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The following notes derive from three related series of lectures given for the
Selected Chapters in Combinatorics course (Vybrané kapitoly z kombinatoriky I)
at the Computer Science Institute (IÚUK) and the Department of Applied
Mathematics (KAM) of the Faculty of Mathematics and Physics (MFF) at
Charles University, Prague: “Many facets of the Tutte polynomial” (2010),
“Graph invariants, homomorphisms and the Tutte polynomial” (2012), and
“Duality in combinatorics: the examples of Tutte, Erdős, and Ramsey” (2014).1

I have tried to make the notation as uniform as possible throughout and to avoid
repetitions arising from overlaps between the three courses. However, I have
left some background to cycles and cuts in Section 6 as it stands, rather than
asking the reader to find the relevant material in Section 2.
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content of these lectures is not covered by the notes presented here.

1



3 The Tutte polynomial 37
3.1 Deletion-contraction recurrence . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Sugraph expansion of the Tutte polynomial . . . . . . . . . . . . . . . . . . 44
3.3 Coefficients. Spanning tree expansion. . . . . . . . . . . . . . . . . . . . . 47
3.4 The Tutte polynomial of a planar graph . . . . . . . . . . . . . . . . . . . 50
3.5 The spanning tree partition of subgraphs. . . . . . . . . . . . . . . . . . . . 52
3.6 The beta invariant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.8 The Laplacian and the number of spanning trees . . . . . . . . . . . . . . . 58
3.9 Hamming weight enumerator for tensions and flows . . . . . . . . . . . . . 59
3.10 Bicycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.11 Z3-tension-flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 The Tutte polynomial in statistical physics 66
4.1 Colourings and flows in the ice model . . . . . . . . . . . . . . . . . . . . . 66
4.2 The Potts model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 The Fortuin-Kasteleyn random cluster model . . . . . . . . . . . . . . . . . 71

5 Graph homomorphisms 73
5.1 Graph invariants and graph homomorphism profiles . . . . . . . . . . . . . 74
5.2 Homomorphism profiles determining graph invariants . . . . . . . . . . . . 76
5.3 Spectrum and degree sequence by left profiles . . . . . . . . . . . . . . . . 78

6 From graphs to matroids 79
6.1 Cuts, circuits and cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Orthogonality of cycles and cutsets . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Graph duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Dual matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 Deletion and contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Connections to knot theory 93
7.1 The medial of a plane graph . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Eulerian tours of digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 2-in 2-out digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Interlace polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 The Kauffman bracket of a link . . . . . . . . . . . . . . . . . . . . . . . . 112

2



1 The chromatic polynomial

1.1 Graph-theoretic preliminaries

Let G = (V,E) be a graph. A spanning subgraph is a subgraph (V,A) with A ⊆ E, and
is denoted by GA. An induced subgraph is a subgraph (U,A), where A = {uv ∈ E : u ∈
U, v ∈ U}, and is denoted by G[U ]. The number of connected components of G is denoted
by c(G). A maximal spanning forest F is a forest which is a spanning subgraph of G with
the property that F is contained in no other spanning forest of G, i.e., no edge of G can
be added to F without creatng a cycle of G. A maximal spanning forest of a connected
graph is a spanning tree.

The rank r(G) = |V | − c(G) is the size of maximal spanning forest of G. Conversely, a
spanning subgraph GA with c(GA) = c(G) is a maximal spanning forest of G. For A ⊆ E
we often identify A with the spanning subgraph (V,A) and write r(A) for r(GA). So
r(A) = |A| if and only if GA is a spanning forest; r(A) = r(E) if and only if GA has the
same number of connected components as G; and r(A) = |A| = r(E) if and only if GA is
a maximal spanning forest of G. The nullity n(G) = |E| − r(G) is the dimension of the
cycle space of G (for a plane graph, this is the number of faces of G excepting the outer
face). For A ⊆ E we set n(A) = n(GA).

Deleting an edge e ∈ E forms the spanning subgraph G\e = (V,E\{e}). Contracting
an edge e = uv forms the graph G/e obtained by deleting e and then identifying the
endpoints of e.

An edge e is a bridge (isthmus, cut-edge, coloop) of G if r(G\e) < r(G), i.e., the number
of connected components is increased upon removing e. An edge e is a bridge if and only
if r({e}) = 1. An edge e = uv is a loop of G if u = v. Contracting a loop is the same
as deleting it. An edge e is loop if and only if n({e}) = 1. An edge e is ordinary if it is
neither a bridge nor a loop.

1.2 The chromatic polynomial and proper colourings

There are various ways to define the chromatic polynomial P (G; z) of a graph G. Perhaps
the first that springs to mind is to define it to be the graph invariant P (G; k) with the
property that when k is a positive integer P (G; k) is the number of colourings of the
vertices of G with k or fewer colours such that adjacent vertices receive different colours.
One then has to prove that P (G; k) is indeed a polynomial in k. This can be done for
example by an inclusion-exclusion argument, or by establishing that P (G; k) satisfies a
deletion-contraction recurrence and using induction.

However, we shall take an alternative approach and define a polynomial P (G; z) by
specifying its coefficients as graph invariants that count what are called colour-partitions
of the vertex set of G. It immediately emerges that P (G; k) does indeed count the proper
vertex k-colourings of G. A further aspect of this approach is that we choose a basis
different to the usual basis {1, z, z2, . . .} for polynomials in z. This basis, {1, z, z(z−1), . . .},
has the advantage that we are able to calculate the chromatic polynomial very easily for
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many graphs, such as complete multipartite graphs.
The chromatic polynomial has been the subject of intensive study ever since Birkhoff

introduced it in 1912 [8], perhaps with an analytic approach to the Four Colour Conjecture
in mind. Although such an approach has not led to such a proof of the Four Colour
Conjecture being found, study of the chromatic polynomial has led to many advances in
graph theory that might not otherwise have ben made. The chromatic polynomial played a
significant role historically in Tutte’s elucidation of tension-flow duality. (Later we look at
Tutte’s eponymous polynomial, introduced as simultaneous generalization of the chromatic
and flow polynomials.)

More about graph colourings can be found in e.g. [10, ch. V], [17, ch. 5], and more
about the chromatic polynomial in e.g. [7, ch. 9] and [20].

We approach the chromatic polynomial via the key property that vertices of the same
colour in a proper colouring of G form an independent (stable) set in G.

Definition 1.1. A colour-partition of a graph G = (V,E) is a partition of V into disjoint
non-empty subsets, V = V1 ∪ V2 ∪ · · · ∪ Vk, such that the colour-class Vi is an independent
set of vertices in G, for each 1 ≤ i ≤ k (i.e., each induced subgraph G[Vi] has no edges).

The chromatic number χ(G) is the least natural number k for which such a partition
is possible.

If G has a loop then it has no colour-partitions. Adding or removing edges in parallel
to a given edge makes no difference to what counts as a colour-partition, since its definition
depends only on whether vertices are adjacent or not.

We denote the falling factorial z(z − 1) · · · (z − i+ 1) by zi.

Definition 1.2. Let G = (V,E) be a graph and let ai(G) denote the number of colour-
partitions of G into i colour-classes. The chromatic polynomial of G is defined by

P (G; z) =

|V |∑
i=1

ai(G)z
i.

For example, when G is the complete graph on n vertices,

P (Kn; z) = zn = z(z − 1) · · · (z − n+ 1),

with ai(Kn) = 0 for 1 ≤ i ≤ n− 1 and an(Kn) = 1.
If G has n vertices then an(G) = 1 so that P (G; z) has leading coefficient 1. The

constant term P (G; 0) is zero since z is a factor of zi for each 1 ≤ i ≤ n. If E is non-
empty then P (G; 1) = 0, so that z − 1 is a factor of P (G; z). More generally, the integers
0, 1, . . . , χ(G)− 1 are all roots of P (G; z), and χ(G) is the first positive integer that is not
a root of P (G; z).

Proposition 1.3. If G = (V,E) is a simple graph on n vertices and m edges then the
coefficient of zn−1 in P (G; z) is equal to −m.
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Proof. A partition of n vertices into n− 1 subsets necessarily consists of n− 2 singletons
and one pair of vertices {u, v}. This is a colour-partition if and only if uv ̸∈ E. Hence
an−1(G) =

(
n
2

)
− m, where m is the number of pairs of adjacent vertices, equal to the

number of edges of G when there are no parallel edges. Then

[zn−1]P (G; z) = −(1 + 2 + · · ·+ n−1)an(G) + an−1(G) = −m.

The join G1 + G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph with
vertex set V1 ∪ V2 and edge set

E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}.

For example the join of two cocliques Kr +Ks is a complete bipartite graph Kr,s.

Proposition 1.4. The chromatic polynomial of the join G1 +G2 is given by

P (G1 +G2; z) = P (G1; z) ◦ P (G2; z),

where the ◦ operation is defined by zi ◦ zj = zi+j, extended linearly to polynomials.

Proof. The number of colour-partitions of G = G1 +G2 is given by

ak(G) =
∑
i+j=k

ai(G1)aj(G2),

since every vertex of G1 is adjacent in G to every vertex of G2, so that any colour-class of
vertices in G is either a colour class of G1 or a colour class of G2.

The operation ◦ treats falling factorials zi as though they were usual powers zi when
multiplying together the polynomials

∑
i ai(G1)z

i and
∑

j aj(G2)z
j. This is part the shad-

owy world of “umbral calculus”...

Question 1

(i) Find the chromatic polynomial of the wheel Cn+K1 on n+1 vertices.

(ii) Find an expression for the chromatic polynomial of the complete bi-
partite graph Kr,s relative to the factorial basis {zn} (leaving your
answer in the form of a double sum).

Definition 1.5. A proper k-colouring of the vertices of G = (V,E) is a function f : V →
[k] with the property that f(u) ̸= f(v) whenever uv ∈ E.
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Note that the vertices of a graph are regarded as labelled and colours are distinguished:
colourings are different even if equivalent up to an automorphism of G or a permutation
of the colour set.

Proposition 1.6. If k ∈ N then P (G; k) is the number of proper vertex k-colourings of G.

Proof. To every proper colouring in which exactly i colours are used there corresponds a
colour-partition into i colour classes. Conversely, given a colour-partition into i classes
there are ki ways to assign colours to them. Hence the number of proper k-colourings is∑
ai(G)k

i = P (G; k).

The fact that the polynomial P (G; z) can be interpolated from its evaluations at positive
integers gives a method of proving identities satisfied by P (G; z) generally. Namely, check
the truth of the identity when z = k ∈ N by verifying a combinatorial property of proper
k-colourings. We finish this section with some examples.

Proposition 1.7. Suppose G′ is obtained from G by joining a new vertex to each vertex
of an r-clique in G. Then P (G′; z) = (z − r)P (G; z).

Proof. The identity holds when z is equal to a positive integer k, for to each proper k-
colouring of G there are exactly k − r colours available for the new vertex to extend to a
proper colouring of G′.

Consequently, if G is a tree on n vertices then P (G; z) = z(z − 1)n−1 (every tree on
n ≥ 2 vertices has a vertex of degree 1 attached to a 1-clique in a tree on n− 1 vertices).

A chordal graph is a graph such that every cycle of length four or more contains a chord,
i.e., there are no induced cycles of length four or more. A chordal graph can be constructed
by successively adding a new vertex and joining it to a clique of the existing graph [19]. This
ordering of vertices is known as a perfect elimination ordering. By Proposition 1.7, for a
chordal graphG we have P (G; z) = zc(G)(z−1)k1 · · · (z−s)ks , where k1+· · ·+ks = |V |−c(G)
and s = χ(G)− 1.

Question 2

(i) Show that if G is the disjoint union of G1 and G2 then P (G; z) =
P (G1; z)P (G2; z).

(ii) Prove that

P (G;x+ y) =
∑
U⊆V

P (G[U ];x)P (G[V \ U ]; y).
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Proposition 1.8. Suppose G = (V,E) has the property that V = V1 ∪ V2 with G[V1 ∩ V2]
complete and no edges joining V1 \ (V1 ∩ V2) to V2 \ (V1 ∩ V2). Then

P (G; z) =
P (G[V1]; z)P (G[V2]; z)

P (G[V1 ∩ V2]; z)
.

In particular, if G is a connected graph with 2-connected blocks G1, . . . , Gℓ then

P (G; z) = z1−ℓP (G1; z)P (G2; z) · · ·P (Gℓ; z).

Proof. It suffices to prove the first identity when z is a positive integer k. Each proper
colouring of the clique G[V1∩V2] extends to P (G[V1]; k)/P (G[V1∩V2]; k) proper colourings
of G([V1]), and independently to P (G[V2]; k)/P (G[V1∩V2]; k) proper colourings of G([V2]).
Seeing that such a proper colouring of the cliqueG[V1∩V2] also extends to P (G; k)/P (G[V1∩
V2]; k) proper colourings of G, we have

P (G; k)

P (G[V1 ∩ V2]; k)
=

P (G[V1]; k)

P (G[V1 ∩ V2]; k)
P (G[V2]; k)

P (G[V1 ∩ V2]; k)
.

1.3 Deletion and contraction

Proposition 1.9. The chromatic polynomial of a graph G satisfies the relation

P (G; z) = P (G\e; z)− P (G/e; z),
for any edge e.

Proof. When e is a loop we have P (G; z) = 0 = P (G\e; z)− P (G/e; z) since G\e ∼= G/e.
When e is parallel to another edge of G we have P (G; z) = P (G\e; z) and P (G/e; z) = 0
since G/e has a loop.

Suppose then that e is not a loop or parallel to another edge. Consider the proper
vertex k-colourings of G\e. Those which colour the ends of e differently are in bijective
correspondence with proper k-colourings ofG, while those that colour the ends the same are
in bijective correspondence with proper k-colourings of G/e. Hence P (G\e; k) = P (G; k)+
P (G/e; k) for each positive integer k.

Proposition 1.9 provides the basis for a possible inductive proof of any given statement
about the chromatic polynomial for a minor-closed class of graphs (such as planar graphs).
We shall see a few such examples in the sequel.

Question 3
Use the deletion–contraction recurrence of Proposition 1.9 to

(i) give another proof that the chromatic polynomial of a tree on n
vertices is given by z(z − 1)n−1;

(ii) find the chromatic polynomial of the cycle Cn.
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Figure 1: Deletion-contraction computation tree for the chromatic polynomial of K3. Par-
allel edges produced by contraction/identification are omitted since they do not affect the
value of the chromatic polynomial. Leaf nodes are empty graphs.

We can use the recurrence given by Proposition 1.9 to compute the chromatic polyno-
mial of a graph G recursively. A convenient way to record this computation is to draw a
binary tree rooted at G whose nodes are minors of G and where the children of a node are
the two graphs obtained by the deletion and contraction of an edge. Along each branch
of the computation tree it does not matter in which order we choose the edges to delete
or contract. If we continue this computation tree until no edges remain to delete and con-
tract then the leaves of the computation tree are edgeless graphs Ki on 1 ≤ i ≤ n vertices,
whose chromatic polynomial is given by zi. The sign of this term in its contribution to
the chromatic polynomial of G is positive if an even number of contractions occur on its
branch, and negative otherwise. See Figure 1 for an example.

For a simple graph G = (V,E) a binary deletion-contraction tree of depth |E| is required
to reach cocliques at all the leaves. When multiple edges appear they can be deleted to
leave simple edges (in other words, contraction of an edge parallel to another edge gives a
loop and this contributes zero to the chromatic polynomial).
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Question 4
Suppose G is a simple connected graph on n vertices.

(i) Prove that the number of edge contractions along a branch of the
computation tree for the chromatic polynomial of G whose leaf node
is a coclique of i vertices is equal to n− i.

(ii) Prove that for each 1 ≤ i ≤ n we can always obtain a coclique on
i vertices by deleting/contracting edges in some appropriate order.
Deduce that

P (G; z) =
∑

0≤i≤n−1
(−1)ici(G)zn−i,

where ci(G) > 0 is the number of cocliques of order n− i occurring
as leaf node in the computation tree for G. (A formal proof of
the fact that the coefficients of P (G; z) alternate in sign is given in
Proposition 1.10 below. A combinatorial interpretation for ci(G) in
terms of spanning forests of G is given by Theorem 1.3.)

If we start with a connected graph G in building the computation tree we can always
choose an edge whose deletion leaves the graph connected, so that the children of a node
are both connected graphs. In this way we end up with trees (at which point deleting any
edge disconnects the tree). Seeing that we know that the chromatic polynomial of a tree
on i vertices is given by z(z− 1)i−1 we could stop the computation tree at this point when
we reach trees as leaf nodes. The sign of the term z(z − 1)i−1 contributed to P (G; z) by
a leaf node tree on i vertices is positive if there are an even number of edge contractions
on its branch, and otherwise it has negative sign in its contribution. See the left-hand
diagram of Figure 2 for an example with G = K−4 (K4 minus an edge).
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Question 5

(i) Show in a similar way to the previous question that if G is a con-
nected graph on n vertices then each leaf of the deletion-contraction
computation tree for G which is a tree on i vertices contributes
(−1)n−iz(z − 1)i−1 to P (G; z).

(ii) Deduce that when G is connected

P (G; z) = z
∑

1≤i≤n
(−1)n−iti(G)(z − 1)i−1,

where ti(G) is the number of trees of order i occurring as leaf nodes in
the computation tree for G. (We shall see later that the coefficients
ti(G) have a combinatorial interpretation in terms of spanning trees
of G.)

If we write the recurrence given in Proposition 1.9 as P (G\e; z) = P (G; z)+P (G/e; z),
we can by adding edges between non-adjacent vertices or identifying such non-adjacent
vertices “fill out” a dense connected graph to complete graphs. Add the edge e to G\e to
make G, and if G/e has parallel edges these can be removed without affecting the value
of P (G/e; z): in any event, the number of non-edges in both G and (the simplified graph)
G/e is one less than in G\e. Hence, starting with a simple connected graph G = (V,E),(|V |

2

)
− |E| addition-identification steps are required to reach complete graphs. See the

right-hand diagram in Figure 2 for a small example.

Question 6 By considering the definition of the chromatic polynomial
(Definition 1.2), prove that

zn =
∑

1≤i≤n
S(n, i)zi,

where S(n, i) is equal to the number of partitions of an n-set into i non-
empty sets. (These are known as the Stirling numbers of the second kind.)

To move from the basis {zn} to the basis {zn} for polynomials in z we have the identity

zn =
∑

1≤i≤n

s(n, i)zi,

where s(n, i) are the signed Stirling numbers of the first kind, defined recursively by

s(n, i) = s(n− 1, i− 1)− (n− 1)s(n− 1, i),
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P (K−4 ; z) = z(z − 1)2 − 2z(z − 1) + z
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P (K−4 ; z) = z(z−1)(z−2)(z−3) + z(z−1)(z−2)

Figure 2: Deletion-contraction and addition-identification computation tree for the chro-
matic polynomial of K−4 . Parallel edges produced by contraction/identification are omitted
since they do not affect the value of the chromatic polynomial. Leaf nodes for deletion-
contraction are trees, leaf nodes for addition-identification are complete graphs.

{
s(r, 0) = 0 r = 1, 2, ...

s(r, r) = 1 r = 0, 1, 2, ...
.

The number (−1)n−is(n, i) counts the number of permutations of an n-set that have exactly
i cycles. By Question 4 it is also the number of cocliques of order i occurring as leaves in
the computation tree for P (Kn; z), and by Theorem 1.3 below it also has an interpretation
in terms of forests on n vertices.

Question 7

(i) Explain why P (G; z) > 0 when z ∈ (−∞, 0), provided G has no
loops.

(ii) Show that if G is connected and without loops then P (G; z) is non-
zero with sign (−1)|V |−1 when z ∈ (0, 1).

Remark 1.1. Let zi denote the rising factorial z(z + 1) · · · (z + i− 1). Brenti [12] proved
that

P (G; z) =
∑

1≤i≤|V |

(−1)|V |−ibi(G)zi,

where bi(G) is the number of set partitions V1 ∪ V2 ∪ · · · ∪ Vi of V into i blocks paired
with an acyclic orientation of G[V1] ∪ G[V2] ∪ · · · ∪ G[Vi]. See [94] for expressions for the
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coefficients of the chromatic polynomial relative to any polynomial basis {ei(z)} of binomial
type (meaning it satisfies ej(x+ y) =

∑
0≤i≤j

(
j
i

)
ei(x)ej−i(y)).

From the computation tree for finding the chromatic polynomial of a connected graph
G it can be argued (Question 5) that the coefficients of P (G; z) alternate in sign. Let us
formalize this argument and prove it for graphs in general:

Proposition 1.10. Suppose G is a loopless graph and that

P (G; z) =
∑

0≤i≤|V |

(−1)ici(G)z|V |−i.

Then ci(G) > 0 for 0 ≤ i ≤ r(G), and ci(G) = 0 for r(G) < i ≤ |V |.

Proof. We shall show that

(−1)|V |P (G;−z) =
∑

0≤i≤r(G)

ci(G)z
|V |−i

has strictly positive coefficients. (When G has loops P (G; z) = 0.) By the deletion–
contraction formula, and using the fact that |V (G\e)| = |V (G)| and |V (G/e)| = |V (G)|−1
when e is not a loop,

(−1)|V (G)|P (G;−z) = (−1)|V (G\e)|P (G\e;−z) + (−1)|V (G/e)|P (G/e;−z).

Hence
ci(G) = ci(G\e) + ci−1(G/e).

Assume inductively on the number of edges that ci(G) > 0 for 0 ≤ i ≤ r(G), and that
ci(G) = 0 otherwise. As a base for induction, (−1)nP (Kn;−z) = zn.

By inductive hypothesis, for 0 ≤ i ≤ r(G\e) we have ci(G\e) > 0 and for 0 ≤ i− 1 ≤
r(G/e) we have ci−1(G/e) > 0. When e is not a bridge r(G\e) = r(G) and so ci(G\e) > 0
for 0 ≤ i ≤ r(G), otherwise for a bridge r(G\e) = r(G)− 1 and in this case ci(G) > 0 for
0 ≤ i ≤ r(G) − 1. Since e is not a loop r(G/e) = r(G) − 1, so we have ci−1(G/e) > 0 for
1 ≤ i ≤ r(G). Together these inequalities imply ci(G) > 0 for 0 ≤ i ≤ r(G).

Clearly z divides P (G; z) for a connected graph. It follows that zc(G) is a factor of
P (G; z) by multiplicativity of the chromatic polynomial over disjoint unions. Hence ci(G) =
0 for r(G) < i ≤ |V (G)|. Also, the degree of P (G; z) is |V (G)| by its definition, so there
are no remaining non-zero coefficients.

We shall see below in Whitney’s Broken Circuit Theorem that the numbers ci(G) have
a combinatorial interpretation in terms of spanning forests of G.
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Question 8

(i) Prove that the only rational roots of P (G; z) are 0, 1, . . . , χ(G)− 1.
(It may help to remind oneself that a monic polynomial with integer
coefficients cannot have rational roots that are not integers.)

(ii) Show that the root 0 has multiplicity c(G) and that the root 1 has
multiplicity equal to the number of blocks of G.

Jackson [40] proved that P (G; z) can have no root in (1, 32/27]. Thomassen [80] a
few years later proved that in any other interval of the real line there is a graph whose
chromatic polynomial has a root contained in it.

Earlier in the history of the chromatic poylnomial, Birkhoff and Lewis [9] showed that
the chromatic polynomial of a plane triangulation cannot have a root in the intervals (1, 2)
or [5, 8). Tutte [82] observed that for planar graphs there is often a root of the chromatic
polynomial close to τ 2 where τ = 1

2
(1 +

√
5) is the golden ratio, and proved that if G is

a triangulation of the plane with n vertices then P (G; τ 2) ≤ τ 5−n. See e.g. [20, ch. 12-14]
and [41] for more about chromatic roots.

Here is another illustration of how deletion-contraction arguments can be used to give
simple inductive proofs. On the other hand, as with inductive proofs generally, the art is
knowing what to prove. We shall shortly see that the coefficients of P (G; z) have a general
expression, given by Whitney’s Broken Circuit Theorem, of which Proposition 1.3 and the
following are particular instances.

Proposition 1.11. For a simple graph G on n vertices and m edges the coefficient of zn−2

in P (G; z) is equal to
(
m
2

)
− t, where t is the number of triangles in G.

Proof. The assertion is true when m = 0, 1, 2. Suppose G has n vertices and m ≥ 3 edges.
For a non-loop e, c2(G) = c2(G\e)− c1(G/e). Inductively, c2(G\e) =

(
m−1
2

)
− t0, where t0

is the number of triangles in G not containing the edge e, the graph G\e being simple. In
a triangle {e, e1, e2} of G containing e, the edges e1, e2 do not appear in any other triangle
of G containing e, since G is simple. When e is contracted the edges e1 and e2 become
parallel edges in G/e, and moreover there are no other edge parallel to these. Hence for
each triangle {e, e1, e2} of G we remove one parallel edge in G/e in order to reduce it to
a simple graph. So c1(G/e) = (m − 1) − t1, where t1 is the number of triangles of G
containing e. With t0+ t1 = t equal to the number of triangles in G, the result now follows
by induction.

Proposition 1.12. If P (G; z) = z(z − 1)n−1 then G is a tree on n vertices, and more
generally P (G; z) = zc(z − 1)n−c implies G is a forest on n vertices with c components.

Proof. The degree of P (G; z) is n so G has n vertices. The coefficient of zc is non-zero
but zc−1 has zero coefficient, hence by Proposition 1.10 G has c connected components.
Finally, reading off the coefficient of zn−1 tells us that the number of edges is n− c, so that
G is a forest on n vertices with c components.

13



Question 9 Prove that if P (G; z) = P (Kn; z) then G ∼= Kn and that if
P (G; z) = P (Cn; z) then G ∼= Cn.

1.4 Subgraph expansions

Theorem 1.2. The chromatic polynomial of a graph G = (V,E) has subgraph expansion

P (G; z) =
∑
F⊆E

(−1)|F |zc(F ),

where c(A) is the number of connected components in the spanning subgraph (V,A).

Proof. We prove the identity when z is a positive integer k.
For an edge e = uv let Me = {κ : V → [k] : κ(u) = κ(v)}. Then∩

e∈E

M e = {κ : V → [k] : ∀uv∈E κ(u) ̸= κ(v)}

is the set of proper k-colourings of G. By the principle of inclusion-exclusion,∣∣∣∣∣∩
e∈E

M e

∣∣∣∣∣ = ∑
F⊆E

(−1)|F |
∣∣∣∣∣∩
f∈F

Mf

∣∣∣∣∣ .
But

∣∣∣∩f∈F Mf

∣∣∣ = kc(F ), since a function κ : V → [k] monochrome on each edge of F is

constant on each connected component of (V, F ), and conversely assigning each connected
component a colour independently yields such a function κ.

In the subgraph expansion for the chromatic polynomial given in Theorem 1.2 there
are many cancellations. If f ∈ F belongs to a cycle of (V, F ) then the sets F and F \ {f}
have contributions to the sum that cancel. Whitney’s Broken Circuit expansion results by
pairing off subgraphs in a systematic way.

Let G = (V,E) be a simple graph whose edge set has been ordered e1 < e2 < · · · < em.
A broken circuit is the result of removing the first edge from some circuit, i.e., a subset
B ⊆ E such that for some edge el the edges B ∪{el} form a circuit of G and i > l for each
ei ∈ B.

Theorem 1.3. Whitney [91]. Let G be a simple graph on n vertices with edges totally
ordered, and let P (G; z) =

∑
(−1)ici(G)zn−i. Then ci(G) is the number of subgraphs of G

which have i edges and contain no broken circuits.

Proof. Suppose B1, . . . , Bt is a list of the broken circuits in lexicographic order based on
the ordering of E. Let fj (1 ≤ j ≤ t) denote the edge which when added to Bj completes a
circuit. Note that fj ̸∈ Bk when k ≥ j (otherwise Bk would contain in fj an edge smaller
than any edge in Bj, contrary to lexicographic ordering).
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Define S0 to be the set of subgraphs of G containing no broken circuit and for 1 ≤ j ≤ t
define Sj to be the set of subgraphs containing Bj but not Bk for k > j. Then S0,S1, . . . ,St
is a partition of the set of all subgraphs of G.

If A ⊆ E does not contain fj, then A contains Bj if and only if A ∪ {fj} contains
Bj. Further, A contains Bk (k > j) if and only if A ∪ {fj} contains Bk, since fj is not
in Bk either. If one the subgraphs A and A ∪ {fj} are in Sj then both are, and since
c(A) = c(A ∪ {fj}) the contributions to the alternating sum cancel.

The only terms remaining are contributions from subsets in S0: a subset of size i spans
a forest with n− i components, thus contributing (−1)izn−i to the sum.

Proposition 1.13. Suppose G is a simple connected graph on n vertices and m edges and
having girth g, and that P (G; z) =

∑
(−1)ici(G)zn−i. Then

ci(G) =

(
m

i

)
, for i = 0, 1, . . . , g − 2,

and

cg−1(G) =

(
m

g − 1

)
− t,

where t is the number of circuits of size g in G.

Question 10
Show that if G is a simple connected graph on n vertices and m edges and
P (G; z) =

∑
(−1)ici(G)zn−i then, for 0 ≤ i ≤ n− 1,(

n− 1

i

)
≤ ci(G) ≤

(
m

i

)
.

Proposition 1.14. If G is a simple connected graph on n vertices and m edges and
P (G; z) =

∑
(−1)ici(G)zn−i then,

ci−1(G) ≤ ci(G) for all 1 ≤ i ≤ 1

2
(n− 1).

Proof. In terms of the coefficients relative to the tree basis {z(z − 1)n−1},

P (G; z) =
n∑

i=1

(−1)n−iti(G)z(z − 1)i−1,

we have

ci(G) =
∑
0≤j≤i

tn−j(G)

(
n− 1− j
n− 1− i

)
=

i∑
j=0

tn−j(G)

(
n− 1− j
i− j

)
.
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If i ≤ 1
2
(n − 1) then i − j ≤ 1

2
(n − 1 − j) for all j ≥ 0. By unimodality of the binomial

coefficients, (
n− 1− j
i− j

)
≥
(
n− 1− j
i− 1− j

)
for i ≤ 1

2
(n− 1), j ≥ 0.

Since each tn−j(G) is a non-negative integer, it follows that ci(G) ≥ ci−1(G) for i ≤
1
2
(n− 1).

Question 11
Recall that if G is a forest then P (G; z) = zc(G)(z − 1)r(G). Also
(−1)|V (G)|P (G;−z) =

∑
i ci(G)z

|V (G)|−i, where ci(G) = ci(G\e) +
ci−1(G/e) .

(i) Simplify the proof of Proposition 1.10, that ci(G) > 0 for 0 ≤ i ≤
r(G) and ci(G) = 0 otherwise, by using as base for induction the
truth of the statement for forests and choosing a non-bridge edge in
the deletion-contraction induction step.

