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Abstract. We discuss the notion of structural sparsity and how it
relates to the nowhere dense/somewhere dense dichotomy introduced by
the authors for classes of graphs. This will be the occasion of surveying
the numerous facets of this dichotomy, as well as its connections to
several concepts like stability, independence, VC-dimension, regularity
partitions, entropy, class speed, low tree-depth decomposition, quasi-
wideness, neighborhood covering, subgraph statistics, etc. as well as
algorithmic complexity issues like fixed parameter tractability of first-
order model checking.

1. Introduction

Every good theory starts with some key examples and motivating prob-
lems. To get insight into seemingly scattered facts is a prime goal of math-
ematics and, some feel, a principal feature of mathematical thinking. Here
are then two problems, which motivated the research and theory surveyed
in this paper:

Problem 1 (Embedding problem). For a fixed structure F and a given struc-
ture G, decide whether F is a substructure of G.

Problem 2 (Approximation problem). Given a structure G, can one reduce
G to a relatively small structure H, which is locally similar to G?
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What is interesting here?
Both of these problems are complicated. For instance, although the com-

plexity of the first problem is, for given F , bounded by a polynomial function
of the size of G, the degree of the polynomial depends in general on the size
of F (non-trivial bounds are known, which depend on fast matrix multi-
plication [65]). But if we specialize the problem to geometrically restricted
classes (such as e.g. planar graphs) or to classes of graphs with (uniformly)
bounded degrees, then the complexity of the problem becomes linear (with
only a constant depending on F ). For the second problem, we have an even
more striking difference: In most cases there is no approximation which
is known to exist, although for planar graphs or bounded degree graphs a
good approximation can be computed in linear time.

What is behind these differences? This question motivated much of the
research surveyed here, and so did particularly the following very concrete
instance:

Problem 3 (Triangle problem). Does there exist a triangle-free graph H
such that every triangle-free planar graph G is homomorphic to H?

This particular problem was solved by the authors in [49] and it provided
a starting motivation for the theory surveyed here. In particular, it led
to the key definitions of low tree-depth decomposition, bounded expansion
class, and further, to the nowhere dense vs somewhere dense dichotomy.

Intuitively one expects that the answer to the Triangle problem is posi-
tive for graphs which are sparse. However, there is a warning example: for
complete graph Kn, denote by K∗∗n the graph obtained from Kn by sub-
dividing each edge by two vertices. Clearly K∗∗n has 2

(
n
2

)
+ n vertices and

3
(
n
2

)
edges (as most of its vertices have degree two). However, K∗∗n is not

homomorphic to any triangle free graph H with less than n vertices. There
are of course other examples of this phenomenon, some easy ones obtained
by convenient gadget constructions. Nevertheless, the example of K∗∗n is
not as isolated and special as it might seem at first glance, as it leads to
the following definition:

A class C of graphs is nowhere dense if there exists an integer p such
that the pth subdivision of every complete graph arises as a subgraph of a
member of C; a class of graphs is somewhere dense if it fails to be nowhere
dense.

We shall see that this notion fits to the intuitive meaning of sparsity. In
fact, in its manifold characterizations it fits very well to several established
and studied notions. In a broader perspective we shall review this aspect
in the next section.
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The study of the structural and algorithmic properties of classes of sparse
graphs gained recently much interest. In this context, the authors intro-
duced in 2006 [50, 51] the notion of classes with bounded expansion, which
extends the notions of classes excluding a topological minor (as classes
with bounded degree or classes excluding a minor like planar graphs) and,
soon after [56, 57], the nowhere dense vs somewhere dense dichotomy for
classes of graphs. Although this dichotomy looks arbitrary at first glance, it
appeared to be very robust, expressible in a number of different (non obvi-
ously) equivalent way, and to reveal both a profound structural dichotomy
(roughly speaking, between branching and homogeneous structures) and a
profound algorithmic complexity dichotomy (for model checking, particu-
larly), see for instance [61].

In this paper, we survey all of these aspects and their links with informa-
tion theory, extremal graph theory, model theory, algorithmic complexity,
etc. In an attempt to give a broader picture, we do not follow the chronolog-
ical order of the discoveries but rather concentrate on recent development
which brought the originally combinatorial setting in the realm of logic and
information theory. This very general setting, which combines several areas,
is introduced in Section 2 under the name of Structural Sparsity.

In Section 3, we tackle the notion of sparsity by the light of Shelah’s
model theoretic notions of independence and stability, and their connection
to the notion of VC-dimension of learning theory.

In Section 4, we consider the point of view of structure approximation, by
the light of Szemerédi’s regularity lemma, the notion of left-convergence of
graphs (and hypergraphs) introduced by Lovász and Szegedy, the notions
of structural limits and modeling introduced by the authors, as well as
Friedman’s notion of totally Borel structures.

In Section 6, we relate the nowhere dense vs somewhere dichotomy to
Bollobás’s notion of class speed, and its connection to graph entropy and
to the notion of logarithmic density.

In Section 7 we consider our original approach through the concept of
shallow minors of Leiserson and Toledo, and its extensive use by the authors
in the definition and study of classes with bounded expansion.

In Section 8 we consider structural properties related to decomposition,
as the concept of low tree-depth decomposition initially introduced by the
authors in their study of restricted homomorphism dualities in classes of
sparse graphs, as well as coverings recently introduced by Grohe, Kreutzer,
and Siebertz.

In Section 9, we consider Zhu’s connection to the notion of generalized
coloring numbers of Kierstead and Yang, as well as locally constrained
orientations and augmentation at the heart of low tree-depth decomposition.
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In Section 10 we eventually unveil the original motivation of our study
of nowhere dense classes, which is the connection to Dawar’s concept of
quasi-wideness.

Then, in Section 11 we discuss algorithmic consequences of these works,
in particular for first-order logic model checking problem.

It is amazing that all these concepts lead to equivalent definitions of
nowhere dense classes. This interplay is schematically depicted on Fig. 1.

Figure 1. Manifold characterizations of nowhere dense
classes (artist view)

Finally, we end this paper by some concluding remarks in Section 12.
This paper surveys the recent trends as well as new results, which ap-

peared after publication of monograph [61]. The whole paradigm is shifting
towards generality and involves new parts of mathematics, which we reflect
in Section 2 and in the whole paper. But for technical details and full proofs
the interested reader is referred to [61].
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2. Structural Sparsity

The notion of sparsity is certainly not appearing sparsely across the di-
verse fields of mathematics. However, it appears that this notion might be
more elusive than expected.

