
Online Packet Scheduling with Bounded Delay

and Lookahead∗

Martin Böhm1, Marek Chrobak2, Lukasz Jeż3, Fei Li4, Jǐŕı Sgall1, and Pavel
Veselý1

1 Computer Science Institute of Charles University, Prague, Czech Republic.
{bohm,sgall,vesely}@iuuk.mff.cuni.cz

2 Department of Computer Science and Engineering, University of California,
Riverside, USA. marek@cs.ucr.edu.

3 Institute of Computer Science, University of Wroc law, Poland.
lje@cs.uni.wroc.pl.

4 Department of Computer Science, George Mason University, USA.
lifei@cs.gmu.edu.

Abstract

We study the online bounded-delay packet scheduling problem (PacketScheduling),
where packets of unit size arrive at a router over time and need to be transmitted over
a network link. Each packet has two attributes: a non-negative weight and a deadline
for its transmission. The objective is to maximize the total weight of the transmitted
packets. This problem has been well studied in the literature, yet its optimal competitive
ratio remains unknown: the best upper bound is 1.828 [6], still quite far from the best
lower bound of φ ≈ 1.618 [10, 2, 4].

In the variant of PacketScheduling with s-bounded instances, each packet can be
scheduled in at most s consecutive slots, starting at its release time. The lower bound of
φ applies even to the special case of 2-bounded instances, and a φ-competitive algorithm
for 3-bounded instances was given in [3]. Improving that result, and addressing a
question posed by Goldwasser [8], we present a φ-competitive algorithm for 4-bounded
instances.

We also study a variant of PacketScheduling where an online algorithm has the
additional power of 1-lookahead, knowing at time t which packets will arrive at time
t + 1. For PacketScheduling with 1-lookahead restricted to 2-bounded instances, we
present an online algorithm with competitive ratio 1

2
(
√
13− 1) ≈ 1.303 and we prove a

nearly tight lower bound of 1
4
(1 +

√
17) ≈ 1.281.

∗M. Böhm, J. Sgall, and P. Veselý were supported by project 14-10003S of GA ČR and by the GAUK
project 548214. M. Chrobak was supported by NSF grants CCF-1217314 and CCF-1536026. L. Jeż was
supported by NCN grant DEC-2013/09/B/ST6/01538. F. Li was supported by NSF grant CCF-1216993.

1

1 Introduction

Background. Optimizing the flow of packets across an IP network gives rise to a plethora
of challenging algorithmic problems. In fact, even scheduling packet transmissions from
a router across a specific network link can involve non-trivial tradeoffs. Several models
for such tradeoffs have been formulated, depending on the architecture of the router, on
characteristics of the packets, and on the objective function.

In the model that we study in this paper, each packet has two attributes: a non-negative
weight and a deadline for its transmission. The time is assumed to be discrete (slotted), and
only one packet can be sent in each slot. The objective is to maximize the total weight of
the transmitted packets. We focus on the online setting, where at each time step the router
needs to choose a pending packet for transmission, without the knowledge about future
packet arrivals. This problem, which we call online bounded-delay packet scheduling problem
(PacketScheduling), was introduced by Kesselman et al. [11] as a theoretical abstraction that
captures the constraints and objectives of packet scheduling in networks that need to provide
quality of service (QoS) guarantees. The combination of deadlines and weights is used to
model packet priorities.

In the literature, the PacketScheduling problem is sometimes referred to as bounded-delay
buffer management in QoS switches. It can also be formulated as the job-scheduling problem
1|pj = 1, rj |

∑
wjUj , where packets are represented by unit-length jobs with deadlines, with

the objective to maximize the weighted throughput.
A router transmitting packets across a link needs to make scheduling decisions on

the fly, based only on the currently available information. This motivates the study of
online competitive algorithms for PacketScheduling. A simple online greedy algorithm that
always schedules the heaviest pending packet is known to be 2-competitive [10, 11]. In a
sequence of papers [5, 7, 12, 6], this ratio was gradually improved, and the best currently
known ratio is 1.828 [6]. The best lower bound, widely believed to be the optimal ratio, is
φ = (1 +

√
5)/2 ≈ 1.618 [10, 2, 4]. Closing the gap between these two bounds is one of the

most intriguing open problems in online scheduling.

s-Bounded instances. In an attempt to bridge this gap, restricted models have been
studied. In the s-bounded variant of PacketScheduling, each packet must be scheduled within
k consecutive slots, starting at its release time, for some k ≤ s possibly depending on the
packet. The lower bound of φ from [10, 2, 4] holds even in the 2-bounded case. A matching
φ-competitive algorithm was given Kesselman et al. [11] for 2-bounded instances and by
Chin et al. [3] for 3-bounded instances. Both results are based on the algorithm EDFα,
with α = φ, which always schedules the earliest-deadline packet whose weight is at least
the weight of the heaviest pending packet divided by α (ties are broken in favor of heavier
packets). EDFφ is not φ-competitive for 4-bounded instances; however, a different choice of
α yields a 1.732-competitive algorithm for the 4-bounded case [3].

Our contribution. We present a φ-competitive online algorithm for PacketScheduling restricted
to 4-bounded instances, matching the lower bound of φ (see Section 3). This improves
the results from [3] and answers the question posed by Goldwasser in his SIGACT News
survey [8].

Algorithms with 1-lookahead. In Sections 4 and 5, we investigate a variant of Pack-
etScheduling where an online algorithm is able to learn at time t which packets will arrive

2

by time t + 1. This property is known as 1-lookahead. From a practical point of view,
1-lookahead corresponds to the situation in which a router can see the packets that are just
arriving to the buffer and that will be available for transmission in the next time slot.

The notion of lookahead is quite natural and it has appeared in the online algorithm
literature for paging [1], scheduling [13] and bin packing [9] since the 1990s. Ours is the first
paper, to our knowledge, that considers lookahead in the context of packet scheduling.

Our contributions. We provide two results about PacketScheduling with 1-lookahead, restricted
to 2-bounded instances. First, in Section 4, we present an online algorithm for this problem
with competitive ratio of 1

2 (
√

13− 1) ≈ 1.303. Then, in Section 5, we give a lower bound of
1
4 (1 +

√
17) ≈ 1.281 on the competitive ratio of algorithms with 1-lookahead which holds

already for the 2-bounded case.

2 Definitions and Notation

Problem statement. Formally, we define the PacketScheduling problem as follows. The
instance is a set of packets, with each packet p specified by a triple (rp, dp, wp), where rp
and dp ≥ rp are integers representing the release time and deadline of p, and wp ≥ 0 is a
real number representing the weight of p. Time is discrete, divided into unit time slots, also
called steps. A schedule assigns time slots to some subset of packets such that (i) any packet
p in this subset is assigned a slot in the interval [rp, dp], and (ii) each slot is assigned to at
most one packet. The objective is to compute a schedule that maximizes the total weight of
the scheduled packets, also called the profit.

In the s-bounded variant of PacketScheduling, we assume that each packet p in the instance
satisfies dp ≤ rp + s− 1. In other words, this packet must be scheduled within kp consecutive
slots, starting at its release time, for some kp ≤ s.
Online algorithms. In the online variant of PacketScheduling, which is the focus of our
work, at any time t only the packets released at times up to t are revealed. Thus an online
algorithm needs to decide which packet to schedule at time t (if any) without any knowledge
of packets released after time t.

As is common in the area of online optimization, we measure the performance of an online
algorithm A by its competitive ratio. An algorithm is R-competitive if, for all instances, the
total weight of the optimal schedule (computed offline) is at most R times the weight of the
schedule computed by A.

We say that a packet is pending for an algorithm at time t, if rp ≤ t ≤ dp and p is not
scheduled before time t. A (pending) packet p is expiring at time t if dp = t, that is, it must
be scheduled now or never. A packet p is tight if rp = dp; thus p is expiring already at its
release time.

Algorithms with 1-lookahead. In Sections 4 and 5, we investigate the PacketScheduling
problem with 1-lookahead. With 1-lookahead, the problem definition changes so that at time
t, an online algorithm can also see the packets that will be released at time t+ 1, in addition
to the pending packets. Naturally, only a pending packet can be scheduled at time t.