(ii) Likewise, prove that ci−1(G) < ci(G) for 0 ≤ i ≤ 1
2r(G) (Proposi-

tion 1.14 for not necessarily connected graphs G) by using base for
induction the fact that this statement is true for forests and using
deletion-contraction of a non-bridge edge.

(iii) Re-prove Theorem 1.3 that ci(G) is the number of i-subsets of E(G)
not containing a broken circuit by showing that this quantity satisfies
the recurrence ci(G) = ci(G\e) + ci−1(G/e). (For this induction
on number of edges the base case is c0(Kn) = 1 and ci(Kn) = 0
for i > 0, for which the assertion is trivially satisfied. To move by
induction to an arbitrary graph G, with total order on E(G) used to
define broken circuits, choose the edge e to be the greatest.)

Proposition 1.14 is the easy half of a long-standing conjecture first made by Read
in 1968 that the coefficients ci(G) of the chromatic polynomial are unimodal. An even
stronger conjecture of log-concavity was later made, i.e., that ci−1(G)ci+1(G) ≤ ci(G)

2.
Both conjectures fell simultaneously in 2010 when J. Huh [39] proved log-concavity as a
corollary of a more general theorem in algebraic geometry.

A theorem due to Newton states that if a polynomial
∑

i ciz
n−i has strictly positive

coefficients and all of its roots are real then the sequence (ci) of coefficients is log-concave
(and hence unimodal). If it were the case that the chromatic polynomial always had
real roots then log-concavity of the sequence of absolute values of its coefficients would
therefore follow by this result. However, not only is it true that there are some graphs
whose chromatic polynomial has complex roots that are not real, but Sokal [75] showed
that the set of complex numbers that are roots of some chromatic polynomial are dense in
the whole complex plane. (This in contradistinction to when we restrict attention to the
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real line itself, where no chromatic roots can lie on (−∞, 32
27
].) Can you think of a family

of graphs {Gn} with the property that P (Gn; z) has non-real roots?

1.5 Some other deletion–contraction invariants.

We have seen that the chromatic polynomial P (G; z) satisfies the recurrence relation

P (G; z) = P (G\e; z)− P (G/e; z), (1)

for any edge e of G. Together with boundary conditions

P (Kn; z) = zn, n = 1, 2, . . . (2)

this suffices to determine P (G; z) on all graphs. A slight variation on giving the boundary
conditions (2) is to supplement the recurrence (1) with the property of multiplicativity
over disjoint unions

P (G1 ∪G2; z) = P (G1; z)P (G2; z), (3)

and then to give the single boundary condition P (K1; z) = z.
Define

B(G; k, y) =
∑

f :V (G)→[k]

y#{uv∈E(G):f(u)=f(v)},

where k ∈ Z>0 and y is an indeterminate. This polynomial in y is a generating function for
colourings ofG (not necessarily proper) counted according to the number of monochromatic
edges, i.e., edges receiving the same colour on their endpoints. (Edges are taken with their
multiplicity when counting the number of monochromatic edges in the exponent of y.)
Note that B(G; k, 0) = P (G; k).

Proposition 1.15. For each edge e of G,

B(G; k, y) = (y − 1)B(G/e; k, y) +B(G\e; k, y).

Together with the boundary conditions B(Kn; k, y) = kn, for n = 1, 2, . . . , this determines
B(G; k, y) as a polynomial in k and y.

Proof. Given e = st,

B(G; k, y) = y
∑

f :V (G)→[k]

f(s)=f(t)

y#{uv∈E\e:f(u)=f(v)} +
∑

f :V (G)→[k]

f(s)̸=f(t)

y#{uv∈E\e:f(u)=f(v)}

= yB(G/e; k, y) + [B(G\e; k, y)−B(G/e; k, y)].

The fact that B(G; k, y) is a polynomial follows by induction of the number of edges and the
given boundary condition B(Kn; k, y) = kn. Further, it has degree |V (G)| as a polynomial
in k and degree |E(G)| as a polynomial in y (again by induction on number of edges
by tracking the relevant coefficient in the recurrence B(G; k, y) = (y − 1)B(G/e; k, y) +
B(G\e; k, y)).
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An acyclic orientation of a graph is an orientation that has no directed cycles. A loop
has no acyclic orientation, but any loopless graph does (for example, if its vertices are
labelled by 1, . . . , n and an edge is directed from the smaller to the higher number).

Theorem 1.4. [Stanley, 1973] The number of acyclic orientations of a graph G with at
least one edge is given by (−1)|V (G)|P (G;−1).

Proof. Let Q(G) denote the number of acyclic orientations of G. When G is a single
edge Q(G) = 2 and when G is a loop Q(G) = 0. If e is parallel to another edge of G
then Q(G) = Q(G\e), since parallel edges must have the same direction in an acyclic
orientation. Also, Q is multiplicative over disjoint unions, i.e., Q(G1∪G2) = Q(G1)Q(G2).

To prove then that Q(G) = (−1)|V (G)|P (G;−1) it suffices to show that when e is not a
loop or parallel to another edge of G we have

Q(G) = Q(G\e) +Q(G/e). (4)

Let e = uv be a simple edge of G and consider an acyclic orientation O of G\e. There
is always one direction u → v or u ← v possible so that O can be extended to an acyclic
orientation of G: if both directions were to produce directed cycles then there would have
to be a directed path from u to v and a directed path from v to u, which together would
make a directed cycle in O.

Those acyclic orientations of G\e that permit exactly one direction of e are in bijective
correspondence with the subset of acyclic orientations of G where the direction of e cannot
be reversed while preserving the property of being acyclic. Such an orientation of G induces
an orientation that has a directed cycle in G/e, and contributes 1 to Q(G) and 1 + 0 = 1
to Q(G\e) +Q(G/e).

Those acyclic orientations of G\e where the direction of e can be reversed to make
another acyclic orientation of G are in bijective correspondence with those orientations of
G that induce acyclic orientations on the contracted graph G/e. Such a pair of acyclic
orientations of G differing just on the direction of e contribute 2 to Q(G) and 1+ 1 = 2 to
Q(G\e) +Q(G/e).

This establishes the recurrence (4).

In [83] Tutte describes how he was led to define his polynomial (he called it the dichro-
mate) by observing how graph invariants such as the chromatic polynomial and the number
of spanning trees of a graph shared the property of satisfying a deletion–contraction recur-
rence.
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Question 12 Suppose f(G) is a graph invariant that for a connected graph
G counts one of the following:

(i) the number of spanning trees of G,

(ii) the number of spanning forests of G,

(iii) the number of connected spanning subgraphs of G.

Further suppose we stipulate that f is multiplicative over disjoint unions,
f(G1 ∪G2) = f(G1)f(G2).
Show that in each case f satisfies the recurrence

f(G) = f(G\e) + f(G/e),

for each edge e of G that is not a loop or bridge. How do these three
invariants differ for bridges and loops?

2 Flows and tensions

2.1 Orientations

An undirected graph G = (V,E) can be made into a digraph in 2|E| ways: for each edge
uv ∈ E we decide to direct u towards v, or to direct v towards u. If the edge is a loop, i.e.
u = v, then we still think of there being two opposite ways to orient the loop – this is a
matter of convenience for later definitions (and makes sense when we talk about orienting
plane graphs, where the two possible directions can indeed be distinguished).

We orient a graph in order to extract structural properties of the underlying undirected
graph, but the orientation that is chosen is arbitrary: the results obtained are independent
of this choice. (The reader may recall the rôle played by an orientation of G in proving
Kirchhoff’s Matrix Tree Theorem, which gives an expression for the number of spanning
trees of G.)

Suppose then we are given an orientation ω of G = (V,E). By this we mean that ω
assigns a direction to each edge uv ∈ E, either u ω−→ v or u

ω←− v. We write Gω for the
digraph so obtained. For U ⊂ V let ω+(U) denote the set of the edges which begin in U
and end outside U in the digraph Gω, i.e., ω+(U) = {uv ∈ E : u ∈ U, v ∈ V \ U u

ω−→ v}.
The set ω−(U) = ω+(V \ U) comprises edges which in Gω begin outside U and end in U .

For a vertex v ∈ V the set ω+({v}) consists of those edges directed out of v by the
orientation ω and ω−({v}) is the set of edges directed into v. The indegree of a vertex v
in Gω is |ω−({v})| and its outdegree is |ω+({v})|.

If G is a plane graph then each orientation ω of G determines an orientation ω∗ of its
dual G∗. This orientation is obtained by giving an edge e∗ of G∗ the orientation that is
obtained from that of e by rotating it 90o clockwise: the edge e∗ travels from the face to
the left of e to the face to the right of e.
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More formally, given an orientation ω of the plane graph G = (V,E) we define the
orientation ω∗ of G∗ = (V ∗, E∗) as follows. Let V ∗ be the set of faces of the embedded
graph G. For each arc u

ω−→ v of Gω, suppose uv lies on the boundary of faces X and Y .
Suppose further that X is the face that would be traversed anticlockwise if the direction
of u

ω−→ v were followed all the way round it (so that Y would be traversed in a clockwise
direction following the direction given by u

ω−→ v). Then under the orientation ω∗ we

direct edge XY of G∗ as the arc X
ω∗
−→ Y .

See Fig.3

b

b

⊗

⊗⊗

⊗

u

vX

Y

ω

ω∗

Figure 3: Dual orientation ω∗ of an orientation ω of a plane graph

Question 13

(i) What is the dual orientation of ω∗?

(ii) If C is a circuit of G all of whose edges follow the same direction
under orientation ω (i.e. it is cyclically oriented) then what is the
dual of C and how is it oriented under orientation ω∗?

2.2 Circuits and cocircuits

We use terminology for graphs here that corresponds to viewing a graph G = (V,E)
in terms of its cycle matroid; the sense of “circuit” and “cycle” therefore differs from
traditional graph theoretical usage.

A cycle is a set of edges defining a spanning subgraph ofG all of whose vertex degrees are
even (i.e., an Eulerian subgraph). A circuit is an inclusion-minimal cycle (i.e., a connected
2-regular subgraph). A cycle is the edge-disjoint union of circuits. A subset of edges is
dependent in a graph G = (V,E) if it contains a cycle and independent otherwise. An
independent set of edges forms a forest. A maximal independent set of edges (add an edge
and a cycle is formed) of a connected graph is a spanning tree.

A cutset K is a subset of edges defined by a bipartition of V , i.e., K = {uv ∈ E :
u ∈ U, v ∈ V \ U} where U ⊆ V . A cocircuit (or bond) is an inclusion-minimal cutset of
G = (V,E). A cocircuit of a connected graph is a cutset {uv ∈ E : u ∈ U, v ∈ V \ U}
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with the additional property that the induced subgraphs G[U ] and G[V \ U ] are both
connected. The rank of a graph decreases when removing a cutset. A cutset K is a
cocircuit if and only if deleting K produces exactly one extra connected component, i.e.,
in this case r(G\K) = r(G)− 1.

The nullity of the graph G is defined by n(G) = |E|− r(G)|. The nullity of G decreases
when contracting the edges of a cycle of G into a single vertex, and for a circuit C we have
n(G/C) = n(G) − 1. In terms of the cycle matroid of G, a circuit C is a minimal set of
dependent edges: removing an edge from C destroys the cycle that makes C dependent.

Question 14
A bridge in a graph G forms a cutset of G by itself. Dually, a loop in G
forms a cycle of G by itself. Show that

(i) an edge e is a bridge in G if and only if e does not belong to any
circuit of G.

(ii) an edge e is a loop in G if and only if e does not belong to any
cocircuit of G.

A subset B is a cocircuit of a connected graph G if and only if contracting all edges not
in B (and deleting any isolated vertices that result) produces a “bond-graph”, consisting
of two vertices joined by |B| parallel edges. (A subset K is a cutset of G if and only if the
result is a graph whose blocks are bond-graphs – the vertices in this graph correspond to
the connected components of G \K.) Likewise, a subset C is a circuit of G if and only if
deleting all the edges not in C (and deleting any isolated vertices that result) produces a
cycle-graph (2-regular) on |C| edges.

Question 15
Show that if G = (V,E) is a plane graph and G∗ is its dual then a subset
of edges B is a cocircuit of G if and only if B is a circuit of G∗. (Assume
the Jordan Curve Theorem: a simple closed curve – such as that bounding
a circuit in a plane graph – partitions the plane minus the curve into an
interior region bounded by the curve and an exterior region.)

A spanning tree of a connected graph G is a maximal set of independent edges: adding
an edge creates a cycle. A spanning tree of G is a basis of the cycle matroid of G. More
generally, when G is not connected, a maximal set of independent edges is a maximal
spanning forest of G (add an edge and it is no longer a forest).

Suppose G = (V,E) is connected and T is a spanning tree of G. Then

(i) for each e ∈ E \T there is a unique circuit of G contained in T ∪{e}, which we shall
denote by CT,e, and
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(ii) for each e ∈ T there is a unique cocircuit contained in E\T ∪ {e}, which we shall
denote by BT,e.

Let C be a circuit of G. The two possible cyclic orderings of the edges of C define two
cyclic orientations of the edges of C. Choose one of these orientations arbitrarily, making

a directed cycle
−→
C . Define C+ to be the set of edges whose orientation in Gω is the same

as that in
−→
C , and define C− to be the set of those edges directed in Gω in the opposite

direction to that in
−→
C .

This signing extends to cycles (Eulerian subgraphs) more generally, since any cycle is
a disjoint union of circuits: when the cycle is the union of k edge-disjoint circuits there are
2k choices for signing it.

Similarly, for a cocircuit (bond) B of G, defined by U ⊂ V such that B = {uv ∈
E : u ∈ U, v ̸∈ U}, we orient the bond B by directing edges from U to V \ U to make
−→
B . (Again there are two choices of orientation, depending on which side of the cut we
nominate to be U and which side V \U .) We then define B+ and B− in an analogous way
to circuits. Clearly this procedure of signing cocircuits extends to cutsets more generally
by directing edges from one side of the cut to the other. (Alternatively, a cutset is a disjoint
union of cocircuits (why?), so in a similar way to cycles we can sign a cutset by signing its
constituent cocircuits.)

We have already encountered signed cutsets in Section 2.1: for a subset U ⊂ V the set
ω+(U) of edges that begin in U and terminate outside U comprise the positive elements of
the cocircuit defined by U , and ω−(U) = ω+(V \ U) the negative elements.

In this way, for a given orientation of G as a digraph Gω, we have separated the edge
sets of (co)circuits into positive and negative elements. In fact, given G and its set of
(co)circuits, if the partition of each (co)circuit into positive and negative elements is given,
then we can recover the orientation of edges (provided the way the (co)circuits have been
signed is consistent with some orientation – what conditions are required for this to be the
case?).

Question 16
A matroid is regular if there is an orientation of its circuits and cocircuits
such that for all circuits C and all cocircuits B

|C+ ∩B+|+ |C− ∩B−| = k ⇔ |C+ ∩B−|+ |C− ∩B+| = k.

Explain why this statement holds for graphic matroids.

Definition 2.1. Let C be a signed circuit of an oriented graph Gω on edge set E. The
signed characteristic vector −→χ C ∈ {0,±1}E of C is defined by

−→χ C(e) =


1 if e ∈ C+,

−1 if e ∈ C−

0 if e ̸∈ C.
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The signed characteristic vector −→χ B of a signed cocircuit B is similarly defined.

A fundamental relationship between signed characteristic vectors of circuits and cocir-
cuits (and of cycles and cutsets more generally) is given by the following:

Proposition 2.2. The signed characteristic vector of a circuit C is orthogonal to the signed
characteristic vector of a cocircuit B:∑

e∈E

−→χ B(e)
−→χ C(e) = 0.

Proof. Given a cocircuit K with positive elements ω+(U) and negative elements ω−(U),
the inner product

∑
e∈E
−→χ K(e)

−→χ C(e) is the number of edges of the circuit C going from U
to V \ U in its circuit-orientation, minus the number of edges going from V \ U to U , and
this is equal to zero. (In the simple closed walk that follows the edges of the circuit, for
each edge followed in the direction from U to V \U there is a corresponding edge followed
in the reverse direction from V \ U to U .)

2.3 The incidence matrix of an oriented graph

We suppose still that we are given an orientation ω of the graph G = (V,E).

Definition 2.3. The incidence matrix of an oriented graph Gω is the matrix D = (dv,e) ∈
{0,±1}V×E whose (v, e)-entry is defined by

dv,e =


+1 if e is directed out of v by ω,

−1 if e is directed into v by ω,

0 if e is not incident with v, or e is a loop on v.

A loop e corresponds to a zero column of D indexed by e (the fact that under any
orientation the loop e is both going out of and going into v implies any flow along this
edge is self-cancelling); each column of D indexed by an ordinary edge or bridge contains
one entry +1, one entry −1, and remaining entries all 0.

The row of D indexed by u is equal to −→χ ω+({u})∪ω−({u}) (regarded as a row vector). If G
is connected then if we delete any row of D the remaining rows form a basis for the signed
characteristic vectors of cutsets. This is because

−→χ ω+(U)∪ω−(U) =
∑
u∈U

−→χ ω+({u})∪ω−({u}),

and we may choose U to not contain the vertex whose row has been deleted. More generally,
for any graph G there are r(G) rows of D spanning signed characteristic vectors of cutsets,
which can be obtained by deleting, for each component of G, one row indexed by a vertex
in the component.

Let A be an additive Abelian group (for us A will either be Z or finite). Scalar multiples
of a {0,±1}-vector by an element of A are defined by using the identities 0a = 0, 1a = a
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and (−1)a = −a for each a ∈ A. The Abelian group A is a Z-module, with the action of
Z defined inductively by ta = (t− 1)a+ a for integer t > 0 and ta = −|t|a (inverse of |t|a
in A) for integer t < 0.

The set of vectors with entries in A indexed by E is denoted by AE, and likewise AV

those vectors with entries indexed by V . We shall think of elements of AE interchangeably
as elements of the additive group formed by taking the |E|-fold direct sum of A with itself,
as vectors indexed by E, or as functions ϕ : E → A.

The incidence matrix defines a homomorphism D : AE → AV between additive groups,
and its transpose likewise a homomorphism DT : AV → AE. For each ϕ : E → A,

(Dϕ)(v) =
∑
e=uv

u
ω←−v

ϕ(e)−
∑
e=uv

u
ω−→v

ϕ(e).

The map D : AE → AV is called the boundary, assigning the net flow to each vertex from
the given mapping ϕ : E → A.

For κ : V → A and edge e = uv,

(DTκ)(e) =

{
κ(v)− κ(u) if u

ω←− v

κ(u)− κ(v) if u
ω−→ v.

By the first isomorphism theorem for groups we have imD ∼= AE/ kerD and imDT ∼=
AV / kerDT .

Proposition 2.4. Let G be a graph with connected components on vertex sets V1, . . . , Vc(G).

(i) The incidence mapping D : AE → AV has image

imD = {κ : V → A;
∑
v∈Vi

κ(v) = 0, for each 1 ≤ i ≤ c(G)} ∼= Ar(G).

(ii) The transpose DT : AV → AE has kernel

kerDT = {κ : V → A; κ constant on Vi, for each 1 ≤ i ≤ c(G)} ∼= Ac(G).

Proof. (i) Given ϕ : E → A we have∑
v∈Vi

(Dϕ)(v) =
∑
v∈Vi

∑
e∈E

dv,eϕ(e)

=
∑
e∈E

ϕ(e)
∑
v∈Vi

dv,e

= 0,

the last line since the entries {dv,e : v ∈ Vi} in the column ce of D are either all zero (when
e is not an edge in the component on Vi), or contain precisely +1 and −1 as non-zero
elements.
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Conversely, suppose that κ : V → A is such that
∑

v∈Vi
κ(v) = 0 for each 1 ≤ i ≤ c(G).

For given i, choose any u ∈ Vi. Then, letting κi denote the restriction of κ to Vi,

κi =
∑
v∈Vi

κ(v)δv =
∑

v∈Vi\{u}

κ(v)(δv − δu)

where δv is defined by δv(w) = 1 is w = v and δv(w) = 0 otherwise. Since G[Vi] is
connected, for each v ∈ Vi there is a path from u to v, say u = v0, e1, v1, . . . , vℓ−1, eℓ, vℓ = v
and

δv − δu = (δvℓ − δvℓ−1
) + · · ·+ (δv1 − δv0) = D(±δeℓ) + · · ·+D(±δe1),

where δe(f) = 1 if e = f and 0 otherwise, and the signs are chosen according to whether the
directed path from u to v follows the orientation ω or goes against it. Hence δv−δu ∈ imD
for each v ∈ Vi, whence κi ∈ imD also. This implies finally that κ itself belongs to imD.

(ii) Suppose that κ : V → A is such that DTκ = 0. For an edge e = uv with orientation
u

ω←− v, (DTκ)(e) = κ(v)− κ(u) = 0, so that κ takes the same value on the endpoints of
any edge. If u and w are in the same component of G then there is a walk starting at u
and finishing at w and so κ(u) = κ(w).

Conversely, if κ is constant on every component then DTκ = 0.

The subgroups kerDT and imD of AV are of less interest from the point of view of their
relationship to the combinatorial properties of the graph G than the subgroups kerD and
imDT of AE. From Proposition 2.4 we know that as additive groups kerD ∼= An(G) and
imDT ∼= Ar(G). The combinatorial interest comes from the fact that there are generating
sets for these groups associated with circuits and cocircuits of G, and that further structural
properties of kerD and imDT (namely properties of the intersections kerD ∩ BE and
imD ∩ BE where B ⊂ A) correspond to combinatorial features of the graph. We shall be
concerned in particular with the case B = A \ {0}, and when A = R also with the case
B = Z.

2.4 A-flows and A-tensions

From now on we assume that A is a commutative ring and we consider AE and its subgroups
kerD and imDT as modules over A.

When A = Z we take ordinary integer multiplication. When A is finite, by the classi-
fication theorem for finite Abelian groups A takes the form Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkr , where
2 ≤ k1 | k2 | · · · | kr (the notation a | b meaning that a divides b), where kr is the least
common multiple of the orders of the elements of A. Componentwise multiplication then
endows A with the structure of a commutative ring R ∼= Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkr . Note
however that if A is the r-fold direct sum of Zp for prime p then there is another natural
choice of multiplication, namely that which makes A the finite field Fpr .
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Let us start by defining flows2 on a graph in what is the usual way, by stipulating that
the Kirchhoff condition holds at each vertex. We shall then derive various other equivalent
definitions.

Definition 2.5. An A-flow of G is a mapping ϕ : E → A such that∑
e∈ω+({v})

ϕ(e)−
∑

e∈ω−({v})

ϕ(e) = 0 for each v ∈ V .

A nowhere-zero A-flow is an A-flow ϕ : E → A with the additional property that ϕ(e) ̸= 0
for every e ∈ E.

In other words, an A-flow ϕ as a vector is an element of kerD, since the signed charac-
teristic vectors −→χ ω+({v})∪ω−({v}) are the rows of D.

For any U ⊆ V we have∑
u∈U

−→χ ω+({u})∪ω−({u}) =
−→χ ω+(U)∪ω−(U),

since when e = uv ∈ E has both u ∈ U and v ∈ U we have e ∈ ω+({u}) and e ∈ ω−({v}),
or vice versa, so that −→χ ω+({u})∪ω−({u})(e) +

−→χ ω+({v})∪ω−({v})(e) = 0.
For any U ⊆ V we have

∑
u∈U

 ∑
e∈ω+({u})

ϕ(e)−
∑

e∈ω−({u})

ϕ(e)


=

∑
e∈ω+(U)

ϕ(e)−
∑

e∈ω−(U)

ϕ(e)

since when e = uv ∈ E has both u ∈ U and v ∈ U we have e ∈ ω+({u}) and e ∈ ω−({v})
so that cancellation of ϕ(e) with −ϕ(e) occurs for the edge e.

Hence it is equivalent to define an A-flow as a mapping ϕ : E → A such that∑
e∈B+

ϕ(e)−
∑
e∈B−

ϕ(e) = 0 for every cocircuit B of G.

Introduce a bilinear form ⟨ , ⟩ on AE by setting

⟨ϕ, ψ⟩ =
∑
e∈E

ϕ(e)ψ(e).

2In other sources what we call a “nowhere-zero flow” is often just called a “flow”, while what we have
chosen to call a “flow” is called a “circulation”. Compare too a “proper colouring” of vertices if a graph,
which is conventionally just called a “colouring”, while an arbitrary assignment of colours to vertices is
given some other name or “colouring” is qualified by a parenthetical “not necessarily proper”.
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In this notation, Proposition 2.2 says that ⟨−→χ B,
−→χ C⟩ = 0 for each signed bond B and

signed circuit C.
Let B and C denote respectively the set of signed bonds and signed circuits of the

oriented graph Gω on edge set E.
Since the signed characteristic vectors −→χ Bv of the signed bonds Bv = ω+(v) ∪ ω−(v)

span the characteristic vectors −→χ B of all bonds B ∈ B, it is equivalent to define ϕ to be
an A-flow if and only if

⟨ϕ,−→χ B⟩ = 0 for each B ∈ B.
Since signed characteristic vectors of bonds are orthogonal to signed characteristic vec-

tors of circuits, ϕ is an A-flow of G if

ϕ =
∑
C∈C

aC
−→χ C for some aC ∈ A indexed by C ∈ C.

The converse is immediate when A is finite or a field: in the first case by counting (we
know that kerD ∼= An(G) and there are n(G) linearly independent signed characteristic
vectors −→χ C) and in the second case by orthogonal decomposition of vector spaces. When
A = Z the fact that all flows take the form ϕ =

∑
C∈C aC

−→χ C for aC ∈ Z amounts to the
fact that the signed characteristic vectors −→χ C form an integral basis for kerD as a lattice
in RE.

The set of A-flows of G is given by

ZA = {
∑
C∈C

aC
−→χ C | aC ∈ A}.

A graph G has a nowhere-zero k-flow if there is a flow ϕ ∈ ZZ such that 0 < |ϕ(e)| < k
for all e ∈ E, and a nowhere-zero A-flow if there is a flow ϕ ∈ ZA such that ϕ(e) ̸= 0 for
all e ∈ E.

The row space of the incidence matrix of Gω is spanned by the signed characteristic
vectors of cocircuits of G. The dual notion to flows is that of tensions (also known as
coflows), which are defined as elements of imDT :

Definition 2.6. Let B denote the set of signed bonds of an oriented graph Gω on edge
set E. The set of A-tensions is defined by

KA = {
∑
B∈B

aB
−→χ B | aB ∈ A}.

By Proposition 2.2 the signed characteristic vectors of circuits and cocircuits are or-
thogonal (as vectors over Z). Once multiplication is defined making A into a ring, this
extends to the following key relationship between flows and tensions:

Theorem 2.7. Suppose A is a commutative ring. If ϕ is an A-flow of a graph G and θ is
an A-tension of G then ϕ and θ are orthogonal as vectors over A:∑

e∈E

ϕ(e)θ(e) = 0.
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An A-flow or A-tension whose value on each edge of G belongs to B ⊆ A is called a
B-flow or B-tension respectively. In the next section we shall be particularly interested in
the case B = A \ 0.

Proposition 2.8. A vector is a Z2-flow if and only if it is the characteristic function of
an Eulerian subgraph of G and is a Z2-tension if and only if its is the characteristic vector
of a cutset of G.

When working over Z2 the signed characteristic functions of signed (co)circuits become
characteristic functions of (co)circuits. The set of Z2-flows is a binary vector space called
the cycle space of G, comprising characteristic vectors of Eulerian subgraphs of G, and
the set of Z2-tensions is called the cocycle space of G, comprising characteristic vectors of
cutsets of G.

Question 17

(i) To what does an integer 2-flow of G correspond? When does G has
a nowhere-zero 2-flow?

(ii) Dually, when does G have a nowhere-zero 2-tension?

(iii) Is it true that G has a nowhere-zero 2-flow if and only if G has a
nowhere-zero Z2-flow? And dually, what is the analogous statement
for nowhere-zero 2-tensions and nowhere-zero Z2-tensions?

2.5 Tensions and colourings

An A-potential of G is a mapping κ : V → A and can be thought of as a (not necessarily
proper) vertex colouring of G with colours the elements of A. Given an orientation ω of
G, the mapping DTκ is called the potential difference or coboundary of κ.

We identify colourings of the vertices of G, where the colours are taken in A, with the
corresponding A-potential of G. An A-tension of G corresponds to |A|c(G) different A-
colourings of G: to each θ ∈ KA corresponds |A|c(G) colourings κ : V → A with DTκ = θ.
This relationship of tensions to vertex colourings is what underlies the duality between
colourings and flows, as we shall see.

For a proper vertex A-colouring the corresponding A-tension is nowhere-zero. This is
a basic observation linking flows and colourings and leads to the following:

Proposition 2.9. Let G be a graph and let A be an Abelian group of order k ≥ 2. Then
χ(G) ≤ k if and only G admits a nowhere-zero A-tension.
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Question 18

(i) Prove Proposition 2.9.

(ii) Explain why a nowhere-zero A-tension of G = (V,E) remains a
nowhere-zero A-tension of G\e, where e is any edge of G.

(iii) Dually, show that if ϕ is a nowhere-zero A-flow of G then, with no
change in its values on E \ {e}, it is also a nowhere-zero A-flow of
G/e.

Although flows and tensions are defined relative to an orientation of G, the structure
of ZA and KA (in particular, their size) is independent of the choice of orientation. Given
an A-flow ϕ under orientation ω, by replacing ϕ(e) by −ϕ(e) for each edge e on which ω
and ω differ we obtain an A-flow of G under orientation ω′. A similar observation can be
made for A-tensions.

The support of ϕ ∈ CA is defined by supp(ϕ) = {e ∈ E : ϕ(e) ̸= 0}. A subset S ⊆ E
is a minimal support if S = supp(ϕ) for some flow ϕ and the only flow whose support is
properly contained in S is the zero flow. The set of A-flows with a given minimal support
(together with the zero flow) form a one-dimensional space of flows, namely of the form
a−→χ C for some a ∈ A and circuit C. A primitive A-flow is a flow ϕ with minimal support
and for which each ϕ(e) is 0, 1 or −1. In other words, ϕ is equal to ±−→χ C for some circuit C.
A Z-flow π conforms to a Z-flow ϕ if supp(π) ⊆ supp(ϕ) and π(e)ϕ(e) > 0 for e ∈ supp(π).

Question 19

(i) Explain why for a given Z-flow ϕ there is a primitive Z-flow π which
conforms to ϕ. Show that any Z-flow ϕ is the sum of integer multiples
of primitive Z-flows, each of which conforms to ϕ.

(iii) Prove that if ϕ is a nowhere-zero Zk-flow then there is a nowhere-zero
Z-flow ψ for which ψ(e) ≡ ϕ(e) (mod k) and −k < ψ(e) < k.