For instance, let us consider the notion of a sparse matrix. A sparse
matrix is a matrix in which most of elements are zero. Compressed sensing
(also known as sparse sampling) showed that the sparsity of a signal allows
a reconstruction with much fewer samples than expected from Nyquist–
Shannon sampling theorem. Nevertheless, compressed sensing may consider
linear combinations of samples in a basis that is different from the basis
in which the signal is known to be sparse. Indeed, the knowledge of the
existence of a basis in which the signal is sparse being sufficient to reduce
the number of samples needed for a reconstruction (see works of Candès
[14], Romberg, Tao, and Donoho).

In this spirit, we shall say that a structure is sparse if it may be re-
constructed from a small amount of information, in particular if it can be
obtained as an interpretation of a sparse structure (in a more usual sense of
the word sparsity). Both notions are obviously linked: consider for instance
a class of graphs C with the property that every graph of order n in C has at
most n1+o(1) edges. Then, as noticed in [9], the number of graphs of order n

in C is smaller (for every ε > 0 and for sufficiently large n) than 2n
1+ε

. This
means that graphs in such a class can be encoded with no(1) bits per vertex,
which is significantly smaller than general graphs, which require about n
bits by vertex.

The structures that are inherently dense, meaning that they require much
information to be fully reconstructed, are the structures that are close to
be random. Indeed, a structure is random if none of its parts can be pre-
dicted from others. This aspect appears clearly in the duality of the notion
of entropy in the theory of information: the entropy measures both the
randomness and the information present in a system.

The aspect related to randomness is closely related to the general model
theoretic notions of independence property introduced by Shelah [72], which
expresses the possibility of encoding a random bipartite graph with a defin-
able edge relation,and the notion of VC dimension, which arose in probabil-
ity theory in the work of Vapnik and Chervonenkis [76]. These notions are
deeply linked as, as observed by Laskowski [44], a complete first-order the-
ory does not have the independence property if and only if, in each model,
each definable family of sets has finite VC dimension.
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The informational aspect not only relates to the efficiency of structure
encoding but also to the ease to approximate the structure. Graph ap-
proximation is the basic aim of Szemerédi’s regularity lemma, which gives
a parsimonious description of a large graph as a random expansion of a
bounded size weighted structure. Still the size of this structure is very large
in general. However, in the case of graphs without the independence prop-
erty, and in particular in the case of stable graphs, much smaller bounds
can be achieved, as shown by Malliaris and Shelah [48]. Moreover, in such a
case, the expansion is deterministic (this corresponds to edge densities be-
tween the parts that are either 0 or 1). Szemerédi’s regularity lemma [75],
the removal lemma (see extension in [68]), and the counting lemma (see [12])
are put into a new perspective by the concept of left limit introduced by
Lovász and Szegedy [46]. In this context, limit of left-convergent sequences,
the so-called graphons, are measurable functions from [0, 1]× [0, 1] to [0, 1],
which encode (averaged) probabilistic properties of the graph. However,
hereditary classes of graphs with bounded VC-dimension are random-free
(as proved by Lovász and Szegedy [47]), in the sense that they can be repre-
sented by a {0, 1}-valued graphon, which is essentially a Borel graph in the
terminology introduced by Friedman in the late seventies. For a connection
of the notions of random-free graphons, class speed of a hereditary class C
(that is the function mapping each integer n to the number of graphs of
order n in the class C), and graphon entropy we refer the reader to [35]. (See
also [4], [40] for connection of graphon entropy to the entropy of random
graphs and [16], [15] for its use in the study of large deviations of random
graphs and exponential models of random graphs)

With this general picture in mind we shall discuss the dichotomy intro-
duced by the authors [56, 55, 59] between nowhere dense and somewhere
dense classes of graphs. It seems that the results fit very well in this grand
picture.

3. Sparsity, Cliques, VC-dimension, and Stability

The simplest setting for our purpose to define the notion of sparse struc-
tures is most probably the case of classes of graphs. In this particular setting
several model-theoretical notions collapse (see for instance Theorem 6), al-
lowing simpler definitions than the ones expected in the general framework
of relational structures.

In the case of a monotone class, we have the following alternative charac-
terization, which follows from an easy Ramsey argument: A monotone class
of graphs C is nowhere dense if and only if there exists some integer p ∈ N
such that C contains the p-th subdivision of every complete graph (hence
of every graph). This easy reformulation leads the alternative description
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of monotone nowhere dense classes by means of a measure of descriptive
complexity.

Let us now recall some definitions related to the notion of complexity of
graphs. Introduced in [76] (and in [70] as a measure of density of a family
of sets) the Vapnik-Chervonenkis dimension (or VC-dimension for short) of
a hypergraph H is the maximum size of a shattered set of H, where a set X
of vertices is shattered if for every X ⊆ X there exists a hyperedge e such
that e ∩X = X.

The VC-dimension found many applications, as in learnability theory
[36], in computational geometry [17], as well as in graph theory (see [13] for
instance).

Definition 1. Let G be a graph and let d be an integer. The d-distance
VC-dimension VCd(G) of G is the VC-dimension of the hypergraph with
vertex set V (G), and hyper-edges Bd(G, v) with v ∈ V (G), where Bd(G, v)
stands for the set of vertices of G at distance at most d from vertex v (see
Fig. 2).

a

v{a}

b

c

v∅

v{b}
v{c}

v{a,b}

v{a,c}

v{b,c}

v{a,b,c}

Figure 2. The set {a, b, c} is shat-
tered by the neighborhoods of the vertices
v∅, v{a}, v{b}, v{c}, v{a,b}, v{a,c}, v{b,c}, v{a,b,c}. For instance,
among a, b, c, the vertex v{a,c} is exactly adjacent to a and c.
It follows that the (1-distance) VC-dimension of this Paley
graph is 3 (it does not have sufficiently vertices for 4).

Hereditary classes of graphs with uniformly bounded d-distance VC-
dimension have nice properties (see [13]) and we have the following striking
connection with the graph minor perspective. The distance VC-dimension
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of a graph is defined has the maximum over d of the d-distance VC-
dimensions of the graph.

Theorem 2 ([13]). A Kk-minor-free graph has distance VC-dimension at
most k − 1.

(Note that this theorem extends to graphs with bounded rank-width: A
graph with rank-width k has distance VC-dimension at most 3.2k+1 + 2
[13]).