Other terminology and assumptions. We will make several assumptions about our
problem that do not affect the generality of our results. First, we can assume that all packets
have different weights. Any instance can be transformed into an instance with distinct

3

weights through infinitesimal perturbation of the weights, without affecting the competitive
ratio. Second, we assume that at each step there is at least one pending packet. (If not, we
can always release a tight packet of weight 0 at each step.)

We define the earliest-deadline relation on packets, or canonical ordering, denoted ≺,
where x ≺ y means that either dx < dy or dx = dy and wx > wy (so the ties are broken
in favor of heavier packets). At any step t, the algorithm maintains the earliest-deadline
relation on the set of its pending packets. Throughout the paper, “earliest-deadline packet”
means the earliest packet in the canonical ordering.

Regarding the adversary (optimal) schedule, we can assume that it satisfies the following
earliest-deadline property : if packets p, p′ are scheduled in steps t and t′, respectively, where
rp′ ≤ t < t′ ≤ dp (that is, p and p′ can be swapped in the schedule without violating their
release times and deadlines), then p ≺ p′. This can be rephrased in the following useful
way: at any step, the optimum schedule transmits the earliest-deadline packet among all the
pending packets that it transmits in the future.

3 An Algorithm for 4-bounded Instances

In this section, we present a φ-competitive algorithm for 4-bounded instances. Ratio φ is of
course optimal [10, 2, 4, see also Section 1]. Up until now, the best competitive ratio for
4-bounded instances was

√
3 ≈ 1.732, achieved by algorithm EDF√3 in [3]. Our algorithm

can be seen as a modification of EDFφ, which under certain conditions schedules a packet
lighter than wh/φ where h is the heaviest pending packet.

We remark that our algorithm uses memory; in particular, it marks one pending packet
under certain conditions. It is an interesting question whether there is a memoryless
φ-competitive algorithm for 4-bounded instances.

Algorithm ToggleH. The algorithm maintains one mark that may be assigned to one of
the pending packets. For a given step t, we choose the following packets from among all
pending packets:

h = the heaviest packet,

s = the second-heaviest packet,

f = the earliest-deadline packet with wf ≥ wh/φ, and

e = the earliest-deadline packet with we ≥ wh/φ2.

We then proceed as follows:

if (h is not marked) ∨ (ws ≥ wh/φ) ∨ (de > t)
schedule f
if there is a marked packet then unmark it
if (dh = t+ 3) ∧ (df = t+ 2) then mark h

else // (h is marked) ∧ (ws < wh/φ) ∧ (de = t)
schedule e
unmark h

Note that when f 6= h, then the algorithm will always schedule f . This is because in this case
f is a candidate for s, so the condition ws ≥ wh/φ holds. The algorithm never specifically

4

chooses s for scheduling – it is only used to determine if there is one more relatively heavy
pending packet other than h. (But s may get scheduled if it so happens that s = f or s = e.)
Note also that, if e 6= f , then e is scheduled only in a very specific scenario, when all of the
following hold: e is expiring, h is marked, and ws < wh/φ.

Intuition. Let us give a high-level view of the analysis using charging schemes and an
example that motivates both our algorithm and its analysis. The example consists of four
packets j, k, f, h released in step 1, with deadlines 1, 2, 3, 4 and weights 1− ε, 1− ε, 1, φ for a
small ε > 0, respectively. The optimum schedules all packets.

Algorithm EDFφ performs only f -steps; in our example it schedules f and h in steps 1
and 2, while j and k are lost. Thus the ratio is larger than φ. (In fact, after optimizing the
threshold and the weight of h, this is the tight example for EDF√3 on 4-bounded instances.)
ToggleH avoids this example by performing e-step in step 2 and scheduling k which has the
role of e and s in the algorithm.

This example and its variants are also important for our analysis. We analyze the
algorithms by charging schemes, where the weight of each packet scheduled by the adversary
is charged to one or more of the slots of the algorithm’s schedule. If the weight charged to
each slot is at most R times the weight of the packet scheduled by the algorithm in that slot,
the algorithm is R-competitive. In the case of EDF, we charge the weight of each packet j
scheduled by the adversary at time t either fully to the step where EDF schedules j, if it is
before t, or fully to step t otherwise. In our example, the weight charged to step 1 is 2− ε
while EDF schedules only weight 1, giving the ratio 2. Considering steps 1 and 2 together
leads to a better ratio and after balancing the threshold it gives the tight analysis of EDF√3.

Our analysis of ToggleH is driven by the variants of the example above where step 2 is
an f -step. This may happen in several cases. One case is if in step 2 another packet s with
ws ≥ wh/φ arrives. If s is not scheduled in step 2, then s is pending in step 3, thus ToggleH
schedules a relatively heavy packet in step 3, and we can charge a part of the weight of f ,
scheduled in step 3 by the adversary, to step 3. This motivates the definition of regular up
and back charges below and corresponds to Case 5.1 in the analysis. Another case is when
the weight of k is changed to 1/φ− ε. Then ToggleH performs an f -step because k is not a
candidate for e, thus the role of e is taken by the non-expiring packet h. However, then the
weight of the four packets charged to steps 1 and 2 in the way described above is at most φ
times the weight of f and h; this corresponds to Case 5.2 of the analysis. Lemma 3.3 gives a
subtle argument showing that in the 4-bounded case essentially these two variants of our
example are the only difficult situations. Finally, in the original example, ToggleH schedules
k in step 2 which is an e-step. Then again h is a pending heavy packet and we can charge
some weight of f to step 3. Intuitively it is important that an e-step is performed only in a
very specific situation where it is guaranteed that h can be scheduled in the next two steps
(as it is marked) and that there is no other packet of comparable weight due to the condition
ws < wh/φ. Still, there is a case to be handled: If more packets arrive in step 3, it is also
possible that the adversary schedules h already in step 2 and we need to redistribute its
weight. This case motivates the definition of the special up and back charges below.

Theorem 3.1. Algorithm ToggleH is φ-competitive on 4-bounded instances.

Proof. Fix some optimal adversary schedule. Without loss of generality, we can assume that
this schedule satisfies the earliest-deadline property (see Section 2).

5

We have two types of packets scheduled by Algorithm ToggleH: f-packets, scheduled using
the first case, and e-packets, scheduled using the second case. Similarly, we refer to the steps
as f -steps and e-steps.

Let t be the current step. By h, f , e, and s we denote the packets from the definition of
ToggleH. By j we denote the packet scheduled by the adversary. By h′ and h′′ we denote the
heaviest pending packets in steps t+ 1 and t+ 2, respectively. We use the same convention
for packets f , e, s, and j.

Our analysis uses a new charging scheme which we now define. The adversary packet j
scheduled in step t is charged according to the first case below that applies:

1. If t is an e-step and j = h, we charge wh/φ to step t and wh/φ
2 to step t− 1. We call

these charges a special up charge and a special back charge, respectively. Note that the
total charge is equal to wh = wj .

2. If j is pending for ToggleH in step t, charge wj to step t. We call this charge a full up
charge.

3. Otherwise j is scheduled before step t. We charge wh/φ
2 to step t and wj − wh/φ2 to

the step where ToggleH scheduled j. We call these charges a regular up charge and a
regular back charge, respectively. We point out that the regular back charge may be
negative, but this causes no problems in the proof.

We start with an easy observation that we use several times throughout the proof.

Lemma 3.2. If an f -step t receives a regular back charge, then the up charge it receives is
less than wh/φ.

Proof. For a regular up charge the lemma is trivial (with a slack of a factor of φ). For a full
up charge, the existence of a back charge implies that the adversary schedules f after j, thus
the earliest-deadline property of the adversary schedule implies that j ≺ f , as both j and f
are pending for the adversary at t. Thus ToggleH would schedule j if wj ≥ wh/φ. Finally,
an f -step does not receive a special up charge.

We examine packets scheduled by ToggleH from left to right, that is in order of time. For
each time step t, if p is the packet scheduled at time t, we want to show that the charge to
step t is at most φwp. However, as it turns out, this will not always be true. In one case we
will also consider the next step t + 1 and the packet p′ scheduled in step t + 1, and show
that the total charge to steps t and t+ 1 is at most φ(wp + wp′).

Let t be the current step. We consider several cases.