(iv) Deduce that if G has a nowhere-zero Zk-flow then it has a nowhere-
zero Zk+1-flow.

Theorem 2.10. Let G be a graph with an orientation of its edges. For every k ≥ 2, the
following conditions are equivalent:

(i) There exists a nowhere-zero Zk-flow in G.

(ii) For any Abelian group A of order k, there exists a nowhere-zero A-flow in G.

(iii) There exists a nowhere-zero k-flow in G.
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2.6 Duality of bases for A-tensions and A-flows

For a connected graph we have seen the signed characteristic vectors of cocircuits are
spanned by the linearly independent set of vectors {−→χ ω+({u})∪ω−({u}) : u ∈ V \ {v}}, where
v is an arbitrary vertex.

A pair of bases, one for cocircuits and the other for circuits, can be defined relative to a
fixed spanning tree of the graph. These bases are, in a sense we shall make precise shortly,
dual to each other.

Proposition 2.11. Let G be a connected graph, D its incidence matrix (for some orien-
tation of G), and T a spanning tree of G.

The signed characteristic vectors of the circuits {CT,e : e ∈ E \ T} form a basis for the
set of A-flows of G. The signed characteristic vectors of the cocircuits {KT,e : e ∈ E} form
a basis for the space of A-tensions of G.

Proof. A given edge e ∈ E \ T belongs to CT,e but no other cycle CT,f for f ̸= e. Hence
the signed characteristic vectors {−→χ CT,e

: e ∈ E \ T} are linearly independent, and form a
basis since there are |E \ T | = n(G) of them.

Likewise, a given edge e ∈ T belongs to KT,e but to no other KT,f for f ̸= e, so the
|T | = r(G) signed indicator vectors of these cocircuits are linearly independent.

We now come to an abstract expression of the fact that we have already encountered
that A-tensions of a planar graph correspond to A-flows of its dual:

Proposition 2.12. Let G be a connected plane graph with orientation ω and G∗ its dual
graph with dual orientation ω∗. Let D denote the incidence matrix of Gω and D∗ the
incidence matrix of (G∗)ω

∗
. Then D∗DT = O. Also, ker(D∗) = im(DT ) and im((D∗)T ) =

ker(D).

Proof. Given a vertex v ∈ V and face X incident with v, there are exactly two edges e, f
belonging to X and with v as an endpoint. Then

(D∗DT )X,v = (D∗)X,e(D)v,e + (D∗)X,f (D)v,f . (5)

Note that reversing the orientation of edge e does not change the value of (D∗)X,e(D)v,e
since both signs are flipped. Likwise for reversing the orientation of e. Taking the orien-
tation that directs e into v and f out of v (for example), we calculate that (5) is equal to
(+1)(+1) + (+1)(−1) = 0. Hence D∗DT = O, so that im(D∗) is orthogonal to im(DT ).
Since D has rank r(G) and D∗ has rank r(G∗) = n(G) it follows that im((D∗)T ) = ker(D)
and ker(D∗) = im(DT ).

Thus we have it formalized in stone what we already by now know: A-tensions of G
are precisely A-flows of G∗. Moreover A-tensions of G with minimal support are A-flows of
G∗ with minimal support. In particular, circuits of G∗ are cocircuits of G, and cocircuits
of G∗ are circuits of G. A defining property of planar graphs is that the dual of the cycle
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matroid of a planar graph G is also a graphic matroid, namely the cycle matroid of the
planar dual graph G∗ (Theorem 6.6).

Since faces of G correspond to vertices of G∗, another natural basis for circuits of a
connected plane graph G consists of the characteristic vectors of all but one of the face
boundaries (say all but the outer face). This corresponds to the cocircuit basis of G∗

obtained by taking the characteristic vectors of the edges incident with a common vertex,
for all but one vertex of G∗.

Call a graph G∗ the abstract dual of a graph G if E(G) = E(G∗) and the cocircuits of
G∗ are precisely the circuits of G. This is to say that the cutset space of G∗ is the cycle
space of G: the cycle matroids of G and G∗ are dual. We have seen that a connected
planar graph has an abstract dual, equal to its geometric dual when it is embedded in the
plane. This is a defining property of planar graphs:

Theorem 2.13. (Whitney, 1933) A graph is planar if and only if it has an abstract dual.

For a proof see for example [17, ch. 4].

2.7 Examples of nowhere-zero flows

We saw earlier in Proposition 2.8 that if ϕ is a Z2-flow of a graph G then the support of ϕ
(the set of edges where it is non-zero) is an edge-disjoint union of circuits. The reader is
invited to deduce the following corollary:

Proposition 2.14. The faces of a plane graph can be properly coloured with two colours
if and only if all the vertices have even degree.

Nowhere-zero Z3-flows are in general difficult customers (there is a longstanding con-
jecture of Tutte concerning them), but by restricting attention to 3-regular graphs things
become easier:

Proposition 2.15. A cubic graph G has a nowhere-zero Z3-flow if and only if it is bipartite.

Proof. Given a nowhere-zero Z3-flow of G, choose the orientation of G so that the value
on each edge is +1. Then in this orientation every vertex is either a source or sink and
this yields a proper vertex 2-colouring of G. Conversely, if G has a proper 2-colouring κ
with colours 0, 1 ∈ Z3 then, directing vertices coloured 0 towards vertices coloured 1, the
potential difference δκ is equal to 1 everywhere and so is not only a nowhere-zero Z3-tension
but also a nowhere-zero Z3-flow, since G is cubic.

When translated to planar graphs this gives a theorem of Heawood from 1890:

Proposition 2.16. A plane triangulation G has a proper vertex 3-colouring if and only if
it has a proper face 2-colouring (equivalently, G is Eulerian).

Question 20
Prove Proposition 2.16.
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Thus we have found examples of graphs with a nowhere-zero 3-flow. What about a
nowhere-zero 4-flow? Let us try to give some examples. You have probably heard of this
one:

Proposition 2.17. A simple cubic planar graph has a edge 3-colouring if and only if its
faces can be properly coloured with four colours.

(A graph G is said to be edge k-colourable if we can colour the edges of G with k
colours such that any two incident edges have different colours.)

This is Tait’s theorem (from 1880)[78] which was isolated in order to give one of the
first proofs of the Four Colour Conjecture. It also led to study of Hamiltonian graphs and
to the Petersen graph. This text wouldn’t be complete without its picture.

b

b

bb

b

b
b b

bb

Figure 4: Petersen Graph

The same argument that Tait used to prove Proposition 2.17 can be generalized to
non-planar graphs:

Proposition 2.18.
A cubic graph G has a nowhere-zero 4-flow if and only if it is has a proper edge 3-colouring.

Proof. By Theorem 2.10 a graph has a nowhere-zero 4-flow if and only if it has a nowhere-
zero Z2×Z2-flow. Let the non-zero elements of Z2×Z2 be a, b, c. We have a+b+c = 0 and
a+a = b+ b = c+ c = 0. From this it is easy to see that a mapping f : E(G)→ Z2×Z2 is
a nowhere-zero Z2×Z2-flow if and only if it is a proper edge 3-colouring using the colours
a, b, c.

Question 21 Using the equivalence of Proposition 2.18, show that the
Petersen graph does not have a nowhere-zero 4-flow. (Hint: consider edges
of a fixed colour in a putative edge 3-colouring, at least one of which must
occur on the outer 5-cycle in Figure 4. What does this imply about the
number of occurrences of this colour on the inner 5-cycle?)

The Petersen graph does however have nowhere-zero 5-flows, as shown in Figure 5.
The following is an alternative characterization of graphs with a nowhere-zero 4-flow:
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Figure 5: The Petersen graph (in two of its guises) with on the left a nowhere-zero 5-flow
(also a nowhere-zero Z5-flow) and on the right a nowhere-zero Z5-flow.

Proposition 2.19. A graph G = (V,E) has a nowhere-zero 4-flow if and only if E =
E1 ∪ E2 and each of the graphs (V,E1) and (V,E2) is Eulerian.

Proof. By Theorem 2.10 has a nowhere-zero 4-flow if and only if it has a nowhere-zero
Z2 × Z2-flow ϕ. Write ϕ = (ϕ1, ϕ2) and observe that the ϕi’s are Z2-flows which are
nowhere-zero Z2-flows on the support Ei of ϕi. However, as we observed at the beginning
of this section, this happens if and only if the subgraph on edge set Ei has all vertex degrees
even. Moreover ϕ is a nowhere-zero Z2 × Z2-flow if and only if E = E1 ∪ E2.

Proposition 2.16 gives a nowhere-zero Z2-flow condition for a plane triangulation to
have a proper 3-colouring of its vertices (a nowhere-zero Z3-tension). Underlying this is
the dual version of Proposition 2.15.

Using Proposition 2.19 and tension-flow duality, a planar graph has a proper 4-colouring
of its vertices if and only if its dual is the union of two if its Eulerian subgraphs. This
criterion for a graph to have a nowhere-zero 4-flow emerges by using the fact that a Z2×Z2-
flow is supported in each component on an Eulerian subgraph. If we had considered
nowhere-zero Z4-flows rather than Z2 × Z2-flows then what criterion would we obtain
instead? For a cubic graph we would find a perfect matching (edges receiving the value
2) together with a collection of oriented circuits (edges with value ±1), each of which
has the property that relative to the circuit orientation the values assigned to its edges
alternate between 1 and −1 (i.e., the circuit is even and edge 2-coloured). This is effectively
Proposition 2.18, which gives an edge 3-colouring equivalent to the existence of a nowhere-
zero 4-flow of a cubic graph.
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Question 22
Characterize graphsG that have a nowhere-zero Zr

2-flow in terms of Eulerian
subgraphs. What is the dual version: when does a graph have a nowhere-
zero Zr

2-tension?

An Eulerian orientation of a graph G is an orientation of G with the property that
the indegree at a vertex is equal to its outdegree. Clearly G must be Eulerian, and by
decomposing G into an edge-disjoint union of cycles there exist Eulerian orientations of G
in this case.

Proposition 2.20. Let G be a 4-regular graph. Then there is a one-to-one correspondence
between nowhere-zero Z3-flows of G and Eulerian orientations of G.

Proof. For a given nowhere-zero Z3-flow of G, arrange the orientation σ of G so that each
flow value is equal to 1. Then the only way to obtain net flow zero at a vertex is to
have two edges directed out and two edges directed in. In other words, the orientation σ is
Eulerian. (Put alternatively, keep the fixed orientation σ of G and for a given nowhere-zero
Z3-flow of G preserve the orientation when flow value is +1 and reverse the orientation
when flow value is −1: the result is an Eulerian orientation, uniquely defined by the flow
values and σ.)

Nowhere-zero Z3-flows of a graph G more generally correspond to orientations of G in
which every vertex has indegree congruent to outdegree modulo 3.

We move on now to nowhere-zero Z2 × Z2-flows, whose significance in the history of
attempts at proving the Four Colour Theorem we shall briefly describe. First a lemma
which is not only of immediate use, but also to the problem of counting nowhere-zero
A-flows that we consider in the next section.

Lemma 2.21. Let G = (V,E) be a connected graph and T a spanning tree of G. Let A
be an Abelian group and ϕ0 : E \ T → A. Then there is a unique A-flow ϕ of G such that
ϕ(e) = ϕ0(e) for e ∈ E \ T .

Proof. The vector

ϕ =
∑

e∈E\T

ϕ0(e)
−→χ CT,e

as a linear combination of basis vectors for ZA is an A-flow and since e ̸∈ CT,f when f ̸= e
the value of ϕ at e is given by ϕ(e) = ϕ0(e). Conversely, if an A-flow takes value ϕ0(e) at
each e ∈ E \ T then it is equal to ϕ as defined above, since any vector in ZA has a unique
expression as a linear combination of basis vectors.

Theorem 2.22. A graph with a Hamiltonian circuit (a circuit traversing all vertices of
G) has a nowhere-zero Z2 × Z2-flow.
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Proof. Let H be a Hamitonian circuit of G and T a spanning tree (a path) obtained from
H by removing one of its edges. Let ϕ1 be a Z2-flow of G with support containing E \ T ,
which exists by Lemma 2.21 (taking ϕ0(e) = 1 for e ∈ E \ T ). Let ϕ2 be the Z2-flow with
support the circuit H. Then (ϕ1, ϕ2) is a nowhere-zero Z2 × Z2-flow of G.

In the early years of trying to prove the Four Colour Conjecture, Tait conjectured in
1884 that every 3-connected planar graph was Hamiltonian (an example of 2-connected
planar non-Hamiltonian was known, consisting of 20 vertices and 12 pentagonal faces).
Tutte in 1956 gave a counterexample with 46 vertices. (See e.g. [73] for diagrams and
a succinct historical account of variations on the Four Colour Conjecture.) See also the
Herschel graph depicted in Figure 12.

We have found many graphs that have a nowhere-zero A-flow when |A| ≤ 4. In the dual
problem, no matter how large we choose |A| there will always be graphs that do not have a
nowhere-zero A-tension, namely those graphs with chromatic number exceeding |A|. The
simplest obstruction to a proper k-colouring is an induced clique on k+1 vertices. Is there
an obstruction to a nowhere-zero A-flow when |A| ≥ 5? Certainly not cliques, as we shall
see shortly. But which graphs do not have a nowhere-zero Z5-flow? Tutte (again!) had
thoughts upon this matter, and no one has yet resolved the question. But let us keep to
simple things for the moment and see off the complete graphs as being quite tame creatures
when it comes to nowhere-zero flows.

The complete graph K2 is a bridge and therefore does not have a nowhere-zero flow. K3

is Eulerian and so has a nowhere-zero Z2-flow. K4 has a proper edge 3-colouring and hence
has a nowhere-zero Z2 × Z2-flow. On the other hand, K4 does not have a nowhere-zero
Z3-flow since it is a non-bipartite cubic graph and does not have a nowhere-zero Z2-flow
since it is not Eulerian.

Proposition 2.23. Kn has a nowhere-zero Z2-flow when n ≥ 3 is odd. Kn has a nowhere-
zero Z3-flow when n ≥ 6 is even.

Proof. The case of odd n follows since Kn is Eulerian. For n = 6 we have K6 is the
edge-disjoint union of two copies of K3 and one copy of K3,3. Each of these graphs has a
nowhere-zero Z3-flow(K3,3 since it is a cubic biparitite graph). The union of these flows
makes a nowhere-zero Z3-flow of K6.

Consider now even n > 6 and assume the assertion of the theorem holds for n− 2. The
graph Kn is the edge-disjoint union of Kn−2 and K+

2,n, where the latter is K2,n with an
edge e added between the vertices of degree n. By hypothesis Kn−2 has a nowhere-zero
Z3-flow. To make a nowhere-zero Z3-flow of K+

2,n take the sum of nowhere-zero Z3 flows on
each of the n triangles: this is non-zero on all but possibly the edge e. If necessary, make
the value on e non-zero by adding in the flow again from a single (arbitrary) triangle of
edges e, e1, e2: this makes the value on e non-zero, and reverses the sign of the flow on e1
and e2. We have thus constructed a nowhere-zero Z3-flow of Kn.

2.8 The flow polynomial

We turn to the problem of counting nowhere-zero A-flows.
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Theorem 2.24. (Tutte [81].) Let A be a finite Abelian group of order k and G a graph
with an orientation of its edges. Then the number of nowhere-zero A-flows of G is

F (G; k) =
∑
F⊆E

(−1)|E|−|F |kn(F ).

Proof. By Lemma 2.21 the number of A-flows of any subgraph (V, F ) of G = (V,E) is
equal to k|F |−r(F ), since a maximal spanning forest of (V, F ) has r(F ) edges. Equivalently,
kn(F ) is the number of A-flows of G whose support is contained in F . The result follows
by the inclusion-exclusion principle.

The polynomial F (G; k) is called the flow polynomial of G. Theorem 2.24 implies that
the number of nowhere-zero A-flows depends only on |A|, not on the structure of A as a
group. In particular, the existence of an A-flow only depends on |A|, i.e., if A and A′ are
Abelian groups with |A| = |A′| then G has a nowhere-zero A flow if and only if G has a
nowhere-zero A′-flow. As a consequence, the existence of a nowhere-zero A-flow implies
the existence of a nowhere-zero A′-flow when |A′| > |A|. This is because (as Tutte first
showed in 1950 – see e.g. [44], [64], [17] for details, and Theorem 2.10 above) a nowhere-
zero k-flow exists if and only if a nowhere-zero Zk-flow exists, whence if k′ > k then there
is a nowhere-zero Zk′-flow whenever there is a nowhere-zero Zk-flow. (Thinking of A-flows
as duals of A-tensions, it is obvious that if G has a nowhere-zero A-tension then it has
a nowhere-zero A′-tension, by using the correspondence of nowhere-zero A-tensions with
proper A-colourings.)

Proposition 2.25. The flow polynomial satisfies

F (G; k) =


F (G/e; k)− F (G\e; k) e ordinary,

0 e a bridge,

(k − 1)F (G\e) e a loop,

1 E = ∅.

Proof. When E = ∅ the subgraph expansion for F (G; k) gives F (G; k) = 1. When G has
a bridge e it does not have a nowhere-zero flow, for {e} is a cut of G. If e is a loop, on the
other hand, then we can freely assign any non-zero value to it and still have a nowhere-zero
flow. When e is ordinary, we have a bijection between nowhere-zero flows of G\e and flows
of G that are zero only at e, and between nowhere-zero flows of G/e and flows of G that
are nowhere-zero except possibly at e. (This argument also works when e is a bridge, but
it needs to be shown that in this case F (G\e; k) = F (G/e; k), which amounts to showing
that F (G; k) = 0.)
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Question 23
Suppose G = (V,E) is a connected graph and A a finite Abelian group of
order k.

(i) Given a spanning tree T and θ0 : T → A, prove there is a unique
A-tension θ of G such that θ(e) = θ0(e).

(ii) Deduce that the number of nowhere-zero A-tensions of G is given by

F ∗(G; k) =
∑
F⊆E

(−1)|E|−|F |kr(F ).

(iii) Formulate and prove a deletion-contraction recurrence satisfied by
the polynomial F ∗(G; k).

Kochol [50] shows that the number of nowhere-zero k-flows is also a polynomial in k
(not the same as the flow polynomial F (G; k)) - this polynomial counting integer flows
does not satisfy a deletion-contraction recurrence.

For any finite Abelian group A there are loopless graphs G that do not have a nowhere-
zero A-tension (take G with χ(G) > |A|). The situation for nowhere-zero A-flows is quite
different, where bridges are the only obstruction to having a nowhere-zero A-flow once
|A| is sufficiently large. In fact Seymour showed that |A| ≥ 6 will do, and it is a famous
conjecture of Tutte that in fact |A| ≥ 5 suffices. Within the class of planar graphs – and as
Whitney showed (see Theorem 2.13) this class is precisely the set of graphs closed under
duality – the Four Colour Theorem tells us that we do have a symmetric situation: if
|A| ≥ 4 then any planar graph has a nowhere-zero A-tension and a nowhere-zero A-flow.
It is when we move out of the class of planar graphs that a fundamental difference between
the dual notions of flows and tensions arises. Of course within the more general world-view
of matroids this asymmetry disappears (there are regular matroids with arbitrarily large
flow number, as well as with arbitrarily large chromatic number).

3 The Tutte polynomial

3.1 Deletion-contraction recurrence

The Tutte polynomial of a graph G = (V,E) (and more generally a matroid) may be
defined recursively by

T (G; x, y) =


T (G/e;x, y) + T (G\e;x, y) e ordinary,

xT (G/e;x, y) e a bridge,

yT (G\e;x, y) e a loop,

1 G has no edges.

(6)
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Figure 6: Using deletion-contraction to compute the Tutte polynomial of K3 and its dual
K∗3 .

Alternatively,

T (G;x, y) =

{
T (G/e; x, y) + T (G\e;x, y) e ordinary,

xkyℓ G consists of k bridges and ℓ loops,
(7)

It is not immediately clear that it does not matter which order the edges are chosen to
calculate T (G;x, y) recursively using (6).

Proposition 3.1. If e and f are distinct edges of G then the outcome of first applying
the recurrence (6) with edge e and then with edge f is the same as with the reverse order,
when first taking f and then e.

Proof. For distinct edges e and f we have the following preservation of edge types under
deletion and contraction:

(a) if e is a bridge in G then e remains a bridge in G/f and G\f ;

(a)* if e is a loop in G then e remains a loop in G/f and G\f ;

(b) if e is ordinary in G and there is a cutset containing e but not f , then e is ordinary
in G/f ;

(b)* if e is ordinary in G and there is a cycle containing e but not f , then e is ordinary
in G\f .

For each of the possible combinations of edge types for e and f in (a), (a)*, (b) and
(b)*, one verifies that swapping the order of e and f gives the same outcome in the
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two-level computation tree going from G to G with edges e and f deleted or contracted.
For example, in cases (b) and (b)*, when both edges are ordinary and remain so after
contraction or deletion of the other edge, the truth of the statement amounts to the fact
that G/e\f ∼= G\f/e, and similarly for the other three combinations of deletion and
contraction.

The remaining cases to consider are the following:

(c) if e is ordinary in G and any cutset containing e also contains f , then e is a loop in
G/f , and in this case f is ordinary in G and a loop in G/e;

(c)* if e is ordinary in G and any cycle containing e also contains f , then e is a bridge in
G\f , and in this case f is ordinary in G and a bridge in G\e.

(The hypothesis in (c) is equivalent to saying e is parallel to f .)
In (c), the fact that f must be a loop in G/e, symmetric to the fact that e is a loop in

G/f , allow one to complete the argument that the deletion-contraction recurrence applied
to e first and then f gives the same result as to f first and then e. Likewise in (c)*, that
f is a bridge in G\e, symmetric to the fact that e is a bridge in G\f , means that the
order in which we take e and f does not matter for the resulting value of the polynomial
T (G; x, y).

A graph G is 2-connected if and only if has no cut-vertex. A loop on a single vertex
(C1) and a single bridge (K2) are both 2-connected. For the case of many loops on a
single vertex (where one might still consider the vertex not to be a cut-vertex) we refer
to the cycle matroid, which is the direct sum of its constituent loops: so this graph is not
2-connected when there is more than one loop.

A block of G is a maximal 2-connected induced subgraph of G. If G is not 2-connected
then it can be written in the form G = G1∪G2 where |V (G1)∩V (G2)| ≤ 1. The intersection
graph of the blocks of a loopless connected graph is a tree. In particular, if G is loopless
and connected and has at least two blocks then there are at least two endblocks of G which
are blocks containing only one cut-vertex of G.

Proposition 3.2. The Tutte polynomial of G is multiplicative over the connected compo-
nents of G and over the blocks of G: if G = G1 ∪G2 where G1 and G2 share at most one
vertex then T (G1 ∪G2;x, y) = T (G1;x, y)T (G2; x, y).

Proof. The statement is true when each edge is either a bridge or a loop, since in this
case T (G;x, y) = xkyℓ, where k is the number of bridges and ℓ the number of loops.
We argue by induction on the number of ordinary edges of G. Let G = G1 ∪ G2 where
|V (G1) ∩ V (G2)| = 1. The endpoints of any edge e must belong to the same block of G;
if e is a bridge or loop then it forms its own block. Suppose G = G1 ∪ G2 where G1 is a
block of G containing an ordinary edge e. Deleting or contracting e can only decrease the

39



number of ordinary edges of G and since e is ordinary we have, writing T (G;x, y) = T (G),

T (G) = T (G/e) + T (G\e)
= T (G1/e ∪G2) + T (G1\e ∪G2)

= [T (G1/e) + T (G1\e)]T (G2)

= T (G1)T (G2),

where to obtain the third line we applied the inductive hypothesis. □
The converse to Proposition 3.2 also holds, although its proof is bit more involved:

Theorem 3.3. [60] If G is 2-connected graph without loops then T (G; x, y) is irreducible
in Z[x, y].

The factors of the Tutte polynomial of G therefore correspond precisely to the blocks
of G and any loops (each contributing a factor y).

As well as being multiplicative over blocks and connected components, and so unaffected
by the operation of identifying vertices in different connected components of G, the Tutte
polynomial is also unaffected by Whitney twists (this is what makes the Tutte polynomial
of G an invariant of the cycle matroid of G and allows its generalization to a matroid
invariant):

Proposition 3.4. If G and G′ are 2-isomorphic then T (G; x, y) = T (G′;x, y). (The Tutte
polynomial of G only depends on the cycle matroid of G.)

Here are some basic properties of the coefficients of T (G; x, y):

Proposition 3.5. For a graph G with Tutte polynomial T (G;x, y) =
∑
ti,j(G)x

iyj,

(i) t0,0(G) = 0 if |E(G)| > 0;

(ii) if G has no loops then t1,0(G) ̸= 0 if and only if G is 2-connected;

(iii) xk divides T (G;x, y) if and only if G has at least k bridges, and yℓ divides T (G; x, y)
if and only if G has at least ℓ loops;

(iv) given G has k bridges and ℓ loops, if i ≥ r(G) or j ≥ n(G) then ti,j(G) = 0 except
when i = r(G) and j = ℓ, or i = k and j = n(G), where we have tr(G),ℓ(G) = 1 =
tk,n(G)(G).

Proof. For (ii), we use the property that if G is 2-connected, then at least one of G/e and
G\e is also 2-connected. A basis for induction is that T (K2;x, y) = x. Given a loopless
graph G, if e is not parallel to another edge then both G/e and G\e have no loops, and
the equation t1,0(G) = t1,0(G/e) + t1,0(G\e) provides the inductive step. If e is parallel to
another edge then G/e has a loop and t1,0(G) = t1,0(G\e); by deleting all but one edge in
a parallel class we can thus assume G is simple. For the converse, if G is not 2-connected
then by Proposition 3.2 its Tutte polynomial is the product of at least two polynomial
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factors, each corresponding to a block of G; by what we have just proved t1,0(B) = 1 for
each such block B, and this implies t1,0(G) = 0.

For (iv), we shall use induction on the number of ordinary edges to prove that ti,j(G) = 0
when i ≥ r(G) or j ≥ n(G), except for tr(G),ℓ(G) = 1 = tk,n(G)(G). The base case is when
G has no ordinary edges, consisting of k bridges and ℓ loops. Here r(G) = k and n(G) = ℓ,
and tk,ℓ(G) = 1, while ti,j(G) = 0 for all other values of i, j. Hence the statement is true
in this case.

Consider the recurrence formula ti,j(G) = ti,j(G/e) + ti,j(G\e) for ordinary edge e.
We have by inductive hypothesis that ti,j(G/e) = 0 for i ≥ r(G/e) = r(G) − 1 except
tr(G)−1,ℓ(G/e) = 1, and for j ≥ n(G/e) = n(G) except tk,n(G)(G/e) = 1. This gives
ti,j(G) = 0 for j ≥ n(G) except tk,n(G)(G) = 1.

Also ti,j(G\e) = 0 for i ≥ r(G\e) = r(G) except tr(G),ℓ(G\e) = 1, and for j ≥ n(G\e) =
n(G)−1 except tk,n(G)−1(G/e) = 1. This gives tr(G),ℓ(G) = 0 for i ≥ r(G) except tr(G),ℓ(G) =
1.

Theorem 3.6. “Recipe Theorem” Let G be a minor-closed class of graphs. There is a
unique graph invariant f : G → Z[x, y, α, β, γ] such that for graph G = (V,E)

f(G) =


αf(G/e) + βf(G\e) e ordinary edge of G,

xf(G/e) e a bridge in G,

yf(G\e) e a loop in G,

γ|V | G has no edges.

(8)

The graph invariant f is equal to the following specialization of the Tutte polynomial:

f(G) = γc(G)αr(G)βn(G)T (G;
x

α
,
y

β
). (9)

Note. (i) If instead of contracting a bridge we require that f(G) = xf(G\e) when e is
a bridge, the Tutte polynomial is evaluated at the point (γx/α, y/β) instead of (x/α, y/β).
In particular, when γ = 1 it does not matter whether bridges are deleted or contracted.

(ii) If either α or β is zero then we interpret (9) as the result of substituting values
of the parameters after expanding the expression on the right-hand side as a polynomial
in Z[α, β, γ, x, y]. Given a graph G with k bridges and ℓ loops, if α = 0 then f(G) =
γc(G)βn(G)−ℓxr(G)yℓ, and if β = 0 then f(G) = γc(G)αr(G)−kxkyn(G). If both α and β are
zero then f(G) = 0 if G has an ordinary edge, while f(G) = γc(G)xkyℓ if E(G) consists of
just k bridges and ℓ loops.

Proof. Uniqueness of f(G) follows by induction on the number of edges and application
of the recurrence (8).

Formula (9) is certainly true for cocliques Kn. If G consists just of k bridges and ℓ loops
and has c connected components, then f(G) = γcxkyℓ and since r(G) = k and n(G) = ℓ we

have T (G; x
α
, y
β
) =

(
x
α

)k ( y
β

)ℓ
, so (9) is satisfied. Let e be an ordinary edge, and note that
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c(G) = c(G/e) = c(G\e), so that r(G/e) = r(G)− 1, r(G \ e) = r(G) and n(G/e) = n(G),
n(G\e) = n(G)− 1. By induction on the number of ordinary edges,

f(G) = αf(G/e) + βf(G\e)

= α · γc(G)αr(G)−1βn(G)T (G/e;
x

α
,
y

β
) + β · γc(G)αr(G)βn(G)−1T (G\e; x

α
,
y

β
)

= γc(G)αr(G)βn(G)T (G;
x

α
,
y

β
).

□

Proposition 3.7. The chromatic polynomial is given by

P (G; z) = (−1)r(G)zc(G)T (G; 1− z, 0).

More generally, the monochrome polynomial,

B(G; k, y) =
∑

f :V (G)→[k]

y#{uv∈E(G):f(u)=f(v)},

is the following specialization of the Tutte polynomial:

B(G; k, y) = kc(G)(y − 1)r(G)T (G;
y − 1 + k

y − 1
, y).

Proof. For the chromatic polynomial we have P (G; z) = (z − 1)P (G/e; z) when e is
a bridge, for we have P (G\e; z) = zP (G/e; z). A direct argument for P (G \ e; k) =
kP (G/e; k) when e = uv is a bridge is as follows. Suppose G\e = G1 ∪G2 with u ∈ V (G1)
and v ∈ V (G2). Then G/e is obtained from G1 ∪ G2 by identifying the vertices u and
v to make a cut-vertex w. Given a fixed colour ℓ ∈ [k], there are P (G1; k)/k proper
colourings f1 : V (G1) → [k] of G1 with f1(w) = ℓ, and P (G2; k)/k proper colourings
f2 : V (G2) → [k] of G2 with f2(w) = ℓ. Since there are no edges between G1 and G2,
there are P (G1; k)P (G2; k)/k

2 proper colourings of G/e with f(w) = ℓ. This number is
independent of ℓ, so there are P (G1; k)P (G2; k)/k proper colourings of G/e. On the other
hand, there are P (G1; k)P (G2; k) proper colourings of G\e. Hence P (G\e; k) = kP (G/e; k)
when e is a bridge of G.

