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Abstract. We characterize all the values of M = M(n) for which
the random graph G(n, M) is a.a.s. projective.

1. Introduction

The theory of random discrete structures has contributed a lot to our
understanding of many problems in graph theory; numerous examples
of such an influence can be found in monographs [3] and [4]. However,
until now relatively few authors have studied properties of products
of random graphs. On the other hand, the behaviour of certain types
of products of random graphs could, possibly, shed some light on the
behaviour of Shannon capacities of graphs (see, for instance, [2] and
Conjecture 5.1 in [1] with the following discussion), Hedetniemi’s con-
jecture, and related problems. In this paper we make a small step
towards studying properties of products of random graph, characteriz-
ing densities for which a random graph is projective.

Let us recall some basic definitions. A homomorphism of two graphs
G and H is a map f : V (G) → V (H) for which {f(x), f(y)} ∈ E(H)
whenever {x, y} ∈ E(G). A graph H is rigid if the identity map is
the only homomorphism from H to H. For a graph H = (V, E) and a
natural number k, by Hk we denote the graph with vertex set V k = V ×
· · ·×V , in which two vertices (v1, . . . , vk) and (w1, . . . , wk) are adjacent
if and only if {vi, wi} ∈ E for every i = 1, . . . , k. Equivalently, Hk can
be defined as the maximal graph on the set V k for which all projections
πi : (x1, . . . , xn) → xi are homomorphisms. A homomorphism f :
Hk → H is idempotent if f(x, . . . , x) = x for each x ∈ V . A graph
H is projective if every idempotent homomorphism g : Hk → H is a
projection, and is strongly rigid if every homomorphism g : Hk → H is
a projection. It is easy to see that H is strongly rigid if and only if it
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is rigid and projective. For more information on projective and rigid
graphs and the role they play in the studies of category of graphs and
their homomorphisms, we refer the reader to [9] and [11].

Larose and Tardif [5, 6], inspired by an earlier work of Rosenberg
[10], asked whether most graphs on a large set are projective. In [7]
we provided an elementary argument which settled this problem in the
affirmative. In this note we would like to investigate this property for
a random graph in much more detail.

Let us recall that the random graph G(n,M) is a graph chosen at ran-

dom from the family of
((n

2)
M

)
graphs with vertex set [n] = {1, 2, . . . , n}

and M edges. Equivalently, G(n, M) can be viewed as the (M + 1)-

stage of the random graph process G(n) = {G(n,M)}(
n
2)

M=0 which starts
with the empty graph on the vertex set [n], and for 1 ≤ M ≤

(
n
2

)
a

graph G(n, M) is obtained from G(n, M − 1) by adding to the set of
its edges a pair chosen at random from the family of all pairs {i, j},
1 ≤ i < j ≤ n, which are not edges of G(n, M − 1) (for more elaborate
treatment of these and other random graphs notions used here see [4]).
We say that some property holds for G(n) a.a.s. if the probability that
G(n) has this property tends to one as n →∞. Our aim is to determine
the set of all values M for which the random graph G(n,M) is a.a.s.
projective.

In order to state our results in the most precise form let us introduce
two random variables related to G(n). By τ1 we denote the minimum
value of M such that the minimum degree of G(n,M) is at least two,
and by τ2 we mean the maximum value of M for which the maximum
degree of G(n, M) is at most n− 3. Now our main result can be stated
as follows.

Theorem 1. A.a.s. the random graph process G(n) = {G(n, M)}(
n
2)

M=0

is such that G(n, M) is projective if and only if either τ1 ≤ M ≤ τ2, or
M =

(
n
2

)
.

2. Proof of the main result

As typical in random graph theory we first introduce a family of
graphs B such that for the choice of the parameter M = M(n) we
are interested in a.a.s. G(n,M) ∈ B, so that later on we can restrict
ourselves only to graphs from B. Here and below all logarithms are
natural and all inequalities and estimates are assumed to hold only for
n which is large enough.

Definition. Let G be a graph with vertex set [n]. We say that G
has property B = B(n, d) if it is connected and the following holds.
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(i) Any bipartite subgraph of H induced by two disjoint subsets S1,
S2, |S1| = s1, |S2| = s2, s1, s2 ≥ 200n

d
log d, contains at least

0.81s1s2d/n and at most 1.19s1s2d/n edges. In particular, each
subgraph induced in H by a subset S, |S| = s, s ≥ 400n

d
log d,

contains at least 0.4s2d/n and at most 0.6s2d/n edges.
(ii) No subgraph of H of s ≤ n

d
log2 d, vertices contains more that

s log3 d edges.
(iii) If d ≥ log2 n, then the degree of every vertex of H is at least

0.9d and at most 1.1d; if d ≤ log2 n, then each vertex of H
has at least two but at most 3d neighbours. Furthermore, no
vertex of degree at most 0.1d lie at a cycle shorter than five,
and no two vertices of degree at most 0.1d lie within distance
three from each other.