The natural relaxation of the condition of bounded distance VC-
dimension is to consider classes where the d-distance VC-dimension is
bounded by some function of d. It appears that for monotone classes of
graphs, this notion turns out to be equivalent to the notion of nowhere
dense class.

Theorem 3 (Nowhere dense by d-distance VC-dimension). Let C be a
monotone class of graphs. The following are equivalent:

(1) the class C is nowhere dense;
(2) for every integer d, it holds

sup
G∈C

VCd(G) <∞.

Proof. Assume C is somewhere dense. Then there exists an integer p such
that every p-subdivision of graphs belong to C. Hence the (p− 1)-distance
VC-dimension of C is not bounded.

Conversely, assume that C is nowhere dense. Then every model-theoretic
interpretation of C has bounded VC-dimension [2]. In particular, the hy-
pergraph of closed d-neighborhoods of G has bounded VC-dimension. �

In this context, the following is perhaps of interest:

Problem 4. Characterize monotone classes with bounded distance VC-
dimension.

The connection of the existence of subdivided cliques to boundedness of
d-distance VC-dimension also links to other model-theoretic notions, like
independence property and stability.

Definition 4 (order property). A formula φ(x1, . . . , xl, y1, . . . , yr) has the
order property with respect to some background theory T if there exists, in
some sufficiently saturated model M of T , elements {ai1, . . . , ail : i ∈ N} and

{bj1, . . . , bjr : j ∈ N} such that |= φ(ai1, . . . , a
i
l, b

j
1, . . . , b

j
r) if and only if i < j.

Theories in which no formula has the order property are called stable.
Such theories have been fundamental to model theory since Shelah’s work
in [73]. Stability is related to several global structural properties, such as
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number of models, existence of indiscernible sets, or number of types. By
compactness, a formula has the order property (with respect to a back-
ground theory T ) if and only if it has the k-order property for every natural
number k,

Definition 5 (non-k-order property). A graph G has the non-k-order prop-
erty if G does not contain two disjoint sets A, B of size k such that the
bipartite subgraph of G induced by the edges between A and B is a half-
graph.

Note that stability property is a weaker form of the not independent
property (NIP). However, for monotone classes of graphs these notions co-
incide.

Theorem 6 (Stability and NIP [2]). For any monotone class of graphs C
the following are equivalent:

• C is nowhere dense,
• C is stable,
• C is not independent (NIP).

In yet another direction, one can relate nowhere dense classes to VC-
dimensions of model-theoretical interpretations. Recall the definition:

Definition 7. Given two relational structures M,N with respective signa-
tures σ and σ′, we say that N is interpretable in M if for some k ≥ 1 there
exist

• a σ′-formula ∆(x) in k free variables;
• a σ′-formula E(x, y) in 2k free variables;
• for each n-ary relation symbol R ∈ σ, a σ′-formula φR(x1, . . . , xn) is
nk free variables

such that:

• EM is an equivalence relation on ∆M ;
• for each n-ary relation R ∈ σ, φMR is an n-ary EM -invariant relation

on ∆M ;
• (∆M/EM , (MR /E

M)R∈σ) is isomorphic to N .

An interpretation defines a mapping I : Mk → N with the property that
the inverse image of a definable set of N is a definable set of M . It is easily
checked that if the theory of M is stable and N is interpretable in M , then
the theory of N is also stable.

The notion of interpretation allows to obtain the following corollary of
Theorem 6, which again relates the concept of nowhere dense class of graphs
to the VC-dimension of the neighborhoods.
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Theorem 8 (Nowhere dense by interpretations [2]). Let C be a monotone
class of graphs. Then the following are equivalent:

(1) C is nowhere dense;
(2) for every interpretation I of graphs in graphs it holds

sup
G∈C

VC(I(G)) <∞.

4. Regular partitions

Theorem 9 (Szemerédis regularity lemma). For every ε,m there exist N =
N(ε,m) and m′ = m′(ε,m) such that given any finite graph G, of order at
least N , there is k with m ≤ k ≤ m′ and a partition V1 ∪ · · · ∪ Vk of the
vertex set of G satisfying:

(1)
∣∣Vi| − |Vj|∣∣ ≤ 1 for all i, j ≤ k;

(2) all but at most εk2 of the pairs (Vi, Vj) are ε-regular.

Note that in general the size of the partition can increase as a tower of
2s of height proportional to log(1/ε) [33]. Moreover, several researchers
(Lovász, Seymour, Trotter, as well as Alon, Duke, Leffman, Rödl, and
Yuster in [7]) independently observed that the half-graph, i.e. the bipartite
graph with vertex sets {ai : i < n} ∪ {bi : i < n} with ai adjacent to bj
if i < j shows that exceptional pairs are necessary, what led Malliaris and
Shelah to ask whether a stronger regularity lemma could hold for classes
of graphs which admit a uniform finite bound on the size of an induced
sub-half-graph.

Malliaris and Shelah proved [48] the following strengthening of Sze-
merédi’s regularity lemma for graphs with the non-k-order property:

Theorem 10. For every k ∈ N there exists k∗ ≤ 2k+2 with the following
property:

For every ε > 0 there exists m = m(ε) such that for every sufficiently large
finite graph G with the non-k-order property there is a partition V1∪· · ·∪Vk
of the vertex set of G into k ≤ m parts so that

(1) the size of the parts differ by at most 1;
(2) the bipartite subgraph induced by the edges between Vi and Vj form

(up to removal of at most ε|Vi| vertices in Vi and ε|Vj| vertices in
Vj) define either an empty graph or a complete bipartite graph;

(3) if ε < 1
2k∗

then m ≤ (3 + ε)
(

8
ε

)k∗
.

Note that interpretation preserves the non k-order-property hence The-
orem 10 applies to interpretations of nowhere dense classes. Szemerédi
regularity lemma can be characterized by means of the compactness of a
metric space related to graph limits.
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Sparse structures, for which Szemerédi decomposition is trivial, need finer
decomposition, and this leads us to a natural notion of convergence and to
a nice conjecture to be explained in the next section.