A similar argument to the recurrence for the chromatic polynomial gives

B(G; k, y) = (y − 1)B(G/e; k, y) +B(G\e; k, y), (10)

valid for all edges e. When e is a bridge we have B(G\e; k, y) = kB(G/e; k, y), by a similar
argument to the chromatic polynomial, by conditioning on the colour of the cut-vertex w
of G/e obtained by identifying the endpoints of e. Instead of proper colourings, consider
colourings with exactly m1 monochrome edges in G1 and exactly m2 monochrome edges in
G2. Then the number of such colourings for G\e (the disjoint union of G1 and G2) is k times
the number for G/e (the gluing of G1 and G2 at a vertex). Collecting together all colourings
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for which m1+m2 = m, this implies that the coefficient of ym in B(G\e; k, y) is equal to k
times the corresponding coefficient in B(G/e; k, y). Since this holds for each m, it follows
that B(G\e; k, y) = kB(G/e; k, y) when e is a bridge, and so B(G; k, y) = (y−1+k)B(G/e)
by the recurrence formula (10). When e is a loop B(G; k, y) = yB(G\e; k, y) since a loop
is always monochromatic (or by looking at the recurrence formula (10) with G/e ∼= G\e
when e is a loop).

The result now follows by Theorem 3.6. □
Remark. The monochrome polynomial is the partition function for the q-state Potts

model in disguise (see Section 4.2).
We have seen (Theorem 1.4) that T (G; 2, 0) = (−1)|V (G)|P (G;−1) counts acyclic orien-

tations of G. An acyclic orientation of G has at least one source (all edges outgoing) and
at least one sink (all edges incoming).

Theorem 3.8. [Greene and Zavslasky [35]] Suppose G is a connected graph and u ∈ V (G).
Then the number of acyclic orientations of G with unique source at u is equal to T (G; 1, 0).
In particular, this number is independent of the choice of u.

Note that T (G; 1, 0) = P ′(G; 0), the coefficient of z in P (G; z), when G is connected.

Proof. Fix a vertex u of G and let Qu(G) denote the number of acyclic orientations with
a unique source at u.

Suppose G is connected and with at least one edge. Choose an edge e = uv with one
endpoint the source vertex u. (Since G is connected there has to be at least one edge
incident with u.)

If e is the only edge of G, then Qu(G) = 1 when e is a bridge, and Qu(G) = 0 when e
is a loop. Suppose there are other edges.

If e is a loop then Qu(G) = 0.
If e is a bridge then Qu(G) = Qu(G/e). For consider an acyclic orientation O of G

with unique source u. Then in the component of G\e containing v, the only source of O
restricted to this component has to be v, otherwise there would be a source other than
u in O. Therefore, acyclic orientations of G with unique source at u are in one-to-one
correspondence with acyclic orientations of G/e with unique source at u (which in G/e has
been identified with the vertex v).

If e is ordinary then partition acyclic orientations with u as a unique source into two
sets: those for which uv is the only edge directed into v (so deleting uv does not give an
acyclic orientation of G\e with a unique source) and those for which uv is not the only edge
directed into v (here deleting uv gives an acyclic orientation of G\e with unique source
at u). The first set is in one-to-one correspondence with acyclic orientations of G/e with
unique source at u (in G/e vertex v is identified with vertex u), while the second set is in
one-to-one correspondence with acyclic orientations of G\e with unique source at u. Hence
when e is ordinary we have Qu(G) = Qu(G/e) +Qu(G\e).

By Proposition 3.6 it follows that Qu(G) = T (G; 1, 0).
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Consider a connected graph G = (V,E) in which each edge is deleted independently
at random with probability 1 − p (e remains with probability p). The probability that G
remains connected is known as the (all-terminal) reliability R(G; p) and is given by

R(G; p) =
∑
A

p|A|(1− p)|E\A|,

where the sum is over all spanning connected subgraphs (V,A).

Proposition 3.9. If G = (V,E) is a connected graph then

R(G; p) = (1− p)|E|−|V |+1p|V |−1T (G; 1,
1

1− p
).

Proof. Establish the recurrence

R(G; p) = pR(G/e; p) + (1− p)R(G\e),

by conditioning on the events that e is or is not deleted. By Theorem 3.6 the result
follows.

When G is not connected the appropriate event to consider is whether G still has
the same number of connected components after independently deleting edges at random
with probability 1 − p, i.e., whether its rank of G is preserved. The probability of this
event is (1 − p)n(G)pr(G)T (G; 1, 1

1−p), by multiplicativity of this invariant over connected
components.

3.2 Sugraph expansion of the Tutte polynomial

First let’s recap some notation. Let G = (V,E) be a graph and A ⊆ E. Identify A with
the spanning subgraph GA = (V,A). The rank of A is defined by rG(A) = |V (G)| − c(GA)
(this is the matroid rank function on the cycle matroid of G). The nullity of A is defined
by nG(A) = |A| − rG(A). Thus rG(E) = r(G) and nG(E) = n(G) in the notation already
introduced for the rank and nullity of the graph G. When context makes it clear what
graph G is, we drop the subscript and write r(A) for rG(A) and n(A) for nG(A).

It is easy to see that 0 ≤ r(A) ≤ |A| with r(A) = 0 if and only if A is empty or a set
of loops, and r(A) = |A| if and only if GA is a forest (set of bridges). Also, A ⊆ B implies
r(A) ≤ r(B) and r(A) = r(E) if and only if c(GA) = c(G).

Proposition 3.10. The Tutte polynomial of a graph G = (V,E) has subgraph expansion

T (G; x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)n(A). (11)
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Proof. Set
R(G;u, v) =

∑
A⊆E

ur(E)−r(A)v|A|−r(A),

(the Whitney rank-nullity generating function for G). We wish to prove that T (G;x, y) =
R(G; x − 1, y − 1) and shall do this by verifying that R(G;u, v) satisfies the recurrence:
(i) R(G;u, v) = 1 if E = ∅, (ii) R(G;u, v) = (u + 1)R(G\e;u, v) when e is a bridge, (iii)
R(G;u, v) = (v + 1)R(G\e;u, v) when e is a loop, and (iv) R(G;u, v) = R(G/e;u, v) +
R(G\e;u, v) when e is ordinary.

When E = ∅ we have R(G;u, v) = 1.
If e ̸∈ A then

rG(A) = rG\e(A). (12)

If e ∈ A then

rG\e(A\e) =

{
rG(A)− 1 if e is a bridge,

rG(A) if e is a loop,
(13)

and
rG/e(A\e) = rG(A)− 1 if e is ordinary or a bridge. (14)

Suppose e is a bridge. Then by (12) and (13),

R(G;u, v) =
∑

A⊆E\e

urG(E)−rG(A)v|A|−rG(A) +
∑

e∈A⊆E

urG(E)−r(A)v|A|−rG(A)

= u
∑

A⊆E\e

urG\e(E\e)−rG\e(A)v|A|−rG\e(A)

+
∑

B=A\e

urG\e(E\e)+1−(rG\e(B)+1)v|B|+1−(rG\e(B)+1)

= (u+ 1)R(G\e;u, v).

The case when e is a loop is similarly argued.
When e is ordinary, by (12) and (14),

R(G;u, v) =
∑

A⊆E\e

urG(E)−rG(A)v|A|−rG(A) +
∑

e∈A⊆E

urG(E)−rG(A)v|A|−rG(A)

=
∑

A⊆E\e

urG\e(E\e)−rG\e(A)v|A|−rG\e(A)

+
∑

B=A\e

urG/e(E\e)+1−(rG/e(B)+1)v|B|+1−(rG/e(B)+1)

= R(G\e;u, v) +R(G/e;u, v).

□
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It is common to define the Tutte polynomial by its subgraph expansion (11), having
over the deletion–contraction formulation (6) the advantage of being transparently well-
defined. On the other hand, it is not apparent from (11) that the coefficients of the
Tutte polynomial are non-negative integers, and often it is easier to derive a combinatorial
interpretation for an evaluation of the Tutte polynomial by using the deletion–contraction
recurrence. Nonetheless, it is easy to read off some evaluations of the Tutte polynomial
from its subgraph expansion.

Question 24 Let G = (V,E) be a connected graph. Using the subgraph
expansion for T (G;x, y) show the following:

(i) T (G; 1, 1) = #spanning trees,

T (G; 2, 1) = #spanning forests,

T (G; 1, 2) = #connected spanning subgraphs,

and T (G; 2, 2) = 2|E| = #spanning subgraphs.

(ii) If (x− 1)(y − 1) = 1 then T (G;x, y) = (x− 1)r(E)y|E|.

(iii) The generating function for spanning forests of G by number of con-
nected components is given by

xT (G;x+ 1, 1) =
∑
A⊆E

n(A)=0

xc(GA).

(iv) The generating function for connected spanning subgraphs of G by
size is given by

y|V |−1T (G; 1, y + 1) =
∑
A⊆E

c(GA)=c(G)

y|A|.

Along the hyperbola (x− 1)(y − 1) = z we have, for graph G = (V,E),

T (G; x, y) = (y − 1)−|V |
∑
A⊆E

(
z

y − 1

)c(GA)−c(G)

(y − 1)|A|+c(GA)

= (y − 1)−r(G)z−c(G)
∑
A⊆E

zc(GA)(y − 1)|A|.

When y = 0 this is the subgraph expansion for the chromatic polynomial obtained by an
inclusion–exclusion argument. The polynomial

∑
A⊆E z

c(GA)w|A| is the partition function
for the Fortuin–Kasteleyn random cluster model in statistical physics (the normalizing
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constant for a probability space on subgraphs of G, the probability of GA = (V,A) de-
pending on both |A| and c(A)). This model generalizes the k-state Potts model, which is
the case z = k ∈ Z+, and whose partition function we have already met in the form of the
monochrome polynomial B(G; k, y).

3.3 Coefficients. Spanning tree expansion.

A graph invariant is called a Tutte invariant if it can be found as some function of the
coefficients of T (G;x, y). Thus the property of having at least one edge is a Tutte invariant
since t0,0(G) = 0 if and only if G has an edge. In fact |E| is itself a Tutte invariant since
r(G) = max{i : ti,j(G) ̸= 0} and n(G) = max{j : ti,j(G) ̸= 0} are Tutte invariants and
r(G) + n(G) = |E|. For another example, from Proposition 3.5 (ii), a loopless graph G is
2-connected if and only if t1,0(G) ̸= 0.

Examples of graph invariants that are not Tutte invariants include the degree sequence
of G and whether G is planar. A tree on n vertices has Tutte polynomial xn−1, and for
n ≥ 3 there are two trees on n vertices with different degree sequences. Less trivially, there
are non-2-isomorphic graphs G and G′ which have different degree sequences. Likewise,
there is a planar graph G and non-planar graph G′ with T (G; x, y) = T (G′;x, y). (See [61,
Appendix] for examples.)

In this section we shall give Tutte’s 1954 inductive proof that, for a connected graph G,
the coeffficients ti,j(G) count a certain subset of the spanning trees of G. The interpretation
of ti,j(G) when G is not necessarily connected follows as an easy consequence of multiplica-
tivity of T (G;x, y) over disjoint unions. A subgraph GA = (V,A) has r(A) = r(E) and
n(A) = 0 if and only if GA is a maximal spanning forest, in the sense that no edge can be
added to GA without creating a cycle, i.e., GA consists of a spanning tree of each connected
component of G.

Let G = (V,E) be a connected graph and T a spanning tree of G. Then

(i) for each e ∈ E \ T there is a unique cycle in G contained in T ∪ {e}, which we shall
denote by cyc(T, e), and

(ii) for each e ∈ T there is a unique cut contained in E \ T ∪ {e}, which we shall denote
by cut(T, e).

Put a linear order < on E. Say E = {e1, e2, . . . , em}, where e1 < e2 < · · · < em.

Definition 3.11. Given a spanning tree T of a connected graph G with an ordering of its
edges, an edge e ∈ T is internally active with respect to T if e is the least edge in cut(T, e).
An edge e ∈ E \ T is externally active with respect to T if e is the least edge in cyc(T, e).
A spanning tree T has internal activity i and external activity j when there are precisely
i internally active edges with respect to T and j externally active edges with respect to T .

Tutte was led to his spanning tree expansion of the Tutte polynomial of a connected
graph by observing that in the recursive definition of T (G; x, y), if one applies deletion
and contraction to edges of E in reverse order em, em−1, . . . , e2, e1, the result will be an
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expression for T (G; x, y) as a sum in which each summand is obtained by contracting the
elements in some spanning tree T of G and deleting the elements of E \ T . Moreover, in
the process of obtaining this summand the edges contracted as bridges will be precisely
the internally active edges with respect to T , and the elements of E deleted as loops will
be precisely the externally active edges with respect to T .

Theorem 3.12 (Tutte Tutte54). Let G be a connected graph with an order on its edges
and for each 0 ≤ i ≤ |V |−1, 0 ≤ j ≤ |E|−|V |+1 let ti,j(G) denote the number of spanning
trees of G of internal activity i and external activity j. Then the Tutte polynomial of G is
equal to

T (G; x, y) =
∑

ti,j(G)x
iyj.

In particular, ti,j(G) is a graph invariant, independent of the ordering of the edges of G.

Proof. We proceed by induction on the number of edges of G.
When there are no edges in G, i.e., G ∼= K1, we have t0,0(G) = 1 and ti,j(G) = 0 for

i+ j > 0.
Let G = (V,E), E = {e1 < e2 < . . . < em}, m ≥ 1, and assume the assertion holds for

connected graphs with at most m− 1 edges.
The graphs G/em and G\em are both connected when em is ordinary or a loop, while

onlyG/em is connected when em is a bridge, but this is fine because we only contract bridges
in the recurrence for T (G; x, y). We take E(G/em) = E(G\em) = {e1 < e2 < · · · < em−1}.

(i) Suppose em is a bridge. Then em is in every spanning tree of G, and a subgraph T
is a spanning tree if and only if em ∈ T and T/em is a spanning tree of G/em. Also, em is
internally active in every spanning tree T of G, since cut(T, em) = {em}, so t0,j(G) = 0 for
each j. Clearly, for 1 ≤ k ≤ m − 1 the edge ek is internally (externally) active in G with
respect to T if and only if it is internally (externally) active in G/em with respect to T/em.
Hence ti,j(G) = ti−1,j(G/em) for i ≥ 1. Applying the inductive hypothesis, we obtain

T (G;x, y) =
∑

ti−1,j(G/em)x
iyj

= x
∑

ti−1,j(G/em)x
i−1yj

= xT (G/em;x, y) = T (G; x, y).

(ii) Suppose em is a loop. Then em is in no spanning tree of G, and a subgraph T
of G is a spanning tree of G if and only if it is a spanning tree of G\em. Also em is
externally active with respect to every spanning tree T of G since cyc(T, em) = {em}. For
1 ≤ k ≤ m − 1 the edge ek is internally (externally) active in G with respect to T if and
only if it is internally (externally) active in G\em with respect to the same spanning tree
T . Hence ti,j(G) = ti,j−1(G\em), so∑

i,j

ti,j(G)x
iyj = y

∑
i,j

ti,j−1(G\em)xiyj−1

= yT (G\em;x, y) = T (G;x, y).
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(iii) Suppose em is ordinary.
A subset T is a spanning tree of G\em if and only if it is a spanning tree of G not

containing em. If T is a spanning tree of G\em with internal activity i and external
activity j then it has the same activities as a spanning tree of G, since every other edge
precedes em and cyc(T, em) contains an edge other than em.

Similarly, T is a spanning tree of G/em if and only T ∪{em} is a spanning tree of G (no
cycles in T ∪{em} can be created by em that would not already be in T in the contraction
G/em). If T is a spanning tree of G/em with internal activity i and external activity j then
it has the same activities as a spanning tree of G, since every other edge precedes em and
cut(T, em) contains an edge other than em since em is not a bridge.

It follows that ti,j(G) = ti,j(G/em) + ti,j(G\em) when em is ordinary, and this makes
the induction step go through for ordinary edges too.

A more constructive proof that ti,j(G) is equal to the number of spanning trees of G of
internal activity i and external activity j was given by Crapo in 1969. See for example [7,
ch. 13], and also [10, X.5].

The definition of internal and external activity extends in the obvious way from span-
ning trees of connected graphs to maximal spanning forests of graphs more generally.

Corollary 3.13. Let G be a graph with Tutte polynomial T (G; x, y) =
∑
ti,j(G)x

iyj. Then
ti,j(G) is equal to the number of maximal spanning forests of G of internal activity i and
external activity j.

Proposition 3.14. If |E(G)| > 0 then t0,0(G) = 0. If |E(G)| > 1 then t1,0(G) = t0,1(G).

Proof. If E = {e1, . . . , em} is non-empty with order e1 < · · · < em, then e1 is active with
respect to any maximal spanning forest F , internally if e1 ∈ F , externally if e1 ̸∈ F . In
particular, t0,0(G) = 0.

Note that t1,0(K2) = 1, t0,1(K2) = 0. Asssume m ≥ 2. If G has a least two blocks
containing at least one edge then we can choose an order on E such that e1 and e2 belong
to different blocks of G. Then e1 and e2 are both active with respect to every maximal
spanning forest, and so t1,0(G) = 0 = t0,1(G) in this case.

Suppose then that G is 2-connected. (If there are isolated vertices we can ignore them
as the Tutte polynomial is unaffected by their presence or absence.) Let T be a spanning
tree of internal activity 1 and external activity 0.

The edge e1 is active with respect to every spanning tree, and so e1 ∈ T . This implies
e2 ̸∈ T , for otherwise e2 would also be internally active for T (cut(T, e2) cannot contain e1,
which belongs to T ). So e1 ∈ cyc(T, e2), otherwise e2 would be externally active.

The subgraph T ′ = T−{e1}∪{e2} is also a spanning tree of G, and has internal activity
0 and external activity 1 (the edge e1).

Reversing the argument shows that the map T 7→ T ′ is a bijection between trees
contributing to t1,0(G) and trees contributing to t0,1(G): if T

′ is a spanning tree contributing
to t0,1(G) then e1 ̸∈ T ′ but e2 ∈ T , and interchanging e1 and e2 yields a spanning tree T
contributing to t1,0(G).
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It is an easy exercise to prove Proposition 3.14 beginning with the fact that t1,0(G) = 0
if G is not 2-connected and then inductively by deletion/contraction of an ordinary edge.
However, the proof given gives more insight into why the identity holds.

The identities of Proposition 3.14 are the first of a series of identities proved by Bry-
lawski [14]. If |E(G)| > k then

k∑
i=0

k−i∑
j=0

(−1)j
(
k − i
j

)
ti,j(G) = 0.

Thus if |E(G)| > 2 then t2,0(G)− t1,1(G) + t0,2(G) = t1,0(G).
The fact that T (G;x, y) has degree r(G) as a polynomial in x and degree n(G) as a

polynomial in y is immediate from the fact that ti,j(G) is the number of maximal spanning
forests of internal activity i and external activity j. Choose the edge order e1 < e2 < · · · <
em so that e1, . . . , er(G) are the edges of a maximal spanning forest: all are internally active,
and no edges are externally active when G has no loops. Or, when choosing the edge order
so that e1, . . . , en(G) are the edges in the complement of a maximal spanning forest of G,
the latter having internal activity 0 provided there are no bridges, and external activity
n(G).

Proposition 3.15. Let G = (V,E) be a 2-connected loopless graph with Tutte polynomial
T (G; x, y) =

∑
ti,j(G)x

iyj. Then ti,0(G) > 0 for 1 ≤ i ≤ |V | − 1 and t0,j(G) > 0 for
1 ≤ j ≤ |E| − |V |+ 1.

Proof. See [10, ch. X.5].

3.4 The Tutte polynomial of a planar graph

Let G = (V,E, F ) be a connected plane graph, with set of faces F , and let G∗ =
(V ∗, E∗, F ∗) be its geometric dual. To construct G∗, put a vertex in the interior of each face
of G, and connect two such vertices of G∗ by edges that correspond to common boundary
edges between the corresponding faces of G. If there are several common boundary edges
the result is a multiple edge of G∗.

We identify V ∗ with F , E∗ with E, and F ∗ with V .

Proposition 3.16. If G is a connected planar graph with dual G∗ then T (G∗;x, y) =
T (G; y, x).

Proof. A bridge in G is a loop in G∗, a loop in G is a bridge in G∗, and deleting
(contracting) an edge in G corresponds to contracting (deleting) an edge in G∗. In other
words, (G/e)∗ ∼= G∗\e and (G\e)∗ ∼= G∗/e. From these properties, that T (G∗; x, y) =
T (G; y, x) follows from the deletion-contraction recurrence for the Tutte polynomial. □

We indicate too how to derive T (G∗;x, y) = T (G; y, x) by way of the spanning tree
expansion for the Tutte polynomial.

For a spanning tree T of G, let T ϵ denote its set of externally active edges and T ι its
set of internally active edges.
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Proposition 3.17. There is a bijection T 7→ T ∗ between spanning trees of G and spanning
trees of G∗ which switches internal and external activities. Specifically, T ∗ = E \ T , and
ti,j(G

∗) = tj,i(G).

Proof. The set of edges T ∗ in the dual G∗ corresponding to the set of edges E \ T in
G together connect all the faces of G, since T has no cycles. (A cycle of edges would be
required to separate one set of faces from another, their edges forming a simple closed curve
partitioning the plane into inside and outside. If there are no cycles the plane remains in
one piece.) Also, T ∗ does not contain a cycle, for otherwise it would separate some vertices
in G inside the cycle from vertices outside, and this is impossible because T is spanning
and its edges are disjoint from T ∗.3

This shows that T ∗ is a spanning tree of G∗.
Given an edge e ∈ T we have cut(T, e) = cyc(T ∗, e). Dually, given an edge e ∈ E \ T

we have cyc(T, e) = cut(T ∗, e). Consequently T ι = (T ∗)ϵ and T ϵ = (T ∗)ι, from which it
follows that ti,j(G

∗) = tj,i(G).

Corollary 3.18. If G is a connected planar graph with dual G∗ then T (G∗;x, y) = T (G; y, x).

Note that a bridge in G is a loop in G∗, a loop in G is a bridge in G∗, and that deleting
(contracting) an edge in G corresponds to contracting (deleting) an edge in G∗. In other
words, (G/e)∗ ∼= G∗\e and (G\e)∗ ∼= G∗/e. From these properties, that T (G∗; x, y) =
T (G; y, x) also follows from the deletion-contraction recurrence for the Tutte polynomial.

More generally, a subgraph of G on edges A ⊆ E has no cycles (i.e., is a forest) if and
only if the subgraph in the dual G∗ on edges E \ A is connected. If there is a cycle in A
then its edges form the boundary of a simple closed curve in the plane, inside which lies at
least one vertex of G∗ (corresponding to a face enclosed by the cycle) and outside of which
lies another vertex of G∗. Likewise, the edges of A form a connected subgraph of G if and
only if the edges of E \ A form a forest of G∗: any cycle in G∗ has to cross an edge of a
connected subgraph A.

The rank and nullity functions of a planar graph and its dual are related by

rG∗(A) = nG(E)− nG(E \ A) = |A| − rG(E) + rG(E \ A),

and
nG∗(A) = rG(E)− rG(E \ A) = |A| − nG(E) + nG(E \ A).

Note then that rG∗(E)− rG∗(A) = |E \ A| − rG(E \ A) = nG(E \ A).4 Thus

T (G;x, y) =
∑

E\A⊆E

(x− 1)nG∗ (E\A)(y − 1)rG∗ (E)−rG∗ (E\A) = T (G∗; y, x).

3Note that Euler’s formula |V | − |E| + |F | = 2 follows from |V (T )| = |V |, |V (T ∗)| = |F |, |E(T )| +
|E(T ∗)| = |E| and |E(T )| = |V (T )| − 1 = |V | − 1, |E(T ∗)| = |V (T ∗)| − 1 = |F | − 1.

4In the terminology of the next section, an edge e ∈ E \A is independent of A in G if and only if it is
a dependent edge of E \A in G∗. (And the dual statement holds: an edge e ∈ A is a dependent edge of G
if and only if it is an independent edge of E \ A.) The maximum number k of edges e1, . . . , ek such that
ei is independent of A ∪ {e1, . . . , ei−1} for each 1 ≤ i ≤ k is equal to rG(E) − rG(A), which is therefore
equal to the maximum number k of edges e1, . . . , ek so that ei is dependent on E \ (A ∪ {e1, . . . , ei}) for
each 1 ≤ i ≤ k, i.e., nG∗(A).

51



A subgraph of G on edges A ⊆ E has no cycles (i.e., is a forest) if and only if the
subgraph in the dual G∗ on edges E \ A is connected. If there is a cycle in A then its
edges form the boundary of a simple closed curve in the plane, inside which lies at least
one vertex of G∗ (corresponding to a face enclosed by the cycle) and outside of which lies
another vertex of G∗. Likewise, the edges of A form a connected subgraph of G if and
only if the edges of E \ A form a forest of G∗: any cycle in G∗ has to cross an edge of a
connected subgraph A.

3.5 The spanning tree partition of subgraphs.

The remarks in this section rely on many facts given without proof (for which see e.g. [7,
ch. 13]).

Let G = (V,E) be a connected graph with a given order on its edges. For each
spanning tree T of G, we have a set of externally active edges, T ϵ, and a set of internally
active edges, T ι. The Boolean lattice of subgraphs 2E = {A : A ⊆ E} is partitioned into
Boolean intervals [T \ T ι, T ∪ T ϵ] = {A : T \ T ι ⊆ A ⊆ T ∪ T ϵ} indexed by spanning
trees. Given A ⊆ E, we have n(A) = 0 (i.e., r(A) = |A|) if and only if (V,A) is a forest,
and r(A) = r(E) if and only if (V,A) is a connected spanning subgraph. An edge e is
independent of A if r(A∪e) = r(A)+1, otherwise e is dependent, and n(A∪e) = n(A)+1.
Use the order on E to successively add to A the least edges e1, e2, . . . , er(E)−r(A) that are
independent of A. This creates a connected spanning subgraph A ∪ {e1, . . . , er(E)−r(A)}
containing A.

Similarly, given A ⊆ E, by removing edges dependent on A we decrease its nullity, and
if e1, . . . , en(A) are chosen to be the least such dependent edges then we obtain a unique
subgraph A \ {e1, . . . , en(A)} of nullity zero, i.e., a spanning forest of G.

If we first add least independent edges to A to make a connected spanning subgraph,
and then remove least dependent edges of A we obtain a spanning tree T of G. Likewise,
if we first remove the least dependent edges to make a spanning forest and then add the
least independent edges we obtain (the same) spanning tree T .

Spanning subgraphs spanning subgraphs
Connected

Spanning forests Spanning trees

r(A) = r(E)

n(A) = 0 |A| = r(A) = r(E)

add least
independent edgesA ⊆ E

re
m

ov
e

le
as

t
de

pe
nd

en
te

dg
es (increase rank)

(d
ec

re
as

e
nu

lli
ty

)

This procedure locates which interval [T \ T ι, T ∪ T ϵ] the subset A belongs to. Call
A an internal subgraph if we only need add independent edges to A in order to place it
in its interval [T \ T ι, T ∪ T ϵ]. In particular, (V,A) is a spanning forest and contains no
externally active edges of T , i.e, A ∈ [T \ T ι, T ]. (Note that A is internal in this sense if
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and only if it contains no broken cycle: the least edge in a cycle contributes to the external
activity of the tree T containing A.)

Similarly, call A an external subgraph if we need only remove dependent edges from A
in order to place it in [T, T ∪T ϵ]. Then (V,A) is a connected spanning subgraph containing
no internally active edges of T . (If A is external, then E \ A contains no “broken cuts”.)

From the expansion T (G;x, y) =
∑

i,j ti,j(G)x
iyj we see that T (G; 2, 0) is the number of

internal subgraphs (this also follows from Whitney’s Broken Cycle Theorem) and T (G; 0, 2)
is the number of external subgraphs. Moreover, T (G; 1, 0) counts the number of internal
trees, and T (G; 0, 1) the number of external trees.

General Connected External

General T (G; 2, 2) = 2|E| T (G; 1, 2) T (G; 0, 2)

Forest T (G; 2, 1) T (G; 1, 1) T (G; 0, 1)

Internal T (G; 2, 0) T (G; 1, 0) T (G; 0, 0) = 0

(We have already seen that T (G; 2, 0) counts acyclic orientations, and for a connected
graph T (G; 1, 0) counts acyclic orientations with unique prescribed source. See e.g. [6,
Fig. 20] for an interpretation of T (G;x, y) for other values of x, y ∈ {0, 1, 2} in terms of
orientations of G. In fact, Las Vergnas [53] gives an interpretation for 2i+jti,j(G) in terms
of orientations of G and an order on E, quoted as Theorem 25 in [23].)

Given the spanning tree partition 2E =
∪

T [T \ T ι, T ∪ T ϵ] of all subgraphs of G, the
subgraph expansion of the Tutte polynomial may be rewritten as follows:

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)n(A)

=
∑
T

∑
A∈[T\T ι,T∪T ϵ]

(x− 1)|A∩T
ι|(y − 1)|A∩T

ϵ|

=
∑
T

∑
k,ℓ

(
|T ι|
k

)
(x− 1)k

(
|T ϵ|
ℓ

)
(y − 1)ℓ

=
∑
T

x|T
ι|y|T

ϵ|,

which gives Tutte’s spanning tree expansion by internal and external activities.

3.6 The beta invariant.

The coefficient t1,0(G) is known as Crapo’s beta invariant, or also the chromatic invariant,
with t1,0(G) = (−1)|V (G)|P ′(G; 1).

We know from the corresponding property of the chromatic polynomial that the beta
invariant is unaffected by the addition or removal of parallel edges. A direct proof can be
given by a deletion/contraction of a parallel edge, noting t1,0(G) = 0 if G has a loop.

By Propositions 3.17 and 3.14, t1,0(G) = t1,0(G
∗) when G is a connected planar graph.
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Two graphs are homeomorphic if they can both be obtained from the same graph by
subdividing its edges (inserting vertices of degree 2).

Proposition 3.19. If G and G′ are homeomorphic connected graphs with at least two edges
then t1,0(G) = t1,0(G

′).

Note. The condition on the number of edges is necessary: t1,0(K2) = 1 but for any
path Pn on n ≥ 3 vertices, which is homeomorphic to K2, we have t1,0(Pn) = 0.

Proof. Homeomorphic graphs have each some subdivision that makes them isomorphic.
Hence it suffices to prove that if G′ is obtained from G by subdividing an edge e into two
edges e1 and e2 then t1,0(G) = t1,0(G

′).
If e is a bridge of G then since G has another edge it is not 2-connected, so t1,0(G) =

t1,0(G
′) = 0.