(iv) No two vertices of H have more than 1.1d2/n+log2 d common
neighbours, and no three vertices have more than 1.1d3/n2 +
log2 d common neighbours. Furthermore, any two vertices of
H have at least max{0, 0.9d2/n− log2 d} common neighbours.

(v) Let S1, S2, S3, S4 be sets of vertices of H, each of s ≥ 800n
d

log d
vertices, such that S2∩S4 = ∅, and let B1,2 and B3,4 be bipartite
graphs induced in H by the sets S1, S2, and S3, S4, respectively.
Then no bijection f : S1 ∪ S2 → S3 ∪ S4, with f(S1) = S3,
f(S2) = S4, is a graph homomorphism from B1,2 to B3,4.

(vi) For every vertex v there exists a set W containing at most
log2 d neighbours of degree at least 0.1d such that v is the only
vertex adjacent to all vertices from W .

(vii) Let v, w, u be three different vertices of H such that u has
degree at least three. Then, there exists a vertex t which is a
neighbour of u but which is adjacent neither to v, nor to u.

(viii) If d ≥ n0.9, then for every vertices v1, v2, v3, v4 of H there exist
at least three vertices which are adjacent to v1, v2, v3 and are
not adjacent to v4, and at least three vertices which are adjacent
to v1 and are not adjacent to v2, v3, v4.

Our next result states that, indeed, a typical random graph (with
the number of edges we are interested in) has property B(n, 2M/n).

Lemma 2. A.a.s. the random graph process G(n) = {G(n, M)}(
n
2)

M=0

is such that for each M , τ1 ≤ M ≤ n2/4, G(n,M) has property
B(n, 2M/n), and for each M , n2/4 ≤ M ≤ τ2, the complement of
G(n,M) has property B(n, n− 2M/n).
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Proof. Since the assertion can be easily verified using the first moment
method and the well known estimates for the tails of binomial distri-
bution (see, for instance, [4]) we omit it here. �

One of the basic tools in the proof of Theorem 1 is the following
result of Larose and Tardif [5] which states that in order to check if
H is projective it is enough to consider homomorphisms from H ×H
to H.

Theorem 3. A graph H is projective if and only if it is 2-projective;
i.e. if the only homomorphism f : H ×H → H satisfying f(v, v) = v
is a projection. �

Let us start with the following observation.

Lemma 4. Let H be a graph with property B(n, d) for some 1010 ≤ d ≤
n/2 and let g : H ×K2 → H be a graph homomorphism. Then either
g(v, 1) = g(v, 2) = v for each v ∈ V (H) (i.e., the homomorphism g is
a projection on V (H)), or, for some v ∈ V (H), we have |g−1(v)| ≥
800n

d
log d.

In particular, H is rigid.

Proof. For i = 1, 2, let Wi = g(V (H), i), and Vi = {v : g(v, i) = v}.
We consider the following three cases.

Case 1. |Vi| ≤ 200n
d

log d and |Wi| ≥ 1300n
d

log d, for i = 1, 2.

It is easy to see that in this case one can find four disjoint subsets
S1, S2, S3, S4 of V (H), each of m = d200n

d
log de vertices, such that

S3 = g(S1, 1) and S4 = g(S2, 2). But this contradicts the property
B(v).

Case 2. |Vi| ≥ 200n
d

log d for some i = 1, 2.