Case 1: t is an e-step. By the definition of ToggleH, we ≥ wh/φ
2 and de = t; the latter

implies that step t receives no regular back charge. We further note that the heaviest pending
packet h′ in step t+ 1 is either released at time t+ 1 or it coincides with h, which is still
pending and became unmarked by the algorithm in step t; in either case h′ is unmarked at
the beginning of step t+ 1, which implies that step t+ 1 is an f -step. Thus, step t receives
no special back charge, which, combined with the previous observation, implies it receives no
back charge of any kind.

Now we claim that the up charge is at most wh/φ. For a special or regular up charge this
follows from its definition. For a full up charge, the job j is pending at time t for ToggleH

6

ALG

t t + 1 t̄ = t + 2

OPT j j′ f

f h

t + 3

h

Figure 1: An illustration of the situation in Case 5.2. Up charges are denoted by solid arrows
and back charges by dashed arrows.

and j 6= h (as for j = h the special charges are used). This implies that wj < wh/φ, as
otherwise ws ≥ wh/φ and t would be an f -step. Thus the full charge is wj ≤ wh/φ as well.

Using we ≥ wh/φ2, the charge is at most wh/φ ≤ φwe and we are done.

Case 2: t is an f -step and t does not receive a back charge. Then t can only receive an
up-charge, and this up charge is at most wh ≤ φwf , where the inequality follows from the
definition of f .

Case 3: t is an f -step and t receives a special back charge. From the definition of special
charges, the next step is an e-step, and therefore h′ is marked at its beginning. Since the
only packet that may be marked after an f -step is h, we thus have h = h′ = j′, and the
special back charge is wh/φ

2. Since f ≺ h, the adversary cannot schedule f after step t, so
step t cannot receive a regular back charge.

We claim that the up charge to step t is at most wf . Indeed, a regular up charge is at
most wh/φ

2 ≤ wf , and a special up charge does not happen in an f -step. To show this
bound for a full up charge, assume for contradiction that wj > wf . This implies that j 6= f
and, since ToggleH scheduled f , we have dj > df . In particular j is pending at time t+ 1.
Thus ws′ ≥ wj > wf ≥ wh/φ, contradicting the fact that t+ 1 is an e-step. Therefore the
full charge is wj ≤ wf , as claimed.

As wh ≤ φwf , the total charge to t is at most wf + wh/φ
2 ≤ wf + wf/φ = φwf .

Case 4: t is an f -step, t receives a regular back charge and no special back charge, and f = h.
The up charge is at most wh/φ by Lemma 3.2 and the back charge is at most wh, thus the
total charge is at most wh + wh/φ = φwh, and we are done.

Case 5: t is an f -step, t receives a regular back charge and no special back charge, and f 6= h.
Let t̄ be the step when the adversary schedules f . We distinguish two sub-cases.

Case 5.1: In step t̄, a packet of weight at least wh/φ is pending for the algorithm. Then the
regular back charge to t is at most wf − (wh/φ)/φ2 = wf − wh/φ3. As the up charge to
t is at most wh/φ by Lemma 3.2, the total charge to t is at most wh/φ + wf − wh/φ3 =
wf + wh/φ

2 ≤ (1 + 1/φ)wf = φwf , and we are done.

Case 5.2: In step t̄, no packet of weight at least wh/φ is pending for the algorithm. In this
case we consider the charges to steps t and t+ 1 together. First, we claim the following.

Lemma 3.3. ToggleH schedules h in step t+ 1. Furthermore, step t+ 1 receives no special
charge and it receives an up charge of at most wh/φ

2.

Proof. Since f 6= h, we have f ≺ h and thus, using also the definition of t̄ and 4-boundedness,
t̄ ≤ df < dh ≤ t + 3. The case condition implies that h is not pending at t̄, thus ToggleH

7

schedules h before t̄. The only possibility is that ToggleH schedules h in step t+ 1, t̄ = df =
t+ 2, and dh = t+ 3; see Figure 1 for an illustration. This also implies that ToggleH marks
h in step t.

We claim that ws′ < wh/φ. Indeed, otherwise either s′ is pending in step t+ 2, contra-
dicting the condition of Case 5.2, or ds′ = t + 1 < dh, thus s′ is a better candidate for f ′

than h, which contradicts the fact that the algorithm scheduled f ′ = h.
The claim also implies that h′ = h, as otherwise ws′ ≥ wh. Since h = h′ is scheduled in

step t+ 1, there is no marked packet in step t+ 2 and t+ 2 is an f -step; thus there is no
special back charge to t+ 1.

We note that step t + 1 is also an f -step, since ToggleH schedules h in step t + 1 and
dh > t+ 1. Since h′ = h is marked when step t+ 1 starts and ws′ < wh/φ, the reason that
step t+ 1 is an f -step must be that de′ > t+ 1.

There is no special up charge to step t+ 1 as it is an f -step. If the up charge to step t+ 1
is a regular up charge, by definition it is at most wh′/φ2 = wh/φ

2 and the lemma holds.
The only remaining case is that of a full up charge to step t+1 from a packet j′ scheduled

by the adversary in step t + 1 and pending for ToggleH in step t + 1. Since j′ 6= h, it
is a candidate for s′, and thus wj′ < wh/φ ≤ wf . The earliest-deadline property of the
adversary schedule implies that j′ ≺ f ; together with df = t+ 2 and wj′ < wf this implies
dj′ = t+ 1. Therefore wj′ < wh/φ

2, as otherwise j′ is a candidate for e′, but we have shown
that de′ > t+ 1. Thus the regular up charge is at most wj′ < wh/φ

2 and the lemma holds
also in the remaining case.

By Lemma 3.3, step t+ 1 receives no special charge and an up charge of at most wh/φ
2

and ToggleH schedules h in step t+ 1. Step t+ 1 thus also receives a regular back charge of
at most wh. So the total charge to step t+ 1 is at most wh/φ

2 +wh ≤ wf/φ+wh. Moreover,
using Lemma 3.2, the total charge to step t is at most wh/φ+wf . Thus, the total charge to
these two steps is at most (wh/φ+ wf) + (wf/φ+ wh) = φ(wf + wh), as f and h are the
two packets scheduled by ToggleH.

In each case we have shown that a step or a pair of consecutive steps receive a total
charge of at most φ times the weight of packets scheduled in these steps. Thus ToggleH is
φ-competitive for the 4-bounded case.

4 An Algorithm for 2-Bounded Instances with Looka-
head

In this section, we present an algorithm for 2-bounded PacketScheduling with 1-lookahead, as
defined in Section 2.

Consider some online algorithm A. Recall that, for a time step t, packets pending for A
are those that are released at or before time t and have neither expired nor been scheduled
by A before time t. Lookahead packets at time t are the packets with release time t+ 1.

For A, we define the plan in step t to be the optimal schedule in the time interval
[t,∞) that consists of pending and lookahead packets at time t and has the earliest-deadline
property. For 2-bounded instances, this plan will only use slots t, t+ 1 and t+ 2. We will
typically denote the packets in the plan scheduled in these slots by p1, p2, p3, respectively.

8

The earliest-deadline property then implies that if both p1 and p2 have release time t and
deadline t+ 1 then p1 is heavier than p2 and similarly for p2 and p3.

Algorithm CompareWithBias(α). Fix some parameter α > 1. At any time step t, the
algorithm proceeds as follows:

let p1, p2, p3 be the plan at time t
if rp2 = t and wp1 < min(wp2 , wp3 ,

1
2α (wp2 + wp3))

then schedule p2
else schedule p1

Note that if the algorithm schedules p2 then p1 must be expiring, for otherwise wp1 > wp2
(by canonical ordering). Also, the scheduled packet is at least as heavy as the heaviest
expiring packet q, since clearly wp1 ≥ wq and the algorithm schedules p2 only if wp1 < wp2 .

Analysis. We set the parameter α and constants δ and R which we will use in the analysis
so that they satisfy the following equalities:

2− δ − R+ 2δ − 1

α
= R (1)

1− 2δ + 2αδ = R (2)

1 +
1

2α
= R (3)

By solving these equations we get α = 1
4 (
√

13 + 3) ≈ 1.651, δ = 1
6 (5−

√
13) ≈ 0.232, and

R = 1
2 (
√

13− 1) ≈ 1.303.
In this section we will prove the following theorem:

Theorem 4.1. The algorithm CompareWithBias(α) is R-competitive for packet scheduling
on 2-bounded instances for R = 1

2 (
√

13− 1) ≈ 1.303 if α = 1
4 (
√

13 + 3) ≈ 1.651.