5. Structural Limits

The study of limits of graphs recently gained much interest (see [45]).
A sequence (Gn)n∈N of graphs is said left-convergent if, for every graph F ,
the probability that a random map f : V (F )→ V (Gn) is a homomorphism
(that is an adjacency preserving map) converges as n grows to infinity. This
convergence is deeply related to Szemerédi regularity, and the limit object
can be represented by means of a graphon, that is a symmetric measurable
function W : [0, 1]2 → [0, 1]. A graphon W is random-free if it is almost
everywhere {0, 1}-valued. A random-free graphon is essentially the same
(up to isomorphism mod 0) as a Borel graph — that is a graph having a
standard Borel space V as its vertex set and a Borel subset of V × V as
its edge set — equipped with a non-atomic probability measure on V . A
class of graph C is said to be random-free if every left-convergent sequence
of graphs in C has a random-free limit. For instance, Janson derived from a
structural characterization of random-free hereditary classes of graphs given
by Lovász and Szegedy [47] that the class of cographs is random-free [39].

Lemma 11 ([47]). For a hereditary class of graphs C, the following are
equivalent:

• C is random-free;
• there is a bipartite graph F with bipartition (U1, U2) such that no

graph in C can be obtained from F by adding edges within U1 and
U2.
• VC(C) <∞, where

VC(C) = sup
G∈C

VC(G).

For k-regular hypergraphs, left-limits have been constructed by Elek and
Szegedy in landmark paper [27] using ultraproducts as measurable functions

W : [0, 1]2
k−2 → [0, 1] (called hypergraphons), and have also been studied by

Hoover [38], Aldous [5], and Kallenberg [41] in the setting of exchangeable
random arrays.

Relational structures are a natural generalization of k-uniform hyper-
graphs. The authors introduced the notion of structural limits in [60]. This
approach to limits of structures relies on a balance of model theoretic and
functional analysis aspects. For a finite structure A and a first-order for-
mula φ with free variables x1, . . . , xp we define the Stone pairing of φ and
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A as

〈φ,A〉 =
|φ(A)|
|A|p ,

where φ(A) = {(v1, . . . , vp) ∈ Ap : A |= φ(v1, . . . , vp)}. In other words,
〈φ,A〉 is the probability that φ is satisfied in A for a random (uniform inde-
pendent) assignment of the free variables x1, . . . , xp to elements of A. Note
that this definition naturally extends to any modeling L (with probability
measure νL) by putting

〈φ,L〉 = ν⊗pL (φ(A)),

where ν⊗pL is the product measure on Lp.
A sequence (An)n∈N of σ-structure is FO-convergent if (〈φ,An〉)n∈N con-

vergences for each first-order formula φ. The following representation the-
orem has been proved in [60].

Theorem 12. There exists a compact standard Borel space S, a mapping k :
FO→ C(S) from the class of first-order formulas to the space of continuous
functions on S, and a mapping A 7→ µA mapping finite σ-structure A to a
probability measure µA on S such that:

• The mapping A 7→ µA is injective and for every first-order formula
φ it holds

〈φ,A〉 =

∫
k(φ) dµA;

• A sequence (An)n∈N of finite structures is FO-convergent if and only
if the sequence (µAn)n∈N of probability measures converges weakly.
Then, if µAn ⇒ µ, for every first-order formula φ it holds∫

k(φ) dµ = lim
n→∞
〈φ,An〉.

This representation theorem actually deals with S∞-invariant measures,
in the same spirit as infinite exchangeable graphs of Aldous [5] and Hoover
[38], or S∞-invariant measures in the space of symmetric matrices studied
by Vershik [77].

The analog of random-free limit notion for left-convergence appears to be
the notion of modeling limit for FO-convergence. This leads to the following
notions:

Definition 13. A structure A is a Borel structure if its domain is a standard
Borel space and if all its relations are Borel.

Note that this definition corresponds to the notion of injective Borel
structure of [37], and of Borel structure of [74]. We introduced in [63] the
following notions:
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Definition 14. A relational sample space is a Borel structure A with the
property that every first-order definable set is Borel (in the product space).

A modeling is a relational sample space equipped with a probability mea-
sure.

Note that the notion of totally Borel structure of [74] is intermediate
between the notions of relational sample space and modeling: it is a special
modeling with specified domain ([0, 1]) and probability measure (Lebesgue
measure).

Definition 15. An FO-convergent sequence (Gn)n∈N of graphs has graph
modeling limit L if L is a graph modeling and for every first order formula
φ it holds (see Fig. 3:

〈φ,L〉 = lim
n→∞
〈φ,Gn〉.

A class of graphs C has modeling limits if every FO-convergent sequence
of graphs in C has a modeling limit.

A first step toward the construction of a modeling limit could lie in the
construction of a weak modeling limit L, that is a modeling L satisfying the
property that for every first order formula φ it holds

〈φ,L〉 > 0 ⇐⇒ lim
n→∞
〈φ,Gn〉 > 0.

This means that properties satisfied with positive probability in L are ex-
actly those which occur with a probability bounded away from zero in the
sequence (Gn)n∈N. Existence of weak modeling limit can be carried out
by considering the finite extension L(Qm) of first-order logic obtained by
adjoining a new quantifier Qm, whose intended interpretation is “there ex-
ist non-measure 0 many”. The axioms for L(Qm) are all the usual axiom
schema for first-order logic together with the following ones [74]:

M0 ¬(Qmx)(x = y);
M1 (Qmx)ψ(x, . . . ) ↔ (Qmy)ψ(y, . . . ), where ψ(x, . . . ) is an L(Qm)-

formula in which y does not occur and ψ(y, . . . ) is the result of
replacing each free occurrence of x by y;

M2 (Qmx)(φ ∨ ψ)→ (Qmx)φ ∨ (Qmx)ψ;
M3 [(Qmx)φ ∧ (∀x)(φ→ ψ)]→ (Qmx)ψ;
M4 (Qmx)(Qmy)φ→ (Qmy)(Qmx)φ.

The rules of inference for L(Qm) are the same as for first-order logic: modus
ponens and generalization. Let the system just described be denoted by Km.

In this context, the following completeness theorem has been proved by
Friedman [32] (see also [74]):
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Figure 3. A modeling limit of a sequence of caterpillars.
The domain of the modeling is (S2 \ {0}) × [0, 1]. In the
picture, θ0 stands for an irrational multiple of π. Note that
the modeling has uncountably many connected components.

Theorem 16. A set of sentences T in L(Qm) has a totally Borel model if
and only if T is consistent in Km.

In particular, every FO-convergent sequence has a weak modeling limit.

However, we have no precise control on the measures assigned to first-
order properties, and although weak modeling limits exist in general, mod-
eling limits do not, as we shall see now.