Let |V1| ≥ 200n
d

log d and let X ⊆ V (H) \ V1 denote the set of all
vertices x ∈ V (H) \ V1 for which there exists y ∈ V (H) \ V1, x 6=
y, such that V1 ∩ N(x) = V1 ∩ N(y). If |X| ≥ 600n

d
log d, then one

can find X1, X2 ⊆ X such that |X1| = |X2| ≥ 200n
d

log d, and the
bipartite graph induced in H by (V1, X1) and (V1, X2) respectively are
isomorphic, which contradicts B(v). Hence |X| ≤ 600n

d
log d and, since

V2 ⊇ V (H)\(V1∪X), we infer that |V2| ≥ n− 800n
d

log d. A ‘symmetric’

argument gives |V1| ≥ n− 800n
d

log d.
Note that B(i) and B(iii) imply that if the set of all vertices of

degree at least 0.1d which do not belong to V1 is non-empty, then there
is w /∈ V1 with has in V2 at least 0.01d neighbours. Hence, by B(iv),
w is uniquely determined by its neighbours in V2, and so v ∈ V1. This
contradiction shows that V1, as well as V2, contains all vertices of H of
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degree at least 0.1d. But then, using B(iii) and B(iv), we infer that
each vertex w /∈ V1 is uniquely determined by its neighbourhood in V2.
Hence V1 = V (H) and, by a similar argument, also V2 = V (H), i.e.,
the homomorphism g is a projection on V (H).

Case 3. |Wi| ≤ 1300n
d

log d for some i = 1, 2.

Let us assume that |W1| ≤ 1300n
d

log d and let U2 denote the set of
the vertices of H of degree at least 0.1d. From B(i) and B(iii) we infer
that |U2| ≥ n − 400n

d
log d. Take any w ∈ W1. If |g−1(w)| = m for

some m = m(w) ≥ 800n
d

log d, we are done, so let us assume that this is
not the case. Note that from B(ii) it follows that at most m(w)/ log d
vertices of H have in g−1(w) more than 2 log4 d neighbours.

Hence, there are at most n/ log d vertices u2 ∈ U2 such that the ver-
tex g(U2, 2) is adjacent to fewer than 0.1d/2 log4 d ≥ d log−5 d neigh-
bours in W1. Consequently, between the sets W1 = g((V (H), 1),
|W1| ≤ 1300n

d
log d, and g(U2, 2), there are at least |g(U2, 2)|d log−6 d

edges, which contradicts B(i).
Finally, from the part of the assertion we have just proved it follows

that for every non-trivial homomorphism f : H → H there exists a
vertex v ∈ V (H) such that |f−1(v)| ≥ 400n

d
log n. But B(i) implies that

the subgraph spanned in H by f−1(v) contains at least one edge, which
is transformed by f into a pair {v, v}, while H contains no loops. This
contradiction shows that the only homomorphism from H to H is the
identity, i.e., H is rigid. �

Lemma 5. Let H be a graph on n vertices which has property B(n, d),
for some d = d(n) such that 109 < d < n0.9, and let f : H ×H → H be
a homomorphism such that for every v ∈ V (H) we have f(v, v) = v.
Then f is a projection.

Proof. Note first that if for some w ∈ V (H) and each v ∈ V (H) we
have f(v, w) = v, then B(vi) implies that for every w′ adjacent to w we
have f(v′, w′) = v′ for every v′ ∈ V (H), and so, since H is connected, f
is a projection. Thus, let us assume that this is not the case. For every
v ∈ V (H), let A(v) denote the largest set such that |f(v, A(v))| = 1 (if
there are several such sets we take as A(v) the lexicographically first
one, to make A(v) well defined). Furthermore, set

S = {v ∈ V (H) : |A(v)| ≥ 400n

d
log d} .

Since we have assumed that f is not an identity on any row of the
set V (H) × V (H), from Lemma 4 it follows that the set V (H) \ S
is independent. Note also that because of B(i), if v, v′ ∈ S are two
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adjacent vertices of H, then also f(v, A(v)) is adjacent to f(v′, A(v′)).
Hence,

f̃ : H[S] → H : v → f(v, A(v))

is a graph homomorphism. Since B(i) implies that |S| ≥ n− 400n
d

log d,

one can argue as in the proof of Lemma 4 that f̃ is, in fact, an embed-
ding (roughly speaking, B(v) implies that a lot of points of S must be

mapped into themselves, which in turn, by B(iii) and B(iv), forces f̃
to be an embedding). Hence, for every v ∈ S, we have f(v, A(v)) = v.

Now suppose that S 6= V (H) and let w /∈ S. Since V (H) \ S is
independent and the minimum degree of H is at least two, there exist
two vertices v′, v′′ ∈ S which are adjacent to w.