We also use the following properties of these constants:

2−R− 3δ = 0 (4)

2−R− 2δ > 0 (5)

1− δ − R− 1 + 2δ

2α
> 0 (6)

1− R

2α
> 0 (7)

3αδ < R (8)

2− R

α
< R (9)

where (4) follows from (1) and (2) and strict inequalities can be verified numerically.
Let ALG be the schedule produced by CompareWithBias. Let us consider an optimal

schedule OPT (a.k.a. schedule of the adversary) satisfying the canonical ordering, i.e., if a
packet x is scheduled before a packet y in OPT then either y is released after x is scheduled
or x ≺ y. Recall that we are assuming w.l.o.g. that the weights of packets are different.

9

• i = packet scheduled in step t− 1 in OPT,
• j = packet scheduled in step t in OPT,
• k = packet scheduled in step t+ 1 in OPT,
• e = packet scheduled in step t− 1 in ALG,
• f = packet scheduled in step t in ALG,
• g = packet scheduled in step t+ 1 in ALG,
• h = packet scheduled in step t+ 2 in ALG.

ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h

Figure 2: Packet definition.

The analysis of CompareWithBias is based on a charging scheme. First we define a
few packets by their schedule times; see Figure 2.

Informal description of charging. We use three types of charges. The adversary’s packet
j in step t is charged using a full charge either to step t− 1 if ALG schedules j in step t− 1
or to step t if wf ≥ wj (including the case f = j) and f is not in step t+ 1 in OPT; the last
condition assures that step t does not receive two full charges.

The second type are split charges that occur in step t if wf > wj , j is pending in step t
in ALG and f is in step t+ 1 in OPT, i.e., step t receives a full back charge from f . In this
case, we distribute the charge from j to f and another relatively large packet f ′ scheduled in
step t+ 1 or t+ 2 in ALG; we shall prove that one of these steps satisfies 2α·wj < wf + w′f .
We charge to step t+ 2 only when it is necessary, which allows us to prove that split-charge
pairs are pairwise disjoint. Also, in this case we analyze the charges to both steps together,
thus it is not necessary to fix a distribution of the weight to the two steps.

The remaining case is when wf < wj and j is not scheduled in t− 1 in ALG. We analyze
these steps in maximal consecutive intervals, called chains and the corresponding charges
are chain charges. Inside each chain we distribute the charge of each packet j scheduled at t
in OPT to steps t− 1, t and t+ 1, if these steps are also in the chain. The distribution of
weights shall depend on a parameter δ. Packets at the beginning and at the end of the chain
are charged in a way that minimizes the charge to steps outside of the chain. In particular,
the step before a chain receives no charge from the chain.

Notations and the charging scheme. A step t for which wf < wj and j is pending in
step t in ALG is called a chaining step. A maximal sequence of successive chaining steps is
called a chain. The chains with a single step are called singleton chains, the chains with at
least two steps are called long chains.

The pair of steps that receive a split charge from the same packet is called a split-charge
pair. The charging scheme does not specify the distribution of the weight to the two steps of
the split-charge pair, as the charges to them are analyzed together.

Packet j scheduled in OPT at time t is charged according to the first rule below that
applies. See Figure 3 for an illustration of the first four (non-chaining) charges and Figure 4
for an illustration of the chaining charges.

1. If j is scheduled in step t− 1 in ALG (that is, e = j), charge wj to step t− 1. We call
this charge a full back charge.

2. If wf ≥ wj and f is not scheduled in step t+ 1 in OPT (in particular, if j = f), charge
wj to step t. We call this charge a full up charge.

10

ALG

t− 1 t

OPT j

j

a full back charge

ALG

t

OPT j

f

a full up charge

ALG

t t + 1

OPT j

f g ALG

t t + 1 t + 2

OPT j

f g h

a close split charge a distant split charge

f f

Figure 3: Non-chaining charges. Note that for split charges f is scheduled in step t+ 1 in
OPT which follows from the fact that we do not charge j using a full up charge.

ALG

t− 1 t t + 1 t + 2

OPT i j k

e f g h ALG

t t + 1

OPT j

f g

a singleton chaina chain of length 3

Figure 4: On the left, a chain of length 3 starting in step t − 1 and ending in step t + 1.
The chain beginning charges are denoted by dotted (blue) lines, the chain end charges are
denoted by gray lines and the forward charge from a chain is depicted by a dashed (red)
arrow. Black arrows denote the chain link charges. On the right, an example of a singleton
chain, with the up charge from a singleton chain denoted with a dashed (green) line and the
forward charge from a singleton chain denoted with a dotted (orange) line.

3. If wf > wj and at least one of the following holds:

• 2α·wj < wf + wg,
• g does not get a full back charge and 2α·(wp1 − wg) < wf + wg where p1 is the

first packet in the plan at time t,

then charge wj to the pair of steps t and t+ 1. We call this charge a close split charge.

4. If wf > wj , then charge wj to the pair of steps t and t + 2. We call this charge a
distant split charge.

5. Otherwise step t is a chaining step, as wf < wj and ALG does not schedule f in step
t− 1 by the previous cases. We distinguish the following subcases.

(a) If step t is (the only step of) a singleton chain, then charge min(wj , R ·wf) to
step t and wj − R ·wf to step t + 1 if wj > R ·wf . We call these charges an up
charge from a singleton chain and a forward charge from a singleton chain.

(b) If step t is the first step of a long chain, charge 2δ ·wj to step t, and (1− 2δ)·wj
to step t+ 1. We call these charges chain beginning charges.

(c) If step t is the last step of a long chain, charge δ ·wj to step t− 1, (R− 1 + 2δ)·wf
to step t, and (1− δ)·wj − (R− 1 + 2δ)·wf to step t+ 1. We call these charges
chain end charges ; the charge to step t+ 1 is called a forward charge from a chain.

11

(Note that we always have (1 − δ)·wj > (R − 1 + 2δ)·wf , since wj > wf and
1− δ = R− 1 + 2δ which follows from (4).)

(d) Otherwise, i.e., step t is inside a long chain, charge δ ·wj to step t− 1, δ ·wj to
step t, and (1− 2δ)·wj to step t+ 1. We call these charges chain link charges.

To estimate the competitive ratio we need to show that each step or a pair of steps
does not receive too much charge. We start with a useful observation about plans of
Algorithm CompareWithBias(α), that will be used multiple times in our proofs.

Lemma 4.2. Consider a time t, where the algorithm has two pending packets a, b and
a lookahead packet c with the following properties: da = t, (rb, db) = (t, t + 1), (rc, dc) =
(t+ 1, t+ 2), and wa < min(wb, wc). If the algorithm schedules packet a in step t then the
plan at time t is a, b, c, and 2α·wa ≥ wb + wc.

Proof. We claim that there is no pending or lookahead packet q /∈ {b, c} heavier than a.
Suppose for a contradiction that such a q exists. Then a schedule containing packets q, b, c
in some order is feasible and has larger profit than a, b, c. This implies that the plan does
not contain a and thus a cannot be scheduled, contradicting the assumption of the lemma.

The schedule a, b, c is feasible and the claim above implies that it is optimal, thus it is
the plan. It remains to show that 2α·wa ≥ wb + wc, which follows easily by a contradiction:
Otherwise 2α·wa < wb + wc and CompareWithBias(α) would schedule b, contradicting
the assumption of the lemma.

Next, we will provide an analysis of full, split and chain charges, starting with full and
split charges. We prove several lemmas from which the analysis follows. We fix some time
slot t, and use the notation from Figure 2 for packets at time slots t− 1, t, t+ 1 and t+ 2 in
the schedule of the algorithm and the optimal schedule.

Analysis of full charges. Using Rules 1 and 2, if step t receives a full back charge, then
the condition of Rule 2 guarantees that it will not receive a full up charge. This gives us the
following observation.