By considering the fragment of first-order quantifier free formulas not
using equality, we immediately deduce that every FO-convergent sequence
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(Gn)n∈N of graphs is also left-convergent. Also, every graph modeling de-
fines a Borel graph. It follows that if FO-convergent sequence (Gn)n∈N of
graphs has a graph modeling limit then it also has a random-free graphon
as its left limit.

For instance, the existence of a weak modeling limit for a sequence of
random graphs relates to the existence of a random-free graphon whose
sampling gives is with high probability isomorphic to Rado graph (see [1]
for more on this topic), although no random-free graphon is the limit of a
(typical) sequence of random graphs.

From [2] and Lemma 11 follows the next theorem, which expresses a
necessary condition for the existence of modeling FO-limits.

Theorem 17 ([62]). Let C be a monotone class.
If C has modeling limits then C is nowhere dense.

We actually conjectured that this condition is also sufficient [63]:

Conjecture 1. A monotone class of graphs C has modeling limits if and only
if it is nowhere dense.

This may be regarded as the single most interesting problem raised in
this paper.

6. Class speed, entropy and logarithmic densities

For a class of graphs C and an integer n we denote by Cn the set of all
graphs in C with n vertices.

The following observation provides us much information.

Lemma 18 ([9]). Let ε > 0 and 0 < c ≤ 2. There is an N such that for all

n > N , if S is a set of graphs on n vertices and |S| > 2n
2−c+ε

, then there is
a graph G ∈ S with ‖G‖ > 22−c.

The following trichotomy theorem was proved by the authors in [59]:

Theorem 19 (Trichotomy theorem). Let C be an infinite class of graphs
(containing arbitrarily large non-discrete graphs). Then

lim
r→∞

lim sup
G∈C Õ r

log ‖G‖
log |G| ∈ {0, 1, 2}.

Moreover, this limit is 2 if C is somewhere dense and at most 1 if C is
nowhere dense.

The entropy h(C) of a class of graphs C is defined as

h(C) = lim
n→∞

log |Cn|(
n
2

) .
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It is known that for every hereditary property this limit exists and that it
can only reach particular range of values (see [6]). It follows from Theo-
rem 19 and Lemma 18 that the speed of a nowhere dense class C is bounded
by

|Cn| < 2n
1+ε

for every ε > 0 and every sufficiently large n (i.e. n > N(C, ε)). It follows
that the entropy of a nowhere dense class of graphs is 0. Precisely:

Theorem 20 (Nowhere dense by entropy). Let C be an infinite monotone
class of graphs. Then

lim
r→∞

h(C Õ r) ∈ {0, 1}.

Moreover, this value is 0 if C is nowhere dense and 1 if C is somewhere
dense.

Note that the bound on |Cn| for a nowhere dense class C can be improved
under stronger assumptions: If C is a class with expansion bounded by the
function f(r) = cr

1/3−ε
(for arbitrary constants c, ε > 0) then |Cn| < n!αn

for some constant α > 0, as proved by Dvořák and Norine [24].
Theorem 19 was generalized in [58] to logarithmic densities of arbitrary

graph F :

Theorem 21 (Nowhere dense by counting). Let C be an infinite class of
graphs and let F be a graph with at least one edge. Then

lim
r→∞

lim sup
G∈C Õ r

log(#F ⊆ G)

log |G| ∈ {−∞, 0, 1, . . . , α(F ), |F ]},

where α(F ) is the stability number of F .
Moreover, this limit is |F | if C is somewhere dense and at most α(F ) if

C is nowhere dense.

For a nowhere dense class of graphs, the integrality of the supremum of
the logarithmic density holds without need for considering shallow topolog-
ical minors:

Theorem 22 (Degree of freedom, [58]). Let C be an infinite nowhere dense
class of graphs and let F be a graph. Then

lim sup
G∈C

log(#F ⊆ G)

log |G| ∈ {−∞, 0, 1, . . . , α(F )};

this integer is called degree of freedom of F in C.
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7. Shallow Minors, Cliques and Density

Classes with bounded expansion, which have been introduced in [53], may
be viewed as a relaxation of the notion of proper minor closed class. The
original definition of classes with bounded expansion relates to the notion
of shallow minor, as introduced by Plotkin, Rao, and Smith [67].

Definition 23. Let G,H be graphs with V (H) = {v1, . . . , vh} and let r be
an integer. A graph H is a shallow minor of a graph G at depth r, if there
exists disjoint subsets A1, . . . , Ah of V (G) such that (see Fig. 4)

• the subgraph of G induced by Ai is connected and as radius at most
r,
• if vi is adjacent to vj in H, then some vertex in Ai is adjacent in G

to some vertex in Aj.

≤ r

Figure 4. A shallow minor

We denote [53, 61] by GO r the class of the (simple) graphs which are
shallow minors of G at depth r, and we denote by ∇r(G) the maximum
density of a graph in GO r, that is:

∇r(G) = max
H∈GO r

‖H‖
|H|

A class C has bounded expansion if supG∈C∇r(G) <∞ for each value of r.
Considering shallow minors may, at first glance, look arbitrary. Indeed

one can define as well the notions of shallow topological minors and shallow
immersions:

Definition 24. A graph H is a shallow topological minor at depth r of a
graph G if some subgraph of G is isomorphic to a subdivision of H in which
every edge has been subdivided at most 2r times (see Fig. 5).

We denote [53, 61] by G Õ r the class of the (simple) graphs which are

shallow topological minors of G at depth r, and we denote by ∇̃r(G) the
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H G

≤ 2r

Figure 5. H is a shallow topological minor of G at depth r

maximum density of a graph in G Õ r, that is:

∇̃r(G) = max
H∈G Õ r

‖H‖
|H|

Note that shallow topological minors can be alternatively defined by con-
sidering how a graph H can be topologically embedded in a graph G: a
graph H with vertex set V (H) = {a1, . . . , ak} is a shallow topological mi-
nor of a graph G at depth r is there exists vertices v1, . . . , vk in G and a
family P of paths of G such that

• two vertices ai and aj are adjacent in H if and only if there is a path
in P linking vi and vj;
• no vertex vi is interior to a path in P ;
• the paths in P are internally vertex disjoint;
• every path in P has length at most 2r + 1.