If e is not a bridge of G then e1 is neither a bridge nor a loop of G′, so t1,0(G
′) =

t1,0(G
′/e1) + t1,0(G

′\e1). As e2 is a block of G′\e1 and there is another edge of G′ we have
t1,0(G

′\e1) = 0. Since G′/e1 ∼= G this yields the desired result that t1,0(G
′) = t1,0(G).

Definition 3.20. A series-parallel graph is a graph constructed from C2 (two vertices joined
by two parallel edges) by a sequence of the following two operations:

(i) subdividing an edge (introducing a vertex of degree 2),

(ii) placing an edge parallel to an existing edge.

Series-parallel graphs are 2-connected, have no loops, and are planar.

Theorem 3.21. Let G be a 2-connected graph with at least one edge. Then t1,0(G) ≥ 1
with equality if and only if G is series-parallel.

Proof. If G is not 2-connected then t1,0(G) = 0.
We prove the statement by induction on the number of edges. The base case C2 has

T (C2;x, y) = x+ y.
Suppose G is 2-connected with m ≥ 3 edges and assume the truth of the assertion for

2-connected graphs with less than m edges. If G has an edge e that has been introduced in
series (one of its endpoints has degree 2), then G/e is 2-connected while G\e is not. Hence
t1,0(G\e) = 0 while by inductive hypothesis t1,0(G/e) = 1

On the other hand, if e is parallel to another edge of G then G/e has a loop and at
least one other edge and hence is not 2-connected, while G\e is 2-connected. By inductive
hypothesis we have t1,0(G\e) = 1, so that t1,0(G) = 0 + t1,0(G) = 1.

For the converse we use the fact that a 2-connected graph G is series-parallel if and
only if it contains no K4 minor (Dirac, 1952), and that ti,j(H) ≤ ti,j(G) whenever H is a
minor of a 2-connected graph G (Brylawski, [14, Corollary 6.9]). It follows in particular
that t1,0(K4) = 2 ≤ t1,0(G) whenever a 2-connected graph G is not series-parallel.
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Exercise 3.22. Let Wn be the wheel on n+1 vertices (an n-cycle all of whose vertices are
joined to a new central vertex). By first calculating the chromatic polynomial of Wn, find
t1,0(Wn).

By using P (Kn; z) = zn, show that t1,0(Kn) = (n− 2)!.

Proposition 3.23. If G = G1 ∪ G2 where |V (G1) ∩ V (G2)| = s ≥ 2 and the induced
subgraph on V (G1) ∩ V (G2) is a clique Ks, then

t1,0(G) = t1,0(G1)t1,0(G2)/(s− 2)!.

Note that if G has a 1-separation then it is not 2-connected and t1,0(G) = 0.

Proof. This follows from the expression for the chromatic polynomial of a quasi-separation
given in Proposition 1.8, written as

P (G; 1− z)P (Ks; 1− z) = P (G1; 1− z)P (G2; 1− z),

where, for connected G,

P (G; 1− z) = (−1)|V |−1(1− z)
∑

1≤i≤|V |−1

ti,0(G)z
i,

and the fact that t1,0(Ks) = (s− 2)!. Comparing coefficients of z2 gives the result.

In particular, edge-gluing a series-parallel graph to G does not change its beta invariant.
The only 3-connected graph G with beta invariant t1,0(G) = 2 is K4, and a similar clas-

sification of 3-connected graphs with beta invariant up to 9 has been made (see references
given in [23, §7.1]). An outerplanar graph is a planar graph with an embedding in the
plane with the property that all vertices of G lie on the outer face. A graph is outerplanar
if and only if it has no K4 minor (so it is series-parallel) or K2,3 minor.

Theorem 3.24. [33] If G is a simple 2-connected series-parallel graph then t2,0(G) ≥
t0,2(G) + 1 with equality if and only if G is outerplanar.

It turns out that the beta invariant t1,0(G) counts a certain subset of those acyclic
orientations counted by T (G; 1, 0) (Theorem 3.8 above).

Theorem 3.25. [Greene and Zaslavsky, 1983; Las Vergnas, 1984]5 Let G be a connected
graph and uv ∈ E(G). The number of acyclic orientations of G with u as unique source
and v as unique sink is equal to t1,0(G).

5The original proofs of Greene and Zaslavsky of this result and Theorem 3.8 use hyperplane arrange-
ments. A contraction–deletion proof was given by Gebhard and Sagan [30]. Las Vergnas proved a stronger
theorem in [53], giving an orientation expansion for the Tutte polynomial.
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Proof. Let Quv(G) denote the number of acyclic orientations of G with u as unique source
and v as unique sink.

Recall that t1,0(G) = 0 if G is not 2-connected. We know that t1,0(G) = t1,0(G/e) +
t1,0(G\e) for an ordinary edge e, and if G has more than one edge and e is a bridge of G
then t1,0(G) = 0 (since G is not 2-connected). Also t1,0(K2) = 1. Finally, t1,0(G) = 0 if G
has a loop e.

When G is not 2-connected it is impossible to have an acyclic orientation of G with
unique source u and unique sink v. First, if G is not connected then there are not even
any acyclic orientations with unique source u, since each component has a source. Second,
if G is connected with 1-separation G1 ∪G2 having |V (G1) ∩ V (G2)| = 1, then an acyclic
orientation restricted to G1 has at least one source and sink, at least one of which survives
as a source or sink in G. Similarly for G2. But then there is either a source or sink in
G1 and in G2, and these are not connected by an edge. Hence u and v are not unique as
source and sink.

Clearly Quv(K2) = 1 and Quv(G) = 0 if G has a loop.
If G has at least two edges, is 2-connected and has no loops, then G has no bridges. It

remains to prove that in this case Quv(G) = Quv(G/e) +Quv(G\e), where e is an ordinary
edge. We can choose e = wv with w ̸= u, v. In an acyclic orientation of G with unique
sink v the edge wv is directed from w to v. Since u is the unique source there is at least
one edge directed into w. If there is also at least one other edge directed out of w, then
deleting e gives an acyclic orientation of G\e with unique source u and unique sink v. On
the other hand, if e is the only edge directed out of w then contracting the edge e gives
an acyclic orientation of G/e with unique source u and unique sink v (which is identified
with w in the graph G/e). Thus partitioning acyclic orientations of G with unique source
u and unique sink v according to whether or not G\wv is also an acyclic orientation with
this property, we find that Quv(G) = Quv(G/wv) +Quv(G\wv).

3.7 Computational complexity

The Tutte polynomial can be computed in polynomial time at some particular points.
Specifically, these points are: (0, 0) (whether there are any edges), (1, 1) (number of span-
ning trees – see Section 3.8 below), (2, 2) (number of subgraphs), (−1, 0) (whether bipar-
tite or not), (0,−1) (whether Eulerian or not), (−1,−1) (up to easily determined sign
equal to number of bicycles), and also in the last section interpretations for evaluations
at (e2πi/3, e−2πi/3) and (i,−i), the former involving the dimension the space spanned by
vectors that are simultaneously Z3-flows and Z3-tensions.

Recall also that T (G; x, y) = (x − 1)r(G)y|E(G)| when (x − 1)(y − 1) = 1, so that the
Tutte polynomial is also polynomial time computable at points on this hyperbola (the
points (0, 0) and (2, 2) were already mentioned in the previous paragraph).

Theorem 3.26 below says that we have in fact now encountered all such “easy points”.
A computational (enumeration) problem can be regarded as a function mapping inputs

to solutions (graphs to the number of their proper vertex 3-colourings, for example). A
problem is polynomial time computable if there is an algorithm which computes the output
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in length of time (number of steps) bounded by a polynomial in the size of the problem
instance. The class of such problems is denoted by P. If A and B are two problems, we
say that A is polynomial time reducible to B, written A ∝ B, if it is possible with the help
of a subroutine for problem B to solve problem A is polynomial time.

The class #P can be roughly described as the class of all enumeration problems in
which the structures being counted can be recognized in polynomial time (i.e., instances
of an NP problem). For example, counting Hamiltonian paths in a graph is in #P because
it is easy to check whether a given set of edges is a Hamitonian path.

The class #P has a class of “hardest” problems called the #P-complete problems.
A problem A belonging to #P is #P-complete if for any other problem B in #P we
have B ∝ A. A prototypical example of a #P-complete problem is #Sat, the problem
of counting the number of satisfying assignments of a Boolean function. Many of the
thousands of problems known to be #P complete have been shown to be so by reduction
to #Sat. Counting Hamiltonian paths is an example of a #P-complete problem (even
when restricted to planar graphs with maximum degree 3).

A problem is #P-hard if any problem in #P is polynomial time reducible to it. In other
words, A is #P-hard if the existence of a polynomial time algorithm for A would imply the
existence of a polynomial time algorithm for any problem in #P. (A #P-hard problem is
#P-complete if it belongs to the class #P itself.)

We have found that many evaluations of the Tutte polynomial count structures associ-
ated with a graph. Sometimes though it is not apparent what an evaluation of the Tutte
polynomial at a particular point (a, b) might count. However, we can still speak of whether
the problem of computing T (G; a, b) can be done in polynomial time or if it is a #P-hard
problem (being able to evaluate it for any graph in polynomial time would imply that every
problem in #P could be computed in polynomial time).

Theorem 3.26 ([46]). Evaluating the Tutte polynomial of a graph at a particular point of
the complex plane is #P-hard except when either

(i) the point lies on the hyperbola (x− 1)(y − 1) = 1,

(ii) the point is one of the special points (1, 1), (−1, 0), (0,−1), (−1,−1), (i,−i), (−i, i),
(e2πi/3, e−2πi/3), (e−2πi/3, e2πi/3).

In the special cases (i) and (ii) evaluation can be carried out in polynomial time.

In [85] Vertigan and Welsh show that the same statement in Theorem 3.26 holds even
when restricting the problem to computing the Tutte polynomial for bipartite graphs.

Around the same time as [85], but only much later published, Vertigan showed that
restricting the problem of evaluating the Tutte polynomial to planar graphs only yields
extra “easy points” on the hyperbola (x − 1)(y − 1) = 2 (corresponding to the partition
function of the Ising model, which in the planar case is polynomial time computable due
to Kasteleyn’s expression for the partition function of the Ising model as the Pfaffian of an
associated matrix).
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Theorem 3.27 ([87]). The problem of computing the Tutte polynomial of a planar graph
at a particular point of the complex plane is #P-hard except when either

(i) the point lies on one the hyperbolae (x− 1)(y − 1) = 1 or (x− 1)(y − 1) = 2,

(ii) the point is one of the special points (1, 1), (−1, 0), (0,−1), (−1,−1), (e2πi/3, e−2πi/3),
(e−2πi/3, e2πi/3).

In the special cases (i) and (ii) evaluation can be carried out in polynomial time.

See e.g. [90] for a more detailed account of the complexity of counting problems, with
special emphasis on those related to the Tutte polynomial.

3.8 The Laplacian and the number of spanning trees

Proposition 3.28. Let D be the incidence matrix (with respect to some orientation) of a
graph G, and let A be the adjacency matrix of G (whose (u, v)-entry is the number of edges
joining u to v). Then

Q = DD⊤ = ∆− A,

where ∆ is the diagonal matrix whose (v, v)-entry is the degree of the vertex v (a loop on
v contributing 2 to its degree). Consequently, Q is independent of the orientation given to
G.

The matrix Q is called the Laplacian matrix of G.
Let Q[u] denote the matrix obtained by deleting the row and column indexed by u, and

Q[u, v] the matrix obtained by further deleting the row and column indexed by v.
Write Q = Q(G) when D is the incidence matrix of G. Note that if e is a loop then

Q(G) = Q(G \ e), since the column of the incidence matrix D of G is indexed by e is zero
and contributes nothing to DD⊤.

Theorem 3.29. Let G be a connected graph with Laplacian matrix Q. If u is an arbitrary
vertex of G then detQ[u] is equal to the number of spanning trees of G.

Proof. We show that Q(G)[u] satisfies the same deletion–contraction recurrence as the
number of spanning trees of G, τ(G), which satisfies the deletion–contraction recurrence
τ(G) = τ(G\e)+ τ(G/e) when e is not a loop, and τ(G) = τ(G\e) when e is a loop. (Note
that when e is a bridge, τ(G) = τ(G/e) because G\e is disconnected so that τ(G\e) = 0.)

When e is a loop on u, Q(G)[u] = Q(G \ e)[u].
Choose an ordinary edge e = uv, and let R be the V ×V diagonal matrix with Rv,v = 1,

and all other entries equal to 0. Then

Q(G)[u] = Q(G\e)[u] +R,

from which
detQ[u] = detQ(G\e)[u] + detQ(G\e)[u, v]. (15)
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Note that Q(G\e)[u, v] = Q[u, v]. Assume in forming G/e we contract u onto v, so that
V (G/e) = V \ {u}. Then Q(G/e)[v] has rows and columns indexed by V \ {u, v} with
(x, y)-entry equal to Qx,y, and so we also have that Q(G/e)[v] = Q[u, v]. Thus we can
rewrite (15) as

detQ[u] = detQ(G\e)[u] + detQ(G/e)[v].

By induction detQ(G\e)[u] = τ(G\e) and detQ(G/e)[v] = τ(G/e). By the recurrence for
τ(G) the result follows.

Since τ(G) = T (G; 1, 1) when G is connected, and the Tutte polynomial of an ar-
bitrary graph is multiplicative over its connected components, Theorem 3.29 provides a
polynomial-time algorithm for computing T (G; 1, 1).

Other points (x, y) at which we already know that T (G; x, y) can be computed in
polynomial time in the size of G include points on the hyperbola {(x, y) : (x−1)(y−1) = 1},
where T (G; x, y) = (x − 1)r(E)y|E|, and the point (−1, 0) (since the number of proper 2-
colourings amounts to testing for bipartiteness). We shall shortly see that T (G; 0,−1) is
computable in polynomial time (what does it count?), and later that T (G; a, a) is also
polynomial-time computable when a is a second, third or fourth root of unity, and a its
conjuagte.

3.9 Hamming weight enumerator for tensions and flows

Let G = (V,E) be a graph, A a commutative ring of k elements, and Z the module of
A-flows of G and its orthogonal complement Z⊥ the module of A-tensions of G.

The monochrome polynomial B(G; k, y) of G was defined in Proposition 1.15 in terms
of vertex k-colourings, but we can write it in terms of A-tensions as follows:

k−c(G)B(G; k, y) =
∑
z∈Z⊥

y|E|−|supp(z)|. (16)

In coding theory |supp(z)| is called the Hamming weight of the vector z and the polynomial
on the right-hand side of (16) is known as the (Hamming) weight enumerator of the code
Z⊥.

By deletion-contraction and the Recipe Theorem we have seen that

B(G; k, y) = kc(G)(y − 1)r(G)T (G;
y − 1 + k

y − 1
, y). (17)

A code over a field F is a special type of matroid, namely one that is representable over
F. The point (y−1+k

y−1 , y) lies on the hyperbola (x − 1)(y − 1) = k. Greene [34] was first
to make the connection between the Tutte polynomial and linear codes over a field of k
elements, proving that the Tutte polynomial of the matroid of a code specializes on the
hyperbola (x−1)(y−1) = k to the weight enumerator of the code (effectively, identity (17)
generalized to codes/representable matroids).
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The dual version of the monochrome polynomial (the weight enumerator forA-tensions (16))
is the weight enumerator for A-flows:

C(G; k, x) =
∑
z∈Z

x|E|−|supp(z)| = (x− 1)n(G)T (G;x,
x− 1 + k

x− 1
). (18)

(This identity can be proved by an inductive deletion-contraction argument, as for the
monochrome polynomial.) Thus by identities (17) and (18) we have

B(G; k, y) = k|V (G)|−|E(G)|(y − 1)|E(G)|C(G; k,
y − 1 + k

y − 1
), (19)

which amounts to MacWilliams identity in coding theory.

3.10 Bicycles

We describe combinatorial interpretations for the special points with complex coordinates
given in Theorem 3.26 at which the Tutte polynomial is easy to compute. To do this we
return to A-flows and A-tensions, for A = Z2 and, in the next section, A = Z3. Our
notation differs slightly from earlier, in that we use conventional boldface vector notation
rather than Greek lettered maps for tensions and flows.

The incidence mapping D : ZE
2 → ZV

2 for a graph G = (V,E) has kernel kerD = Z
and Z⊥ = imD⊤ = K. Vectors in Z are indicator vectors of Eulerian subgraphs of G
(sometimes just called cycles – although we shall reserve the term cycle for a connected
2-regular subgraph – or even subgraphs of G). Vectors in Z⊤ = K are indicator vectors of
(edge) cuts of G. (A 2-tension has support a cut, equal for some V0 ⊆ V, V1 = V \ V0 to
the set of edges with one endpoint in V0 and the other in V1.)

An Eulerian subgraph meets a cut in an even number of edges (by orthogonality of
flows and tensions, and by definition when considering cuts comprising edges from {v} to
V \ {v}, these vertex-cuts together spanning all cuts).

We identify a subset of edges of G with its indicator vector.
A vector x in the intersection Z ∩K is called a bicycle of G, and is self-orthogonal, i.e.,

x⊤x = 0. So a bicycle has an even number of edges.
A bicycle is an Eulerian subgraph that meets every other Eulerian subgraph in an even

number of edges (as well as every cut in an even number of edges). Alternatively, a bicycle
is a cut that meets every other cut in an even number of edges (as well as meeting every
Eulerian subgraph in an even number of edges).

In short, a bicycle is a cutset that is also an Eulerian subgraph of G. In particular, if
G is itself a bipartite Eulerian graph then E (the all-one vector) is a bicycle.

For more about bicycles see Sections 14.15-16 and 15.7 in [32] (from which the material
in this section is adapted), and for the usefulness of bicycles in relation to knots see Chapter
17 of the same reference.

Theorem 3.30. Let e be the edge of a graph G. Then precisely one of the following holds:
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(i) e belongs to a bicycle,

(ii) e belongs to a cut B such that B \ {e} is Eulerian,

(iii) e belongs to an Eulerian subgraph C such that C \ {e} is a cut.

Proof. Suppose e ∈ E(G) and e is its indicator vector in ZE
2 . If e belongs to a bicycle

with indicator vector x then x⊤e ̸= 0 and therefore e ̸∈ (Z ∩ Z⊥)⊥ = Z⊥ + Z. If e does
not belong to a bicycle then e is orthogonal to all vectors in Z ∩ Z⊥ and so e ∈ Z + Z⊥.
In other words, e is either contained in a bicycle or e is the symmetric difference of an
Eulerian subgraph and a cutset.

In any representation of e as the symmetric difference of an Eulerian subgraph and a
cut, either e will always belong to the Eulerian subgraph, or e will always belong to the
cut. For suppose that e = z+y = z′+y′ where z, z′ ∈ Z and y,y′ ∈ Z⊥. Then z+z′ ∈ Z
and y + y′ ∈ Z⊥ so z + z′ = y + y′ is a bicycle. Since e does not belong to a bicycle, it
must belong to both or neither of z and z′,and to neither or both of y and y′, respectively
(since e = z+ y).

An edge e of G is of bicycle-type, cut-type or flow-type according as (i), (ii) or (iii) holds
in the statement of Theorem 3.30, respectively. This is known as the principal tripartition
of the edges of G.

A bridge is an edge of cut-type [take cut B = {e} in (ii)] and a loop is an edge of
flow-type [take Eulerian subgraph {e} in (iii)].

If G is planar then edges of bicycle-type in G remain of bicycle-type in G∗. By flow–
tension duality, edges of cut-type in G are edges of flow-type in G∗, and similarly edges of
flow-type in G∗ are edges of cut-type in G∗.

See [32, Theorem 14.16.2] for a simple polynomial-time algorithm, involving the Lapla-
cian matrix DD⊤, to decide what type an edge has in the principal tripartition.

Lemma 3.31. Let G be a graph with bicycle space of dimension d, and e an edge of G.
The following table gives the dimension of the bicycle space of G/e and G\e.

Type of e G/e G\e
Bridge or loop d d
Bicycle-type d− 1 d− 1
Cut-type, not bridge d d+ 1
Flow-type, not loop d+ 1 d

Proof. A bridge belongs to no cycle and hence to no Eulerian subgraph, and therefore to
no bicycle. So any bicycle of G is a bicycle of G\e. Conversely, a bicycle of G\e is also a
bicycle of G. Likewise, bicycles of G/e correspond to bicycles of G.

Similarly, a loop belongs to no cut and hence to no bicycle, so bicycles of G are bicycles
of G\e, and conversely. For a loop we have G/e ∼= G\e.

For an ordinary edge e we shall find the following two observations useful:
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(i) If e is not a loop and belongs an Eulerian subgraph C, then C \ {e} is neither an
Eulerian subgraph of G nor of G\e. On the other hand, C \ {e} is an Eulerian
subgraph of G/e.

(ii) Dually, if e is not a bridge and belongs to a cut B, then B \ {e} is neither a cut of
G nor of G/e. On the other hand, B \ {e} is a cut of G\e.

Suppose then that e is an ordinary edge. We distinguish the three cases of the principal
tripartition:

(a) e belongs to a bicycle A.

By (i) and (ii), A \ {e} is not a bicycle of G, G\e or G/e. On the other hand, any
bicycle of G which does not contain e remains a bicycle of G\e and G/e. Hence
the bicycle spaces of G\e and of G/e both correspond to the subspace of bicycles of
G that do not contain e, and their dimensions are therefore 1 less than the bicycle
dimension of G.

(b) e belongs to a cut B, such that B \ {e} is an Eulerian subgraph of G.

By (ii), the set B\{e} is a cut of G\e, but not of G or G/e. Hence B\{e} is a bicycle
of G\e, but not of G or G/e. The effect is to increase the dimension of the bicycle
space of G\e by 1. All bicycles of G are bicycles of G\e since e is of cut-type, and so
bicycles of G\e are bicycles of G together with symmetric difference of bicycles of G
with the fixed set B \ {e}. On the other hand, the dimension of the bicycle space of
G/e coincides with that of G, all bicycles of G being bicycles of G/e, and no others.

(c) e belongs to an Eulerian subgraph C such that C \ {e} is a cut.

By (i), the set C \ {e} is an Eulerian subgraph of G/e, but not of G or G\e. Hence
C \ {e} is a bicycle of G/e, but not of G or G\e. Similarly to case (b), this implies
the dimension of the bicycle space of G/e is 1 more than that of G, while G\e has
the same bicycle dimension as G.

Lemma 3.32. Let G = (V,E) be a graph with bicycle space of dimension b(G), and let e
be an edge of G. Then the graph invariant

f(G) = (−1)|E|(−2)b(G)

satisfies

f(G) =


(−1)f(G/e) e a bridge,

(−1)f(G\e) e a loop,

f(G/e) + f(G\e) e ordinary.
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Proof. We use Lemma 3.31.
If e is a bridge or loop then the bicycle spaces of G/e, G\e and G are all of the same

dimension, and this implies the first two cases.
Suppose e is ordinary. If e is of cut-type then

f(G/e) + f(G\e) = (−1)|E|−1(−2)b(G) + (−1)|E|−1(−2)b(G)+1

= (−1)|E|(−2)b(G).

If e is of flow-type then

f(G/e) + f(G\e) = (−1)|E|−1(−2)b(G)+1 + (−1)|E|−1(−2)b(G)

= (−1)|E|(−2)b(G).

If e belongs to a bicycle then

f(G/e) + f(G\e) = 2(−1)|E|−1(−2)b(G)−1 = (−1)|E|(−2)b(G).

By the Recipe Theorem (Theorem 3.6) we obtain:

Theorem 3.33 ([71]). Let G = (V,E) be a graph and let b(G) denote the dimension of its
bicycle space. Then (−1)|E|(−2)b(G) = T (G;−1,−1).

Corollary 3.34. A connected graph G has no non-trivial bicycles if and only if G has an
odd number of spanning trees.

Proof. We have T (G;−1,−1) ≡ T (G; 1, 1) (mod 2).

3.11 Z3-tension-flows

In this section we take A = Z3 and consider the intersection of the space of Z3-flows and
the space of Z3-tensions. If D : ZE

3 → ZV
3 is the incidence mapping, and we let Z = kerD,

so that Z⊥ = imD⊤, then we shall call a vector in Z ∩ Z⊥ a Z3-tension-flow. In other
words, a Z3-tension-flow is both a Z3-tension and a Z3-flow, and is self-orthogonal in ZE

3 .
(In this terminology we could have called bicycles Z2-tension-flows.)

Let ω = e2πi/3 be a primitive cube root of unity. In [45] Jaeger proved by a deletion-
contraction argument that T (G;ω, ω2) = ±ω|E|+dimZ(i

√
3)dim(Z∩Z⊥), using the principal

quadripartition of the edges of a graph (a generalization to flows and tensions over finite
fields of characteristic ̸= 2 of the principal tripartition). Gioan and Las Vergnas [31] provide
a linear algebra proof that has the benefit of determining the sign. It is this latter proof
that we shall present here.

Recall that we say vectors y and z are orthogonal if y⊤z = 0. A self-orthogonal vector
(also called an isotropic vector) is a vector z with z⊤z = 0.
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Lemma 3.35. Let Z be a finite-dimensional vector space over a field of characteristic not
equal to 2. Then Z has an orthogonal basis.

Proof. Let {z1, . . . , zd} be a basis for Z. If there is an index 1 ≤ i ≤ d such that zi is not
self-orthogonal then reindex in such a way that i = 1 and set z′1 = z1. Otherwise, if there
is an index 2 ≤ i ≤ d such that z1 + zi is not self-orthogonal then set z′1 = z1 + zi. In both

cases update zj as zj − z′⊤1 zj
z′⊤1 z′1

z′1 for 2 ≤ j ≤ d. Now z′1 and zj are orthogonal for 2 ≤ j ≤ d.

Otherwise the vectors zj are self-orthogonal for 1 ≤ j ≤ d, and z1+zj is self-orthogonal
for 2 ≤ j ≤ d. The latter implies z⊤1 z1 + 2z1zj + z⊤j zj = 2z⊤1 zj = 0. Hence z⊤1 zj = 0 in
characteristic ̸= 2. Set z′1 = z1.

In all three cases z′1, z2, . . . , zd comprise a basis of Z such that z′1 is orthogonal to the
space generated by the remaining vectors z2, . . . , zd.

The result now follows by induction.

Lemma 3.36. The self-orthogonal vectors of an orthogonal basis of Z form a basis for
Z ∩ Z⊥.

Proof. Let z1, . . . , zd form an orthogonal basis for Z, and z =
∑

1≤j≤d ajzj ∈ Z ∩ Z⊥.
For 1 ≤ i ≤ d we have 0 = z⊤zi =

∑
1≤j≤d ajz

⊤
j zi = aiz

⊤
i zi. Hence if z⊤i zi ̸= 0 then

ai = 0. It follows that z is generated by the self-orthogonal vectors of the basis, which,
being independent, therefore form a basis of Z ∩ Z⊥.

Proposition 3.37. Let Z be a subspace of ZE
3 . Then∑

z∈Z

ω|supp(z)| = (−1)d+d1(i
√
3)d+d0 ,

where d = dimZ, d0 = dim(Z ∩Z⊥), and d1 is the number of basis vectors of support size
congruent to 1 modulo 3 in any orthogonal basis of Z.

Proof. Observe that for z ∈ ZE
3 we have |supp(z)| ≡ z⊤z (mod 3). It follows that

ω|supp(z)| = ωz⊤z.
By Lemma 3.35 there is an orthogonal basis {z1, . . . , zd} of Z. In particular, the inner

product of z =
∑

1≤j≤d ajzj with itself is equal to
∑

1≤j≤d a
2
jz
⊤
j zj. So we find that∑

z∈Z

ωz⊤z =
∑

(a1,...,ad)∈Zd
3

ω
∑

1≤j≤d a2jz
⊤
j zj

=
∑

(a1,...,ad)∈Zd
3

∏
1≤j≤d

ωa2jz
⊤
j zj

=
∏

1≤j≤d

∑
aj∈Z3

ωa2jz
⊤
j zj

=
∏

1≤j≤d

(1 + 2ωz⊤j zj)

= 3d0(1 + 2ω)d1(1 + 2ω2)d−d0−d1 ,
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where d0 (resp. d1) is the number of vectors zj, 1 ≤ j ≤ d, such that z⊤j zj = 0 (resp.

= 1). With 1 + 2ω = i
√
3, 1 + 2ω2 = −i

√
3, and d0 = dim(Z ∩ Z⊥) by Lemma 3.36, the

statement of the proposition now follows.

As Gioan and Las Vergnas [31] observe in their Corollary 2, it is not obvious that the
parity of the number of vectors in an orthogonal basis for Z with support size congruent
to 1 modulo 3 is independent of the choice of basis, a fact implied by Proposition 3.37.

We reach another polynomial time computable evaluation of the Tutte polynomial
(bases for finite-dimensional vector spaces being easy to find by Gaussian elimination, and
Lemma 3.35 providing a polynomial time algorithm for constructing an orthogonal basis):

Theorem 3.38. Let G = (V,E) be a graph and ω = e2πi/3. We have

T (G;ω, ω2) = (−1)d2ω|E|+d(i
√
3)d0 ,

where d0 is the dimension of the space of Z3-tension-flows of G, d the dimension of the
space of Z3-flows, and d2 is the number of vectors with support size congruent to 2 modulo
3 in any orthogonal basis for the space of Z3-flows.

Proof. Setting k = 3 and x = ω2 = ω−1 in equation (18) we have∑
z∈Z

ω−|E|+|supp(z)| = (ω2 − 1)dT (G;ω2, ω),

where d = dimZ = n(G) is the dimension of the space of Z3-flows. Then by Proposi-
tion 3.37 and ω2 − 1 = i

√
3ω we obtain

ω−|E|(−1)d+d1(i
√
3)d+d0 = (i

√
3ω)dT (G;ω2, ω).

Since T (G;ω2, ω) is the complex conjugate of T (G;ω, ω2) the result follows.

In Section 3.10 we saw that T (G;−1,−1) = (−1)|E(G)|(−2)b(G), where b(G) is the
bicycle dimension of G, i.e., the dimension of the the subspace of Z2-tension-flows. The
point (−1,−1) lies on the hyperbola (x− 1)(y − 1) = 4, so that by identity (18)

T (G;−1,−1) = (−2)−n(G)
∑

Z2 × Z2-flows z

(−1)|E|−|supp(z)|.

This might lead one to expect rather an expression for T (G;−1,−1) in terms of the space
of Z2×Z2-tension-flows in FE

4 . Indeed, the dimension of the space of Z2×Z2-tension-flows
is equal to the bicycle dimension b(G). A Z2 × Z2-tension-flow decomposes by projection
into a pair of Z2-tension-flows, and conversely such a pair of Z2-tension-flows can be pieced
together to make a Z2 × Z2-tension-flow. Hence there are precisely (2b(G))2 vectors that
are Z2×Z2-tension-flows, i.e., they comprise a space of dimension b(G) over F4. Hence we
could also have written that T (G;−1,−1) = (−1)|E|(−2)d0 , where d0 is the dimension of
the space of Z2 × Z2-tension-flows.
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Question 25 Are there in general as many Z4-tension-flows as Z2 × Z2-
tension-flows?