Lemma 4.3. Step t receives at most one full charge, i.e., a charge by Rule 1 or 2.

Analysis of split charges. We now analyze close and distant split charges. The crucial
property of split charges is that, similar to full charges, each step receives at most one split
charge. Before we prove this, we establish several useful properties of split charges.

Lemma 4.4. Let the plan at time t be p1, p2, p3. If j is charged using a close or a distant
split charge, then the following holds:
(a) j is not scheduled by the algorithm in step t− 1, i.e., j is pending for the algorithm in

step t.
(b) df = t+ 1 and f is scheduled in step t+ 1 in OPT (that is, k = f). In particular, step t

receives a full back charge.
(c) dj = t and wj ≤ wp1 .
(d) p2 = f .

12

Proof. By Rule 1, packet j would be charged using a full back charge if it were scheduled in
step t− 1, implying (a). The case conditions for split charges in the charging scheme imply
that OPT schedules f in step t+ 1 and wf > wj . Now (b) follows from the fact that we do
not charge j using a full up charge.

To show (c), note that if j is not expiring, then j and f would have equal deadlines. As
we also have wf > wj , f would be scheduled before j in OPT by the canonical ordering, a
contradiction. The inequality wj ≤ wp1 now follows from the definition of the plan.

It remains to prove (d). Towards contradiction, suppose that f = p1. We know that j is
expiring and thus it is not in the plan. If dp2 = t+ 1 then the optimality of the plan implies
wp2 > wj (otherwise j, f, p3 would be a better plan), so, since p2 is not in OPT, we could
improve OPT by scheduling f in step t and p2 in step t+ 1.

Next, assume that dp2 = t+ 2. The optimality of the plan implies that wp2 > wj and
wp3 > wj . Since both p2, p3 have deadline t + 2, at least one of them is not scheduled in
OPT. So OPT could be improved by scheduling f in step t and one of p2 or p3 in step t+ 1.
In both cases we get a contradiction with the optimality of OPT.

We show a useful lemma about a distant split charge from which we derive an upper
bound on wj , similar as the upper bound in the definition of close split charge.

Lemma 4.5. If j is charged using a distant split charge, then wg < wp3 where p3 is the
third packet in the plan at time t, and dg = t+ 1.

Proof. Suppose that wg ≥ wp3 . Then, from Lemma 4.4(c),(d) and the choice of p2 = f in
the algorithm, we have that 2αwj ≤ 2αwp1 < wp2 + wp3 ≤ wf + wg, so we would use the
close split charge in step t, not the distant one. Thus wg < wp3 , as claimed.

To prove the second part, if we had dg = t+ 2 then, since the algorithm chose g in step
t+ 1 and also dp3 = t+ 2, we would also have that wg ≥ wp3 – a contradiction.

Lemma 4.6. If j is charged using a distant split charge then 2α·wj < wf + wh. (Recall
that h is the packet scheduled in step t+ 2 in ALG.)

Proof. Let p1, p2, p3 be the plan in step t. By Lemma 4.4(d) we have that f = p2. Thus
2α·wp1 < wp2 + wp3 by the definition of the algorithm. By Lemma 4.4(c), j is expiring
and wj ≤ wp1 . As g 6= p3 by Lemma 4.5, the algorithm has p3 pending in step t+ 2 where
it is expiring, implying that wp3 ≤ wh. Putting it all together, we get 2αwj ≤ 2αwp1 <
wp2 + wp3 ≤ wf + wh.

For a split charge from j in step t, let t′ be the other step that receives the split charge
from j; that is, t′ = t+ 1 for a close split charge and t′ = t+ 2 for a distant split charge. We
now show that split-charge pairs are pairwise disjoint.

Lemma 4.7. If j is charged using a split charge to a pair of steps t and t′, then neither of
t and t′ is involved in another pair that receives a split charge from a packet j′ 6= j.

Proof. No matter which split charge we use for j, using Lemma 4.4(b), step t+ 1 does not
receive a split charge from k = f . By a similar argument, since j is not scheduled in step
t− 1 in ALG, step t does not receive a close split charge from the packet scheduled in step
t− 1 in OPT.

13

It remains to prove that if j is charged using a distant split charge, then the packet `
scheduled in step t+ 2 in OPT is not charged using a split charge. (This also ensures that
step t does not receive a distant split charge from a packet scheduled in step t− 2 in OPT.)

For a contradiction, suppose that packet ` is charged using a split charge. Let p1, p2, p3
be the plan in step t. Recall that g and h are the packets scheduled in steps t+ 1 and t+ 2
in ALG.

From Lemma 4.5, step t+ 1 does not receive a full back charge. Since we did not apply
the close split charge for j in Rule 3, we must have

2α(wp1 − wg) ≥ wf + wg ≥ wf . (10)

By Lemma 4.4(b) applied to step t + 2, we get dh = t + 3. Since dp3 = t + 2, we get
wp3 < wh. We now use Lemma 4.2 for step t+ 1 with a = g, b = p3, and c = h. We note that
all the assumptions of the lemma are satisfied: we have dg = t+ 1, (rp3 , dp3) = (t+ 1, t+ 2),
(rh, dh) = (t+ 2, t+ 3), and wg < wp3 < wh. This gives us that 2αwg ≥ wp3 + wh > wp3 .

Since the algorithm schedules f = p2 in step t, we have 2αwp1 < wf+wp3 . Subtracting the
inequality derived in the previous paragraph, we get 2α(wp1 −wg) < (wf +wp3)−wp3 = wf
– a contradiction with (10). This completes the proof.

The lemmas above allow us to estimate the total of full and split charges.

Lemma 4.8. If j is charged using a split charge to a pair of steps t and t′, then the total of
full and split charges to steps t and t′ does not exceed R ·(wf + wf ′) where f ′ is the packet
scheduled in step t′ in ALG.

Proof. Each of steps t and t′ may receive a full charge, but each step at most one full charge
from a packet of smaller or equal weight by Lemma 4.3 and charging rules.

If we use a distant split charge or if step t′ gets a full back charge, then 2α·wj < wf +wf ′

by Lemma 4.6 or Rule 3. Thus the total of full and split charges to steps t and t′ is upper
bounded by

wf + wf ′ + wj < wf + wf ′ +
wf + wf ′

2α
=

(
1 +

1

2α

)
·(wf + wf ′) = R ·(wf + wf ′)

where we used (3) in the last step.
Otherwise, i.e., if we use a close split charge and step t′ = t+ 1 does not get a full back

charge, then we have 2α·(wp1 − wf ′) < wf + wf ′ by Rule 3. Since dj = t by Lemma 4.4(c),
we have wj ≤ wp1 and 2α·(wj −wf ′) < wf +wf ′ . Also, step t+ 1 does not receive a full up
charge by Lemma 4.4(b). We thus bound the total of full and split charges to steps t and
t+ 1 by

wf + wj < wf +
wf + (2α+ 1)·wf ′

2α
=

(
1 +

1

2α

)
·(wf + wf ′) = R ·(wf + wf ′)

using (3) in the last step again.

Analysis of chain charges. We now analyze chaining steps starting with a lemma below
consisting of several useful observations. In particular, Part (c) motivates the name “chaining”
for such steps.

14

Lemma 4.9. If step t is a chaining step, then the following holds:
(a) dj = t+ 1,
(b) df = t.
Moreover, if step t+ 1 is also a chaining step, then

(c) j is scheduled by the algorithm in step t+ 1, i.e., g = j,
(d) 2α·wf ≥ wj + wk (recall that k is the packet scheduled in step t+ 1 in OPT).

Proof. Recall that Algorithm CompareWithBias(α) never schedules a packet lighter than
the heaviest expiring packet. As in step t it schedules f with wf < wj (by Rule 5 for chain
charges), (a) follows. Furthermore, it follows that f is expiring in step t, because otherwise
the algorithm would schedule j, since both would have the same deadline and j is heavier.
Thus (b) holds as well.

Now assume that step t + 1 is also in the chain and for a contradiction suppose that
g 6= j. Since j is expiring and pending for the algorithm in step t+ 1, we have wg > wj and
wk > wg as step t+ 1 is in the chain.