We can similarly define the notion of shallow immersion:

Definition 25. A graph H with vertex set V (H) = {a1, . . . , ak} is a shallow
immersion of a graph G at depth r is there exists vertices v1, . . . , vk in G
and a family P of paths of G such that

• two vertices ai and aj are adjacent in H if and only if there is a path
in P linking vi and vj;
• the paths in P are edge disjoint;
• every path in P has length at most 2r + 1;
• no vertex of G is internal to more than r paths in P .

We denote [53, 61] by G
∝
O r the class of the (simple) graphs which are

shallow immersions of G at depth r, and we denote by
∝
∇r(G) the maximum

density of a graph in G
∝
O r, that is:

∝
∇r(G) = max

H∈G
∝
O r

‖H‖
|H|
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It appears that although minors, topological minors, and immersions be-
have very differently, their shallow versions are deeply related, as witnessed
by the following theorem:

Theorem 26 (Bounded expansion invariance [61]). Let C be a class of
graphs. Then the following are equivalent:

(1) the class C has bounded expansion;
(2) for every integer r it holds supG∈C∇r(G) <∞;

(3) for every integer r it holds supG∈C ∇̃r(G) <∞;

(4) for every integer r it holds supG∈C
∝
∇r(G) <∞;

(5) for every integer r it holds supH∈CO r χ(H) <∞;
(6) for every integer r it holds supH∈C Õ r χ(H) <∞;
(7) for every integer r it holds sup

H∈C
∝
O r χ(H) <∞.

In the above theorem, we see that not only shallow minors, shallow topo-
logical minors, and shallow immersions behave closely, but that the (sparse)
graph density ‖G‖/|G| and the chromatic number χ(G) of a graph G are
also related. This last relation is intimately related to the following result
of Dvorák [22].

Lemma 27. Let c ≥ 4 be an integer and let G be a graph with average

degree d > 56(c− 1)2 log(c−1)
log c−log(c−1)

. Then the graph G contains a subgraph G′

that is the 1-subdivision of a graph with chromatic number c.

It follows from Theorem 26 that the notion of class with bounded ex-
pansion is quite robust. Not only classes with bounded expansion can be
defined by edge densities and chromatic number, but, as we shall see shortly,
also by virtually all common combinatorial parameters [61].

Similarly to Theorem 26, we have several characterizations of nowhere
dense classes.

Theorem 28 (Nowhere dense invariance [61]). Let C be a class of graphs.
Then the following are equivalent:

(1) the class C is nowhere dense;

(2) for every integer r it holds lim supG∈C
log∇r(G)

log |G| = 0;

(3) for every integer r it holds lim supG∈C
log ∇̃r(G)

log |G| = 0 ;

(4) for every integer r it holds lim supG∈C
log
∝
∇r(G)

log |G| = 0;

(5) for every integer r it holds supH∈CO r ω(H) <∞;
(6) for every integer r it holds supH∈C Õ r ω(H) <∞;
(7) for every integer r it holds sup

H∈C
∝
O r ω(H) <∞.
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8. Low tree-depth decomposition and covering

After the general grows of classes it is perhaps surprising that nowhere
dense and bounded expansion classes can be described by the existence of
decomposition and covering of very special type. We are back to simple
(and algorithmic) graph theory.

The tree-depth of a graph is a minor monotone graph invariant that has
been defined in [52], and which is equivalent or similar to the rank function
(used for the analysis of countable graphs, see e.g. [66]), the vertex ranking
number [20, 71], and the minimum height of an elimination tree [10]. Tree-
depth can also be seen as an analog for undirected graphs of the cycle rank
defined by Eggan [25], which is a parameter relating digraph complexity
to other areas such as regular language complexity and asymmetric matrix
factorization. This parameter is also deeply related to the fill-in of a sparse
matrix during a Cholesky decomposition. The notion of tree-depth found a
wide range of applications, from the study of non-repetitive coloring [28] to
the proof of the homomorphism preservation theorem for finite structures
[69]. Recall the definition of tree-depth (see Fig. 6):

Figure 6. The tree-depth of the path P2n−1 is n.

Definition 29. The tree-depth td(G) of a graph G is defined as the mini-
mum height1 of a rooted forest Y such that G is a subgraph of the closure
of Y (that is of the graph obtained by adding edges between a vertex and
all its ancestors). In particular, the tree-depth of a disconnected graph is
the maximum of the tree-depths of its connected components.

Perhaps the most useful (certainly from the algorithmic point of view) is
the following notion:

Definition 30. A low tree-depth decomposition with parameter p of a graph
G is a coloring of the vertices of G, such that any subset I of at most p colors

1Here the height is defined as the maximum number of vertices in a chain from a root
to a leaf
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induce a subgraph with tree-depth at most |I| (see Fig. 7. The minimum
number of colors in a low tree-depth decomposition with parameter p of G
is denoted by χp(G).

1

2 2 2

22

2 2

3 3 3

333

3 3 3

4 4

4 4 4

444

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

Figure 7. A low tree-depth decomposition with parameter
p = 2: each color class induces a stable set (i.e. a graph with
tree-depth 1) and every two color classes induce a star forest
(i.e. a graph with tree depth 2).

For instance, χ1(G) is the (standard) chromatic number of G, while χ2(G)
is the star chromatic number of G, that is the minimum number of colors
in a proper vertex-coloring of G such that any two colors induce a star
forest (see e.g. [8, 49]). For a more exhaustive survey on low tree-depth
decomposition we refer the reader to [61, 64].

Theorem 31 (Nowhere dense by decomposition [61]). Let C be a class of
graphs, then the following are equivalent:

(1) for every integer p it holds lim supG∈C
logχp(G)

log |G| = 0;

(2) the class C is nowhere dense.

Moreover, if lim supG∈C
logχp(G)

log |G| 6= 0 for some integer p, that is if C is some-

where dense, then for some integer p it holds lim supG∈C
logχp(G)

log |G| ≥ 1/2.

In a low tree-depth decomposition of a graph G by N colors and for
parameter t, the subsets of t colors define a disjoint union of clusters that
cover the graph, such that each cluster has tree-depth at most t, every
vertex belongs to at most

(
N
t

)
clusters, and every connected subgraph of

order t is included in at least one cluster.
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It is natural to ask whether the condition that such a covering comes
from a coloring could be dropped. This is indeed so:

Theorem 32 ([64]). A hereditary class C is nowhere dense if there exists a
function f such that for every integer t and every ε > 0, every graph G ∈ C
of order n ≥ f(t, ε) has a covering C1, . . . , Ck of its vertex set such that

• each Ci induces a connected subgraph with tree-depth at most t;
• every vertex belongs to at most nε clusters;
• every connected subgraph of order at most t is included in at least

one cluster.