From B(i) it follows that there exists a set W of at least n− 1600n
d

log d
vertices such that each w′ ∈ W is adjacent to vertices from both A(v′)
and A(v′′). Consequently, for w′ ∈ W ′ the vertex f(w, w′) is adjacent
to both v′ and v′′. Since v′ and v′′ have at most 1.1d2/n+log2 d common
neighbours, |f(w, W )| ≤ 1.1d2/n + log2 d. But, as far as d ≤ n0.9, this
implies that

|A(w)| ≥ |W |
1.1d2/n + log2 d

>
400n

d
log d,

and so w ∈ S. Consequently, S = V (H).
In order to complete the proof we have to show that A(v) = V (H)

for every v ∈ V (H). Thus, let us assume that this is not the case and
let v0 denote the vertex which minimizes |A(v)| over all vertices with
at least 0.1d neighbours. Set Ā(v0) = n \ A(v0), and r = |Ā(v0)|. We
first show that r = 0. To this end we consider two following cases.

Case 1. Ā(v0) contains at least 0.9r vertices of degree at most 0.1d.

Take three neighbours v′, v′′, v′′′ of v0 such that |A(v′)|, |A(v′′)|,
|A(v′′′)| ≥ |A(v0)| (B(iii) guarantees that it is possible). From our
assumption and B(iii) it follows that there is a vertex w ∈ Ā(v0) of
degree at most 0.1d which has a neighbour in at least two of the sets
A(v′), A(v′′) and A(v′′′), say, A(v′), A(v′′) (in fact there must be at
least 0.1r of such vertices w since otherwise two vertices of degree at
most 0.1d would lie within distance three from each other). However,
from B(iii) we infer that v′ and v′′ have only one common neighbour,
which, of course, must be identical with v0. Hence, f(v0, w) = v0 which
contradicts the fact that w /∈ A(v0).

Case 2. Ā(v0) contains fewer than 0.9r vertices of degree at most 0.1d.

Let W be the set of at most log2 d neighbours of v0 which determine
the vertex v0 uniquely (see B(vi)). For each v ∈ W let C(v) be the set
of all vertices of Ā(v0) which are not connected to some vertex from
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A(v), i.e., C(v) is the maximum set of vertices whose neighbourhoods
contain no vertices from A(v). From B(ii), B(iii), and the choice of
v0, it follows that for each v ∈ W we have |C(v)| ≤ 200r

d
log3 d. Thus,∑

v∈W |C(v)| < r, so there exists a vertex w /∈ A(v0) which has neigh-
bours in A(w′) for all w′ ∈ W . Consequently, f(v0, w) is adjacent to
all vertices f(w′, w′) = w′, w′ ∈ W , and so we must have f(v0, w) = v0

contradicting the fact that w /∈ A(v0). This completes the proof of the
case.

Thus, we have shown that for all v ∈ V (H) with degree at least
0.1d we have f(v, v′) = v for every v′. Now the assertion follows easily
from the fact that the vertices of degree at most 0.1d induce in H an
independent set (B(iv)), and that, by B(iii), each such vertex of small
degree is uniquely determined by its neighbourhood. �

Now we consider ‘dense’ random graphs G(n, M). Our aim is to
show the following result.

Lemma 6. Let H be a graph on n vertices such that either H has
property B(n, d) for some n0.9 ≤ d ≤ n/2 or its complement Hc has
property B(n, d) for some 1010 ≤ d ≤ n/2. Furthermore, let g : H ×
H → H be a graph homomorphism such that f(v, v) = v for every
v ∈ V (H). Then f is a projection.

The proof of Lemma 6 is an extension of the argument we used in
[7]. We start with the following two claims. In each of them we assume
that for H and f the assumptions of Lemma 6 hold.

Claim 1. If f(v, w) = u for some v, w, u ∈ V (H), then either v = u,
or w = u.

Proof. Let us note first that if there exists a vertex s of H such that
s is adjacent to both v and w and is not adjacent to u we are done.
Indeed, then vertices (v, w) and (s, s) are adjacent in H ×H but u =
f(v, w) is not adjacent to s = f(s, s), contradicting the fact that f
is a homomorphism. If both H and Hc are dense enough, then the
existence of such s follows from B(viii). Furthermore, if Hc has the
property B(n, d) for some 1010 ≤ d ≤ n/2, then B(vii) implies that
such a vertex s exists provided u has degree at least three in Hc. Thus,
it remains to consider the case in which Hc has property B and u has
degree two in Hc.