Summarizing, the algorithm sees all packets f, j, g, k in step t (some are pending and
some may be lookahead packets), and they are all distinct packets with wf < wj < wg < wk,
df = t, (rj , dj) = (t, t+ 1), and both g and k can be feasibly scheduled at time t+ 1. Thus,
independently of the release times and deadlines of g and k, the plan at time t containing f
would not be optimal – a contradiction. This proves that (c) holds.

Finally, we show (d). Since f is expiring in step t by (b) and both j and k are considered
for the plan at time t and satisfy (rj , dj) = (t, t+ 1), (rk, dk) = (t+ 1, t+ 2), wf < wj < wk,
we use Lemma 4.2 with a = f, b = j, and c = k and get the inequality in (d).

First we show that chaining steps does not receive charges of other types.

Lemma 4.10. If step t is a chanining step, then t does not receive a full charge or a split
charge.

Proof. By Lemma 4.9, f is expiring, thus step t does not receive a full back charge. As
wj > wf , the step also does not get a full up charge or a split charge from step t. So it
remains to show that f does not receive a split charge.

First observe that step t cannot receive a close split charge from step t − 1 in OPT,
because j is pending in step t in ALG, while Lemma 4.4(b) states that a split charge from
step t− 1 would require j to be scheduled at time t− 1 in ALG.

Finally, we show that step t does not receive a distant split charge. For a contradiction,
suppose that step t receive a distant split charge from the packet x scheduled in step t− 2
in OPT. Let p1, p2, p3 be the plan in step t− 2. According to Lemma 4.4(d) and (b), p2 is
scheduled in step t− 2 in ALG and in step t− 1 in OPT. Moreover, by Lemma 4.4(c), x is
pending and expiring in step t − 2 and wp1 ≥ wx. As the algorithm scheduled p2 in step
t− 2 we get rp2 = t− 2 and wp1 < wp3 .

Observe that p3 is not scheduled in OPT, since it is expiring in step t and j is not expiring,
by Lemma 4.9(a). Thus we could increase the weight of OPT if we scheduled p2 in step t− 2
instead of x and p3 in step t− 1. This contradicts the optimality of OPT.

We now analyze how much charge does each chaining step get.

Lemma 4.11. If step t is a chaining step, then it receives a charge of at most R ·wf .

15

Proof. By Lemma 4.10, step t does not receive any full or split charges; therefore we just
need to prove that the total of chain charges to step t does not exceed R ·wf .

Case 1: t is the last step of a chain. If t is the only step in the chain then Rule 5a implies
directly that the charge to t is at most R ·wf . Otherwise, Lemma 4.9(c) implies that f is
scheduled in step t − 1 in OPT, and thus the charge from step t − 1 is (1 − 2δ)·wf . The
charge from step t is at most (R − 1 + 2δ)·wf by Rule 5c. So the total charge is at most
R ·wf .

Case 2: t is not the last step of a chain. Since step t+ 1 is also in the chain, by Lemma 4.9(c)
we have that j is scheduled in step t+ 1 in ALG and OPT has a packet k with wk > wj in
step t+ 1. From Lemma 4.9(d) we know that 2α·wf ≥ wj + wk.

There are two sub-cases. If t is the first step of the chain, then the charge to t is at most

2δ ·wj + δ ·wk ≤ 3
2δ ·(wj + wk) ≤ 3αδ ·wf < R ·wf ,

where the last inequality follows from (8). Otherwise, using Lemma 4.9(c), f is scheduled in
step t− 1 in OPT, so the total charge to step t is at most

(1− 2δ)·wf + δ ·wj + δ ·wk ≤ (1− 2δ)·wf + 2αδ ·wf = R ·wf

where the last equality follows from (2).

Analysis of forward charges from chains. We now show that a forward charge from a
chain does not cause an overload on the step just after the chain which may also get both a
full charge and a split charge. (This is the only case when a step receives charges of all three
types.)

For the following lemmas we assume that step t− 1 is a chaining step. Recall that i is
the packet scheduled in step t− 1 in OPT and e is the packet scheduled in step t− 1 in ALG.
First, we prove some useful observations.

Lemma 4.12. If step t receives a forward charge from a chain, then the following holds
(a) j 6= e (that is, j is not charged using a full back charge),
(b) wf ≥ wj,
(c) wf ≥ wi.
Moreover, if step t is not in a split-charge pair:

(d) j is charged using a full up charge to step t,
(e) step t does not receive a back charge.

Proof. Part (a) holds because e is expiring in step t− 1, by Lemma 4.9(b). Part (b) follows
from (a) and the fact that step t is not chaining.

To show (c), Lemma 4.9(a) implies that di = t. Also, since i 6= e, i is pending in ALG in
step t. Now (c) follows, because each packet scheduled by the algorithm is at least as heavy
as the the heaviest expiring packet.

Part (d) follows from (a) and (b) and the assumption that t is not in a split-charge pair.
Part (e) follows from (d) and Lemma 4.3.

Note that f may be the same packet as i or j. We start with the case in which f is not
in a split-charge pair.

16

Lemma 4.13. If step t receives a forward charge from a chain C and t is not in a split-charge
pair, then the total charge to step t is at most R ·wf .

Proof. The proof is by case analysis, depending on the relative weights of j and e, and on
whether C is a singleton or a long chain. In all cases we use Lemma 4.12 and the charging
rules to show upper bounds on the total charge.

Case 1: wj < we.

Case 1.1: The chain C is long. The charge to step t is then at most

wj + (1− δ)·wi − (R− 1 + 2δ)·we < wj + (1− δ)·wi − (R− 1 + 2δ)·wj
= (2−R− 2δ)·wj + (1− δ)·wi
≤ (2−R− 2δ)·wf + (1− δ)·wf (11)

= (3−R− 3δ)·wf = wf . (12)

To justify inequality (11), note that 2−R− 2δ ≥ 0 by (5) and 1− δ ≥ 0 by the choice of δ,
so we can apply inequalities wj ≤ wf and wi ≤ wf from Lemma 4.12(b) and (c). The last
step (12) follows from equation (4).

Case 1.2: The chain C is singleton. We assume that wi > R ·we, otherwise there is no
forward charge from the chain. Then the charge to step t is

wj + wi −R ·we ≤ wj + wi −R ·wj ≤ wi ≤ wf ,

where in the last step we used Lemma 4.12(c).

Case 2: wj > we. We claim first that j is not expiring in step t, that is dj = t+ 1. Indeed, if
we had dj = t, then in step t− 1 the algorithm would have pending packets e and i, plus
packet j (pending or lookahead), that need to be scheduled in slots t−1 and t. Since we < wi
(because step t− 1 is a chaining step) and we < wj (by the case assumption), packet e could
not be in the plan in step t− 1 which is a contradiction. Thus dj = t+ 1.

Recall that e is expiring in step t− 1 by Lemma 4.9(b) and both i and j are considered
for the plan in step t − 1. Moreover, we know that wi > we, wj > we, (ri, di) = (t − 1, t)
(by Lemma 4.9(a)), and (rj , dj) = (t, t + 1). We thus use Lemma 4.2 for step t − 1 with
a = e, b = i, and c = j, to get that 2α·we ≥ wi + wj .

Case 2.1: The chain C is long. The charge to step t is

wj + (1− δ)·wi − (R− 1 + 2δ)·we
≤ wj + (1− δ)·wi − (R− 1 + 2δ)·wi + wj

2α

=

(
1− R− 1 + 2δ

2α

)
·wj +

(
1− δ − R− 1 + 2δ

2α

)
·wi

≤
(

1− R− 1 + 2δ

2α

)
·wf +

(
1− δ − R− 1 + 2δ

2α

)
·wf (13)

=

(
2− δ − R− 1 + 2δ

α

)
·wf = R ·wf . (14)

17

To justify inequality (13), we note that 1 − δ − (R − 1 + 2δ)/(2α) ≥ 0, by (6), so we can
again apply inequalities wj ≤ wf and wi ≤ wf from Lemma 4.12(b) and (c). In the last
step (14) we used equation (1).