A similar statement holds if we weaken the condition that each cluster
has tree-depth at most t while we strengthen the condition that every con-
nected subgraph of order at most t is included in some cluster. Namely, we
consider the question whether a similar statement holds if we allow each
cluster to have radius at most 2t while requiring that every t-neighborhood
is included in some cluster. In the context of their solution of model check-
ing problem for nowhere dense classes (cf Theorem 45), Grohe, Kreutzer
and Siebertz introduced in [34] the notion of r-neighborhood cover and
proved that nowhere dense classes admit such cover with small maximum
degree.

Precisely, for r ∈ N, an r-neighborhood cover X of a graph G is a set
of connected subgraphs of G called clusters, such that for every vertex
v ∈ V (G) there is some X ∈ X with Nr(v) ⊆ X. The radius rad(X )
of a cover X is the maximum radius of its clusters. The degree dX (v) of
v in X is the number of clusters that contain v. The maximum degree
∆(X ) = maxv∈V (G) d

X (v). For a graph G and r ∈ N we define τr(G) as the
minimum maximum degree of an r-neighborhood cover of radius at most
2r of G.

Theorem 33 ([34]). Let C be a nowhere dense class of graphs. Then there
is a function f such that for all r ∈ N and ε > 0 and all graphs G ∈ C with
n ≥ f(r, ε) vertices, it holds τr(G) ≤ nε.

In other words, every infinite nowhere dense class of graphs C is such that

sup
r∈N

lim sup
G∈C

log τr(G)

log |G| = 0.

The following characterization of nowhere dense classes of graphs follows
[64]:
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Theorem 34 (Nowhere dense by covering). Let C be an infinite monotone
class of graphs. Then

sup
r∈N

lim sup
G∈C

log τr(G)

log |G|
is either 0 if C is nowhere dense, at at least 1/3 if C is somewhere dense.

9. Ordering and Locally Constrained Orientations

Here is a game theory relevant characterization. Kierstead and Yang
introduced the r-coloring number of a graph for the purpose of studying
coloring games and marking games on graphs [43].

Denote by Π(G) the set of linear orders on the vertex set of a graph G.
A vertex u is weakly r-reachable from v with respect to an order <∈ Π(G),
if there exists a path P of length 0 ≤ ` ≤ r between u and v such that u
is minimum in V (P ). Let Wreachr[G,<, v] be the set of vertices that are
weakly r-reachable from v with respect to <.

Vertex u is strongly r-reachable from v with respect to an order <∈ Π(G),
if there is a path P of length 0 ≤ ` ≤ r connecting u and v such that u ≤ v
and such that all inner vertices w of P satisfy w > v. Let Sreachr[G,<, v]
be the set of vertices that are strongly r-reachable from v with respect to
≤.

The weak r-coloring number wcolr(G) of G is defined as

wcolr(G) = min
<∈Π(G)

max
v∈V (G)

|Wreachr[G,≤, v]|,

and the r-coloring number colr(G) of G is defined as

colr(G) = min
<∈Π(G)

max
v∈V (G)

|Sreachr[G,≤, v]|.

These invariants are easily shown to be polynomially equivalent via the
monotone path segmentation [43]:

colr(G) ≤ wcolr(G) ≤ colr(G)r.

Zhu proved that these invariants are related to shallow minor densities
as follows:

Theorem 35 ([78]). For every integer r there exists a polynomial Fr such
that for every graph G it holds

∇ r−1
2

(G) + 1 ≤ wcolr(G) ≤ Fr(∇ r−1
2

(G)).

Lemma 36 ([78]). For every graph G and every integer r it holds

χr(G) ≤ wcol2r−1(G).
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Theorem 35 and Lemma 36 gives a bound on χr(G) in terms of
∇2r−2−1/2(G) A first (weaker) bound for χr was originally obtained by the
authors by means of transitive fraternal augmentations in [53]. A more
precise analysis of fraternal augmentations led to the following improved
bounds

Theorem 37 ([61]). For every integer r there exists a polynomial Pr such
that for every graph G it holds

χr(G) ≤ Pr(∇̃2p−2+1/2(G))

On the other hand, the following inequality is easily checked

Theorem 38 ([52]). For every integer r and every graph G it holds

∇r(G) ≤ (2r + 1)

(
χ2r+2(G)

2r + 2

)
.

Definition 39. Let ~G be a directed graph and let k be an integer. A
fraternal augmentation of ~G is an edge-labeled super-digraph ~G+ of ~G such
that, denoting label(x, y) the (integer) label of arc (x, y) and putting

`(x, y) = min{label(x, z), label(y, z) : (x, z), (y, z) ∈ E(~G+)},
it holds:

(1) the arcs of ~G+ with label 1 are exactly the arcs of ~G;

(2) for every distinct vertices u, v of ~G, either `(x, y) > k or

min(label(x, y), label(y, x)) = `(x, y);

Given a fraternal augmentation ~G+ of a directed graph ~G, we denote
by ∆−i (~G+) the maximum indegree of a vertex when considering arcs with
label at most i only.

Theorem 40 ([61]). For every integer k there exists a polynomial Qk(x, y)

such that every directed graph ~G has a fraternal augmentation ~G+ such that

∆−k (~G+) ≤ Qk(∆
−(~G), ∇̃ k−1

2
(G)),

where G is the underlying undirected graph of ~G.

In some sense, Theorem 40 can be seen as a local version of Theorem 35.
In this version no condition of acyclicity is required on the orientation of
the augmentation, but any arbitrary indegree bounded orientation can be
required for the graph to be augmented.
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Figure 8. Example of a fraternal augmentation of a directed graph.

10. Quasi-wideness and related

Atserias and Dawar defined the notions of wide, almost-wide and quasi-
wide classes of graphs in the context of logic (cf. [18] for instance). Let
d ∈ N. A subset A of vertices of a graph G is d-independent if the distance
between any two distinct vertices in A is strictly greater than d. A class C of
graphs is quasi-wide if there exists functions s : N→ N and f : N×N→ N
such that the following (rather technical) property holds:

For every integer d and every integer m, every graph G ∈ C
with order at least f(d,m) contains a subset S of size at
most s(d) so that G− S has a d-independent set of size m.