Observe that at least one of vertices v, w, say v, must be adjacent
to u in Hc. Indeed, otherwise (v, w) is adjacent to (u, u) in H ×H but
u = f(v, w) is not adjacent to u = f(u, u) in H since H contains no
loops. The vertex u has degree two in Hc, so, besides v, it has exactly
one more neighbour t in Hc.
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Let us consider first the case in which t = w, i.e., the vertices v and w
are the only neighbours of u in Hc. By B(iii), v and w are not adjacent
in Hc, and so they are adjacent in H; consequently (v, w) is adjacent
to (w, v) in H ×H. But u = f(v, w) is not adjacent in H to any of the
vertices v, w, u; consequently, u′ = f(w, v) 6= v, w, u. Arguing as above
we infer that u′ 6= u is a vertex of degree two in Hc which is adjacent
in Hc to one of vertices v or w, contradicting the fact that from B(iii)
it follows that no two vertices of small degree in Hc lie within distance
three from each other. Consequently, t 6= w.

Now, since by B(iii) t is not adjacent to v, either we can take s = t,
or w is adjacent to t. But in the latter case (t, u) is adjacent to (v, w)
in H×H, and so f(t, u) 6= t, u. Hence, arguing as before, we infer that
either u or t must be a neighbour of a vertex of degree two in Hc which
contradicts B(iii). �

Claim 2. Let f(v, w) = v and f(r, s) = s for some v 6= w, r, s and
s 6= w, r. Then at least one of vertices of v and s are of degree at most
three in Hc and at least two out of three remaining vertices from the
set {v, w, r, s} lie within the distance two from this vertex in Hc.

Proof. Observe first that if there exist vertices v̄ 6= r, s and s̄ 6= v, w,
such that v̄ is adjacent in H to r, s and w, but not to v, while s̄ is
adjacent to v, w and r, but not to s, then we cannot have f(v, w) = v
and f(r, s) = s. Indeed, then (s̄, v̄) is adjacent in H × H to both
(v, w) and (r, s), so f(s̄, v̄) must be adjacent in H to both v and s.
However, neither v̄ nor s̄ have this property, which contradicts Claim 1.
Consequently, in order to prove the claim we need to show that for every
quadruple (v, w, r, s) of vertices H such a pair (v̄, s̄) exists, unless at
least one of vertices of v and s are of degree at most three in Hc and at
least two of out of three remaining vertices from the set {v, w, r, s} are
either adjacent to this vertex or lie at the distance two from it in Hc.

Let us consider the existence of v̄ (s̄ can be treated by a symmetric
argument). The property B(viii) takes care of the case when both H
and Hc are dense enough, so we may assume that Hc has property
B(n, d) for some d ≤ n0.9. Suppose that v has at least 0.1d neighbours
in Hc. By B(iv), at most

3(1.1d2/n + log2 d + 1) < d

of them are either equal to one of the vertices w, r, s, or are adjacent to
them in Hc. Thus, there exists v̄ 6= w, r, s, which is adjacent to w, r, s,
but not to v, in H.

Now let us assume that the degree of v in Hc is smaller than 0.1d.
Note that v has at least two neighbours in Hc, and, since v belongs
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to no short cycles in Hc, each of vertices w, r, s can “spoil” at most
one of them (e.g., if w is a neighbour of v in Hc it shares with v no
other common neighbours; if w is not adjacent to v it has at least one
common neighbour with v). Hence, we can always choose the vertex v̄
unless the degree of v in Hc is two or three and each neighbour of v is
either one of vertices w, s, r, or is adjacent to one of these vertices. �

Proof of Lemma 6. Let V ′ denote the set of vertices of degree at least
n−4 in H (i.e., at most 3 in Hc). If the average degree of H is between
n0.9 and n−n0.9 then, by B(iii), V ′ = ∅; if Hc has B(n, d) with d < n0.9,
then B(i) implies that |V ′| ≤ 800n

d
log d < 0.01n. Since Claim 1 implies

that for every v ∈ V (H) we have |f−1(v)| ≤ 2n − 1 and |V ′| ≤ 0.01n,
applying Claim 1 once again we infer that there exists v0 ∈ V (H) \ V ′

such that at least n/3 elements of f−1(v0) is contained in one line.
Thus, let m = dn/3e and assume that for some v0, v1, . . . , vm, we have
f(v0, vi) = vi for i = 1, . . . ,m. Then, it is easy to see that Claim 2
implies that we must f(v, w) = v for all v ∈ V (H), w ∈ V (H) \ V ′.
Furthermore, let s ∈ V ′. Choose v, w ∈ V (H)\V ′ which lie at distance
at least three from s. Then, from Claim 2 it follows that for every
r ∈ V (H) we have f(r, s) 6= s; consequently, by Claim 1, for each such
pair (r, s) we must have f(r, s) = r and the assertion follows. �

