm for linear programming using O(d)d/2(logd)3dn arithmetic oper-
ations.

We show:

• A simple algorithm using O(d)3d(logd)dn arithmetic operations.

• A bit better, but still simple algorithm using O(d)2d+O(δ )n arithmetic operations for any δ > 0.

• Ideas leading to d/2 in the exponent.

• Why this is the best possible for this approach.

ε-nets

Definition 3. For a point p ∈ℜd and a set of halfspaces H, we define a violation set ViolateH(p) = {h ∈ H : p 6∈ H}.
A subset R⊆ H is an ε-net of H if for every p ∈ℜd ,

ViolateH(p)> ε|H| ⇒ ViolateR(p)≥ 1 .

Lemma 4. Given a set H of m ≥ d halfspaces in ℜd , we can construct an ε-net of H of size O(d/ε · logm) in
O(m/d)d+O(1).

1That is, something for you to solve after the lecture.
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ε-net construction via sensitive approximations

Definition 5. Let ρH(p) = |ViolateH(p)|/|H| be the fraction of violated halfspaces.

A subset R⊆ H is a sensitive ε-approximation of H w.r.t. set of points P if for every p ∈ P,

|ρR(p)−ρH(p)| ≤ (ε/2)
√

ρH(p)+ ε
2/2 .

We also use the observation that for a construction of ε-net we can enumerate only vertices with |ViolateH(p)| =
bεnc+1. This motivates the definition a cap:

Definition 6. Cap(H,α) = {p ∈ℜd : ρH(p)≤ α}.
Theorem 7. Given a set H of m halfspaces in ℜd with m a power of 2, and parameter ε > 0, we can compute an ε-net
of size O( d

ε
log2 m log d

ε
) in deterministic time

O(
1
ε
)d/2(log2 m log

d
ε
)dm1.59 .
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Presented paper by Eugene M. Luks

Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time
(http://www.sciencedirect.com/science/article/pii/0022000082900095)

The graph isomorphism problem asks whether two input graphs X and Y are isomorphic (the same after relabeling),
i.e., whether there exists a bijective mapping f : V (X)→ V (Y ) such that xx′ ∈ E(X) ⇐⇒ f (x) f (x′) ∈ E(Y ). It is
one of the most famous problems in theoretical computer since. It is clearly in NP, however, it is not known to
be polynomially-solvable or NP-complete. Aside integer factorization, this is a prime candidate for an intermediate
problem with complexity between P and NP-complete. It is known that the graph isomorphism problem belongs to the
low hierarchy in NP [1], which means that it is unlikely NP-complete (unless the polynomial-time hierarchy collapses
to some finite level).

Recently, Babai [2] showed that the graph isomorphism problem can be solved in quasi-polynomial time. The worst
case running time of a quasi-polynomial time algorithm is 2O(logn)c), for some fixed c. Note that this is slower that
polynomial, but faster than exponential time.

In this talk, we present the paper of Eugene Luks which a seminal paper in the field of graph isomorphism. The main
result is that the graph isomorphism problem for graphs of bounded degree can be solved in polynomial time. The
ideas presented in this paper are essential to understand Babai’s result [2].
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Milan Hladík

Mirek Rada
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