Vertigan proved that the Tutte polynomial evaluated at the point (i,−i) on the hyper-
bola (x− 1)(y − 1) = 2 has the following interpretation:

Theorem 3.39 ([86]). Let G be a graph with bicycle dimension b(G). Then

|T (G; i,−i)| =

{√
2
b(G)

if every bicycle has size a multiple of 4,

0 otherwise.

For example, T (C4; i,−i) = i3 + i2 + i− i = −i− 1 = −
√
21+i√

2
, where 1+i√

2
is a primitive

eighth root of unity. Recall also that every bicycle has even size, so that the bicycles of size
a multiple of 4 either comprise all bicycles, or exactly half of them. Theorem 3.39 implies
a polynomial time algorithm for evaluating T (G; i,−i).

4 The Tutte polynomial in statistical physics

4.1 Colourings and flows in the ice model

Square ice consists of an n × n lattice arrangement of oxygen atoms. Between any two
adjacent O-atoms lies one hydrogen atom, and there are also H-atoms at the left and right
boundaries. The problem is to count all possible configurations in which evey O-atom is
attached to exactly two of its surrounding H-atoms, forming H2O.
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Figure 7: A configuration in the 3× 3 square ice model, and its associated orientation.

There is a bijection between n× n ice configurations and Eulerian orientations on the
lattice graph of O-atoms, with boundary conditions. Let u and v be two adjacent O-atoms.
Orient the edge u −→ v if the H-atom between u and v is attached to v. On the left and
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right boundaries all edges are incoming (each H-atom on the boundary is attached to an
O-atom horizontally). On the top and bottom boundaries all edges are outgoing. See
Figure 7.

In this way we get an Eulerian orientation of the n × n lattice graph with hanging
boundary edges (each missing one endpoint).

The number of ice configurations is the number of Eulerian orientations of the n × n
lattice graph with boundary conditions (incoming edges left and right, outgoing edges
top and bottom). Each O-atom has six possible attachments to neighbouring H-atoms,
corresponding to the six possible orientations at a vertex of degree 4 with two incoming
and two outgoing edges. (This gives the alternative name of “six-vertex model” for the ice
model.)

The n × n lattice graph of O-atoms with directed edges added as described gives an
(n+1)× (n+1) array of square cells, where each O-vertex is incident with four cells. The
cells can be Z3-coloured by the following rule. Colour the top left corner 0. Suppose a and
b are neighbouring cells such that the edge that separates them has orientation having a to
the left and b to the right, and that a and b have colours c(a) and c(b) respectively. Then
c(b) = c(a)+1. In other words add one modulo 3 going from left to right across a directed
edge. The boundary colours appear in sequence 0, 1, 2, 0, . . ., with the bottom right corner
coloured 0 like the top left. (The sequence along the top is the mirror image of that along
the bottom, and likewise for left and right boundaries.)

This gives a bijection between n× n ice configurations and proper Z3-colourings of the
(n+ 1)× (n+ 1)-array of cells, observing the boundary conditions.

An alternative way to see this 3-colouring procedure is to first add edges to the n× n
lattice graph Ln,n to make it a 4-regular graph as follows. Given Ln,n on vertex set [n]× [n],
add edges between (i, 1) and (1, i) for each i ∈ [n] and edges between (i, n) and (n, i) for

each i ∈ [n]. This yields a 4-regular planar graph L̃n,n (with loops at the two corners

(1, 1) and (n, n)). An Eulerian orientation of L̃n,n is obtained by the same rule of directing
O-atom u towards O-atom v when v is attached to the H-atom between u and v, the
orientation of edges joining boundary O-atoms being determined by always directing edge
into those vertices on the left or right boundaries. By tension-flow duality, each nowhere-
zero Z3-flow (Eulerian orientation) of L̃n,n corresponds to a nowhere-zero Z3 tension of the

dual graph L̃∗n,n, i.e. to three proper Z3-colourings of the faces of L̃n,n. Fixing the colour of
either of the loop faces to be 0, it is easy to see that this corresponds to the cell-colouring
described above. See Figure 8.

This 3-coloured version of the square ice problem is the starting point for the proof
of the remarkable formula obtained by Zeilberger and Kuperberg in 1996: the number of
n× n ice configurations is equal to

(3n− 2)!(3n− 5)! · · · 4!1!
(2n− 1)!(2n− 2)! · · · (n+ 1)!n!

.

See [2, Chapter 10] and [13].
In the general case, an ice model concerns the number of ways of orienting a 4-regular
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Figure 8: Eulerian orientation of 4-regular graph corresponds to a nowhere-zero Z3-flow,
whose dual is a nowhere-zero Z3-tension, from which we get a proper face 3-colouring.

graph G such that each vertex has 2 incoming edges and 2 outgoing edges, i.e., an Eulerian
orientation of G.

In Proposition 2.20 we saw that Eulerian orientations of a 4-regular graph correspond
to nowhere-zero Z3-flows of G, so that there are F (G; 3) ice configurations on G.

Although finding an Eulerian orientation can be done polynomial time, in general com-
puting the number of them is #P-complete, as proved by Mihail and Winkler [63]. In other
words, computing F (G; 3) is #P-complete even on the class of 4-regular graphs.

Proposition 4.1. Let G = (V,E) be a 4-regular graph. Then F (G; 3) ≥
(
3
2

)|V |
.

Proof. Use induction on the number of vertices of G. The case of a single vertex with two
loops has F (G; 3) = 4 ≥ 3

2
.

For a graph on n vertices, choose one, say v, and partition Eulerian orientations of G
according to which of the six possible configurations is at v. Fix an Eulerian orientation of
G. Let a, b, c, d be the neighbours of v and suppose that a −→ v, b −→ v, v −→ c, v −→ d.

Define a 2-in 2-out digraph G1 on vertex set V \ {v} as follows. Take the same edge
orientations as G for edges not incident with v, together with directed edges a −→ c,
b −→ d to replace the four edges of G incident with v. Similarly, define the 2-in 2-out
digraph G2 by in a similar way except taking directed edges a −→ d and b −→ c.

According to the configuration of oriented edges incident with v the resulting digraphs
G1 and G2 have each one of the three types of “transition” at v, as illustrated in Figure 9
below.
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Figure 9: Two possible transitions at a vertex for each of the six configurations of orien-
tations of its four incident edges (given in the top row). Three types of transition: white
(α), black (β) and crossing (γ).

Depending on which of the six possible configurations of directed edges is at v, the
digraphs G1 and G2 are Eulerian orientations of two of three possible 4-regular graphs
Gα, Gβ, Gγ, according as the transition type at v is white (α), black (β) or crossing (γ).
See Figure 10 below.
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G Gα Gβ Gγ

Figure 10: The three possible types of transition (black, white, crossing) at a vertex v of
a 4-regular graph G. Which transition occurs depends on how the oriented edges incident
with v are “tied together” when eliminating v from G to obtain either of the two 4-regular
graphs G1 or G2.

In Figure 10 the transition type α occurs four times, with all four possible configurations
of orientations of the two edges. A similar observation holds for the transition types β
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and γ.
Therefore, by considering the two possible ways to “tie together” two edges with match-

ing directions in all six configurations of orientations of edges incident with v, we find that

F (Gα; 3) + F (Gβ; 3) + F (Gγ; 3) ≤ 2F (G; 3),

and by induction hypothesis

3 ·
(
3

2

)n−1

≤ 2F (G; 3),

yielding the desired lower bound.

In the square ice model we take G ∼= L̃n,n the n × n grid with edges added between
(i, 1) and (1, i) and edges between (i, n) and (n, i), for each i ∈ [n].

Lieb proved in 1967 that for the square lattice

lim
n→∞

F (L̃n,n; 3)
1
n2 =

(
4

3

) 3
2

≈ 1.5396.

This is quite close to the lower bound of 3
2
given by Proposition 4.1.

Suppose for a moment that G is the medial graph of a cubic planar graph H. Then
P (G; 3) is the number of proper edge 3-colourings of H, so if we had a positive lower bound
for F ∗(G; 3) rather than F (G; 3) we would have a quantative version of the Four Colour
Theorem: bounding the number of proper edge 3-colourings of a cubic planar graph H
from below positively would yield a lower bound on the number of proper face 4-colourings
of H. Needless to say such a lower bound on F (G∗; 3) is not forthcoming.

4.2 The Potts model

The q-state Potts model on a graph G = (V,E) is a generalization of the Ising model in
which there are q possible states at a vertex rather than the two up/down states. In this
model introduced by Askin and Teller (1943) and Potts (1952) the energy between two
adjacent spins at vertices i and j is taken to be zero if the spins are the same and equal to
a constant Jij if they are different. For a state σ the Hamiltonian is defined by

H(σ) =
∑
ij∈E

Jij(1− δ(σi, σj)),

where δ is the Kronecker delta function (δ(a, b) = 1 if a = b and δ(a, b) = 0 if a ̸= b).
We shall assume there is no external magnetic field. The Hamiltonian H(σ) represents the
energy of the state σ. The partition function of the q-state Potts model is defined by

Z(G) =
∑
σ

e−βH(σ),
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where the sum is over all q|V | possible states σ and β is the inverse temperature β = 1
kT

as
for the Ising model.

Just as for the Ising model, we have

Pr(σ) =
e−βH(σ)

Z(G)
,

the Boltzmann maximum entropy distribution on the state space subject to a given ex-
pected value of H(σ). (This expected value is the internal energy of the system, which
is constant when the system is isolated/ in equilibrium with its environment. This is the
First Law of Thermodynamics, expressing the principle of conservation of energy.)

If we replace Jij by −2Jij then the partition function of the 2-state Potts model is the
same as that of the Ising model scaled by e−β

∑
ij∈E Jij .

Returning to the q-state Potts model, if Jij = J is constant over all edges and we write
K = βJ then the partition function can be written in the following ways:

Z(G) =
∑

σ∈[q]V
e−K(|E|−#{ij∈E:σi=σj})

= e−K|E|B(G; q, eK)

= q|V |−|E|(1− e−K)|E|C(G; q, e
K − 1 + q

eK − 1
)

= qc(G)(eK − 1)r(G)e−K|E|T (G;
eK − 1 + q

eK − 1
, eK).

The point ( e
K−1+q
eK−1 , eK) lies on the hyperbola (x− 1)(y − 1) = q.

Here is a summary of correspondences between the Potts model and the Tutte plane
(taken from [89]):

Potts model on G Tutte polynomial T (G;x, y)

Ferromagnetism Positive (x, y > 1) branch of (x− 1)(y − 1) = q
Antiferromagnetism Negative (x < 0) branch of (x− 1)(y − 1) = q with y > 0
High temperature Asymptote of (x− 1)(y − 1) = q to y = 1
Low temp. ferromagnetic Positive branch of (x− 1)(y − 1) = q asymptotic to x = 1
Zero temp. antiferromagnetic Proper vertex q-colourings, x = 1− q, y = 0.

4.3 The Fortuin-Kasteleyn random cluster model

The random cluster model on a connected graph G = (V,E) with parameters p and q is a
probability space on all spanning subgraphs of G. The probability measure of a subgraph
A ⊆ E is

µ(A) =
1

Z(G)
p|A|(1− p)|E\A|qc(A),
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where as usual c(A) denotes the number of connected components of the subgraph (V,A),
and Z(G) is the normalizing constant

Z(G) =
∑
A⊆E

p|A|(1− p)|E\A|qc(A).

When q = 1 this is the bond percolation model on G, where an edge is open with
probability p and otherwise closed. This model is used for such processes as molecules
penetrating a porous solid, diffusion, and the spread of infection through a community
(passage/contagion is possible along open edges).

Letting q → 0, a subgraph has non-zero probability if and only if it is connected and
in this case the partition function is the reliability polynomial:

Z(G) =
∑
A⊆E

p|A|(1− p)|E\A|

= (1− p)|E|−|V |+1p|V |−1T (G; 1,
1

1− p
).

When q is a positive integer the random cluster model is equivalent to the q-state Potts
model with p = 1− e−K . Using the subgraph expansion of the Tutte polynomial we have
the following:

Proposition 4.2. The partition function of the random cluster model on a connected graph
G = (V,E) with parameters 0 ≤ p ≤ 1 and q > 0 is given by

Z(G) = q(1− p)|E|−|V |+1p|V |−1T (G; 1 +
(1− p)q

p
,

1

1− p
),

and the probability measure of the subgraph A is given by

µ(A) =

(
p

1−p

)|A|
qc(A)−1(

p
(1−p)

)|V |−1
T (G; p+q−pq

p
, 1
1−p)

.

When q > 1 there is a bias towards edges joining vertices in an existing component
than edges uniting two old components, since a larger number of components are favoured.
More precisely, given B ⊆ E and e ∈ E \B, under the probability distribution µ we have

Pr(e ∈ A |A \ {e} = B) =
Pr(A = B ∪ {e})
Pr(A− {e} = B)

=
µ(B ∪ {e})

µ(B ∪ {e}) + µ(B)

=

{
p if c(B ∪ {e}) = c(B),

p
p+q(1−p) if c(B ∪ {e}) = c(B)− 1,

where, for 0 < p < 1,

p

p+ q(1− p)

{
< p if q > 1

> p if 0 < q < 1.
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Percolation in the random cluster model (the existence of an infinite component of
open edges) is intimately related to two-point correlation (long-distance correlation between
vertex colours) in the q-state Potts model. Given fixed vertices i and j, in the Ising model
the two-point correlation between i and j is defined to be the expected value of σiσj over all
states σ. For the Potts model the two-point correlation is the expected value of δ(σi, σj),
i.e., the probability that σi equals σj.

A key result of Fortuin and Kasteleyn (1969) is the following (see e.g. [36, Theorem
2.1]):

Theorem 4.3. For any pair of vertices i and j and positive integer q, the probability that
σi equals σj in the q-state Potts model is given by

1

q
+ (1− 1

q
)µ{i⇝ j},

where µ is the random cluster probability measure on G obtained by taking p = 1 − e−K
and {i⇝ j} is the event that there is an open path from i to j, i.e.,

{i⇝ j} =
∪
{A ⊆ E : i and j belong to the same component of (V,A)}.

The expression on the right-hand side in Theorem 4.3 can be regarded as being made up
of two parts. The first term 1/q is the probability that under a uniformly random colouring
of the vertices of G the vertices i and j have the same colour. The second term measures
the probability of long-range interaction. So Theorem 4.3 expresses an equivalence between
long-range spin correlations and percolatory behaviour.

Phase transition (in the infinite system) occurs at the onset of an infinite cluster (con-
nected component) in the random cluster model and corresponds to spins on the vertices
of the Potts model having long-range two-point correlation.

See [90, Chapter 4] for further discussion of percolation in the random cluster model,
as well as the detailed account of [37] from the point of view of probability theory.

5 Graph homomorphisms

Many generalizations of the Tutte polynomial have been studied that have been motivated
by applications in statistical physics (see e.g. [76] for the multivariate Tutte polynomial,
equivalent to the partition function of the general Potts model where edge interactions
vary from edge to edge), and by knot theory (see e.g. [65] for the U -polynomial), as well
as the V -functions studied by Tutte himself, these being the most general multivariate
polynomials which satisfy a deletion-contraction recurrence whose parameters may depend
on which particular edge is being deleted/contracted.

Another perspective is to regard the chromatic polynomial, and more generally, the
partition function of the q-state Potts model on a graph G, as arising from counting
homomorphisms from G to a graph H (possibly with weights on its edges). For example,
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P (G; k) is equal to the number of homomorphisms from G to Kk (think of the vertices
of Kk as being colours). More generally, the monochrome polynomial B(G; k, y) is the
number of homomorphisms from G to the complete graph on k vertices, each vertex with
a loop of weight y attached to it. By the identity Z(G) = e−K|E|B(G; q, eK) it follows that
the partition function Z(G) for the q-state Potts model is the number of homomorphisms
from G to the complete graph on q vertices , each vertex with a loop of weight 1 and
non-loop edges of weight e−K .

Another example of a homomorphism counting function of interest to statistical physics
is the Widom-Rowlinson model (introduced in 1969 as a model for liquid-vapour phase
transitions), where the target graph consists of a star K1,k with a loop of weight 1 on each
vertex. The number of homomorphisms from G to this graph is equal to the number of
partial k-colourings of the vertices of G with the property that no edge has an endpoint
of different colours (but it is allowed to have one endpoint a coloured vertex and the other
uncoloured).

Amongst all possible weighted graphs H, the number of homomorphism from G to H is
an evaluation of the Tutte polynomial for every graph G if and only if H is a Potts model
graph [27], [28]. (A Potts model graph is Kq with a constant weight on its edges, together
with loops attached, also of constant weight.) In fact, given just that the number of graph
homomorphisms from G to H is an evaluation of the Tutte polynomial for G a cycle or
path or the dual of a cycle or path, it must be the case that H is a Potts model graph [28].

As we have seen, the partition function of the Potts model is the specialization of
the Tutte polynomial to the hyperbola (x − 1)(y − 1) = q. In [28] it is shown that any
evaluation of the Tutte polynomial can be interpolated from its values on the hyperbolae
(x − 1)(y − 1) = q for positive integer q. For a familiar example, the number of acyclic
orientations, T (G; 2, 0), the point (2, 0) lying on (x − 1)(y − 1) = −1, can be found by
interpolation from the values T (G; 1 − q, 0) for r(G) + 1 choices of positive integer q, the
points (1 − q, 0) lying on the hyperbolae (x − 1)(y − 1) = q. In this sense, the partition
functions of the q-state Potts model for all positive integers q contain all the information
about a graph that the Tutte polynomial does. What about when only finitely many values
of q are chosen? Although it seems likely that a finite number of Potts model partition
functions will not determine the Tutte polynomial in general, it seems difficult to produce
examples of a pair of graphs that have different Tutte polynomials but the same q-state
Potts model for even a fixed value of q ≥ 3. (For q = 2 there are small examples of graphs
with the same Ising model partition function but different Tutte polynomials.)

5.1 Graph invariants and graph homomorphism profiles

Many graph invariants can be expressed in terms of counting homomorphisms, including
the chromatic polynomial (the familiar example, P (G; k) = hom(G,Kk) for k ∈ N), the
flow polynomial (not so obvious, but we saw how earlier on), the Tutte polynomial (also
not so obvious [28]), and other polynomial invariants such as the characteristic polynomial.

One of the fundamental questions about a graph invariant is whether it determines a
given graph G up to isomorphism: for example, is G determined by its Tutte polynomial,
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or even just by its chromatic polynomial? What about say the chromatic polynomial and
characteristic polynomial jointly: do they together determine G? By using the language
of graph homomorphisms we can unify these sorts of question by using homomorphism
profiles.

Let G denote the set of all finite (multi)graphs up to isomorphism (i.e., graphs in G are
pairwise non-isomorphic, any given graph is isomorphic to exactly one graph in G).
Definition 5.1. Let P ⊆ G be given in some fixed enumeration P = {P1, P2, . . .}. The
left P-profile of a graph G is the sequence (hom(P,G) : P ∈ P) and the right P-profile is
the sequence (hom(G,P ) : P ∈ P).
Definition 5.2. A graph invariant is a function f : G → S, where S is a set (often with
some algebraic or combinatorial structure that “encodes” some of the graphical combinato-
rial structure).

For example, the Tutte polynomial T (G; x, y) is a graph invariant taking values in
the ring Z[x, y]. Multiplication in the ring corresponds to the disjoint union of graphs,
T (G1∪G2;x, y) = T (G1;x, y)T (G2; x, y). As we have seen, many combinatorial parameters
of a graph G are reflected in properties of the Tutte polynomial T (G; x, y). For example, a
graph G with at least two edges is 2-connected if and only if the coefficient of x is non-zero,
and G is k-colourable if and only if T (G; 1− k, 0) ̸= 0.

The left- (or right-) P-profile defines an invariant taking values in Nω, the set of infinite
sequences of natural numbers. Multiplication in the monoid Nω corresponds to the disjoint
union of graphs for the left-profile, hom(G1∪G2, H) = hom(G1, H)hom(G2, H), and to the
direct product of graphs for the right-profile, hom(F,G1 ×G2) = hom(F,G1)hom(F,G2).

A graph invariant induces a partition of G on whose subsets the function f is constant,
i.e., two graphs G and G′ are f -equivalent if f(G) = f(G′). If on the other hand f(G) ̸=
f(G′) then the graphs G and G′ are distinguished by f , belonging as they do to different
subsets of the partition of G induced by f .

If f induces the trivial partition consisting entirely of singletons, then f determines
graphs up to isomorphism. There is great interest in finding graph invariants with this
property, because of the possible implications for the status of the graph isomorphism
problem (still of unknown complexity).

A slightly weaker requirement than that f determine all graphs up to isomorphism is
that f determine almost all graphs up to isomorphism. Letting G(n) ⊂ G denote the set
of all graphs on n vertices, this is to say that

#{G ∈ G(n), G determined by f}
|G(n)|

→ 1 as n→∞.

If G1 ⊂ G is a block, or union of blocks, of the partition of G induced by f then we say
the the class G1 is determined by f . In this situation, knowing the value of f(G) we can
determine whether G ∈ G1. Another way of phrasing this is to say that the property of
a graph belonging to the class G1 is an “f -invariant”. For example, the property of being
2-connected is a Tutte polynomial invariant. When G1 consists of just a single graph G,
the graph G itself is determined by f up to isomorphism.
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Question 26

(i) Explain why the property of having no cycles is a chromatic polyno-
mial invariant.

(ii) Prove that the complete graph Kk and cycle Ck are both determined
by their chromatic polynomials.

Conjecture 5.3. [11] Almost all graphs are determined by their chromatic polynomial.

Bollobás, Pebody and Riordan also make the weaker conjecture – but still far from
being solved – that almost all graphs are determined by their Tutte polynomial.

The Tutte polynomial of any forest onm edges is equal to xm; conversely if T (G;x, y) =
xm then G is a forest on m edges. Thus, although forests not individually determined by
the Tutte polynomial, the class of all forests on m edges is so determined. (Likewise for the
chromatic polynomial, except now one needs to take into account the number of connected
components too.)

5.2 Homomorphism profiles determining graph invariants

There are graph invariants that are known to determine each graph G up to isomorphism.
An example, trivial by definition, is the equivalence class of the adjacency matrix of G (up
to permutation of rows and columns). But despite this triviality one shouldn’t overlook
the fact that algebraic properties of the adjacency matrix A of a graph G correspond to
graphical properties of G in a way that may permit analysis of the latter (for example, the
matrix powers of A enumerate walks on G – see below).

The homomorphism G-profile of G, an infinite sequence of natural numbers, may also
seem to be too unwieldy a graph invariant to be useful (even allowing that for given
G it is possible to truncate the profile to those graphs with at most as many vertices
as G). However, we saw in the final lecture how the correspondence hom(G,H1 ×H2) =
hom(G,H1)hom(G,H2) between the direct product of graphs and multiplication in N could
be used to prove the non-trivial result that G×G ∼= H ×H implies G ∼= H. This required
the fact that these profiles do indeed determine all graphs up to isomorphism:

Theorem 5.4. (Lovász,[57], and [58]) Let G be the set of all finite graphs in some enu-
meration, no two graphs isomorphic.

Then

(i) The left-G-profile of a (possibly edge-weighted) graph G determines G up to isomor-
phism.

(ii) The right G-profile of a graph G determines G up to isomorphism.
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Can we “thin out” the class G to make a smaller set P with the property that every
graph is still determined by its left- (and right-) P-profile?

Dvořák [21] has given two examples for left-profiles. A graph H is k-degenerate if each
subgraph of H contains a vertex of degree at most k. Every graph with tree-width k
is k-degenerated. 1-degenerated graphs are precisely forests, but there are 2-degenerated
graphs with arbitrary tree-width; the complete graph with each edge subdivided by two
new vertices is 2-degenerate.

Theorem 5.5. (Dvořák [21]) Every graph is determined by its left P-profile when

(i) P is the set of all 2-degenerate graphs.

(ii) P consists of all graphs homomorphic to a fixed non-bipartite graph (in other words,
an down-set in the homomorphism order with minimal element a non-bipartite graph).

We may extend the terminology of right P-profiles to the case where P is a collection
of edge-weighted graphs.

Question 27 Show the following:

(i) The right {Kk : k = 1, 2, . . .}-profile of G determines P (G;x).

(ii) The right {K1−k
k : k = 1, 2, . . .}-profile of G determines F (G;x),

where Ky
k denotes the complete graph on k vertices with a loop of

weight y on each vertex (here y = 1− k).

(iii) The right {Ky
k : k, y = 1, 2, . . .}-profile of G determines T (G;x, y).

(Here all that matters is that y ranges over some infinite set of val-
ues.) [More fiddly as requires bivariate polynomial interpolation.
See [28] for details.]

(iv) The right {K1
1 +Kk : k = 1, 2, . . .}-profile determines the indepen-

dence polynomial I(G;x) =
∑
x|U |, where the sum is over all stable

sets U in G. (The graph K1
1 is a single vertex with a loop attached;

the graph K1
1 +Kk the star K1,k with a loop on its central vertex.)

Conjecture 5.3 thus states that the right {Kk : k = 1, 2, . . .}-profile determines almost
all graphs (or in its weaker form, that the right {Ky

k : k, y = 1, 2, . . .}-profile determines
almost all graphs).

How about the right {K1
1 +Kk : k = 1, 2, . . .}-profile? Well, as Noy showed [66], using

the fact that on average a random graph on n vertices has independence (stability) number
O(log n), almost all graphs are not determined by the independence polynomial. So here
we have an example of a homomorphism profile by an infinite number of non-isomorphic
graphs for which we know it is not true that the profile determines almost all graphs.
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5.3 Spectrum and degree sequence by left profiles

A k-walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . ,
vk−1, ek, vk, where ei+1 = vivi+1 for 0 ≤ i ≤ k−1. A k-walk is closed if v0 = vk. A 0-walk is
just a vertex and is always closed. A 1-walk is a walk from a vertex to an adjacent vertex.
A closed 1-walk is a loop.

Lemma 5.6. Let H be an edge-weighted graph with adjacency matrix A. Then

hom(Ck, H) = tr(Ak).

Proof. The matrix Ak has (i, j) entry the sum of edge-weighted k-walks from i to j, as can
be proved by induction. (The weight of a walk is the product of its edge weights, with
multiplicities counted for repeated edges.) A closed k-walk corresponds to a homomorphic
image of Ck. The diagonal entries of Ak then together sum to hom(Ck, H). By diagonal-
ization, A = B−1DB for orthogonal matrix B and diagonal matrix D = diag(λ1, . . . , λn),
where the λi are the eigenvalues of A taken with multiplicity.

Corollary 5.7. Let H be an edge-weighted graph H on n vertices with adjacency matrix
A. Then the left {Ck : 1 ≤ k ≤ n} ∪ {K1}-profile of H determines the spectrum of A.

Proof. If A has eigenvalues λ1, . . . , λn then tr(Ak) =
∑

i λ
k
i . In particular, tr(A0) =

hom(K1, H) = n gives the number n of vertices of H, i.e., the size of A. Given the power
sums

∑
λki for 1 ≤ k ≤ n, Newton’s relations yield the elementary symmetric polynomi-

als in the λi and hence the λi are uniquely determined (as the roots of the characteristic
polynomial of A).

Restricting attention to simple unweighted undirected graphs, graphs determined by
their spectrum include Kn, Kn,n and Cn. (Curiously, the line graphs L(Kn) of complete
graphs are also determined by their spectrum with the exception of the case n = 8, where
there are three other non-isomorphic graphs with the same spectrum.) Similar to Con-
jecture 5.3 about the chromatic polynomial, it is conjectured that almost all graphs are
determined by their spectrum [16]. On the other hand, almost all trees are not determined
by their spectrum, and there are many constructions of cospectral non-isomorphic graphs.
The smallest pair of graphs with the same spectrum is C4 ∪K1 and K1,4.

The characteristic polynomial ofG is defined by ϕ(G;x) = det(A−xI) = (x−λ1) · · · (x−
λn), where λ1, . . . , λn are the eigenvalues of A (taken with multiplicity). So in all the above
we could have talked about the characteristic polynomial of G (rather than the spectrum)
being determined by the left {K1,k : k = 0, 1, , . . .}-profile of G.

By Corollary 5.7 the conjecture of Van Dam and Haemers [16] is that almost all graphs
are determined by their left {K1,k : k = 0, 1, , . . .}-profile.

Lemma 5.8. Let H be an edge-weighted graph on n vertices with adjacency matrix A,
and let 1 denote the n × 1 all-one vector. Then the left {K1,k : 1 ≤ k ≤ n}-profile of H
determines the vector A1.
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Proof. The homomorphic image of K1,k is a multiset of k edges incident with a common
vertex. If H has vertex set [n] = {1, . . . , n} and adjacency matrix A = (au,v)u,v∈[n] then

hom(K1,k, H) =
∑
v∈[n]

( ∑
u∈[n]

au,v
)k
,

by taking all possible choices of a multiset of k edges incident with common vertex v as the
image of K1,k. By taking k = 1, . . . , n we can determine the column sums

∑
u∈[n] au,v of

A, i.e., the vector 1⊤A. Since A is symmetric this also gives the row sums and the vector
A1.

When H is an unweighted graph, i.e. its adjacency matrix has entries either 0 or 1,
with degree sequence d1, . . . , dn (vertex degrees listed in non-increasing order), we have as
a particular case of Lemma 5.8 that

hom(K1,k, H) =
∑
i

dki .

(The case k = 0 gives us n: hom(K1, H) = |V (H)|.) By taking k = 0, 1, . . . n we obtain
the following:

Corollary 5.9. The left {K1,k : k = 0, 1, . . .}-profile of (an unweighted graph) H deter-
mines the degree sequence of H.

Are almost all graphs determined up to isomorphism by their degree sequence? If ab
and cd are edges of a graph then the (multi)graph obtained from G by deleting ab and cd
and replacing these by edges ac and bd has the same degree sequence: provided ac and
bd are not already edges then this gives another simple graph G′ with the same degree
sequence as G. Of course, it may be that there are no such pair of edges ab and cd for
which this exchange both yields a simple graph and one that is non-isomorphic to G′.