Proof of Theorem 1. Observe first that any graph H with at least three
vertices and the maximum degree at most one is not projective. For a
graph containing an isolated vertex this fact follows easily from the def-
inition. If {v, w} is an isolated edge of H, then the edge {(v, w), (w, v)}
of H ×H can be transformed into any other edge of the graph H ×H
which easily implies that H is not projective. Finally, if {v, w}, {w, u}
are edges of H and v has degree one, then one can modify a pro-
jection f : H × H → H by setting f̃(v, t) = f(u, t) (or, perhaps,

f̃(t, v) = f(t, u)) for some vertices t ∈ V (H). Consequently, a large
graph with the minimum degree at most one is not projective and,

consequently, in the random graph process G(n) = {G(n, M)}(
n
2)

M=0, the
graph G(n, M) is not projective for M < τ1.

The fact that a.a.s. in the random graph process G(n) for all M ,
τ1 ≤ M ≤ τ2, G(n, M) is projective follows from Lemmas 2, 5, and 6.

Now consider any graph H on n vertices which contains a vertex v of
degree n− 2. Let w be a vertex of H which is not adjacent to v. Then
one can modify a projection f : H×H → H by putting f̃(v, t) = f(w, t)

(or, perhaps, f̃(t, v) = f(t, w)) for some vertices t ∈ V (H). Hence, such
a graph is clearly non-projective and since a.a.s. in the random graph
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process G(n), the graph G(n,M) contains a vertex of degree n− 2 for
each τ2 < M <

(
n
2

)
, for all such M ’s G(n,M) is not projective.

Finally, it is well known (see [8], or, for a somewhat simpler proof, [7])
that the graph G(n,

(
n
2

)
) = Kn is projective for all n ≥ 3. �

It is not hard to show that a.a.s. the random graph process G(n) =

{G(n, M)}(
n
2)

M=0 is such that G(n, M) is rigid whenever τ1 ≤ M ≤ τ2.
(Note that Lemmas 2 and 4 imply this fact for τ1 ≤ M ≤ n/2, and
show that for n/2 ≤ M ≤ τ2 a.a.s. G(n, M) has no non-trival auto-
morphisms; the fact that for n/2 ≤ M ≤ τ2 a.a.s. G(n, M) is rigid can
be proved in a similar way.) Hence, as an immediate consequence of
Theorem 1, we get the following result.

Corollary 7. A.a.s. the random graph process G(n) = {G(n, M)}(
n
2)

M=0

is such that G(n,M) is strongly rigid if and only if τ1 ≤ M ≤ τ2.

We also remark that the asymptotic distributions of random vari-
ables τ1 = τ1(n) and τ2 = τ2(n) are well known and easy to find. El-
ementary calculations of moments (see, for instance, [3] and [4]) show
that for every function c(n) which tends to a constant c as n →∞ we
have

lim
n→∞

Prob
{

τ1(n) ≤ n

2
(log n + log log n + c(n)

}
= exp

(
− e−c

)
,

and

lim
n→∞

Prob
{

τ1(n) ≤ n

2
(n− log n− log log n− c(n)

}
= exp

(
− e−c

)
.

Thus, one can easily write down the asymptotic probability that for
a given function M = M(n) the random graph G(n, M) is projective
(or strongly rigid). Analogous results for the binomial random graph
G(n, p) follow from Theorem 1, the above two equations for the limit
distribution for τ1 and τ2, and the equivalence of the models G(n, M)
and G(n, p) (see, [4], Proposition 1.12). Here we state it for the prop-
erty that G(n, p) is projective.
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Corollary 8. lim
n→∞

Prob{G(n, p) is projective}

=



0 if np− log n− log log n → −∞
exp

(
− e−a

)
if np− log n− log log n → a

1 if
np− log n− log log n →∞

and n(1− p)− log n− log log n →∞
exp

(
− e−b

)
if n(1− p)− log n− log log n → b

0 if
n(1− p)− log n− log log n → −∞

and n2(1− p) →∞
e−c/2 if n2(1− p) → c
1 if n2(1− p) → 0. �
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[11] A. Pultr, V. Trnková: Combinatorial, Algebraic and Topological Represen-

tations of Groups, Semigroups and Categories, North Holland, Amsterdam,
1980.

Adam Mickiewicz University, Faculty of Mathematics and Computer
Science, 61-614 Poznań, Poland
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