Case 2.2: The chain C is singleton. We assume that wi > R ·we, otherwise there is no
forward charge from the chain. Then the charge to step t is

wj + wi −R ·we ≤ wj + wi −R ·
wi + wj

2α

=

(
1− R

2α

)
·(wi + wj)

≤
(

1− R

2α

)
·(2wf) (15)

=

(
2− R

α

)
·wf < R ·wf (16)

Inequality (15) is valid, because wi ≤ wf and wj ≤ wf , by Lemma 4.12, and 1−R/(2α) ≥ 0
by (7). In step (16) we used (9).

We now analyze how the forward charge from a chain combines with split charges. First
we observe that only the first step from a split-charge pair may receive a forward charge
from a chain.

Lemma 4.14. If j is charged using a split charge to a pair of steps t and t′ (where t′ is
t+ 1 or t+ 2), then t′ does not receive a forward charge from a chain.

Proof. By Lemma 4.4(b) we have k = f , which implies that steps t and t+ 1 are not chaining
steps.

Lemma 4.15. If j is charged using a split charge to a pair of steps t and t′, f ′ is the packet
scheduled in t′ in ALG, and step t receives a forward charge from a chain C, then the total
charge to steps t and t′ is at most R ·(wf + wf ′).

Proof. First we note that j is expiring in step t by Lemma 4.4(c) and f is not expiring in
step t by Lemma 4.4(b), so f 6= i.

We claim wj < we. Indeed, if wj > we, then in step t − 1 the algorithm would have
pending packets e and i, plus packet j (pending or lookahead), that need to be scheduled in
slots t− 1 and t. Since we < wi (because step t− 1 is a chaining step) and we < wj , packet
e could not be in the plan in step t− 1 which is a contradiction. Therefore wj < we.

Let p1, p2, p3 be the plan at time t. We split the proof into two cases, both having two
subcases, one for long chains and one for singleton chains.

Case 1: j is charged using a distant split charge or f ′ gets a full back charge.
We claim that 2α·wi < wf + wf ′ . Indeed, since i is expiring and pending in step t by

Lemma 4.9(a), we have wi ≤ wp1 . As the algorithm scheduled f = p2 by Lemma 4.4(d) we
get 2α·wp1 < wf + wp3 . To prove the claim it remains to show w′f ≥ wp3 .

If j is charged using a distant split charge, then by Lemma 4.5 we have wg < wp3 and
in particular, g 6= p3. Thus p3 is pending and expiring in step t + 2, hence wp3 ≤ wf ′ .
Otherwise, if j is charged using a close split charge, then f ′ = g gets a full back charge.

18

Hence dg = t+ 2. Since also dp3 = t+ 2 and the algorithm chooses the heaviest such packet,
we have wp3 ≤ wg.

The claim follows, since

2α·wi ≤ 2α·wp1 < wf + wp3 ≤ wf + wf ′ . (17)

Case 1.1: The chain C is long. We upper bound the total charge to steps t and t′ by

wf + wf ′ + wj + (1− δ)·wi − (R− 1 + 2δ)·we
≤ wf + wf ′ + (2−R− 2δ)·we + (1− δ)·wi
< wf + wf ′ + (2−R− 3δ)·wi + wi (18)

= wf + wf ′ + wi (19)

< wf + wf ′ +
wf + wf ′

2α
(20)

= R ·(wf + wf ′)

We can use we < wi in (18), because 2 − R − 2δ ≥ 0 by (5). Equality (19) follows from
2−R− 3δ = 0 by (4) and inequality (20) from (17). In the last step we use (3).

Case 1.2: The chain C is singleton. We suppose that wi > R ·we, otherwise there is no
forward charge from the chain. We upper bound the total charge to steps t and t′ by

wf + wf ′ + wj + wi −R ·we ≤ wf + wf ′ + (1−R)·we + wi

< wf + wf ′ + wi

< wf + wf ′ +
wf + wf ′

2α
(21)

= R ·(wf + wf ′) ,

where we apply Equation 17 in (21), and we use (3) in the last step.

Case 2: j is charged using a close split charge and f ′ = g does not get a full back charge. We
have 2α·(wp1 − wg) < wf + wg by the definition of the close split charge. Since i is expiring
and pending in step t by Lemma 4.9(a), we have wi ≤ wp1 . Hence 2α·(wi − wg) < wf + wg.
This is equivalent to

wi <
wf + (2α+ 1)·wg

2α
. (22)

Case 2.1: The chain C is long. We again suppose that wi > R ·we, as otherwise there is no
forward charge from the chain. The total charge to steps t and t′ = t+ 1 is

wf + wj + (1− δ)·wi − (R− 1 + 2δ)·we
≤ wf + (2−R− 2δ)·we + (1− δ)·wi
< wf + (2−R− 3δ)·wi + wi (23)

= wf + wi (24)

< wf +
wf + (2α+ 1)·wf ′

2α
(25)

= wf + wf ′ +
wf + wf ′

2α
= R ·(wf + wf ′) ,

19

We can use we < wi in (23), because 2− R − 2δ ≥ 0 by (5). Then we use 2− R − 3δ = 0
by (4) in (24), Equation 22 in (25), and Equation 3 in the last step.

Case 2.2: The chain C is singleton. We upper bound the total charge to steps t and t+ 1 by

wf + wj + wi −R ·we ≤ wf + (1−R)·we + wi

< wf + wi

< wf +
wf + (2α+ 1)·wf ′

2α
(26)

= wf + wf ′ +
wf + wf ′

2α
= R ·(wf + wf ′) ,

where we apply (22) in inequality (26), and (3) in the last step.

We now summarize our analysis of CompareWithBias(α). If t is not in a split-charge
pair, we show upper bounds on the total charge to step t. For each split-charge pair (t, t′),
we show upper bounds on the total charge to both steps t and t′. This is sufficient, since
split-charge pairs are pairwise disjoint by Lemma 4.7, thus summing all the bounds gives the
result.

For each step t, we distinguish three cases according to whether t is in a split-charge pair
and whether t is a chaining step. In all cases, let f be the packet scheduled at time t in ALG
and let j be the packet scheduled at time t in OPT.

Case 1: Step t is not chaining and it is not in a split-charge pair. Then t receives at most
one full charge from a packet p such that wp ≤ wf (by Lemma 4.3 and charging rules) and
possibly a forward charge from a chain C; then Lemma 4.13 shows that the sum of a forward
charge from a chain and a full charge is at most R ·wf .

Case 2: Step t is a chaining step. Then it does not receive a split charge or a full charge, by
Lemma 4.10. Lemma 4.11 implies that step t receives a charge of at most R ·wf .

Case 3: (t, t′) is a split-charge pair, i.e., t is the first step of the split-charge pair and t′ = t+1,
or t′ = t+ 2. Thus j is charged using a split charge. Let f ′ be the packet scheduled in step
t′ in ALG.

By Lemma 4.14 step t′ does not receive a forward charge from a chain. If step t also
does not receive a forward charge from a chain, then the total charge to steps t and t′ is at
most R ·(wf + wf ′) by Lemma 4.8. Otherwise, step t receives a forward charge from a chain
and we apply Lemma 4.15 to show that the total charge to steps t and t′ is again at most
R ·(wf + wf ′).

5 A Lower Bound for 2-bounded Instances with Looka-
head

In this section, we prove that there is no online algorithm for PacketScheduling with 1-
lookahead that has competitive ratio smaller than 1

4 (1 +
√

17) ≈ 1.281, even for 2-bounded
instances. The idea of our proof is somewhat similar to the proof of the lower bound of φ for
PacketScheduling [10, 2, 4].

20

Theorem 5.1. Let R = 1
4 (1 +

√
17). For each ε > 0, no deterministic online algorithm for

PacketScheduling with 1-lookahead can be (R− ε)-competitive, even for 2-bounded instances.

Proof. Fix some online algorithm A and some ε > 0. We will show that, for some sufficiently
large integer n and sufficiently small δ > 0, there is a 2-bounded instance of PacketScheduling
with 1-lookahead, parametrized by n and δ, for which the optimal profit is at least (R− ε)
times the profit of A.

Our instance will consist of phases 0, . . . , k, for some k ≤ n. In each phase i < n we will
release three packets whose weights will grow roughly exponentially from one phase to next.
The number k of phases is determined by the adversary based on the behavior of A.