6 From graphs to matroids

The Tutte polynomial was defined originally for graphs and extends more generally to ma-
troids. The many natural combinatorial interpretations of its evaluations and coefficients
for graphs then translate to not obviously related combinatorial quantities in other ma-
troids. For example, the Tutte polynomial evaluated at (2, 0) gives the number of acyclic
orientations of a graph.6 Zaslavsky proved that the Tutte polynomial at (2, 0) also counts

6This interpretation of the evaluation of the chromatic polynomial of a graph at −1, due to Stanley [77],
is itself surprising and is the tip of the iceberg with regard to the connection between orientations and
colourings of graphs.
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the number of different arrangments of sets of hyperplanes in n-dimensional Euclidean
space (the underlying matroid is of a set of n-dimensional vectors over R).7

For another example of extending the scope of a definition, the Tutte polynomial
T (G; x, y) along the hyperbola xy = 1 when G is planar specializes to the Jones poly-
nomial of the alternating link associated with G (via the medial graph of G). Starting
from the knot theory context, analogues of the Tutte polynomial have recently been de-
fined for signed graphs (needed for encoding arbitrary links, not just alternating) and
embedded graphs (in other surfaces than the plane).

We shall see the connection of the Tutte polynomial and the Jones polynomial via
the Kauffman bracket of a link: the deletion-contraction recurrence for the Tutte polyno-
mial of a graph is mirrored in the skein relation for the Jones polynomial (involving local
transformations of a knot).

But before this we shall see with the interlace polynomial another example of this
phenomenon – originally defined meaningfully only for a restricted class of graphs (namely
interlace graphs, or circle graphs), its recursive definition (analogous to deletion-contraction
for the Tutte polynomial) applies to any graph. Interpreting its values for graphs generally
remains an open area of research. Its definition has already been extended to matroids too.

Common to the application to knots and to Eulerian tours on 2-in 2-out digraphs is
the operation of taking the medial graph of a plane graph and considering the types of
transition that may occur at a vertex when following the knot (under or over) or Eulerian
tour of the graph (which of the edges to follow out of the vertex). There are three possible
types of transition when following edges in and out of at a vertex of degree 4, and this would
bring us to Jaeger’s transition polynomial (see [2]) which includes the Penrose polynomial
as a special case, and is also intimately related to the Tutte polynomial. However, we shall
only have time to consider the interlace polynomial and Jones polynomial.

6.1 Cuts, circuits and cycles

We start with undirected graphs. A set A of edges in a graph G = (V,E) is an edge cut,
or cutset, if the graph G − A = (V,E \ A) has more components than G. When G is a
connected graph, a cutset is a set of edges which disconnects G. An inclusion minimal edge
cut of a graph G is called a bond. A bond is always contained in a single component of G.
If A is a bond of a connected graph G then the graph G−A has exactly two components,
say with vertex sets V1 and V2. A is the the set of all edges between V1 and V2, denoted
by E(V1, V2). A cut of size one is called a bridge.

A path we interpret both as a subgraph and as a sequence v0, e1, v1, . . . , et, vt of vertices
and edges of the graph, in which the vertices vi (and hence edges too) are distinct. In a
trail vertices may be repeated, only edges ei being distinct, and in a walk both vertices and

7A hyperplane in n-dimensional Euclidean space is an (n−1)-dimensional flat subset (congruent to
(n − 1)-dimensional space), i.e., affine subspace of dimension n − 1. Flats in Euclidean spaces are affine
subspaces such as points, lines, planes,... More generally, a flat in a matroid is a subset with the property
that adding any other element to it increases its rank, and a hyperplane in a matroid of rank r is a flat of
rank r − 1.
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graph
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G G∗

medial graph

m(G) ∼= m(G∗)

(4-regular plane)

2-in 2-out digraph

alternating

chord diagram

(Gaussian word)
interlace graph

(circle graph)

Tutte polynomial

Interlace polynomial

Kauffman bracket

Martin polynomialJaeger transition

Jones polynomial

knots/links

knot/link

deletion - contraction

skein relation

delete - switch

Penrose polynomial

geometric duality

matroid duality

Figure 11: Schematic diagram of interrelationships between various combinatorially defined
polynomials. The dashed lines from one class up to another indicate containment. Arrows
indicate operations (invertible when double arrow) from one class to another. Once defined
for a class of objects, a polynomial may be extended in its scope by lifting up to a more
general class of objects – this is what happens for the Tutte polynomial (graphs to matroids)
and interlace polynomial (circle graphs to graphs to binary matroids). In the reverse
direction, restricting the Jones polynomial to alternating links gives the Tutte polynomial
along xy = 1. Missing from the diagram are the class of signed plane graphs: these
encode all knots/links and by extending to signed graphs generally there is a signed Tutte
polynomial which satisfies a deletion-contraction recurrence, only with two cases according
to the sign of the edge.
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edges may be repeated. A circuit of length t is formed by a sequence v0, e1, v1, . . . , et, vt in
which all vertices are distinct with the exception only of v0 = vt (so it can be thought of as
a “closed path”) . Similarly, a trail v0, e1, v1, . . . , et, vt satisfying v0 = vt is called a closed
trail or a cycle.8

As all the edges of a closed trail are distinct, a closed trail may be identified with the
subset of edges traversed by it. By saying that a set of edges is a cycle is meant that for
some ordering it will be form a closed trail. If all the edges of the connected graph G are
traced by some cycle then G is an Eulerian graph.

Proposition 6.1. A graph is Eulerian if and only if it is connected and all its vertices
have even degree.

It follows that any Eulerian subgraph is an edge-disjoint union of circuits (this is some-
times called Veblen’s theorem [84]). The following are two algorithms for constructing an
Eulerian cycle of a connected graph G all of whose vertices are of even degree:

(i) Fleury’s algorithm [25] (“Don’t burn your bridges”) starts with an arbitrarily
chosen vertex v0 and an arbitrary starting edge e0 incident with v0. The edge e0 is
deleted and its other endpoint is the next vertex v1 to be chosen. At each stage,
at current vertex vi an edge ei can be chosen as the next edge in the cycle if it is
not a bridge in the remaining graph, unless there is no such edge, in which case
the only remaining edge left at the current vertex is chosen. It then moves to the
other endpoint vi+1 of edge ei, after which ei is deleted from the graph. At the end
of the algorithm there are no edges left, and the sequence in which the edges were
chosen forms an Eulerian cycle. [In this algorithm, the last edges chosen from vi
(i > 0) before returning to v0 form a spanning tree of G – each of them is a bridge
by definition of the algorithm.]

(ii) Hierholzer’s algorithm [38] chooses any starting vertex v0, and follows a trail of
edges from that vertex until it returns to v0. It is not possible to get stuck at any
vertex other than v0, because all vertex degrees being even ensures that when the trail
enters a vertex v ̸= v0 there must be an unused edge leaving v. The trail formed in
this way is closed, but may not cover all the vertices and edges of the initial graph. As
long as there exists a vertex v belonging to the current cycle that has incident edges
not yet in the cycle, start another trail from v, following unused edges until returning
to v, and join the cycle formed in this way to the previous cycle. [This algorithm
may be thought of as gluing cycles together to form a Eulerian cycle covering all
the edges of G, cf. Veblen’s theorem that an Eulerian cycle can be partitioned into
circuits.]

Proposition 6.2. The intersection of any cutset with any cycle is even.

8Circuits and cycles have been defined this way round in order to have circuits in the graph theory sense
coincide with circuits in the matroid theory sense. For us any circuit is a cycle, not vice versa. However,
this is sometimes counter to graph theory terminology found elsewhere, where cycles are circuits....
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Question 29

(i) Prove (or recall the proofs of) Propositions 6.1 and 6.2.

(ii) Prove that the symmetric difference of two bonds contains a bond.

(iii) Prove that the symmetric difference of two circuits contains a circuit.

6.2 Orthogonality of cycles and cutsets

If F is a field then the set of all vectors of length m with entries in F forms a vector space
Fm of dimension m. This vector space is equipped with inner product xy⊤ =

∑m
i=1 xiyi.

If V is a vector subspace of Fm then the set of all vectors y which are orthogonal to all
vectors x ∈ V , is again a vector space which is called the orthogonal complement of V and
denoted by V ⊥. Observe that V ⊥⊥ = V and that dimV ⊥ = m− dim(V ).

Consider a graph G = (V,E) with m edges and the field F = Z2 on two elements. The
vector space ZE

2 formed by all vectors x = (xe : e ∈ E), where xe ∈ Z2, is isomorphic to the
vector space Zm

2 . A vector x may be thought of as the characteristic (indicator) vector of
a subset of edges of G. Now consider the set Z of all vectors x which correspond to cycles
(i.e., to Eulerian subgraphs). Also, denote by K the set of all vectors x which correspond
to edge cuts of G. We have the following basic result:

Theorem 6.3. For any graph G the following hold:

(i) Both Z and K are vector subspaces of ZE
2 .

(ii) Z and K are orthogonal complements of each other.

(iii) dim(Z) = m − n + k, where n = |V (G)| and k is the number of components of G,
and dim(K) = n− k.

Before proving this result, recall that a spanning forest of a graph G = (V,E) is any
(edge-) inclusion maximal subgraph (V,A) not containing any cycle. A spanning forest is
just a spanning tree if G is connected. Of course |A| = |V |−c(G), where c(G) is the number
of components of G. A spanning forest (V,A) can be dually defined as an inclusion-minimal
subgraph of G which has the same number of connected components as G.

Proof. Both Z and K are vector subspaces of ZE
2 by virtue of Question 29 above. Propo-

sition 6.2 says that K ⊆ Z⊥, so that dimK ≤ m − dimZ. It therefore suffices to prove
dim(Z) ≥ m− n+ k and dim(K) ≥ n− k.

Let A be the edge set of a spanning forest of G (so |A| = n−k, |E \A| = m−n+k). By
maximality of A the graph (V,A∪{e}) contains, for every e ∈ E\A, a uniquely determined
cycle Ze containing the edge e. By the minimal connectivity definition of a spanning forest
we know that for every e ∈ A the graph (V,A\{e}) has more components than G and thus
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there exists a unique cutset Ce of G containing the edge e with the same components as
the graph (V,A \ {e}). But now both cycle Ze and cut Ce are the only selected cycles and
cuts containing the edge e Since e ̸∈ Zf for each f ∈ E \ (A∪{e}), and similarly e ̸∈ Cf for
each f ∈ A \ {e}, the cycles {Ze : e ∈ E \ A} are linearly independent, as are the cutsets
{Ce : e ∈ A}. This proves both dim(Z) ≥ m− n+ k and dim(K) ≥ n− k.

Question 30

(i) Prove that if Z is a cycle in G and A the set of edges of a spanning
forest of G then

∑
e∈Z\A Ze = Z (for simplicity we identify in this

notation a cycle with its characteristic vector).

(ii) Prove a similar statement for cuts.

6.3 Graph duality

Henceforth we allow graphs with parallel edges and loops. A simple graph is a graph with
no parallel edges or loops. When clarity demands it, the term multigraph is used for a
graph in which there may be parallel edges and loops.

Two simple graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there is a bijection
f : V → V ′ such that uv ∈ E if and only if f(u)f(v) ∈ E ′, for all u, v ∈ V .

Definition 6.4. Two multigraphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there
are functions f : V → V ′ and f : E → E ′ such that

(i) if e has endpoints u and v then g(e) has endpoints f(u) and f(v);

(ii) f and g are bijections.

An isomorphism between multigraphs is an isomorphism between their underlying sim-
ple graphs together with the condition that edge multiplicities are the same (including
loops). A multigraph G = (V,E) can be represented by its adjacency matrix A = A(G)
with (u, v) entry equal to the number of edges joining u and v. Multigraphs G and G′ are
isomorphic if and only if the matrices A(G) and A(G′) are permutation-equivalent.

A graph G = (V,E) is planar if it can be drawn in the plane so that in the drawing
distinct arcs are openly disjoint and share only end-vertices in the case that corresponding
edges are incident. A graph with such a drawing is called a plane graph. An edge may lie
on the boundary of one face (and this if and only if it is a bridge) or two faces. As we are
considering multigraphs, a face may be formed by only two edges.

Let G = (V,E, F ) be an (undirected) plane graph with set of faces F . The geometric
dual of G is the graph G∗ = (V ∗, E∗, F ∗), with V ∗ = F,E∗ = {e∗ : e ∈ E}, where e∗ has
endpoints the faces of G which have e on their boundary (thus e∗ is a loop when e is a
bridge). The face set F ∗ of G∗ may be identified with the vertex set of G; and then the
edge set E∗ may be identified with the edge set E of G.
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Figure 12: Some plane graphs and their duals. The leftmost example illustrates how edges
in series become parallel edges in the dual and bridges become loops in the dual.

The dual graph G∗ is again planar and (G∗)∗ ∼= G.
A simple graph may have a graph with parallel edges and loops as its dual. For example,

if T is a tree with n vertices then the dual of any of its plane drawings is a single vertex
graph with n−1 loops. As another example consider any 2-connected plane graph G (so in
particular there are no bridges) and let G′ be the graph which arises from G by subdividing
every edge of G by one vertex. Then the dual graph G′∗ arises from G∗ by replacing every
edge by two “parallel” edges.

Further examples of dual pairs are shown in Figure 12.

Question 31

(i) Can you find some more examples of self-dual plane graphs?

(ii) The medial graph m(G) of a plane graph G is defined by placing
vertices on the midpoints of edges of G and joining vertices by an
edge when they lie on consecutive edges of a face (by a double edge
if consecutive in two different faces). Prove that m(G) ∼= m(G∗).
(See Figure 13.)

Theorem 6.1. Let G = (V,E) be a plane graph. Then the correspondence e 7→ e∗ has the
following properties:

(i) A ⊆ E is a cycle if and only if A∗ = {e∗ : e ∈ A} is a cut in G∗.

(ii) A ⊆ E is a cut if and only if A∗ = {e∗ : e ∈ A} is a cycle in G∗.
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Figure 13: The medial graph (dashed grey lines) of K3 (solid black lines) is isomorphic to
the medial graph of the dual graph K∗3 (the graph K∗3 is shown with dotted black lines).

To prove this rigorously requires appeal to the Jordan Curve Theorem.

Question 32

(i) Give an example of a 2-connected planar graph G with two inequiv-
alent embeddings, i.e., find G with two embeddings that have non-
isomorphic geometric duals G∗.

(ii) For any given k, describe a 2-connected planar graph with at least k
pairwise inequivalent embeddings.

6.4 Matroids

Whitney [93] introduced matroids in 1935 as an abstraction of both linear independence
and the properties of cycles in graphs. Matroids present a natural “self-dual” notion which
captures both cycles and cutsets.

There are many “cryptomorphic” ways to define a matroid axiomatically. First we start
with independence as the primitive notion – for graphs a set of edges is independent if it
spans a forest, i.e., contains no cycles.

Definition 6.5. (Independent sets) Let E be a finite set. A matroid M on E is a pair
(E, I) where I is a non-empty collection of subsets of E with the properties:
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(i) If I1 ∈ I and I2 ⊂ I1 then I2 ∈ I (I is an ideal),

(ii) (Exchange Property) If I1, I2 ∈ I, |I2| < |I1|, then there exists e ∈ I1 such that
I2 ∪ {e} ∈ I.

If E is a family of vectors in a vector space V , and I is the set of linearly independent
subsets of E, then (E, I) is a matroid (called a vector matroid).

A basis is a maximal independent set with respect to inclusion, i.e., a subset of edges
that is independent with the property that adding any other edges destroys the property
of independence.

The rank of A ⊆ E is defined by

ρ(A) = max{|I| : I ∈ I, I ⊆ A}.

A circuit is a minimal non-independent set of edges with respect to inclusion, i.e., a
subset of edges that is not independent but with the property that any proper subset is
independent. Equivalently, a circuit is a minimal subset of edges contained in no basis. (A
circuit in a graphic matroid corresponds to a spanning subgraph in which all vertices have
degree 2 or 0.)

A matroid on E may be alternatively defined using any one of these three notions just
defined as primitive:

Definition 6.6. (Circuits) Let E be a finite set. A matroid M on E is a pair (E, C) where
C is a non-empty collection of subsets of E with the properties:

(i) No member of C contains another (C is an antichain),

(ii) If C1, C2 ∈ C are distinct and e ∈ C1∩C2 there exists C3 ∈ C such that C3 ⊂ C1∪C2

and e ̸∈ C3.

Definition 6.7. (Rank function) Let E be a finite set. A matroid M on E is a pair (E, ρ)
where ρ is a function defined on subsets of E with the following properties:

(i) ρ(A) ≤ |A| is a non-negative integer;

(ii) if A ⊆ B ⊆ E then ρ(A) ≤ ρ(B) (ρ is monotone), and ρ({x}) ≤ 1;

(iii) (Semimodularity) For any A,B ⊆ E,

ρ(A ∪B) + ρ(A ∩B) ≤ ρ(A) + ρ(B).

Definition 6.8. (Bases) Let E be a finite set. A matroid M on E is a pair (E,B) where
B is a non-empty collection of subsets of E with the properties:

(i) No member of B contains another (B is an antichain);
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(ii) (Steinitz-MacLane Exhange Lemma) If B1, B2 ∈ B and e ∈ B1 \ B2 then there is
f ∈ B2 \B1 such that B1 \ {e} ∪ {f} ∈ B.

For more about matroids see for example Peter Cameron’s notes at
www.maths.qmul.ac.uk/˜pjc/comb/matroid.pdf (see in particular Section 3, in which the
connection between the success of the greedy algorithm and bases of a matroid is explained),
and for even more the books [88] and [68].

Question 33

(i) Prove that for any graph G = (V,E) the collection C of all subsets
of E that form a circuit in G forms a matroid on E.

What are the independent sets of this matroid? What is the corre-
sponding rank function? And what are the bases?

Matroids which are defined in this way are called graphic matroids,
usually denoted by M(G). If M(G) is defined by the cycles of G
then we also speak about the cycle matroid of G.

(ii) Let E be a finite (multi)set of vectors (in a vector space). Subsets
of E will be independent if they are linearly independent. Bases and
rank function (defined as the dimension of the space generated by
the set) have a clear meaning from linear algebra.

What are the circuits?

Matroids which are defined in this way are called linear or repre-
sentable matroids. If the vector space is over field F then the ma-
troid is F-representable, and a binary matroid is one that is Z2-
representable.

(iii) Prove that the lines of the Fano plane (see Figure 14) form the
circuits of a matroid (called the Fano matroid and denoted by Fano).
Alternatively, declare a set of points to be independent if it does not
contain a line and prove that this defines a matroid (the same one of
course). Is Fano a binary matroid?

(iv) LetD be a digraph and S and T subsets of its vertices (not necessarily
disjoint). Show thatM defined on T is a matroid when it is stipulated
that I ⊆ T is independent if there exists a set of vertex-disjoint paths
each starting in S and whose endpoints are exactly I. (This is a
gammoid; a strict gammoid is the case where S = T comprises all
vertices of D.)

When are two matroids on sets E and E ′ isomorphic? One obvious thing to demand is
a bijection ι : E −→ E ′ such that, for every A ⊆ E, (i) ι(A) is a circuit iff A is a circuit,
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Figure 14: The Fano plane, consisting of 7 points and 7 lines, each containing 3 points.
One line is represented as a circle.

(ii) ι(A) is independent iff A is independent, (iii) ι(A) is a basis iff A is a basis, and (iv)
ρ(A) = ρ(ι(A)).

But when do two graphs have isomorphic cycle matroids? This is more interesting and
it leads to the following notion:

Definition 6.9. Two graphs G and G′ are 2-isomorphic if G can be transformed into G′

by means of the following two operations and their inverses:

(i) Identify two vertices in different connected components of G;

(ii) Suppose G is obtained from disjoint graphs G1 and G2 by identifying the vertices u1
of G1 and u2 of G2, and identifying v1 of G1 and v2 of G2. The Whitney twist of G
is the graph obtained by identifying u1 with v2 and u2 with v1.

The first operation joins two components in a 1-cut (its inverse separating a graph at
a 1-cut). The Whitney twist acts by flipping the graph G about one of its 2-cuts, and is
illustrated in Figure 15.

Question 34 Suppose that the graphs G1 and G2 are connected planar
graphs in Figure 15. Let G be the graph obtained by identifying u1 with
v1 and u2 with v2, and G

′ the Whitney twist of G. Describe how (G′)∗ is
related to G∗ in terms of the graphs G∗1 and G∗2.

Proposition 6.10. If two graphs are 2-isomorphic then their cycle matroids are isomorphic

Proof. Clearly the edge set of cycles are unchanged when identifying two vertices in differ-
ent components. Suppose G′ is obtained from G by a Whitney twist about a given 2-cut
of G. A cycle that does not pass through either vertex of the 2-cut remains unchanged. A
cycle of G passing through one of the vertices of the 2-cut must pass through the other. If
traversing this cycle we encounter the edges e1, e2, . . . , ei, f1, f2, . . . , fj, where the e-edges
belong to G1 and the f -edges to G2, then in the Whitney twist corresponds the cycle in
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Figure 15: The Whitney twist of a graph about a 2-cut.

whose traversal we meet the edges in the order e1, . . . , ei, fj, fj−1, . . . , f1. Thus the edge
sets of cycles are the same in both graphs.

Theorem 6.2. Whitney [92] The cycle matroids of G and G′ are isomorphic if and only if
G and G′ are 2-isomorphic. In particular, if G is 3-connected and G has isomorphic cycle
matroid to G′ then G and G′ are isomorphic.

Geometric duals of different embeddings of a plane graph G are 2-isomorphic, although
they may not be isomorphic when G is not 3-connected.

6.5 Dual matroids

Consider a graph G = (V,E) and its cycle matroid M(G). The independent sets of M(G)
correspond to the edge sets of spanning forests of G, the bases to maximal spanning forests
of G. Thus the rank of the set E is |V | − c(G) where c(G) is the number of components of
G and any basis of M(G) has rank |V | − c(G) .

A maximal set of edges not containing any circuit (basis of G) is a maximal spanning
forest of G. Circuits and cutsets are in dual correspondence for planar graphs. The dual
notion of a basis for G is a maximal set of edges not containing any cutset of G, which is
precisely the complement of a maximal spanning forest of G. Each of these sets has size
|E| − |V |+ c(G).

Definition 6.11. Let M = (E,B) be matroid given by its bases. Then the dual matroid
M∗ is given by (E,B∗), where B∗ = {E \B;B ∈ B}.
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Question 35 Prove that M∗ is indeed a matroid and that M∗∗ =M .

Lemma 6.12. Let M be a matroid on E with rank function ρ and M∗ the dual of M , with
rank function ρ∗. For A ⊆ E, let A∗ = E \ A. Then,

|A∗| − ρ∗(A∗) = ρ(E)− ρ(A),

and
ρ∗(E)− ρ∗(A∗) = |A| − ρ(A).

Proof. Let I be a maximal independent subset of A in M , and I ∪ J a basis (J ⊆ A∗ by
maximality). Set K = A∗ \ J = E \ (A ∪ J) ⊆ E \ (I ∪ J). The set K is an independent
subset of A∗ (since E \ (I ∪ J) is a basis of M∗). We then have

ρ∗(A∗) ≥ |K| = |A∗| − |J | = |A∗| − ρ(E) + ρ(A),

with ρ(E)− ρ(A) independent elements in J . Dually,

ρ(A) ≥ |A| − ρ∗(E) + ρ∗(A∗).

But |A|+ |A∗| = |E| = ρ(E) + ρ∗(E), so the two inequalities are in fact equalities.

The rank function ρ∗ of the dual matroid is thus given in terms of the rank function ρ
for M by

ρ∗(A) = |A| − ρ(E) + ρ(E \ A).

The dual of a graphic matroid need not be a graphic matroid.

Question 36

(i) Let the rank function be given by ρ(A) = min(|E|, r) (r a fixed pos-
itive integer). Determine the bases and circuits of the corresponding
matroid. (This matroid called uniform matroid and it is denoted by
U r
m, where m = |E|.) What is its dual?

(ii) A matching in a graph is a subset of pairwise disjoint edges. Do
matchings form a matroid on a set of edges?
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6.6 Deletion and contraction

A loop of a matroid M is an element e such that {e} is not independent (i.e., ρ({e}) = 0),
equivalently e which lies in no independent set, or in no maximal independent set (basis).

Dually, a coloop is an element e contained in every basis of M . A coloop in a connected
graph is an edge whose removal disconnects the graph. (Such an edge is commonly called
a bridge or isthmus.)

Let M be a matroid on a set E given by its set of circuits C. For e not a loop, denote
by C ′ those sets in C not containing e and for e not a coloop by C ′′ sets of the form C \ {e}
where the circuit C contains e. It is easy to see that both sets C ′, C ′′ satisfy the axioms for
the circuits of a matroid.

This matroid defined by C ′ is the matroid obtained by deletion of e (or restriction to
E \{e}), denoted byM\e. For C ′′ the matroid is that obained by contraction of e, denoted
by M/e.

If M is the cycle matroid of a graph G = (V,E) then, for an edge e ∈ E, M\e and
M\A are the cycle matroid of the graph G\e. The matroid M/e is the cycle matroid of
the graph G/e obtained by contraction of edge e.

It is intuitively clear (but involves the Jordan Curve Theorem) that if G is a plane
graph then contraction of an edge e in G corresponds to deletion of edge e∗ in the dual
graph G∗ and that the deletion of an edge e in G corresponds to contraction of edge e∗ in
G∗. This duality holds in general for matroids and their duals:

Proposition 6.13. (i) e is a loop in M if and only if e is a coloop in M∗, and vice
versa.

(ii) If e is not a loop then (M/e)∗ ∼= M∗\e.

(iii) If e is not a coloop then (M\e)∗ ∼= M∗/e.

Proof. The element e lies in every basis of M (i.e., e is a coloop of M) if and only if it lies
in no basis of M∗ (i.e., e is a loop of M∗), and dually.

Suppose that e is not a loop of M . The bases of M/e are the bases of M containing e
with e removed. The complement of such a basis in E \{e} is a basis of M∗ not containing
e, which is to say a basis ofM∗\e. So (M/e)∗ ∼= M∗\e. Statement (iii) is proved dually.

Definition 6.14. A matroid M ′ is a minor of matroid M if M ′ can be obtained from M
by a sequence of contractions and deletions, which is denoted by M ′ ≺M .

Using the above-mentioned facts we see that M ′ is a minor of M if and only if M ′∗ is
a minor of M∗. Matroid minors feature in beautiful characterization theorems such as the
following:

Theorem 6.3. A matroid M can be represented by linear independence over the field Z2

(M is a binary matroid) if and only if U2
4 fails to be a minor of M .
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Theorem 6.4. A matroid M is the cycle matroid of a graph if and only if U2
4 , Fano and

Fano∗ fail to be minors of M and the cycle matroids of K3,3 and K5 fail to be minors of
the dual matroid M∗.

Theorem 6.5. A matroid M is representable by linear independence of vectors over every
finite field (such matroids are called regular) if and only if U2

4 , Fano and Fano∗ fail to be
minors of M .

(The dual of the Fano matroid ought not be confused with its geometric dual when
represented by a drawing in the plane.)

It follows that every graphic matroid (cycle matroid) is regular, but this can be seen
much more easily directly. Another equivalent condition for regular matroids is that they
can be represented by linear independence of columns of a totally unimodular matrix (a
matrix whose square submatrices all have determinants equal to 0, 1, or -1). Rota’s con-
jecture is that matroids representable over a fixed finite field are characterized by finitely
many forbidden minors. In contrast with this, matroids in general and even matroids rep-
resentable by independence of real vectors are not characterized by finitely many forbidden
minors.

Planar graphs have a matroid characterization. In fact the connection between planar
graphs (and thus to the Four Colour Conjecture) and linear algebra was a motivation for
the concept of a matroid in the 1930s (H. Whitney, B. L. Van der Waerden).

Theorem 6.6. A graph G is planar if and only if the dual matroid M∗(G) of the cycle
matroid M(G) is graphic.

Put otherwise, G is planar if and only if it has a dual graph. For duality of general
graphs we need matroids. (Here the matroid dual is distinct from the geometric dual,
defined for a 2-cell embedding of a graph in surfaces of arbitrary genus – genus 0 is the
case of plane embedding, or, equivalently, embedding in the 2-dimensional sphere.)

7 Connections to knot theory

7.1 The medial of a plane graph

To form the medial graph m(G) of a connected plane graph G that has at least one edge
first place a vertex ve into the interior of each edge e of G. Then, for each face F of G,
join ve and vf by an edge lying in F if and only if the edges e and f are consecutive on the
boundary of F . The medial graph m(G) is 4-regular, as each face creates two adjacencies
for each edge on its boundary. The faces of m(G) divide naturally into two types: those
that contain vertices of G (vertex-faces), and those corresponding to faces of G (face-faces).
Vertex-faces will be coloured black and face-faces coloured white. See Figure 16.

If G∗ is the planar dual of G then m(G∗) ∼= m(G) (if e 7→ e∗ is the duality mapping
between edges of G and edges of G∗ then e and f are consecutive edges of a face in G if
and only if e∗ and f ∗ are consecutive edges in a face of G∗).
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Figure 16: K4 and its medial graph, with faces containing vertices of G shaded black.

The plane graph G is the black face graph of m(G), i.e., the graph whose vertices are
the black faces of m(G) and whose edges join two black faces of m(G) that share a vertex.
The plane graph G∗ is the white face graph of m(G). The embedding of m(G∗) differs from
that of m(G) in having a different outer face: black faces in one (vertices of G) become
white faces in the other (faces of G).

Forming the black face graph is inverse to the medial construction. A 4-regular con-
nected plane graph H has bipartite dual graph so we can always 2-colour the faces of H
properly with colours black and white, making the exterior face white. If G(H) is the black
face graph of H then m(G(H)) = G.

Question 37 Describe how to construct the graph m(G)∗. What type of
graph is it?

7.2 Eulerian tours of digraphs

Definition 7.1. Let D be a digraph. An Euler cycle of D is a closed trail in D, i.e., a
closed walk in which each edge of D is traversed at most once. An Euler tour9 of D is a
closed trail that traverses all the edges of D, i.e., an Euler cycle in which each edge of D

9In [2] the term Euler cycle is used, for both Euler tour and Euler cycle. In [4] the term Euler circuit
is used both for Euler tour and Euler cycle, the distinction not being made between tour of the graph and
tour of a subgraph. The use of the word cycle for digraphs has been chosen here to correspond with that of
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is traversed exactly once. In other words, a walk v1, e1, v2, e2, . . . , vmem, v1 where e1, . . . , em
comprises a list of all the edges of D with no repetitions, and ei is the edge directed from
vi to vi+1 (in which vm+1 = v1).

Definition 7.2. An Euler cycle k-partition of D is a partition of the edges of D into k
non-empty Euler cycles C1, . . . , Ck. The number of Euler cycle k-partitions of D is denoted
by ek(D). (Thus e1(D) is the number of Euler tours of D.)

For an Euler tour C, let ve(C) =
(
v1 e1 v2 e2 . . . vm em

)
denote the cyclic

word comprising vertices and edges visited when traversing C (tours and cycles are con-
sidered equivalent up to starting point). The word ve(C) has the property that vertex v
appears exactly d+(v) times and each edge appears exactly once.