Note that the key point of this property is that the bound s(d) on the size
of S does not depend on m.

The following is proved in [55]:

Theorem 41 (Nowhere dense by independence). Let C be a hereditary class
of graphs. Then C is nowhere dense if and only if it is quasi-wide.

Another variant of this characterization may be formulated as follows:

Theorem 42 (Nowhere dense by spreading). Let C be a class of graphs.
Then C is nowhere dense if and only if for every integer d and every ε > 0
there is an integer N with the following property: for every graph G ∈ C,
and every subset A of vertices of G, there is S ⊆ A with |S| ≤ N such that
no ball of radius d in G[A \ S] has order greater than ε |A|.
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Proof. Suppose that C is somewhere dense, that is that there exists p ∈ N
such that for every integer n, the p-subdivision of Kn is a subgraph of
some G ∈ C. Assume for contradiction that there is an integer N with the
property that for every graph G ∈ C, and every subset A of vertices of G,
there is S ⊆ A with |S| ≤ N such that no ball of radius 2p in G[A \ S]
has order greater than |A|/2. Let G ∈ C be a graph that includes a p-
subdivision of Kn as a subgraph, where n > 2N , and let A be the vertex
set of this subgraph. Then, for every subset S of cardinality at most N ,
G[A \ S] has order at least |A| − N −

(
N
2

)
p > |A|/2, what contradicts our

hypothesis.
Conversely, considering the hereditary closure of C, we can restrict our-

selves to the case where A = V (G). Let d be an integer and let ε > 0 be a
positive real. By Theorem 41, there is s and C such that if |X| > C then
one can find a subset Y of vertices of G with |Y | ≤ s such that in G−Y at
least m = b1/εc+ s+ 1 vertices in X \Y are pairwise at distance > 4d. Let
us prove by contradiction that the value N = C has the property required
by the Lemma: For G ∈ C, let X be a subset of V (G) with minimum cardi-
nality, such that no ball of radius d in G−X has order greater than ε |G|.
By minimality, every ball of radius 2d centered at a vertex in S contains at
least ε |G| vertices. There exists a set Y of at most s vertices and a subset
A ⊆ X \ Y of at least m vertices pairwise at distance at least 4d in G− Y .
However, in A there are at most b1/εc vertices that are centers of balls of
radius 2d containing more than ε |G| vertices (as these balls are disjoint).
As m > b1/εc+ s there is a subset A′ ⊆ A such that |A′| > s and for every
v ∈ A′ it holds |B2d(G, v)| ≤ ε|G|. Let S = (A \ A′) ∪ Y . Then no ball of
radius d in G − S has order greater than ε |G|. However, one checks that
|S| < |X|, what contradicts the minimality of X. �

In particular, this theorem implies that the removal of N(d, ε) vertices in
a graph G in C results in a graph such that no ball of radius d has order
greater than ε |G|.

11. Algorithmic Consequences

From the point of view of theoretical computer science, of particular im-
portance is the program of establishing fixed-parameter tractability (FPT)
of model checking first order logic on sparse graphs. A long line of work
resulted in FPT algorithms for model checking first order formulas on more
and more general classes of sparse graphs. Finally, FPT algorithms for the
problem have been given for graph classes of bounded expansion by Dvořák
et al. [23], and very recently for nowhere dense graph classes by Grohe et
al. [34]. This is the ultimate limit of this program: as proven in [23], for
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any monotone somewhere dense class C, model checking first order formulas
on C is not fixed-parameter tractable (unless FPT = W[1]).

Theorem 43 ([23]). For every class C with bounded expansion, every prop-
erty of graphs definable in first-order logic can be decided in time O(n) on
C.

The above theorem relies on low tree-depth decomposition. However, the
next result, due to Kazana and Segoufin, is based on the notion of transitive
fraternal augmentation, which was introduced in [53, 54] to construct low-
tree depth decomposition.

Theorem 44 ([42]). Let C be a class of graphs with bounded expansion and
let φ be a first-order formula. Then, for all G ∈ C, we can compute the
number |φ(G)| of satisfying assignments for φ in G in in time O(|G|).

Moreover, the set φ(G) can be enumerated in lexicographic order in con-
stant time between consecutive outputs and linear time preprocessing time.

The following result is also based on the transitive-fraternal augmentation
algorithm.

Theorem 45 ([34]). For every nowhere dense class C and every ε > 0,
every property of graphs definable in first-order logic can be decided in time
O(n1+ε) on C.

This is a natural question whether Theorem 45 has a counting and enu-
meration version in the spirit of Theorem 44.

Fixed-parameter tractability of Dominating Set on nowhere dense graph
classes follows immediately from the result of Grohe et al., since the problem
is definable in first order logic. However, an explicit algorithm was given
earlier by Dawar and Kreutzer [19]. The search for linear kernels for the
Dominating Set problem on classes of graphs also followed a long line of
results on more and more general classes of sparse graphs, from the work of
Alber et al. [3] that established a linear kernel for the problem on planar
graphs, linear kernels have been given for bounded-genus graphs [11], apex-
minor-free graphs [29], H-minor-free graphs [30], and H–topological-minor-
free graphs [31]. These efforts culminated in the following results (where
ds(G) denotes the size of a minimum dominating set of graph G):

Theorem 46 ([21]). Let C be a graph class of bounded expansion. There
exists a polynomial-time algorithm that given a graph G ∈ C and an integer
k, either correctly concludes that ds(G) > k or finds a subset of vertices
Y ⊆ V (G) of size O(k) with the property that ds(G) ≤ k if and only if
ds(G[Y ])| ≤ k.
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Theorem 47 ([21]). Let C be a nowhere dense class of graphs and let ε > 0
be a real number. There exists a polynomial-time algorithm that given a
graph G ∈ C and an integer k, either correctly concludes that ds(G) > k or
finds a subset of vertices Y ⊆ V (G) of size O(k1+ε) with the property that
ds(G) ≤ k if and only if ds(G[Y ]) ≤ k.

12. Concluding Remarks

The research covered in this survey is by no means closed, and in fact it is
reflecting fast development. Particularly Conjecture 1 seems to be of central
importance and may shed some light on the Aldous-Lyons conjecture, as
well as problems in group theory (see e.g. [26]). We tried to reflect this in
extensive references.

We believe that this is an exciting topic, which spans several disciplines,
and we hope that an interested reader will share this view.
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