The adversary strategy is as follows. We start with phase 0. Suppose that some phase i,
where 0 ≤ i < n, has been reached. In phase i the adversary releases the following three
packets:
• A packet ai with weight wi, release time 2i+ 1 and deadline 2i+ 1, i.e., a tight packet.
• A packet bi with weight wi+1, release time 2i+ 1 and deadline 2i+ 2.
• A packet ci with weight wi+1, release time 2i+ 2 and deadline 2i+ 3.

(The weights wi will be specified later.) Now, if A schedules an expiring packet in step 2i+ 1
(a tight packet ai or ci−1, which may be pending from the previous phase), then the game
continues; the adversary will proceed to phase i + 1. Otherwise, the algorithm schedules
packet bi, in which case the adversary lets k = i and the game ends. Note that in step 2i+ 2
the algorithm may schedule only bi or ci, each having weight wi+1. Also, importantly, in
step 2i+ 1 the algorithm cannot yet see whether the packets from phase i+ 1 will arrive or
not.

If phase i = n is reached, then in phase n the adversary releases a single packet an with
weight wn and release time and deadline 2n+ 1, i.e., a tight packet.

We calculate the ratio between the weight of packets in an optimal schedule and the
weight of packets sent by the algorithm. Let Sk =

∑k
i=0 wi. There are two cases: either

k < n, or k = n.

Case 1: k < n. In all steps 2i+1 for i < k algorithm A scheduled an expiring packet of weight
wi and in step 2k + 1 it scheduled packet bk of weight wk+1. In an even step 2i+ 2 for i ≤ k
it scheduled a packet of weight wi+1. Note that there is no packet scheduled in step 2k + 3.
Overall, A scheduled packets of total weight Sk−1 + wk+1 + Sk+1 − w0 = 2Sk+1 − wk − w0.

The adversary schedules packets of weight wi+1 in steps 2i+ 1 and 2i+ 2 for i < k and
all packets from phase k in steps 2k + 1, 2k + 2 and 2k + 3. In total, the optimum has a
schedule of weight 2Sk+1 − 2w0 + wk. The ratio is

Rk =
2Sk+1 + wk − 2w0

2Sk+1 − wk − w0
.

Case 2: k = n. As before, in all odd steps 2i+ 1 for i < n algorithm A scheduled an expiring
packet of weight wi and in all even steps 2i + 2 for i < n it scheduled a packet of weight
wi+1. In the last step 2n+ 1 it scheduled a packet of weight wn as there is no other choice.
Overall, the total weight of A’s schedule is 2Sn − w0.

The adversary schedules packets of weight wi+1 in steps 2i+ 1 and 2i+ 2 for i < n and a
packet of weight wn in the last step 2n+ 1 which adds up to 2Sn − 2w0 + wn. The ratio is

R̂n =
2Sn + wn − 2w0

2Sn − w0
.

21

We start with an intuitive explanation which leads to the optimal setting of weights wi
and the ratio R for the instances of the type described above. We normalize the instances so
that w0 = 1. We want to set the weights so that Rk ≥ R−ε for all k ≥ 0 and R̂n ≥ R−ε. We
first find the weights depending on δ such that Rk = R for all k ≥ 1. Using wk = Sk − Sk−1
for k ≥ 1 and w0 = 1, the condition Rk = R for k ≥ 1 is rewritten as

R =
2Sk+1 + Sk − Sk−1 − 2

2Sk+1 − Sk + Sk−1 − 1
, (27)

or equivalently as

(2R− 2)Sk+1 − (R+ 1)Sk + (R+ 1)Sk−1 = −(2−R) . (28)

A general solution of this linear recurrence with S0 = w0 = 1 and a parameter δ is

Sk = (γ + 1)αk + δ(βk − αk)− γ , (29)

where α < β are the two roots of the characteristic polynomial of the recurrence (2R −
2)x2 − (R+ 1)x+ (R+ 1) and γ = (2−R)/(2R− 2). To justify (29), a general solution is
Aαk +Bβk − γ for parameters A and B and a suitable constant γ. Considering A = B = 0,
the value γ = (2 − R)/(2R − 2) follows. Considering the constraint S0 = 1, we obtain
A+B = γ+ 1; our parametrization by δ in (29) is equivalent but more convenient for further
analysis.

In our case of R = 1
4 (1 +

√
17) a calculation gives

α = R+ 1
2 = 1

4 (3 +
√

17) , β = R+ 1 = 1
4 (5 +

√
17) and γ = R = 1

4 (1 +
√

17) . (30)

A calculation shows that for δ = 0, the solution satisfies R0 = R. We choose a solution with
a sufficiently small δ > 0 which guarantees R0 ≥ R − ε. Since 1 < α < β, for large n, the
dominating term in Sn is δβn. Thus

lim
n→∞

R̂n = lim
n→∞

2Sn + Sn − Sn−1
2Sn

= lim
n→∞

3δβn − βn−1
2δβn

=
3β − 1

2β
= R . (31)

The last equality is verified by a direct calculation; actually it is the equation that defines
the optimal R for our construction (if β as the root of the characteristic polynomial of the
recurrence is expressed in terms of R).

For a formal proof, we set w0 = 1 and for i = 1, 2, . . .,

wi = (γ + 1)αk−1(α− 1) + δ(βk−1(β − 1)− αk−1(α− 1)) ,

where the parameters α, β and γ are given by (30) and δ > 0 is sufficiently small. By a
routine calculation we verify (29) and (28). Thus Rk = R for k ≥ 1. For R0, we first verify
that δ = 0 would yield w1 = α and R0 = R. By continuity of the dependence of w1 and R0

on δ, for a sufficiently small δ > 0, we have R0 ≥ R− ε; fix such a δ > 0. Now, for n→∞,
Sn = δβn + O(αn) = δβn(1 + o(1)). Thus, the calculation (31) gives limn→∞ R̂n = R.

Consequently, R̂n ≥ R− ε for a sufficiently large n of our choice. This defines the required
instance and completes the proof.

22

References

[1] Susanne Albers. On the influence of lookahead in competitive paging algorithms.
Algorithmica, 18(3):283–305, 1997. doi:10.1007/PL00009158.

[2] Nir Andelman, Yishay Mansour, and An Zhu. Competitive queueing policies for
QoS switches. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’03), pages 761–770, 2003.

[3] Francis Y. L. Chin, Marek Chrobak, Stanley P. Y. Fung, Wojciech Jawor, Jǐŕı Sgall,
and Tomáš Tichý. Online competitive algorithms for maximizing weighted throughput
of unit jobs. J. of Discrete Algorithms, 4(2):255–276, 2006.

[4] Francis Y. L. Chin and Stanley P. Y. Fung. Online scheduling with partial job values:
Does timesharing or randomization help? Algorithmica, 37(3):149–164, 2003.

[5] Marek Chrobak, Wojciech Jawor, Jǐŕı Sgall, and Tomáš Tichý. Improved online al-
gorithms for buffer management in QoS switches. In Proc. 12th Annual European
Symposium (ESA’04), pages 204–215, 2004.

[6] Matthias Englert and Matthias Westermann. Considering suppressed packets improves
buffer management in QoS switches. In Proc. 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’07), pages 209–218, 2007.

[7] Matthias Englert and Matthias Westermann. Lower and upper bounds on FIFO buffer
management in QoS switches. Algorithmica, 53(4):523–548, 2009.

[8] Michael H. Goldwasser. A survey of buffer management policies for packet switches.
SIGACT News, 41(1):100–128, 2010.

[9] Edward F. Grove. Online bin packing with lookahead. In Proc. 6th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’95), pages 430–436, 1995.

[10] Bruce Hajek. On the competitiveness of on-line scheduling of unit-length packets
with hard deadlines in slotted time. In Proc. Conference on Information Sciences and
Systems, pages 434–438, 2001.

[11] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber,
and Maxim Sviridenko. Buffer overflow management in QoS switches. SIAM Journal
on Computing, 33(3):563–583, 2004.

[12] Fei Li, Jay Sethuraman, and Clifford Stein. An optimal online algorithm for packet
scheduling with agreeable deadlines. In Proc. 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’05), pages 801–802, 2005.

[13] Rajeev Motwani, Vijay Saraswat, and Eric Torng. Online scheduling with lookahead:
Multipass assembly lines. INFORMS J. on Computing, 10(3):331–340, 1998.

23