Similarly, we denote by v(C) =
(
v1 v2 . . . vm

)
the cyclic word comprising vertices

in the order visited when traversing C. The word v(C) has the property that vertex v
appears exactly d+(v) times and each edge appears exactly once.

If there are no parallel directed edges in D then v(C) determines ve(C) uniquely.
Given an Euler tour C, the digraph D is uniquely determined by C. The vertex-edge

word ve(C) contains not only the vertex-edge incidences and edge directions that determine
D, but also the fact that this is an Euler tour, so C in fact contains more information than
the adjacency matrix for D. For given C, we thus write D = D(C) to emphasize that the
digraph D is determined by C.

A digraph D has an Euler tour if and only if each vertex has the same indegree as
outdegree, d+(v) = d−(v), one of the orginating results of graph theory, due to Euler [24].
The vertex v is encountered exactly d+(v) times in traversing an Euler tour of D.

The algorithms of Fleury and Hierholzer for constructing Euler tours of a graph G,
described in Section 6.1 above, suggest two ways to think of an Euler tour of a digraph D.

The first (corresponding to Hierholzer’s algorithm) is to construct C by gluing together
Euler cycles C1, . . . , Ck of D, where C1 is arbitrary, and Ci+1 is a cycle that uses a vertex
appearing in at least one of the cycles C1, . . . , Ci. In other words, the cycles of an Euler
k-partition of D can be glued together to form an Euler tour of D. Given two cyclic vertex
words (v x) and (v y) , where x and y are sequences of vertices, representing Euler
cycles C and C ′, the cyclic vertex word (v x v y) represents the cycle obtained by
gluing C and C ′ together, i.e., first traversing C staring at v and then, upon returning to
the vertex v, following the cycle C ′. By iterating this gluing procedure, all k cycles in an
Euler k-partition of D glue together to form an Euler tour of D.

The second (corresponding to Fleury’s algorithm) arises by fixing a starting point u
for a given Euler tour and marking the last out-edge traversed from vertex v ̸= u before
returning to u for the last time. These edges together form a spanning tree of D in which
every vertex v ̸= u is connected to u by a directed path, in other words, a spanning
arboresecence of D rooted at u. Conversely, given a spanning arboresence T of D rooted at
u, an Euler tour can be traversed by first freely choosing one of d+(u) out-edges of u, and

its use for graphs (in which a circuit is minimal dependent set of edges, i.e., a closed path): the underlying
graph of an Euler cycle of D is a cycle (Eulerian subgraph) of the underlying undirected graph of D.
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(Permutations of a, b, c produce the given number of Euler cycle partitions.)

Euler cycle partition

Figure 17: Two orientations of m(K3) and their Euler cycle partitions, in which the Euler
cycles are presented as cyclic vertex words. An Eulerian orientation of 4-regular graph
is alternating if at each vertex incoming edges alternate with outgoing edges, and anti-
alternating of at each vertex incoming edges do not alternate with outgoing edges.
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Figure 18: Euler tour C of 2-in 2-out digraph D starting from u corresponds to spanning
arborescence rooted at u, whose edges are the second out-edge taken from v ̸= u when
traversing C. The tour C may also be constructed by gluing together Euler cycles (illus-
trated here is one possibility, gluing the two given cycles at vertex b, which produces a
shifted version of C).

then at each vertex v freely choosing any out-edge not on T , as long as there are any, and
only when the edge on T remains taking it. This gives, for each spanning arboresecence T
rooted at u,

d+(u)!
∏
v ̸=u

(d+(v)− 1)!

Euler tours starting at a given outedge from u, i.e.,∏
v

(d+(v)− 1)!

Euler tours. Moreover, an Euler tour corresponding to spanning arborescence T rooted at
u cannot equal an Euler tour corresponding to a different spanning arborescence T ′ rooted
at u.

By the Matrix Tree Theorem for digraphs, the number of spanning arborescences of D
rooted at u is given by

tu(D) = detLV \{u},

where L is the Laplacian matrix L = ∆−A, in which A is the adjacency matrix of D, with
(v, w) entry equal to the number of directed edges from v to w, and ∆ is the diagonal matrix
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with (v, v) entry equal to d+(v), and LV \{u} is the matrix L with row and column indexed
by u removed. (Alternatively, tu(D) = 1

n
λ1 · · ·λn−1, where λ1, . . . , λn−1 are the non-zero

eigenvalues of L.) It is perhaps surprising that the number of spanning arborescences of
D does not depend on the root u.10

Theorem 7.3. (“BEST Theorem”, [1, 69]) The number of Euler tours of digraph D =
(V,E) is given by

e1(D) = tu(D)
∏
v∈V

(d+(v)−1)!,

where u is an arbitrary vertex of D and tu(D) the number of spanning arborescences of D
rooted at u.

7.3 2-in 2-out digraphs

From now on D will be a 2-in 2-out digraph, i.e., each vertex has indegree 2 and outdegree
2. If D has n vertices then it has 2n edges.

For an Euler tour C of 2-in 2-out digraph D, the word ve(C) has the property that
each vertex occurs exactly twice and each edge exactly once. For an Euler cycle the
corresponding cyclic vertex-edge word has the property that each vertex occurs at most
twice and each edge at most once. Similarly, the cyclic vertex word v(C) has the property
that each vertex occurs exactly twice and for an Euler cycle the corresponding cyclic vertex
word has the property that each vertex occurs at most twice.

For a 2-in 2-out digraph D there is a one-one correspondence between Euler tours of D
and spanning arborescences of D rooted at a fixed vertex u. See Figure 18. However, we
shall concentrate on the viewpoint of Euler cycle k-partitions (whose cycles glued together
form an Euler tour).

Given an an undirected graph G = (V,E), an Eulerian orientation of G is an orientation
of the edges with the property that each vertex has as many incoming edges as outgoing
edges: d−(v) = d+(v) for each v ∈ V . When orienting edges according to a traversal of
an Euler tour of G the result is an Eulerian orientation. Counting the number of Eulerian
orientations of G is #P-complete [62], even for plane 4-regular graphs [29]. (The situation
is quite different for a given digraph D, where by Theorem 7.3 counting Eulerian tours of
D can be done in polynomial time.)

Proposition 7.4. If G is a connected 4-regular graph on n vertices then G has (−1)n−1T (G; 0,−2)
Eulerian orientations.

Note that this does not extend to graphs G generally: the number of Eulerian orien-
tations of G is only given by this evaluation of the Tutte polynomial when all its vertex
degrees belong to {0, 1, 2, 4}.

10A similar phenomenon occurs for acyclic orientations of a connected graph G with unique sink at
vertex u: this turns out to be independent of u and is in fact given by the Tutte polynomial evaluation
T (G; 1, 0).
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Proof. The easiest way to prove this relies on knowing what a nowhere-zero Z3-flow is and
establishing that (−1)n−1T (G; 0,−2) = F (G; 3) is the number of nowhere-zero Z3-flows of
connected 4-regular G. (Making an inductive deletion-contraction argument and applying
the Recipe Theorem for evaluations of the Tutte polynomial is thwarted by the fact that
the property of being 4-regular is destroyed by edge deletion and contraction.) □

Definition 7.5. Let C be an Euler cycle of D with cyclic vertex-edge word

ve(C) =
(
x a y b x′ a y′ b

)
,

in which the vertices a, b are interlaced, and x, y, x′, y′ are vertex-edge sequences (possibly
empty). The transposition of C along a and b is the Euler cycle Cab of D defined by the
cyclic vertex-edge word

ve(Cab) =
(
x a y′ b x′ a y b

)
.

Note that transposition along an interlaced pair in an Euler cycle C produced another
Euler cycle of the same size; in particular, an Euler tour upon transposition becomes
another Euler tour.

If the cyclic vertex word for C is v(C) =
(
x a y b x′ a y′ b

)
, then that for

Cab is v(Cab) =
(
x a y′ b x′ a y b

)
. If D has no parallel edges then transposition

can be defined in terms of vertex words rather than vertex-edge words, because in this
case each vertex word v(C) uniquely determines the vertex-edge word ve(C). For the sake
of simplicity we shall work with vertex words rather than vertex-edge words, with the
understanding that only minor modifications need to be made in order to incorporate the
case of parallel directed edges.

Definition 7.6. Let a be a vertex of a 2-in 2-out digraph D such that (u, a), (a, v), (u′, a),
(a, v′) are the directed edges of D incident with a. (Possibly u = v or u′ = v′, corresponding
to loops on a.) A transition at a is one of the two possible pairings {u, v}, {u′, v′} or
{u, v′}, {u′, v}. (For the first pairing, the pair of edges (u, a), (a, v) and the pair of edges
(u′, a), (a, v′) both form directed paths, and similarly for the second pairing.)

Remark then that a 2-in 2-out digraph D on n vertices has 2n Euler cycle partitions,
corresponding to the independent choice of two possible transitions at each vertex of D.

Let C be an Euler cycle. When v(C) =
(
. . . u a v . . . u′ a v′ . . .

)
the tran-

sition of C at a is {u, v}, {u′, v′} .
Given v(C) =

(
. . . u a v . . . b . . . u′ a v′ . . . b

)
, the transposition along

interlaced a and b is given by

v(Cab) =
(
. . . u a v′ . . . b . . . u′ a v . . . b

)
,

in which the transition at a has been switched from {u, v}, {u′, v′} to {u, v′}, {u′, v}.
See Figure 19.
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C′′ = Cab − aC

transition {u, v}, {u′, v′}

Figure 19: Transition at a vertex a, and contracting out a from an Euler tour.

Definition 7.7. Suppose C is an Euler cycle with v(C) =
(
. . . u a v . . . u′ a v′ . . .

)
.

The contraction of C by a is the Euler cycle of D\{a} denoted by C − a and given by

v(C − a) =
(
. . . u v . . . u′ v′ . . .

)
.

Lemma 7.8. If D has an Euler tour C with no interlaced pairs then D has only one Euler
tour.

Proof. Induction on the number of vertices of D. The base case is where D is a single
vertex with two loops, for which the assertion is true. Suppose it is true for all 2-in 2-out
digraphs on n − 1 vertices and consider D on n vertices. By hypothesis D has an Euler
tour C with no interlacements. This implies there is some vertex a with a loop. (Consider
the word v(C) in which the two occurrences of a vertex u either enclose or are enclosed
by a pair of occurrences of another vertex v, or the two occurrences are disjoint; for given
vertex u, consider all the vertices that it encloses: either there are none, in which case take
a = u, or there is a such a vertex v whose two occurrences are between those of u, and now
repeat the argument with v in place of u and eventually an adjacent pair of vertices must
be found.) The Euler tour C − a of D − {a} has no interlacements, hence D − {a} has a
unique Euler tour by induction hypothesis, and therefore so does D, as the only choice for
an Euler tour at a is to traverse the loop between entering and leaving a. □

Lemma 7.9. If C and C ′ are Euler tours of D then there is a sequence of transpositions
that transforms C to C ′. In other words, the orbit of an Euler tour of D under the action
of transposition along interlaced vertices is the set of all Euler tours of D.

Proof. The proof is by induction on the number of vertices of D. The case of a single
vertex is vacuously true. Suppose the statement is true for digraphs on n− 1 vertices and
let D be a 2-in 2-out digraph on n vertices. Suppose that D has distinct Euler tours C and
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C ′. If there is a vertex a at which C and C ′ have the same transition, then by contracting
at a the tours C − a and C ′ − a can be obtained one from the other by a sequence of
transpositions, which upon reinserting a means the same is true of C and C ′.

Suppose then that C and C ′ have different transitions at all vertices. Then, since C
and C ′ are distinct, by Lemma 7.8 there is an interlaced pair a and b in C. The Euler tour
Cab then has the same transition as C ′ at vertex a, and the previous argument shows that
Cab can be obtained from C ′ by a sequence of transpositions, and hence the same is true
of C = (Cab)ab. □

7.4 Interlace polynomial

Definition 7.10. The interlace graph H(C) of an Euler tour of 2-in 2-out digraph D is
defined on the vertex set of D traversed by C in which vertices a and b are adjacent if a
and b are interlaced in C, i.e., if the cyclic vertex word of C takes the form

v(C) =
(
. . . a . . . b . . . a . . . b . . .

)
.

The interlace graph of C is the intersection graph of the chord diagram of C, in which
the vertices of the cyclic vertex word of C are placed around a circle and each pair of like
vertices is joined by a chord. This type of intersection graph is known as a circle graph.
See Figure 20.

Question 38 Explain why the 5-wheel (the graph on six vertices formed
by joining each vertex of a 5-cycle to a central vertex) is not a circle graph.
(This is the smallest example of a graph that is not a circle graph.)

For a vertex a in graph H denote by N(a) its open neighbourhood {c ∈ V (H) : ac ∈
E(H)} and by N [a] its closed neighbourhood N(a) ∪ {a}.

Lemma 7.11. Let a, b be interlaced in an Euler tour C of 2-in 2-out digraph D and Cab

the Euler tour of D obtained by transposition along a and b. Then the interlace graph
H(Cab) is obtained by applying the following two operations to H(C):

(i) Switch along ab: toggle adjacencies between N(a)∩N(b), N(a)\N [b] and N(b)\N [a]
(but not within these sets).

(ii) Swap a and b, i.e., ac is an edge in H(Cab) if and only if bc is an edge in H(C), and
bc is an edge in H(Cab) if and only if ac is an edge in H(C)).

Proof. Case analysis. See [4]. □
See Figure 22.
Denote the graph obtained from H by switching along (adjacent) vertices a and b by

Hab, and the graph obtained from H by swapping a and b by Hab. Then Lemma 7.11 says
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Figure 20: A 2-in 2-out digraph D with Euler tour C, its chord diagram, and the interlace
graph of C, equal to the intersection graph of the chord diagram.
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(Euler cycle 1-partition)

Euler cycle 2-partition Euler cycle 3-partition

2-in 2-out digraph

(m(K4) with alternating orientation)
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Figure 21: Canonical alternating orientation of m(K4) and examples of Euler cycle k-
partitions for k = 1, 2, 3, 4.
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a
bcbbc

N(a) ∩N(b)

N(a)\N [b] N(b)\N [a]

V \(N [a]∪N [b])

Switch along adjacent a, b

Swap a, b

Figure 22: Switching along ab and then swapping a and b transforms H(C) to H(Cab).
The dashed lines indicate where adjacencies need to be toggled. Remaining adjacencies in
H(C) are preserved.

that for interlaced vertices a and b we have H(Cab) = (H(C)ab)ab. Since we shall only be
concerned with the interlace graph H(C) up to isomorphism, it suffices to work with the
fact that H(Cab) ∼= H(C)ab. Note also that (Hab)ab = H. We say two simple graphs H
and H ′ are switching equivalent if there is a sequence of switches transforming one into the
other. By Lemma 7.11 the interlace graphs of Euler tours C and C ′ of a 2-in 2-out digraph
D are switching equivalent.

Question 39

(i) Which 2-in 2-out digraphs have an Euler tour with empty interlace
graph Kn?

(ii) Show that Kn is unaffected by switching along an edge. Which
digraphs D have an Euler tour with interlace graph Kn?

Define the function qk on interlace graphs by qk(H(C)) = ek(D(C)), where C is an
Euler tour of D. We have q1(K1) = 1 = q2(K1) and qk(K1) = 0 for k ≥ 2 since D(C) in
this case is the digraph on a single vertex with two loops.

Lemma 7.12. The function q1 satisfies the recurrence

q1(H(C)) = q1(H(C) \ a) + q1(H(C)ab \ b),
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when ab is an edge of H(C), and q1(H(C)) = 1 when H(C) has no edges (C is the unique
Euler tour of D).

Proof. If H(C) has no edges then by Lemma 7.8 there is a unique Euler tour and
q1(H(C)) = 1 = e1(D(C)).

Otherwise, suppose ab is an edge of H(C). Referring to Figure 19, let D = D(C) be the
2-in 2-out digraph determined by C, D′ = D(C − a) that determined by the contraction
of C at a and D′′ = D(Cab − a) that determined by the contraction of Cab at a. Since
transposition at ab switches the transition at a, and C 7→ Cab is a bijection on Euler tours
of D, partitioning tours according to their transition at a we have

e1(D(C)) = e1(D(C − a)) + e1(D(Cab − a)).

The interlace graph ofD(C−a) isH(C)\a and the interlace graph ofD(Cab−a) isH(C)ab\b
(where b is the vertex deleted since H(Cab) = (H(C)ab)ab involves a swap of a and b which
is not carried out in just the switch H(C)ab). We have then e1(D(C − a)) = q1(H(C) \ a)
and e1(D(Cab − a)) = q1(H(C)ab \ b) and the statement of the lemma is now proved. □

Question 40 Prove that the function qk, k ≥ 1, satisfies the recurrence

qk(H(C)) = qk(H(C) \ a) + qk(H(C)ab \ b),

where C is an Euler tour of 2-in 2-out digraph D and a, b are interlaced
in C.

Lemma 7.12, and the fact that the switching operation is defined on any simple graph,
not just interlace graphs, prompted Arratia, Bollobás and Sorkin [4] to postulate the
existence of a polynomial Q(H;x) defined on simple graphs H as follows:

Definition 7.13. The interlace polynomial Q(H; x) of a simple graph H = (V,E) is
defined by the recurrence

Q(H;x) =

{
Q(H \ a;x) +Q(Hab \ b;x) ab ∈ E
x|V | E = ∅.

Example 7.14. Take H = Kn and edge ab, for which Kn \ a ∼= Kab
n \ b ∼= Kn−1. By the

defining recurrence for Q(Kn; x) we have, by induction on n, Q(Kn;x) = 2n−1x.

Note that Q(H; 1) = q1(H) when H = H(C) is the interlace graph of an Euler tour
C. The authors of [4] prove that the order of edges ab chosen in the switching and vertex-
deletion recurrence defining Q(H;x) does not affect the resulting polynomial, i.e., that the
polynomial Q(H;x) is well-defined. This is analogous to the situation for the recurrence
defining the Tutte polynomial, where we have independence of the order of edge deletions
and contractions. Also analogous to the case of the Tutte polynomial, it is possible to
circumvent this somewhat tedious verification by producing a bona fide polynomial that
does indeed satisfy the given recurrence.
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Theorem 7.15. The interlace polynomial of a simple graph H = (V,E) is given by the
induced subgraph expansion

Q(H;x) =
∑
U⊆V

(x− 1)|U |−rk(AU ),

where A is the adjacency matrix of H, AU its restriction to rows and columns indexed by
U , and rk(AU) the rank of the matrix AU over F2 (where rk(A∅) = 0 by fiat).

Proof. See [2, Ch. 9]. □

Proposition 7.16. Switching equivalent graphs have the same interlace polyomial.

Proof. For edge ab of H,

Q(Hab; x) = Q(Hba; x)

= Q(Hba \ b; x) +Q(H \ a;x) since (Hba)ab = H,

= Q(H;x)

□

Proposition 7.17. The interlace polyomial is multiplicative over disjoint unions.

Proof. We wish to prove that if H1 = (V1, E1) and H2 = (V2, E2) are vertex-disjoint
graphs then

Q(H1 ∪H2;x) = Q(H1;x)Q(H2; x).

If neither H1 nor H2 has any edges then the assertion is trivial, with Q(H1 ∪ H2; x) =
x|V1|+|V2| = x|V1|x|V2| = Q(H1; x)Q(H2;x). Without loss of generality then, suppose ab ∈ E1.
Then, by induction on the number of vertices of H1 ∪H2, and using the fact that deleting
a or b or switching on ab ∈ E1 does not affect H2,

Q(H1 ∪H2) = Q((H1 \ a) ∪H2) +Q((Hab
1 \ b) ∪H2)

= Q(H1 \ a)Q(H2) +Q(Hab
1 \ b)Q(H2)

= Q(H1)Q(H2),

□

Question 41

(i) Prove that Q(H; 2) = 2n for a graph H on n vertices.

(ii) Show that if H is a forest and a a leaf of H (degree 1) attached to
vertex b then Q(H;x) = Q(H \ a;x) + xQ(H \ {a, b};x).
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Proposition 7.18. For graph H = (V,E) and any U ⊆ V we have deg Q(H) ≥ deg Q(H[U ]).
In particular, deg Q(H) ≥ α(H), where α(H) is the size of the largest independent (stable)
set of vertices in H.

Proof. It suffice to prove that deg Q(H) ≥ deg Q(H \ a) for a ∈ V .
If a is isolated then q(H;x) = xQ(H \ a) by multiplicativity over disjoint unions.

Otherwise, for ab ∈ E, Q(H; x) = Q(H \ a; x) + Q(Hab \ b; x), and since the interlace
polynomial of a graph has nonnegative coefficients the result follows. □

Question 42

(i) Prove that, more generally than the first statement of Proposi-
tion 7.18, for a connected graphH the coefficient of xi in Q(H[U ];x)
is less than or equal to that of xi in Q(H;x).

(ii) Prove that c(H) (number of connected components of H) is the
smallest index i for which the coefficient of xi in Q(H;x) is non-
zero.

Recall that for 2-in 2-out digraph D we denote by ek(D) the number of Euler cycle
k-partitions of D. Let

e(D; x) =
∑
k≥1

ek(D)xk−1.

Theorem 7.19. For Euler tour C of 2-in 2-out digraph D we have

e(D(C); x) = Q(H(C); x+ 1).

Proof. The proof is by induction on the number of vertices of D (number of vertices of
H).

For an interlaced pair of vertices a and b in Euler tour C of D,

ek(D(C)) = ek(D(C − a)) + ek(D(Cab − a)),

since transposing C along a and b switches transition at a, and to each Euler cycle k-
partition there corresponds one of two possible transitions at a (either given by an inter-
lacement of one of the constituent Euler cycles, or by the transition obtained by taking
the union of the two Euler cycles containing a. Euler cycle k-partitions of D associated
with the one type of transition at a correspond bijectively to Euler cycle k-partitions of
D(C − a), while those with the other transition at a corresponds bijectively to Euler cycle
k-partitions of D(Cab − a).). Hence,

e(D;x) = e(D(C − a);x) + e(D(Cab − a);x)
= Q(H(C) \ a; x+ 1) +Q(Hab \ b; x+ 1) by induction hypothesis,

= Q(H(C); x+ 1).
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If there is no interlaced pair of vertices in C, then H(C) has no edges and C has loop
on some vertex a (see proof of Lemma 7.8). In this case, by either keeping the loop as a
separate Euler cycle or gluing it to the Euler cycle passing through a, we have

e(D(C); x) = xe(D(C − a);x) + e(D(C − a); x)
= (x+ 1)e(D(C − a); x)
= (x+ 1)Q(H(C) \ a;x+ 1) by induction hypothesis,

= Q(H(C); x+ 1) by Prop. 7.17 (multiplicativity over disjoint unions).

□
We finish with the relationship between the interlace polynomial and the Tutte polyno-

mial of a plane graph. First it will be useful to describe how e(D; x) behaves over connected
components and blocks:

Lemma 7.20. (i) If D1 and D2 are 2-in 2-out digraphs on disjoint vertex sets then

e(D1 ∪D2;x) = xe(D1; x)e(D2; x).

(ii) If D is a 2-in 2-out digraph with cut-vertex a, C an arbitrary Euler tour of D, and
D1 and D2 are the two connected components of the 2-in 2-out digraph D(C − a),
then

e(D1 ∪D2;x) = (x+ 1)e(D1; x)e(D2;x).

Proof. For (i) we have

e(D1 ∪D2;x) =
∑
k≥2

(∑
i+j=k

ei(D1)ej(D2)

)
xk−1

= xe(D1; x)e(D2;x).

For (ii), if a is the cut-vertex of D1 ∪D2, there are two possibilities for a given Euler cycle
k-partition of D1∪D2: either it has a transition at a making it the union of an Euler cycle
i-partition of D1 and Euler cycle (k− i)-partition of D1, or its transition at a joins a cycle
in a Euler cycle i-partition of D1 and a cycle in an Euler cycle (k + 1− i)-partition of D1.
By partitioning Euler cycle k-partitions of D1 ∪D2 into these two cases, we have

e(D1 ∪D2;x) =
∑
k≥2

(∑
i+j=k

ei(D1)ej(D2)

)
xk−1 +

∑
k≥1

( ∑
i+j=k+1

ei(D1)ej(D2)

)
xk−1

= (x+ 1)e(D1; x)e(D2;x).

□
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Theorem 7.21. When G is a plane graph with medial graph −→m(G) given the alternating
orientation which orients black faces anticlockwise,

e(−→m(G); x) = T (G;x+ 1, x+ 1).

Hence if C is an Euler tour of −→m(G) and H(C) its interlace graph, then Q(H(C); x) =
T (G; x, x).

Proof. We prove that e(−→m(G);x) = T (G;x + 1, x + 1) for plane graph G = (V,E) by
induction on the number of edges of G. The statement is true for G = K2, where m(G)
is a single vertex with two loops and we have e(−→m(G);x) = 1 + x = T (K2;x + 1, x + 1).
(The case where G = K1 is also vacuously true.)

When e is an ordinary edge of G (neither bridge nor loop),

T (G; x+ 1, x+ 1) = T (G/e;x+ 1, x+ 1) + T (G\e;x+ 1, x+ 1)

= e(−→m(G)/e;x) + e(−→m(G\e;x) by induction hypothesis,

= e(−→m(G);x),

the last line by the fact that (cf. proof of Theorem 7.19 and Figure 23) −→m(G/e) and
−→m(G\e) correspond to −→mG) with vertex e contracted out according to the two possible
transitions at e that an Euler tour may take.

If e is a bridge, then e is a cut-vertex in −→m(G) and

T (G; x+ 1, x+ 1) = (x+ 1)T (G/e; x+ 1, x+ 1)

= (x+ 1)T (G1;x+ 1, x+ 1)T (G2;x+ 1, x+ 1) blocks G1 and G2 of G/e,

= (x+ 1)e(−→m(G1); x)e(
−→m(G2);x) by induction hypothesis,

= e(−→m(G); x) cut-vertex e of m(G), Lemma 7.20(ii).

If e is a loop, then in −→m(G) the vertex e is a cut-vertex with a loop. Let −→m(G)′ denote
the digraph obtained by contracting out the vertex e (see Figure 24). Then −→m(G)′ =
−→m(G\e) and we have

T (G; x+ 1, x+ 1) = (x+ 1)T (G\e;x+ 1, x+ 1)

= (x+ 1)e(−→m(G)′; x) by induction hypothesis,

= e(−→m(G);x) cut-vertex e of m(G), Lemma 7.20(ii).

(The last line can also be seen by considering the two cases where the loop is separate from
the other Euler cycles comprising the Euler cycle partition, or joined to an existing Euler
cycle.) □

Corollary 7.22. If G is a connected plane graph then the number of Euler tours of −→m(G)
is equal to the number of spanning trees of G.
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D′ = −→m(G\e)
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D′′ = −→m(G/e)D = −→m(G)
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Figure 23: The two types of transition at a vertex of a plane 2-in 2-out digraph D, equal
to m(G) for some plane graph G, with alternating orientation anticlockwise around black
faces. The black transition corresponds to edge deletion in G, and the white transition to
edge contraction.

e

−→m(G) −→m(G)′ (contract out vertex e)

bc

bc bc

bcbc
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= −→m(G\e)
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Figure 24: Contracting out a vertex with a loop in the oriented medial graph (proof of
Theorem 7.21).
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Euler tour of −→m(G)

bcbc
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−→m(G)

Spanning tree of G

(black face graph of m(G))

Figure 25: Correspondence between Euler tours of an alternating orientation of the medial
graph of a plane graph G and spanning trees of G. A tour of the medial graph forms a
simple closed curve in the plane unifying all the black faces into one region.

Question 43 Prove Corollary 7.22 directly. (See Figure 25. Also [52].)

Given a 2-in 2-out digraph D there is a unique anticycle partition formed by following
two out-edges then two in-edges, and repeating this until all edges have been traversed
(once an edge is encountered again this closes a component of the anticycle, which is a
cycle which when traversed alternates in the orientation of its edges forward and backward).
The number of components in this anticycle partition is denoted by a(D). For the example
D = −→m(K4) see Figure 26, which interprets this anticycle partition as the diagram of a link
(in this case three unknots linked as Borromean rings). We shall develop this connection
in the next section about the Kauffman bracket and Jones polynomial.

The following evaluation of the interlace polynomial of the interlace graph of a 2-in 2-out
digraph D gives another interpretation of the Tutte polynomial evaluation T (G;−1,−1)
when D = −→m(G) for plane G:

Theorem 7.23. Let D be a 2-in 2-out digraph on n vertices with Euler tour C and a(D)
the number of components in its anticycle partition. Then

e(D;−2) = (−1)n(−2)a(D)−1.

Proof. The proof is by induction on n. When n = 1 the digraph D is a single vertex
with two loops and we have a(D) = 1 and e(D; x) = 1+x, so e(D;−2) = −1 = (−1)(−2)0
and the base case is true.
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Consider D on n > 1 vertices and a vertex a of D. Let D′a denote the digraph D
with a contracted out according to one possible transition for Euler cycles at a and D′′a
the digraph D with a contracted out according to the other possible transition for Euler
cycles at a. (Given an Euler tour C interlaced at a and b we can take D′a = D(C − a) and
D′′a = D(Cab − a).)

If the vertex a belongs to two anticycles then a(D′a) = a(D′′a) = a(D)− 1 and

e(D;−2) = e(D′a;−2) + e(D′′a;−2)
= (−1)n−1(−2)a(D)−2 + (−1)n−1(−2)a(D)−2 by induction hypothesis,

= (−1)n(−2)a(D)−1.

If on the other hand the vertex a belongs to a single anticycle component then {a(D′a), a(D′′a)} =
{a(D), a(D) + 1} and

e(D;−2) = (−1)n−1(−2)a(D)−1 + (−1)n−1(−2)a(D)

= (−1)n(−2)a(D)−1.

□

Corollary 7.24. If G is a plane graph and −→m(G) its medial graph with alternating orien-
tation then

T (G;−1,−1) = (−1)|E(G)|(−2)a(
−→m(G))−1,

where a(−→m(G)) is the number of components in the anticycle partition of −→m(G).

Actually, for a general graph G we have the evaluation

T (G;−1,−1) = (−1)|E(G)|(−2)dim(Z∩Z⊥),

where Z is the (binary) cycle space of G and Z⊥ the cutset space of G. The space Z ∩Z⊥
is called the bicycle space of G. See [32] and Section 3.10 above for an elucidation of the
correspondence.
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bc

bc

bc

bc
bc bc

alternating orientation diagram ofdirect from overpass

of 4-regular graph

(here of Borromean rings)

to underpass

(here medial graph of K4) (anticircuit)

alternating link

Figure 26: Canonical alternating orientation of m(K4) and interpretation of the anticycle
partition (into three components) as the diagram of an alternating link, which in this case
represents the Borromean rings.

7.5 The Kauffman bracket of a link

Lecture notes for the relation between the Tutte polynomial and the Kauffman bracket of
a link follow as a scan of handwritten notes starting with the next page.
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